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Abstract

We consider the problem of efficient inference of the Average Treatment Effect in a se-
quential experiment where the policy governing the assignment of subjects to treatment or
control can change over time. We first provide a central limit theorem for the Adaptive
Augmented Inverse-Probability Weighted estimator, which is semiparametric efficient, un-
der weaker assumptions than those previously made in the literature. This central limit
theorem enables efficient inference at fixed sample sizes. We then consider a sequential
inference setting, deriving both asymptotic and nonasymptotic confidence sequences that
are considerably tighter than previous methods. These anytime-valid methods enable infer-
ence under data-dependent stopping times (sample sizes). Additionally, we use propensity
score truncation techniques from the recent off-policy estimation literature to reduce the
finite sample variance of our estimator without affecting the asymptotic variance. Empir-
ical results demonstrate that our methods yield narrower confidence sequences than those
previously developed in the literature while maintaining time-uniform error control.

Keywords: Average Treatment Effect, Anytime-valid Inference, Confidence Sequences

1. Introduction

A/B tests, aka randomized experiments with two treatment arms, are widely used across
many domains. Classical statistical tools (fixed-time methods) require the analyst to fix the
experimental design and select the sample size in advance and only perform inference when
this sample size is reached. However, modern A/B testing platforms enable continuous
monitoring, which allows analysts to make repeated decisions about whether to stop or
continue or modify an experiment based on the data observed so far. For example, an analyst
might decide to run an experiment precisely until a test statistic becomes statistically
significant, at which point they may stop and declare a treatment effective.

Statistical tools which enable valid inference in this setting are called anytime-valid. To
illustrate the distinction, consider a confidence interval (CI) for a parameter of interest θ.

∗. Some of this work was performed while at J.P. Morgan Chase & Co.
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A (1− α) CI for θ is an interval [Lt, Ut] based on a sample of size t with the property that

∀t ∈ N+,P(θ ∈ [Lt, Ut] ≥ 1− α. (1)

The coverage guarantee in (1) only holds when the sample size (aka time) t is fixed in
advance. By contrast, a confidence sequence (CS) for θ is a sequence of intervals such that

P(∀t ∈ N+, θ ∈ [Lt, Ut]) ≥ 1− α. (2)

The coverage guarantee in (2) is uniform in t, enabling valid inference at any t.
We consider inference for the Average Treatment Effect (ATE), which is the expected

difference in outcomes between the two treatment arms, in the context of adaptive exper-
iments. Kato et al. (2021) introduced the Adaptive Augmented IPW (A2IPW) estimator,
which, when coupled with a particular adaptive design, yields asymptotically efficient CIs
based on the central limit theorem (CLT) (Hahn et al., 2011). Furthermore, Kato et al.
(2021) showed under certain conditions their adaptive design improves the regret bound
compared to a non-adaptive design. They also provided a CS for the ATE using concen-
tration inequalities based on nonasymptotic variants of the law of the iterated logarithm
(LIL). In an independent line of research, Dai et al. (2023) proposed an experimental design
such that the variance of an adaptive IPW estimator asymptotically achieves the variance
under the optimal Neyman allocation, and provide an asymptotically-valid CI for the ATE.

Our contributions are both theoretical and empirical. Theoretically, we prove a CLT
for the A2IPW estimator under weaker assumptions than those utilized by Kato et al.
(2021), enabling approximately valid inference at fixed sample sizes. While these results
are valid for arbitrary adaptive designs (with some mild restrictions), we propose a de-
sign which adaptively truncates the treatment assignment probabilities for finite sample
stability (Waudby-Smith et al., 2024). We show that this estimator is semiparametric effi-
cient when paired with the proposed design. Empirically, we couple the A2IPW estimator
with anytime-valid methods based on test (super)martingales (Waudby-Smith and Ramdas,
2023) and asymptotic CSs (Waudby-Smith et al., 2023) which yield much tighter intervals
(more powerful inference) than Kato’s employed methods.

2. Problem Setting and Technical Preliminaries

2.1 Experimental Process

We follow the same problem setting and data generating process as described in Kato et al.
(2021), with minor modifications to their notation. Subjects are indexed by t ∈ N and
arrive sequentially. For each subject, the experimenter observes a context Xt ∈ X , where X
is the context domain, then assigns a treatment At ∈ {0, 1}, and then observes an outcome
Yt ∈ R. We denote by Yt(a) the potential outcome corresponding to treatment a, for
a ∈ {0, 1}, and we assume that Yt = 1[At = 0]Yt(0) + 1[At = 1]Yt(1), where 1[·] denotes
the indicator function. That is, we assume that a given subject’s outcome depends only
on their own treatment assignment and not on the treatment assignments of other subjects
(Rubin, 1980, 1986). The accumulated data after T subjects (equivalently, T time steps,
where T ∈ {N ∪∞}) consists of a set {(Xt, At, Yt)}Tt=1, whose distribution is given by

(Xt, At, Yt) ∼ p(x)πt(a|x,Ωt−1)p(y|a, x),

2



where Ωt−1 = {(Xs, As, Ys) : s ≤ t − 1} denotes the history. We denote the domain
of Ωt−1 by Mt−1. We assume that {Xt, Yt(0), Yt(1)}Tt=1 are independent and identically
distributed. However, our treatment assignments are not fixed over time, and depend on
previous observations. We define the propensity score, πt(a|x,Ωt−1) from the experimenter’s
policy, πt : A× X ×Mt−1 7→ [0, 1]. By introducing dependence in the policy, the observed
outcomes, {Yt}Tt=1, form a sequence of realizations of dependent random variables.

As data collection may be costly, time consuming, or high risk, the experimenter may
not want to continue until some predetermined sample size. Conversely, an experimenter
may reach this sample size and consider proceeding with further data collection. Such
practice requires methods which can handle peeking (Ramdas et al., 2023), and is the
focus of Section 3. Under the anytime-valid inference methods described in that section,
the experimenter can choose to stop the experiment, continue under the current policy, or
continue under a modified policy, without inflating the type-I error rate.

Additional notation: Our notation follows Kato et al. (2021) with minor modification.
Let a be an action in A. Let us denote E[Yt(a) | x], E[Y 2

t (a) | x], Var(Yt(a) | x), and
E[Yt(1) − Yt(0) | x] as f(a, x), e(a, x), v(a, x), and θ0(x), respectively. Let f̂t(a, x) and
êt(a, x) denote estimators of f(a, x) and e(a, x) constructed from Ωt, respectively.1 We
denote the ℓ2 norm of a function as ∥f∥22 =

∫
{f(x)}2 dP(x).

