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Abstract
RGBT tracking has drawn great attention recently due to its ability to leverage enhancement and complementary information
from the RGB and thermal infrared modalities. Nevertheless, RGBT tracking in real-world scenarios inevitably encoun-
ters heavy modality-missing challenges caused by substantial environmental factors (such as device overheating, and frame
skipping). Existing methods for RGBT tracking are built upon pre-processed missingness-free datasets and suffer signifi-
cant performance degradation when applied to noisy datasets with random missing modalities. In this paper, we propose a
novel missingness-aware prompting framework (MAP) for modality-missing RGBT tracking. It is a lightweight prompting
framework consisting of two-stage prompts focusing on compensating essential information for RGBT tracking stage-by-
stage. Specifically, prototypical missingness-aware prompts (pMAP) are explored to compensate for modality-specific but
instance-agnostic prototypical missing information. Contextual missingness-aware prompts (cMAP) are further designed to
compensate for instance-specific detailed missing information. Extensive experiments on three large-scale datasets demon-
strate the effectiveness and superiority of the proposed framework for RGBT tracking with random missing modalities.

Keywords RGBT tracking · Modality-missing · Prompt learning · Parameter-efficient tuning

1 Introduction

Given the initial bounding box of the targeted object in the
first frame in tracking videos, single-object tracking (SOT)
aims at tracking the targeted object in subsequent frames.
It has wide applications including robot vision (Chen et al.
2017), autonomous driving (Dai et al. 2021), intelligent secu-
rity (Marvasti-Zadeh et al. 2021), and so on. Over the past
decades, the SOT in visible light (RGB) modality has made
significant progress benefiting from the wave-by-wave neu-
ral network revolutions (Dosovitskiy et al. 2021; Wu et al.
2021; Gao et al. 2024; Liu et al. 2022; Cui et al. 2021).

In recent years, RGBT tracking has garnered increas-
ing attention for its capability of leveraging enhancement
and complementary information from the RGB and thermal
infrared (TIR) modalities. Thus multi-modal RGBT tracking
becomesmore robust in challenging imaging conditions than
the single RGB modality, such as low illumination, adverse
weather, and foggy conditions (Feng and Su 2024). Some
pioneer works (Zhang et al. 2019; Peng et al. 2023) directly
concatenate the representations from the RGB and TIR
encoders, which are somewhat effective and avoid additional
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fusion modules simultaneously, but they tend to introduce
excessive noise. In addition, some other approaches (Zhu
et al. 2019; Gao et al. 2019; Lu et al. 2021; Xiao et al. 2022)
select candidate boxes from search frames and employ var-
ious attention mechanisms for modality fusion and blend
the representations from each candidate box pair. Unfor-
tunately, since these candidate boxes only encompass local
features from the search frames, the fusion paradigm has not
fully leveraged global information and has failed to exploit
the complementarymulti-modal information. Nowadays, the
mainstream tracking methods (Hui et al. 2023; Zhu et al.
2023) usually leverage the powerful capability of arbitrary-
term dependency modeling from Transformer networks to
realize global and adaptive modality fusion. They incorpo-
rate multi-modal template information with search region
information during the fusion process, the background noise
can be gradually reduced, significantly enhancing the target
information in turn.

Despite such significant progress, most existing methods
for RGBT tracking are built upon pre-processed datasets
under the ideal missingness-free paradigm, as shown in
Fig. 1a. However, RGBT tracking in real-world scenar-
ios inevitably encounters heavy modality-missing issues
induced by various environmental factors, such as overheat-
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ing of the collecting device, frame skipping in multi-modal
camera, packet loss during transmission, etc. Directly apply-
ing existing off-the-shelf methods to noisy datasets without
special consideration of missingness alleviation (i.e. the
missingness-unaware paradigm in Fig. 1b) suffers signifi-
cant performance degradation (see experimental evidence in
Table 1 for details). So, it is important to consider missing
alleviation during methodology design for real-world RGBT
tracking (i.e. the missingness-aware paradigm in Fig. 1c).