Adaptive Estimator: We denote the causal parameter of interest, the ATE, as θ0 =
E(Y (1)−Y (0)), where the subscript t is dropped to emphasize time invariance. In an exper-
imental setting the treatment probabilities are known and the Inverse-Probability Weighted
(IPW) estimator produces an unbiased estimate of θ0. The Augmented IPW (AIPW) ex-
tends the IPW estimator to include regression estimates, which can reduce the variance of
the estimator, while maintaining unbiasedness (Robins et al., 1994; Chernozhukov et al.,
2018). Kato et al. (2021) extended the AIPW estimator to the setting of an adaptive ex-
periment by defining the Adaptive AIPW estimator (A2IPW). The key difference between
the two estimators is the use of data-dependent propensity scores. The A2IPW estimator,
given that T subjects have been observed, is defined as θ̂A2IPW

T = 1
T

∑T
t=1 ht, where

ht =

(
1[At = 1](Yt − f̂t−1(1, Xt))

πt(1|Xt,Ωt−1)
−1[At = 0](Yt − f̂t−1(0, Xt))

πt(0|Xt,Ωt−1)
+f̂t−1(1, Xt)− f̂t−1(0, Xt)

)
.

Hahn et al. (2011) showed that the policy πAIPW minimizes the semiparametric lower bound
of the asymptotic variance for regular estimators of the ATE, where

πAIPW(1|Xt) =

√
v(1, Xt)√

v(1, Xt) +
√
v(0, Xt)

.

This policy depends on unknown quantities of the underlying data generating process. Kato
et al. (2021) suggested estimating the unknown quantities. We define this policy as

πA2IPW
t (1|Xt,Ωt−1) =

( √
v̂(1, Xt)√

v̂(1, Xt) +
√
v̂(0, Xt)

∨ 1

kt

)
∧
(
1− 1

kt

)
, (3)

1. In general, f̂ can be any arbitrary estimator. In Theorem 1, we simply require f̂ to be consistent for f .
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where kt ∈ [2,∞) is a user-chosen2 truncation parameter. Note that setting kt = 2 results
in πt(At = 0|Xt,Ωt−1) = πt(At = 1|Xt,Ωt−1) = 0.5, and kt → ∞ results in the policy given
in Kato et al. (2021). With pointwise convergence assumptions on f̂ and πt, Kato et al.
(2021) show that the A2IPW estimator achieves the semiparametric lower bound of the
asymptotic variance. The policy truncation that we utilize is inspired by Waudby-Smith
et al. (2024) where truncation circumvents required knowledge of the maximal importance
weight in off-policy evaluation. Empirical results show truncation can improve finite-sample
performance for well-chosen kt.

2.2 Fixed-Time Confidence Intervals

We now turn to constructing CIs with asymptotic coverage guarantees. Kato et al. (2021)
defined zt = ht−θ0 and showed that {zt}Tt=1 forms a martingale difference sequence (MDS).
They then utilized a MDS CLT to show θ̂A2IPW is asymptotically Gaussian. They further
showed that θ̂A2IPW is semiparametric efficient under the asymptotic policy. We provide
the same results under weaker assumptions, as elaborated after the theorem.

Theorem 1 (Asymptotic Distribution of θ̂A2IPW
T ) Assume {(Xt, At, Yt)}Tt=1 follow the

data generating process described in Section 2.1. Let πt : A × X 7→ (0, 1) be an arbitrary
sequence of truncated policies. Assume 1/π(a | x) < ∞ and v(a, x) < ∞ for all x ∈ X and
a ∈ {0, 1}. Further, assume Var(Yt) <∞, kt∥f̂t − f∥2 = oP(1), and kt∥πt − π∥2 = oP(1) for
some policy π. Under these assumptions we have

√
T (θ̂A2IPW

T − θ0)
d−→ N(0, σ2),

where σ2 is the semiparametric lower bound of the asymptotic variance for regular estimators
of θ0 under the policy π. If we have π = πAIPW, then θ̂A2IPW

T is semiparametric efficient.

Details and proof are provided in Appendix A. Note that Kato et al. (2021) assumed
that Yt and f̂t are uniformly bounded, that πt is uniformly bounded away from 0, and that
f̂t and πt converge pointwise. By contrast, we only assume that Yt has finite (conditional)
variance; we only assume that f̂t and πt converge in ℓ2 norm; and, by utilizing truncation,
we avoid the assumption that the policies πt are uniformly bounded away from 0. Our proof
uses a MDS CLT given by Dvoretzky (1972), which is used in a similar fashion by Zhang
et al. (2021). This form of a MDS CLT allows weaker assumptions on f̂ and πt.

A t-statistic, along with an explicit CI, are defined in Appendix F.2. Although our
interval is the same as the one given in Kato et al. (2021), our relaxed assumptions make its
use applicable in more general settings, such as when outcomes have unbounded support.

3. Anytime-Valid Inference in Adaptive Experiments

We now construct CSs for the ATE. Kato et al. (2021) leveraged anytime-valid inference
via concentration inequalities based on the law of the iterated logarithm (LIL) which are
derived in Balsubramani (2015) and Balsubramani and Ramdas (2016). The concentration

2. For our CLT-based CI (Theorem 1), we require kt not to grow too quickly. For details see Appendix A.
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inequality derived for θ̂A2IPW (Kato et al., 2021, Thm. 4) depends on the unknown treat-
ment effect θ0, although we believe it is probably a trivial extension to replace this with an
estimate of θ0. Indeed, though their derivation uses the true value θ0, their experiments use
a running estimate for θ0 based on {ht}T−1

t=1 . The theorems that follow derive CSs for the
ATE based on recent, state-of-the-art methods for inference of means of random variables
in sequential settings. All sequences are fully empirical, meaning they do not depend on
unknown parameters. We will see that these these methods empirically yield much tighter
intervals than methods based on the LIL.

3.1 Betting Confidence Sequences

We first derive a CS using results from Waudby-Smith and Ramdas (2023) and Waudby-
Smith et al. (2024). Since these CSs do not require independence between observations,
their use in the setting of adaptive experimentation is natural. The approach is based on
a set of capital processes, each of which can be understood as the wealth a gambler would
accumulate in a game against nature. More precisely, we construct one capital process for
each θ′ ∈ Θ, the parameter space. At each time, t, the confidence set corresponds to the
set of θ′ ∈ Θ such that our capital process has not exceeded an improbable level of wealth
for a fair game. Continuing with the betting analogy, the analyst must choose a predictable
betting strategy for each game, λt(θ

′), which is typically chosen to be quasi-convex in θ′ so
that the confidence set forms an interval.

Theorem 2 (Hedged CS [Hedged]) Assume we observe data following the data gener-
ating process of Section 2.1. Assume Yt ∈ [0, 1] and πt(1 | Xt,Ωt−1) ∈ [kt, 1 − kt] for all
t ∈ 1, . . . , T . If we define

K+
T (θ

′) :=
T∏
t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) :=

K+
T (θ

′) +K−
T (θ

′)

2
,

then

CHedged
T :=

⋂
t≤T

{
θ′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a (1− α)-CS for θ0, where (λt(θ
′))Tt=1 ∈

(
−1

kt−θ′ ,
1

kt+θ′

)
is a predictable sequence that

may be interpreted as an analyst’s betting strategy.

Proof, intuition, and other details can be found in Appendix C. We note that our
result holds for any bounded Yt by rescaling. The CS produced by Theorem 2 can be
computationally expensive, as a grid search is performed over θ′ ∈ [−1, 1]. Theorem 10 in
Appendix E states a practical, closed-form CS with only small degradation in performance.

3.2 Asymptotic Confidence Sequences

Due to their time-uniform guarantees, the CSs defined so far produce wider intervals than
their CI counterparts. In the fixed-time setting, coverage is guaranteed asymptotically.
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Figure 1: Cumulative error probability and power of experiment from Appendix F.3. Inter-
vals based on the CLT (Theorem 1), AsympCS (Theorem 3), Pr-Pl (Theorem 10),
Hedged (Theorem 2), and (Kato et al., 2021, Theorem 4) begin at t = 50.

Waudby-Smith et al. (2023) introduced a sequential analogue of asymptotic CIs, asymptotic
CSs (AsympCS), by defining a CS which converges to some (unknown) CS. We now define
our AsympCS for θ0.

Theorem 3 (Asymptotic CS [AsympCS]) Assume {(Xt, At, Yt)}Tt=1 follow the data gen-
erating process described in section 2.1. Furthermore, assume E(Y 2+δ

t ) <∞ for some δ > 0.
Let σ̂2 be an estimator of Var(ht), and ρ > 0 be a user-specified parameter, with a valid
default being 0.5. For all t ∈ 1, . . . , T , we have that

CAsympCS
T :=

 1

T

T∑
t=1

ht ±

√√√√√2(T σ̂2Tρ
2 + 1)

T 2ρ2
log


√
T σ̂2Tρ

2 + 1

α


 ,

forms a (1− α)-AsympCS for θ0.

Proof and further details can be found in Appendix D. Although this interval does not
yield exact coverage, empirically most errors occur quite early during the experiment. Its
applicability for reasonable sample sizes provides a noticeable gain in power in comparison
to the exact CSs. We also note that the theorem we make use of from Waudby-Smith
et al. (2023) allows for time-varying conditional means. This suggests that the results of
Theorem 3 can be extended to time-varying effects, which we leave for future work.

4. Empirical Results

We compare our methods to Kato et al. (2021). We run two simulations: one with Bernoulli
outcomes, and one with continuous, bounded outcomes. We collect 5000 total samples for
each iteration, constructing intervals after each sample. Details are given in Appendix F.

Our methods provide significantly narrower intervals, as is seen in the increased power
in Figure 1. This is due to leveraging tighter concentration inequalities, as well as using
time-varying truncation. Performance is inline with expectations from the CS literature.
The effects of truncation on inference is further studied in Appendix F.6, and is a continued
focus of this research.
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Appendix A. Details and Proof of Theorem 1

A.1 On the Role of Policy Truncation

As mentioned in Section 2.2, Hahn et al. (2011) showed that the policy that minimizes the
semiparametric lower bound of the asymptotic variance, σ2, for regular estimators of the
ATE is πAIPW. For an arbitrary policy π(a | x), we have that

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

The policy πAIPW depends on unknown quantities of the underlying data generating
process. Kato et al. (2021) proposed sequentially estimating the unknown quantities from
the observed data and and defined their suggested policy as

πA2IPW,Kato
t (1 | Xt,Ωt−1) =

√
v̂t−1(1, Xt)√

v̂t−1(1, Xt) +
√
v̂t−1(0, Xt)

,

where v̂t−1 denotes an estimate of v using the first t − 1 samples. For numerical stability,
Kato et al. (2021) mixed this policy with a non-adaptive policy that assigns treatment
with probability half. As the sample size grows, the mixing gradually assigns a greater
weight to the estimated optimal policy. This mixing scheme prevents noisy estimates of
v from inducing high variance in the observed (ht)

T
t=1 early in the experiment and does

not affect the asymptotic properties of the estimator. In a similar spirit, we explicitly
define a truncation schedule for the propensity scores generated by our policy. However,
our truncation schedule is not only useful for improving finite sample stability in practice;
it is also a technical device that allows us to relax the assumptions needed for our results
below. We can rewrite our policy from equation (3) as

πA2IPW
t (1 | Xt,Ωt−1) =

(
πA2IPW,Kato
t (1 | Xt,Ωt−1) ∨

1

kt

)
∧
(
1− 1

kt

)
. (4)

Since our Theorem 1 holds in a more general setting, we can apply this truncation to
arbitrary policies π̃t, denoting

πt =

(
π̃t ∨

1

kt

)
∧
(
1− 1

kt

)
. (5)

Note that setting kt → ∞ results in the non-truncated policy π̃t.
In contrast to Kato et al. (2021), truncation plays a key role in our derivation of the

asymptotic distribution of θ̂A2IPW
T and, in turn, the conditions required of kt are of particular

interest. If kt increases to infinity, then as long as the non-truncated policy π̃t converges
to some non-truncated policy π̃, the truncated policy πt will also converge to π̃ (and the
theorem would apply as long as kt increased slowly enough that ktmax(∥f̂t−f∥2, ∥πt−π∥2) =
oP(1)). Instead, if kt remains constant or increases to a finite bound, then the truncated
policy πt will converge to an appropriate truncation of π̃, and the theorem would still
apply as long as max(∥f̂t − f∥2, ∥πt − π∥2) = oP(1). When we have π = πAIPW, we are
implicitly assuming that we have independently selected kt such that truncation becomes
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asymptotically inactive. Note that if π̃t were uniformly bounded away from 0, as assumed
in Kato et al. (2021), then we could simply set kt = 1/min(π̃t(x), 1− π̃t(x)) so that π̃t = πt,
meaning we never actively truncate π̃t. In that case, the conditions in (Kato et al., 2021,
Theorem 1) would imply the conditions in our theorem. The following remark alludes to
how selecting kt can lead us to semiparametric efficient inference with the our proposed
policy, πA2IPW

t .

Remark 4 (Semiparametric Efficiency) Assume that we set kt such that limt→∞ kt >
sup 1

πAIPW . Assume that the estimated conditional variance function v̂t is consistent for v

such that ∥πA2IPW
t −πAIPW∥2 = oP(1). If kt grows at a rate such that kt∥πA2IPW

t −πAIPW∥2 =
oP(1) and all other assumptions of Theorem 1 hold, then θ̂A2IPW

T is semiparametric efficient.