Random modality-missing phenomenon in multi-modal
learning is common in real-world scenarios and some tech-
niques handling modality-missing have been developed for
other computer vision tasks. The most straightforward tech-
nical pipeline is to restore the missing data. Typically,
Zhao et al. (2021) propose a missing modality imagin-
ing network to substitute for the missing modality. Ma
et al. (2021) construct a reconstruction network to restore
missing modality with prior modality knowledge and the
Bayesian meta-learning mechanism. Wei et al. (2023) fur-
ther utilize the knowledge distillation mechanism to stir rich
modality-specific prior information in a teacher network.
These approaches for missing alleviation for other tasks
mainly focus on recovering missing modality information
as fully as possible. However, different from most seman-
tic understanding tasks in computer vision, RGBT tracking
usually demands high inference speed but does not pursue
accurately recovering tracking-irrelevant details. Due to such
particularity, it is unnecessary to recover all details (such

Fig. 1 Comparisons of tracking paradigm and representative method-
ology for RGBT tracking. (a) Conventional missingness-free RGBT
tracking: training and inference on pre-processed clean data without
any missing. (b) Missingness-unaware RGBT tracking: training on pre-
processed clean data but inference on noisy data with random missing
modalities. (c) Missingness-aware RGBT tracking: training and infer-
ence on noisy data with random missing modalities and is equipped
with special methodology designs for missing alleviation

as surroundings) of the missing modality since restoring
the location and shape information of the tracking target is
enough.

To move beyond such limitations, we propose a simple
yet effective missingness-aware prompting (MAP) frame-
work for modality-missing RGBT tracking. It compensates
essential missing information for RGBT tracking via two-
stage parameter-efficient prompting instead of recovering all
details in the missing frames. Specifically, we first utilize a
series of prototypical missingness-aware prompts (pMAP)
to approximate the compensation for modality-specific but
instance-agnostic modality information, which narrows the
gap between padding values and modality prototypes. Then,
we apply a series of contextual missingness-aware prompts
(cMAP) to perform instance-specific missingness compen-
sation through the context information nearby, which further
narrows the information gap between modality prototypes
and missing instances.

In summary, the main contributions of this paper could be
summarized as follows:

• We highlight the heavy modality-missing issue in real-
world RGBT tracking and propose a novel missingness-
aware prompting (MAP) framework to alleviate it.

• Prototypical missingness-aware prompts (pMAP) aim to
approximate the modality-specific but instance-agnostic
missing information, which narrows the information gap
between padding values and modality prototypes.

• Contextual missingness-aware prompts (cMAP) are pro-
posed to compensate for instance-specific missing infor-
mation, which narrows the information gap between
modality prototypes and missing instances.

• Our MAP achieves state-of-the-art performance on three
large-scale datasets for RGBT tracking, demonstrating
its effectiveness in tackling real-world RGBT tracking
with random missing modalities.

2 Related work

2.1 RGBT tracking

RGBT tracking refers to tracking objects in complementary
visible light and thermal infrared multi-modal data, which
is more robust to challenging imaging conditions such as
low illumination and adverseweather. Regarding the network
architecture, existing RGBT tracking approaches primarily
encompass three paradigms: MDNet-based, Siamese-based,
and Transformer-based approaches.

MDNet-based methods (Lu et al. 2021; Xiao et al. 2022;
Long Li et al. 2019; Li et al. 2020; Zhu et al. 2020) ini-
tially generate candidate boxes from search frames and then
employ various fusion techniques within these boxes to
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integrate features from different modalities. Subsequently,
binary classification and box regression are performed on
the fused multi-modal features. Specifically, to facilitate the
information fusion of different modalities, MANet (Long Li
et al. 2019) designs a multi-adapter network that extracts
modality-shared features, modality-specific features, and
instance-level features through three adapters. APFNet (Xiao
et al. 2022) decouples the fusion process based on challenge
attributes and introduces a novel attribute-based progres-
sive fusion network to fully exploit the advantages of each
modality regarding different challenges. The drawback of
this paradigm of RGBT tracking methods is that their can-
didate boxes only cover a portion of the search region, thus
lacking global feature modeling and limiting the effective-
ness of modality fusion.