In the final sentence of Theorem 1, we state that if πt converges to πAIPW, then the
semiparametric lower bound is minimized with respect to π (Hahn et al., 2011). In order to
make use of this result, we require an adaptive policy that converges to πAIPW. Remark 4
states that πA2IPW

t is such a policy as long as our estimates of v are consistent and our
truncation does not vanish too quickly. The rate at which kt is allowed to increase as per
the conditions in Remark 4 depends on the rate that v̂t converges to v. In practice this rate
is unobservable, and it is worth acknowledging this limitation. Overcoming this limitation
is an interesting direction for future research.

A.2 High-Level Roadmap of Proof

Our proof follows a similar style to the proof of Kato et al. (2021). We consider a martingale
difference sequence (MDS) and apply a central limit theorem to find the asymptotic distri-
bution of the sample mean of the MDS. The main departure of our proof from their proof
is the statement of the central limit theorem which is amenable to making assumptions
standard in causal inference.

To outline the proof, first we state our assumptions. Next we establish that {zt}Tt=1,
where zt = ht − θ0, is a MDS. We then state the MDS central limit theorem by Dvoretzky
(1972) and show that {zt}Tt=1 satisfies the necessary conditions. For the sake of brevity, we
defer much of the tedious algebra to Appendix B. Since z̄T = T−1

∑T
t=1 zt = T−1

∑T
t=1(ht−

θ0) = θ̂A2IPW
T −θ0, this result allows us to characterize the asymptotic distribution of θ̂A2IPW

T .

A.3 Assumptions

• IID Contexts and Potential Outcomes : {Xt, Yt(0), Yt(1)}Tt=1 are independent and iden-
tically distributed.

• Finite Variance : Var(Y ) <∞.

• Finite Conditional Variance : Var(Y (a) | x) <∞ for a ∈ {0, 1} and x ∈ X .

• Convergence of Regression : kt∥f̂t − f∥2 = oP(1)

• Convergence of Policy : kt∥πt − π∥2 = oP(1).

• π Bounded Away from 0 : 1
π < C1, for some C1 <∞.
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• Finite Variance of Predictions : Var(f̂t−1(a,Xt)) <∞ for a ∈ {0, 1}.

A.4 zt is a MDS

Kato et al. (2021) show the first necessary condition, E(zt | Ωt−1) = 0. For completeness
we present this step here.

E
[
zt | Ωt−1

]
= E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = k]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

+ f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

∣∣∣∣∣ Ωt−1

]

= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

+ E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = 0]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

∣∣∣∣∣ Xt,Ωt−1

] ∣∣∣∣∣ Ωt−1

]
= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0 + f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

∣∣∣ Ωt−1

]
= 0.

The second required condition is E|zt| <∞. By Chebyshev’s inequality,

P(|zt − E(zt)| ≥ 1) = P(|zt| ≥ 1) ≤ Var(zt) = E(z2t ) <∞.

The final inequality holds due to finite variance of the outcome and regression prediction,
and truncated propensity scores.

A.5 MDS Central Limit Theorem

Kato et al. (2021) used a MDS CLT which requires (condition b) a finite 2 + δ moment
(δ > 0) for |zt|. Instead we use the MDS CLT as stated by Dvoretzky (1972). This statement
contains a Lindeberg type condition where we must only consider the second moment of
|zt|. Since we do not assume boundedness, we opt for this Lindeberg-type statement. For
completeness, we present this theorem as it is stated in Zhang et al. (2021, Theorem 2).

Theorem 5 (MDS Central Limit Theorem) Let ZT (P)T≥1 be a sequence of random
variables whose distributions are defined by some P ∈ P and some nuisance component η.
Moreover, let ZT (P)T≥1 be a martingale difference sequence with respect to Ωt, meaning
EP,η[Zt(P) | Ωt−1] = 0 for all t ≥ 1 and P ∈ P. If we assume that,

1. 1
T

∑T
t=1 EP,η

[
z2t | Ωt−1

] p−→ σ2 uniformly over P ∈ P, where σ2 is a constant 0 < σ2 <
∞, and that,

2. for any ϵ > 0, 1
T

∑T
t=1 EP,η

[
zt(P)2I [|zt(P)| > ϵ] | Ωt−1]

] p−→ 0 uniformly over P ∈ P,

then
√
T (z̄t)

d−→ N(0, σ2) uniformly over P ∈ P.
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Dropping the requirement of the conditions holding uniformly over P ∈ P recovers the
original result by Dvoretzky (1972). Below we show that these two conditions are satisfied.
It follows that

√
T (z̄t) =

θ̂A2IPW − θ0√
T

d−→ N(0, σ2),

where

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

A.5.1 Condition 1 (Conditional Variance)

We wish to show that

1

T

T∑
t=1

E
[
z2t | Ωt−1

] p−→ σ2 = E

[
1∑

a=0

ν
(
a,Xt

)
π(a | Xt)

+
(
f(1, Xt)− f(0, Xt)− θ0

)2]
.

This is equivalent to showing

1

T

T∑
t=1

(
E
[
z2t | Ωt−1

]
− σ2

) p−→ 0.

To reduce notational clutter, let E(Xt | Ωt−1) be denoted as Et−1(Xt). Kato et al. (2021,
Appendix B) show

E
[
z2t | Ωt−1

]
− σ2 = Et−1

[
(Yt(1)− f̂t−1(1, Xt))

2

πt(1 | Xt,Ωt−1)
+

(Yt(0)− f̂t−1(0, Xt))
2

πt(0 | Xt,Ωt−1)

+
(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
+ 2(f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt))(f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0)

]

− Et−1

[
(Yt(1)− f(1, Xt))

2

π(1 | Xt)
+

(Yt(0)− f(0, Xt))
2

π(0 | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]

=
1∑

a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (6)

+ 2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
(7)

+ Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
. (8)

We now consider terms (6), (7) and (8) individually. We make use of auxiliary lemmas
and defer proofs to Appendix B. In all of the lemmas below, we keep all assumptions from
Appendix A.3.
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Lemma 6 (Convergence of (6)) Under the assumptions of Theorem 1, we have

1∑
a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 = oP(1).

Lemma 7 (Convergence of (7)) Under the assumptions of Theorem 1, we have

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).

Lemma 8 (Convergence of (8)) Under the assumptions of Theorem 1, we have

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

Given Lemmas 6, 7, and 8, convergence in probability to zero for each term is es-
tablished, and therefore so is the convergence of the sum. Convergence of the conditional
variance of the MDS is then established. We now focus on the convergence of the sample
average of the conditional variances.

Following the same argument from Kato et al. (2021), for any ϵ > 0, there exists a t̃ > 0
such that

1

T

T∑
t=1

(
Et−1

[
z2t
]
− σ2

)
≤ t̃/T + ϵ.

Since σ2 does not depend on t, t̃/T → 0 as T → ∞, and so 1
T

∑T
t=1

(
Et−1

[
z2t
]
− σ2

) p−→ 0.
Hence, condition 1 is satisfied.