In addition, Siamese-based methods (Peng et al. 2023;
Zhang et al. 2020) typically extract features from RGB and
TIR separately before modality integration. Then, the inte-
grated features are fed into the prediction head for box
regression. Although faster than MDNet-based methods,
this technical paradigm often lags in accuracy compared
to the other two paradigms. With the emerging of large-
scale RGBT datasets (Li et al. 2019, 2021) and the rapid
development of Transformer networks (Dosovitskiy et al.
2021; Wu et al. 2021; Vaswani et al. 2017; Dordevic
et al. 2024), Transformer-based RGBT tracking methods
(Hui et al. 2023; Zhu et al. 2023; Feng and Su 2024;
Wang et al. 2024) also achieve significant success. For
example, the TBSI (Hui et al. 2023) introduces the Trans-
former backbone into RGBT tracking and designs a TBSI
insertion in the transformer backbone for modality fusion.
ViPT (Zhu et al. 2023) takes visible light as the primary
modality and other modalities are aggregated as prompts
into the pre-trained model of a single modality. The BAT
(Cao et al. 2024) further employs lightweight bidirectional
adapters to adapt off-the-shelf RGB trackers to multimodal
scenarios, which parameter-efficiently achieves outstand-
ing tracking performance. Despite such remarkable success,
existing methods overlook the heavy modality-missing issue
in real-world RGBT tracking scenarios that the multi-modal
RGBT datasets inevitably contain substantial random miss-
ing modalities. Consequently, these methods will undergo
significant performance degradation in real-world scenarios.

2.2 Modality-missing inmulti-modal learning

Multi-modal learning aims to utilize the complementary
information from multiple modalities to jointly accomplish
a task. In practical scenarios, multi-modal data often suffers
from inevitable modality-missing due to complex environ-
mental factors. Learning from incomplete multi-modal data
is an important and urgent research topic. A simple and
straightforward technical pipeline is to impute the missing

data. For example, Zhang et al. (2020) introduced an adver-
sarial strategy into the tracking models to handle the missing
data, which enhances the model completeness. Zhao et al.
(2021) combined the CRA with a cycle consistency loss in
an imaginative module to supplement the missing modality
information. Lian et al. (2023) simulated the real-world sce-
nario of missing data by randomly discarding modalities and
utilized an end-to-end graph completion network to recon-
struct the missing modality information. Ma et al. (2021)
proposed a Bayesian meta-learning approach to reconstruct
themissingmodalitywith priormodality knowledge, demon-
strating superior performance in modality-missing scenar-
ios with high missing rates. Besides the imputation-based
methods, Ma et al. (2022) investigated the sensitivity of
Transformer models to modality dropout and proposed an
optimal fusion strategy that searches incompetent input data
to enhance the robustness of Transformers. Despite such
high success, the existing restore-based technical pipeline
of missingness alleviation for other computer vision tasks
does not align well with RGBT tracking. Unlike conven-
tional semantic understanding tasks, RGBT tracking usually
demands high inference speed but does not pursue accu-
rately recovering tracking-irrelevant details. Therefore, we
design a lightweight parameter-efficient prompting frame-
work to compensate for necessary tracking-relevant infor-
mation while avoiding complete missingness restoration.