A.5.2 Condition 2 (Conditional Lindeberg)

We seek to show that for any δ > 0,

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.

Define bt = z2t 1(|zt| > δ
√
T ). Then bt = z2t w.p. P(|zt| > δ

√
T ) and 0 otherwise. By

Chebyshev’s inequality,

P(|zt| > δ
√
T ) ≤ Var(zt)

δ2T
.

We note that Var(zt) = E(z2t ) <∞. This gives

lim
T→∞

Var(zt)

δ2T
= 0,

which implies that bt
p−→ 0, and bt

d−→ 0.
Note that |zt| ≤ z2t , and E(z2t ) <∞. By the dominated convergence theorem, limT→∞ E(bt) =

E(limT→∞ bt) = 0. Hence we have

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.
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Appendix B. Auxiliary Lemmas and Proofs

This appendix shows proofs for auxiliary lemmas used in Appendix A. The proofs involve
tedious algebra and are included in full detail for completeness.

B.1 Proof of Lemma 6

The term considered in Lemma 6, specifically term (6), involves a summation over the
potential treatments, we choose to focus on a single arbitrary treatment, a, and show that
the term for an individual treatment converges to zero in probability, and hence, so does
the sum.

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)


= Et−1


(
Yt(a)− f̂t−1(a,Xt) + f(a,Xt)− f(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (9)

= Et−1


(
(Yt(a)− f(a,Xt)) +

(
f(a,Xt)− f̂t−1(a,Xt)

))2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)


(10)

= Et−1

[
(Yt(a)− f(a,Xt))

2

πt(a | Xt,Ωt−1)
+

2 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

(11)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(12)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

 .
Above, (9) simultaneously adds and subtracts f(a,Xt), while (10) and (11) square the

binomial term. In equation (12), we factor (Yt(a)−f(a,Xt))
2 from the first and final terms,

and utilize linearity of expectation. Continuing,

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)
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≤ Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(13)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ Et−1

[
kt

(
f(a,Xt)− f̂t−1(a,Xt)

)2]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(14)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

Inequality (13) follows since our policy is truncated within [ 1kt , 1−
1
kt
]. Equation (14) uses

norm notation in the final term so that we may reference our assumptions further in the
proof. We now turn our focus to simplifying the middle term of equation (14),

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(15)

+ 2

(
Et−1

[
Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2]
− Et−1

[
f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2])
+ kt

(
∥f̂(a)− f(a))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2] ∣∣∣ Xt

]
(16)

− 2Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2] ∣∣∣ Xt

])
(17)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
,

where equation (15) expands the term of interest, and terms (16) and (17) apply the law of
iterated expectation. Conditioning on Xt, the only non-constant term in terms (16) and
(17) is Yt(a), whose conditional expectation on Xt is f(a,Xt). Therefore, the terms (16)
and (17) reduce to 0. Simplifying, we have

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
15



+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2] ∣∣∣ Xt

]

− 2Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2] ∣∣∣ Xt

])
+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(18)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

By assumption, kt∥f̂(a,Xt)−f(a,Xt)∥2 = oP(1). It follows then that kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
=

oP(1). Equation (18) can be further simplified to

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ oP(1)

= E
[
E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1)

(19)

= E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
E
[
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1) (20)

≤ C1ktVar(Yt)Et−1 [π(a | Xt)− πt(a | Xt,Ωt−1)] + oP(1) = oP(1). (21)

Equation (19) follows from the law of total expectation. In equation (20) πt(a | Xt,Ωt−1)
given Xt and Ωt−1 is constant, and can be moved out of the inner expectation, away from
(Yt(a)− f(a,Xt))

2. The bound (21) then utilizes our policy truncation and our assumption
that 1

π is bounded. We denote this bound as C1 <∞. We are able to bound the denominator
with a constant, and move this constant outside of the expectation. Simultaneously, we note
that the inner expectation is by definition the conditional variance of Yt(a) given Xt. We
apply the law of total variance to bound this term by Var(Yt(a)), and move this constant
out of the outer expectation. The bound 21 reduces to oP(1), since converge in ℓ2 implies
convergence in ℓ1, and the Lemma is proved.

B.2 Proof of Lemma 7

We look to prove that

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).

For simplicity, we temporarily ignore the constant. Continuing,

Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
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= Et−1
[(
f(1, Xt)− f̂t−1(1, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
(22)

+ Et−1
[(
f(0, Xt)− f̂(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
≤

√
Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

(23)

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
,

where equation (22) separates terms from different treatments and utilizes the linearity of
expectation. Bound (23) then follows from applying the Cauchy-Schwarz inequality. We
conclude by showing√

Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

= ∥f̂ − f∥2
√

Et−1
[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
+ ∥f̂ − f∥2

√
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

= oP(1).

Using norm notation and applying the assumption of convergence of regression in ℓ2-norm,
convergence is established, and the lemma is proved.

B.3 Proof of Lemma 8

We wish to prove that

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

We begin by expanding this term,

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= Et−1

[((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
+ (f(1, Xt)− f(0, Xt)− θ0)

)
(24)

×
((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
− (f(1, Xt)− f(0, Xt)− θ0)

)]

= Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)
(25)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.
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Equation (24) arises from the fact that a2 − b2 = (a + b)(a − b) for real numbers a, b.
Equation (25) then collapses θ0 to a single term. We now add and subtract f(1, Xt) and
f(0, Xt) to the first term of equation (25), giving

Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)
×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
(26)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

Equation (26) completes this step, and rearranges terms so that we may use the assumption
of convergence of regression.

Next, distributing the second term in equation (26), along with the use of the linearity
of expectation gives

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

(27)

The first term in equation (27) converges in probability by assumption. For the second
term, we distribute f(1, Xt)− f(0, Xt)− θ0) yielding

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]
(28)

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))
= Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(29)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1). (30)
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Applying the Cauchy-Schwarz inequality to each term in equation (30) gives

Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(31)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1)

≤

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(1, Xt)− f̂(1, Xt)

)2]
(32)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
+ oP(1)

=

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 (33)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 + oP(1).

Equation (33) follows from the bound (32) by definition. Since ∥f̂ − f∥2 = oP(1),
Equation (33) reduces to oP(1), and the lemma is proved.

Appendix C. Details and Proof of Theorem 2

C.1 Details and Intuition of Hedged CS

K+
T (θ

′) and K−
T (θ

′) can be interpreted as capital processes for a gambler who is betting
in favor of θ0 > θ′ and θ0 < θ′ respectively in two separate games against nature. Since
we wish to produce two-sided intervals, we take the mean of these two process to form
MT (θ

′). This is equivalent to a gambler partitioning their wealth equally between two
games. The analyst must choose a predictable betting strategy for each game, λt(θ

′). In
theory, this betting strategy could be different at each possible value of θ′. Moreso, apart
from a bounded range, the only restriction on λt(θ

′) is that it is predictable, meaning that
it cannot depend on the current or any future observations. However, since our parameter
space is continuous, an exhaustive search over an infinite set of θ′ is not feasible. Waudby-
Smith and Ramdas (2023) propose a method to set λt to be quasi-convex in θ′ so that
the confidence set forms an interval. With quasi-convexity, it is sufficient to partition the
parameter space and perform a grid-search; see their paper for further details and a variety
of settings of λt. We provide the explicit strategy that we use in Appendix C.4.

C.2 Proof Outline

The proof adapts the proof of Waudby-Smith et al. (2024, Theorem 1) to our problem
setting. The only departure in our proof is that our parameter space and (λt)

T
t=1 are not

strictly non-negative. We include this proof to demonstrate how our bounds on λt originate
as well as showing how our proof does not make use of the mirroring technique to form a
(1−α)-upper CS. Although these adjustments are immediate and obvious to those familiar
with the anytime-valid inference literature, we include this proof for completeness. We
begin by stating and proving a lemma that demonstrates how to construct an arbitrary
(1 − α) Betting-CS for our problem setting. We then construct a Hedged CS, where we
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specify the capital process, the convex combination, relevant user-specified parameters and
invoke our adapted lemma.

C.3 Constructing a (1− α) Betting-CS

Lemma 9 Assume we observe data following the data generating process of Section 2.1.
Assume that Yt ∈ [0, 1] ∀t ∈ 1, . . . , T. Suppose that πt(1 | Xt,Ωt−1) ∈ [kt, 1 − kt] for all
t ∈ 1, . . . , T, then

CBetting
T :=

⋂
t≤T

{
θ
′ ∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) CS for θ0, where λt is a predictable sequence.

Proof Note that πt(a | Xt,Ωt−1) ∈ [ 1kt , 1−
1
kt
] and consequently ht ∈ [−kt, kt]. Inspired by

the truncation technique used by (Waudby-Smith et al., 2024, Theorem 1), we show that
MT (θ0) in Equation (34) is a test martingale,

MT (θ0) :=

T∏
t=1

(1 + λt(θ0)(ht − θ0)) . (34)

ForMT (θ0) to be a test martingale, we must showM0(θ0) = 1, {MT (θ0)}Tt=1 is non-negative,
and that ET−1 (MT (θ0)) =MT−1(θ0).

MT (θ0) is non-negative if (1 + λt(θ0)(ht − θ0)) > 0 ∀t ∈ 1, . . . , T . Waudby-Smith and
Ramdas (2023) state this condition in their Proposition 3 as requiring λt(θ0) (ht − θ0) > −1.
Consider the case when (ht − θ0) < 0. We have that

1 + λt(θ0)(ht − θ0) ≥ 1 + λt(θ0)(−kt − θ0).

In this case, λt(θ0) ∈ (−∞, 1
kt+θ0

) will give

1 + λt(θ0)(−kt − θ0) > 1 +
−kt − θ0
kt + θ0

= 0.

Next consider when (ht − θ0) > 0, then setting λt(θ0) ∈
(

−1
kt+θ0

)
guarantees λt(θ0)(ht −

θ0) > −1. Taking the union of these sets gives λt(θ0) ∈
(

−1
kt−θ0

, 1
kt+θ0

)
, and we conclude

that MT (θ0) is non-negative.
Next, we check the condition on the conditional expectation,

ET−1 (MT (θ0)) = ET−1 (MT−1(θ0)× (1 + λT (θ0)(hT − θ0))

=MT−1(θ0)(1 + λT (θ0)ET−1(hT − θ0)

=MT−1(θ0)(1 + λT (θ0)× 0) =MT−1(θ0).

MT (θ0) is therefore a test martingale. By the inequality for non-negative supermartin-
gales due to Ville (1939), we have that

P
(
∃T ∈ N,MT (θ0) ≥

1

α

)
≤ α.
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It follows that the set

CBetting
T :=

{
θ
′ ∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) confidence set.

C.4 Hedged CS

Following suggested values from Waudby-Smith and Ramdas (2023), we set

λt =

√
2 log(2/α)

σ̂2t−1t log(1 + t)
∧ c, where c = 0.5, (35)

θ̂t =
1
2 +

∑t−1
i=1 hi

t
,

σ̂2t =
1
4 +

∑t
i=1(hi − θ̂)2

t
.

We define

K+
T (θ

′) :=

T∏
t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) := mK+

T (θ
′) + (1−m)K−

T (θ
′),

where m = 0.5 (in general, m ∈ [0, 1]). Letting λt(θ
′) = λt as defined in Equation (35),

and truncated to fall within
(

−1
kt−θ′ ,

1
kt+θ′

)
, both K+

T (θ
′) and K−

T (θ
′) are test martingales

when θ′ = θ0. It follows that MT (θ
′) is also a test martingale when θ′ = θ0 (Waudby-Smith

and Ramdas, 2023, Theorem 3). By Lemma 9,

CHedged
T :=

⋂
t≤T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a valid (1− α)-CS. We now focus computing CHedged
T .

If λt does not depend on θ
′
(apart from truncating the domain), Waudby-Smith and

Ramdas (2023) show that, empirically, CHedged
T forms an interval at each time T . We can

then search over a grid of possible values of θ
′ ∈ [−1, 1], and set lower and upper bounds as

LHedged
T = sup

t∈{1,...,T}
inf
T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

UHedged
T = inf

t∈{1,...,T}
sup
T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
.

As a result, [LHedged
T , UHedged

T ] forms a (1− α)-CS for θ0.
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Appendix D. Proof of Theorem 3

Proof Outline (ht)
T
t=1 is recognized to be a sequence of random variables with conditional

mean θ0 and conditional variance σ2. This allows us to invoke Theorem 2.5 from Waudby-
Smith et al. (2023). In order to do so, we must verify three assumptions.

Assumption 1 (Cumulative variance diverges almost surely) This assumption is
satisfied in Appendix A where we establish that the average conditional variance of zt (which
equals the average conditional variance of ht) does not vanish. It follows that an infinite
sum of a non-zero constant diverges.

Assumption 2 (Lindeberg-type uniform integrability) We mush show that there
exists some 0 < κ < 1 such that

∞∑
t=1

E
[
(ht − θ0)

2
1
(
(ht − θ0)

2 > V κ
t

)
| Ωt−1

]
V κ
t

<∞ almost surely,

where Vt =
∑t

i=1 σ
2
i .

As is noted in Waudby-Smith et al. (2023), this equation is satisfied if 1/K ≤ E |
ht − θ0 |q< K a.s. for all t ≥ 1 and for some constant K > 0. Without loss of generality,
assume q = 2 + δ. We have that

E|ht − θ0|q ≤ E(hqt ) + E(θq0).