2.3 Prompt learning

Prompt Learning is one parameter-efficient tuning technique
(Lialin et al. 2023; Hu et al. 2023), which originated from the
NLP field and also become popular in the computer vision
and multi-modal learning fields nowadays. It can be broadly
categorized into two categories. The first type of prompting
paradigm (Zhou et al. 2022; Jia et al. 2022; Su et al. 2022; Liu
et al. 2024) utilizes soft prompts with a few learnable param-
eters. Specifically, it freezes learned parameters in original
off-the-shelf large models and adds a few learnable tokens
to the models for parameter-efficient tuning. For example,
CoOp (Zhou et al. 2022) utilizes learnable vectors in continu-
ous space tomodel context information in soft prompts while
freezing parameters in the pre-trained CLIP model (Radford
et al. 2021). VPT (Jia et al. 2022) freezes the vision back-
bone and slightly modifies the Transformer input, achieving
better performance than the fully fine-tuning method on
various downstream tasks. But this prompting paradigm
(Zhou et al. 2022; Chen et al. 2022; Yang et al. 2022;
KarimiMahabadi et al. 2021) only employ inherent learnable
vectors that limit the generalization ability. The second type
of prompting paradigm is an adapter-based tuning technique
that introduces lightweight neural networks into sub-layers
of off-the-shelf large models. For example, CoCoOp (Zhou
et al. 2022) introduces a lightweight neural network on top
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of CoOp to generate conditional vectors for each image and
adds them to the original learnable prompts, resulting in a
more generalized prompt. AdaptFormer (Chen et al. 2022)
introduces lightweight modules into ViT (Dosovitskiy et al.
2021), significantly outperforming fully fine-tuned models
on multiple action recognition benchmarks. ProTrack (Yang
et al. 2022) proposes a multi-modal prompt tracker to adapt
RGB-based trackers to multi-modal tracking without extra
training on multi-modal data, effectively alleviating the data
deficiency challenge in multi-modal tracking tasks. In this
paper, we develop a lightweight parameter-efficient prompt-
ing framework to alleviate random modality-missing issues
in real-world RGBT tracking scenarios.

3 Method

3.1 Preliminary

3.1.1 Problem setting

Given the initial target bounding box B0 in a pair of spatial-
temporal synchronized RGBT video streams, conventional
missingness-free RGBT tracking paradigm (Fig. 1a) aims
at predicting the subsequent bounding boxes of the targeted
object, which could be formulated as follows:

Tracker : {X t
RGB, X t

T I R, B0} → Bt (1)

where X represents the input video frame (image), B repre-
sents the bounding box of the targeted object, and t denotes
the time stamp. For the RGBT tracking paradigm with ran-
dommissing modalities (Fig. 1c), continuous frames may be
random missing in arbitrary modalities. Following similar
notations, it could be formulated as follows:

Tracker : {X t
RGB, X t−n

T I R, B0} → Bt (2)

Tracker : {X t−n
RGB, X t

T I R, B0} → Bt (3)

where (2) and (3) respectively represent the cases inwhich the
infrared (TIR) and visible (RGB) modalities miss n frames.
Themissingness-aware RGBT trackers should train and infer
on such noisy datasets with random missing modalities to
predict the bounding box of the targeted object.

3.1.2 Foundation of tracking models

Typically, an RGBT tracker can be decomposed into three
modules: f , g, ϕ. Specifically, the function f : {XRGB, XT I R,

B0} → {HRGB, HT I R} represents the feature extraction and
interaction function. The g : {HRGB, HT I R} → Hm denotes
the function for multi-modal representation fusion. The box

prediction head ϕ : Hm → B estimates the final tracking
box. In this paper, we utilize the powerful Vision Trans-
former backbone as function f . In detail, the template Z and
search X are first embedded into patches and then flattened
into the 1D token sequence adding with positional embed-
ding (Dosovitskiy et al. 2021). Then the token sequence will
be fed into a linear projection layer to generate the initial
query (q), key (k), and value (v) tokens for Transformer lay-
ers. The query, key, and value tokens corresponding to the
template and search input are qZ , kZ , vZ and qX , kX , vX ,
respectively. In each transformer layer, the search query qX
queries the target feature from the concatenated template and
search features, i.e.

k = Concat(kZ , kX ), v = Concat(vZ , vX ) (4)

Attention(qX , k, v) = Sof tmax(
qX × kT√

d
)v (5)

After n layers of the above multi-head attention operations,
the tracking networks complete feature extraction and inter-
action between the template and search. The box prediction
head ϕ is appended to regress the bounding box. For more
preliminary details, please refer to the Mixformer (Cui et al.
2022).