Note that E(hqt ) ∝ E(Y q
t ) <∞. Then pick K∗ = K + E(hqt ) and the condition holds.

Assumption 3 (Consistent variance estimation) We must show that the estimator,
σ̂2t , of σ̃

2
t satisfies

σ̂2t
σ̃2t

a.s.−−→ 1.

Our estimator is the sample average of the variances estimated thus far. We note that
zt is a square-integrable MDS. Hence, we utilize the Strong Law of Large Numbers for a
MDS, and we can establish that the sample average of the squared deviations converges
almost surely to the variance of zt. We establish that σ̂2(zt) = σ̂2(ht) by showing

σ̂2(zt) =
1

T

T∑
t=1

(zt − z̄t)
2

=
1

T

T∑
t=1

(
ht − θ0 −

1

T

T∑
t=1

(ht − θ0)

)2

=
1

T

T∑
t=1

(
ht − θ0 + θ0 − h̄T

)2
= σ̂2(ht).

By the SLLN, σ̂2(ht) = σ̂2(zt)
a.s.−−→ Var(zt) = Var(ht).
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Appendix E. Statement and Proof of Theorem 10

The confidence set produced by Theorem 2 can be computationally expensive, as a grid
search is performed over θ′ ∈ [−1, 1]. A significant drawback is a lack of closed-form
presentation. We now present a closed-form CS which has slight degradation in performance,
but enjoys faster computation. This CS is based on an empirical Bernstein-type process
that is shown to be test supermartingale (Waudby-Smith and Ramdas, 2023). Since this
process inverts a test supermartingale, the concentration inequality is a looser bound than
those produced by test martingales.

Without loss of generality, assume that we observe Yt ∈ [0, 1], for all t ∈ 1, . . . , T , and
that the propensity scores, πt(at | Xt,Ωt−1), are all truncated to fall in [ 1kt , 1−

1
kt
]. Following

a similar technique as in Waudby-Smith et al. (2024), we define

ξt =
ht

kt + 1
, ξ̂t−1 =

(
1

t− 1

t−1∑
i=1

ξi

)
∧ 1

kt + 1
, and ψE(λ) = − log(1− λ)− λ. (36)

ξt can be viewed as a scaled version of ht. ξ̂t−1 is then a sample average of ξ up through
observation t−1. By only using previous observations, this value is predictable, whereas the
quantity ξ̄t, defined below in equation (38), uses the current observation and is therefore
not predictable. The scaling in ξt and truncation in ξ̂t−1 are necessary technical tools to
construct a test supermartingale, as shown by Waudby-Smith and Ramdas (2023).

Similarly with the Hedged CS of Theorem 2, there are user-specified parameters, (λt)
T
t=1,

which have an effect on the finite-sample performance of our forthcoming CS. (λt)
T
t=1 can be

any (0, 1)-valued predictable process. Waudby-Smith et al. (2024) provide an empirically
promising setting, inspired by fixed-time empirical Bernstein confidence intervals,

λt =

√
2 log(2/α)

σ̂2t−1t log(1 + t)
∧ c, where c = 0.5, (37)

σ̂2t =
σ20 +

∑t
i=1(ξi − ξ̄i)

2

t+ 1
, and ξ̄t =

(
1

t

t∑
i=1

ξi

)
∧ 1

kt + 1
. (38)

σ̂2t and ξ̄t can be interpreted as estimates of the mean and variance of ξ. The value σ20
can be viewed as a prior guess for the variance of ξ, and setting σ20 = 1

4 is a reasonable
choice. We are now ready to present the CS.

Theorem 10 (Predictable plug-in empirical Bernstein CS [Pr-PI]) Assume we ob-
serve data following the data generating process of Section 2.1. Assume that Yt ∈ [0, 1] for
all t ∈ 1, . . . , T. Let ξt, ξ̂t−1, ψE(λ), λt, σ̂

2
t , and ξ̄t be defined as in (36), (37), and (38)

respectively. We have that

CPrPI−EB
T :=

∑T
t=1 λtξt∑T

t=1 λt/(kt + 1)
±

log(2/α) +
∑T

t=1

(
ξt − ξ̂t−1

)2
ψE(λt)∑T

t=1 λt/(kt + 1)
,

forms a (1− α) Predictable Plug-In Empirical Bernstein (PrPI-EB) CS for θ0.
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Proof Note that ξt − ξ̂t−1 > −1. Given this fact, Waudby-Smith et al. (2024, Lemma 1)
show that the process

MT = exp

{
T∑
t=1

λt

(
ξt −

θ0
kt + 1

)
−

T∑
t=1

(
ξt − ξ̂t−1

)2
ψE(λt)

}
, (39)

is a test supermartingale. Using Ville’s inequality, they invert Mt to form a (1 − α)-lower
CS. We define an (1−α)-Upper CS by defining ξt =

−ht
kt+1 , and apply a union bound, which

gives the result.

Appendix F. Implementation Details

F.1 Experiment Description

We empirically compare our methods to Kato et al. (2021, Thm. 4). We run two simu-
lations with 1000 iterations each: one with Bernoulli outcomes, and one with continuous,
bounded outcomes. 5000 total samples are collected for each iteration and intervals are con-
structed following each sample. We employ sequential sample-splitting on f̂ and ê to avoid
double-dipping and overfitting (Waudby-Smith et al., 2023). Sequential sample-splitting
permanently allocates each sample to one of two data-folds upon observation. We fit mod-
els for f̂ and ê separately on each fold, giving four models in total. Predictions of f̂ and
ê are produced from the model fit from the opposite fold. For an individual observation,
we estimate the conditional variance by setting v̂(a, x) = ê(a, x)− (f̂(a, x))2. When deter-
mining πA2IPW

t , f̂ and ê are calculated by averaging predictions of the models from both
splits, as this calculation occurs prior to observing and assigning the data point to a split.
In our simulations, we clip v̂ to be no less than 0.01 to avoid division by zero or negative
values. During the first 100 samples, f̂(1, Xt) = 1, f̂(0, Xt) = 0, and πt = 0.5. For policy

truncation, we set kt =
kt−1

0.999 where k1 = 2. Since the method of Kato et al. (2021) does not
utilize time-varying bounds (at least in its present form), using the worst-case bound for
the propensities is a conservative way to guarantee time-uniform validity of their CS. Using
our proposed truncation scheme can then make these confidence sequences extremely wide.
To remedy this, we observe that setting kt = 5 works well for Kato et al. (2021, Thm. 4).

F.2 θ̂A2IPW T-Statistic

Theorem 1 gives an asymptotic distribution for the θ̂A2IPW estimator which depends on
σ2. In practice, we typically do not have access to σ2 and we must estimate this quantity,
denoted as σ̂2. With σ̂2

p−→ σ2, we may invoke Slutsky’s Theorem, and use σ̂2 in place of
σ2. Similarly to Kato et al. (2021), we call this our t-statistic,

√
T (θ̂A2IPW − θ0)

σ̂2
d−→ N(0, 1).
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Figure 2: Utilizing an kNN Regressor for the protocol used in Figure 1. The policy used
for Pr-Pl is modified to be truncated within [0.2, 0.8].

In Assumption 3 of Appendix D, we show that our variance estimator converges almost
surely, implying convergence in probability. Our asymptotic CI is,

CT := h̄t ± z1−α
2

σ̂2√
T
,

where σ̂2 = 1
T

∑T
t=1

(
ht − h̄T

)2
.

F.3 Bernoulli Outcome Simulation

We simulate (Xt, At, Yt)
T=5000
t=1 , where,

Xt ∼ N([03], I3),

βT =
[
−2,−3, 5

]
,

πt =

( √
v̂(1,Xt)√

v̂(1,Xt) +
√
v̂(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli

((
πt ∨

1

kt

)
∧ (1− 1

kt
)

)
,

pt = 0.9× logit (0.5 +Xtβ) + 0.1At,

Yt ∼ Bernoulli (p = pt) .

With the data generating process above, θ0 = 0.1. We ran two separate simulations, where
one used k-Nearest Neighbors Regressor (kNN) and the other used Random Forest Regressor
(RF) for f̂ and ê. We ran 1000 iterations using the DGP above, results for the simulation
when RF is used are shown in Figure 1. We provide results for the simulation using kNN
in Figure 2.
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Figure 3: Results for simulation described in Appendix F.4 using a Random Forest Regres-
sor.

F.4 Bounded Continuous Outcomes Simulation

We now consider simulations with a continuous response. Data was simulated as,

Xi ∼ Uniform(0, 1), for i ∈ {1, 2, 3},

πt =

( √
v̂(1,Xt)√

v̂(1,Xt) +
√
v̂(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli

((
πt ∨

1

kt

)
∧ (1− 1

kt
)

)
,

βT = [−0.04,−0.01, 0.05],

ϵ0 ∼ Uniform(−0.05, 0.05, )

Y0 = 0.4 +Xβ + ϵ0,

ϵ1 ∼ Uniform(−4.5Xβ, 4.5Xβ),

Y1 = 0.4 +Xβ + θ0 + ϵ1.

In our simulations we set θ0 = 0.1. Again, we use kNN and RF Regressors to estimate
f̂ and ê. We ran 1000 iterations using the DGP above, results for the simulation when
RF is used are shown in Figure F.4. We provide results for the simulation using kNN in
Figure F.4.

F.5 Selecting ρ for an AsympCS

When constructing an AsympCS, the analyst must select a value for ρ. If the analyst wishes
to minimize width of the interval produced at a specific sample size, T , then the analyst
can accomplish this by setting

ρ =

√
−2 logα+ log(−2 logα+ 1)

T
.
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Figure 4: Results for simulation described in Appendix F.4 using a k-Nearest Neighbor
regressor.

Figure 5: Power curves for AsympCSs constructed using different values of ρ. Curves are
based on 256 iterations of the simulation setup described in Appendix F.3.

In practice, the analyst may not have prior knowledge of the effect size magnitude or may not
know how long the experiment could last. In this case, it may not be clear for which value
of T that ρ should be tuned to. In our simulations we begin constructing CSs at a sample
size of T = 50. For the sake of simplicity in presentation, we chose to set ρ = 0.5 across
all experiments. Setting ρ = 0.5 yields an AsympCS with tight intervals approximately at
the start of inference. To understand the effect of setting ρ = 0.5 on the performance of
the AsympCS, we performed 256 iterations of the Bernoulli outcome simulation described
in Appendix F.3 while varying ρ. We found that setting ρ = 0.5 for this scenario is a
reasonable choice and the resulting AsympCS produces intervals with widths that allow
for high power early in the experiment. Figure 5 shows power curves of the AsympCSs
constructed using different levels of ρ.

F.6 Effect of Truncation Schemes

The policy studied in this work is deemed optimal because it minimizes the asymptotic
variance of an unbiased estimator. The width of a CI based on the CLT has a direct depen-
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Figure 6: When πt is bounded in a narrower range, intervals produced by a Pr-PI CS are
narrower at smaller t.

dence on the asymptotic variance of the estimator. Naturally, minimizing the asymptotic
variance leads to a sense of optimal inference, by minimizing the mean squared error (MSE).
In our proof of Theorem 1, we make use of kt to bound propensity scores away from 0 and
1. In turn, we require that kt∥f̂t − f∥2 = oP(1) and kt∥πt − π∥2 = oP(1). The rate at

which kt increases is limited by the rates that ∥f̂t − f∥2
p−→ 0 and ∥πt − π∥2

p−→ 0. We also
use truncation as a technical tool when considering bounds on (λt)

T
t=1 in Theorem 2 and

Theorem 10.

Our primary concern in this work lies in anytime-valid inference, and as such, greater
attention towards the width of the intervals produced by our CSs at fixed times is war-
ranted. Since the propensity scores set by our policy appear in the denominator of θ̂A2IPW

T ,
propensity scores near 0 or 1 can make ht arbitrarily large. The CSs with fixed-time error
control considered in this paper make use of the boundedness of ht. Particularly, the proofs
make use of an underlying test (super)martingale, which by construction, is non-negative.
For example, non-negativity is guaranteed by scaling λt(θ

′) such that λt(θ
′)(ht − θ′) > −1

for the Hedged CS. Temporarily subscribing to the betting analogy of Waudby-Smith and
Ramdas (2023), an inherent trade-off arises where the analyst must balance the allowable
size of their bet, λt(θ

′), with the bounds of the evidence presented by nature, (ht− θ′). The
opportunity to observe large evidence comes at the cost of placing small bets.

This effect is noted explicitly by Waudby-Smith et al. (2024, Remark 2). In our setting,
their intuition implies that faster growth in kt will yield a smaller asymptotic variance at
the cost of having wider intervals at small t. In this section, we empirically show that a
departure from our optimal policy through truncation will yield narrower intervals at finite
times.

We consider a simulation that follows a similar set up to that used in Appendix F.4,
where we modify kt to be constant. Specifically we set kt = 1/πt,min and we vary πt,min ∈
{0.5, 0.45, 0.40, 0.30, 0.20, 0.10}. We note that πAIPW, can be close to 0 or 1, and as a
result, we truncate the optimal policy. Results of a single iteration are shown in Figure 6.
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More aggressive truncation (larger values of πt,min) leads to narrower intervals for small
t, however, once t is sufficiently large, less aggressive truncation (smaller values of πt,min)
provides narrower intervals. These results suggest that optimizing an adaptive policy for
statistical inference at finite times is an interesting direction for future work.
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