3.2 Missingness-aware prompting for RGBT tracking

In this paper, we focus on the heavy modality-missing
problem in real-world RGBT tracking where random con-
secutive frame missing occurs for infrared (TIR) and visible
(RGB) modalities. We propose a lightweight yet effective
missingness-aware prompting (MAP) framework to allevi-
ate such missing issues. The MAP efficiently compensates
essential missing information for RGBT tracking via two-
stage parameter-efficient prompting instead of recovering all
details in the missing frames. We will introduce the details
of the proposed MAP framework in the following.

3.2.1 Overview pipeline

The overview pipeline of the proposed missingness-aware
prompting framework for RGBT tracking is shown in
Fig. 2a. It consists of a patch embedding module, a series
of missingness-aware Prompting (MAP) blocks, and a box
head for the bounding box regression. If one or several
consecutive frame-missing occurs in any modality (e.g. the
RGB modality in Fig. 2a), we first pad all missing frames
with the nearest non-missing frame in the same modality.
Then, the padded multi-modal inputs will be fed into the
proposed missingness-aware Prompting (MAP) blocks for
feature interaction and missing compensation. Specifically,
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the Prototypical missingness-aware prompts (pMAP) consist
of learnable tokens that approximate the modality-specific
but instance-agnostic missing information. The contextual
missingness-aware prompts (cMAP) generated by a Context
Network compensate for instance-specific missing informa-
tion.

The MAP is built upon a series of frozen Multi-modal
Transformer blocks and also incorporates the proposed
pMAP and cMAP tokens into model tuning, thus gener-
ating missing-compensated multi-modal representation for
subsequent layers. We incorporate the prompts into each
transformer layer via the formula in the following:

Attention(qt−n
X , [kt−n, pMAPk ], [vt−n, pMAPv ])

= Sof tmax(
qt−n
X [kt−n, pMAPk ]T√

d
)[vt−n, pMAPv ]

(6)

where [ ] denotes concatenation operation, d is the dimen-
sion number of tokens, pMAPk and pMAPv denote the prompt
embeddings to concatenate with the image key and value,
respectively. After N iterations (layers) of interacting and
compensating, the modality-missing issue will be progres-
sively and adaptively compensated by learnable tokens in
prompts. Eventually, the box head of RGBT trackers exploits
the final compensated representation to predict the bounding
box of the target. The overall MAP framework is end-to-end
tuned with the common RGBT tracking losses (Luo et al.
2023; Hui et al. 2023),

L = LTracker (XRGB, XT I R, θp) (7)

where θp denotes all learnable parameters of the proposed
MAP framework, and LTracker consisting of the L1 loss and
generalized IoU loss (Rezatofighi et al. 2019).

3.2.2 Prototypical Missingness-aware Prompts (pMAP)

The pMAP is designed to approximate the modality-specific
but instance-agnostic missing information and alleviate the
instability caused by random modality-missing as well. The
key motivation for the pMAP is to progressively learn a con-
tinuous prompting vector and then adaptively compensate for
the missing information with the instance-agnostic modality
prototypes (prompting vector). As shown in Fig. 3b,we insert
in total three types of prototypical prompts in each trans-
former layer in the form of Multi-head Attention, including
the RGB-missing prompts compensating for RGB modality,
the TIR-missing prompts compensating for TIR modality,
and the complete prompts adapting for no-missing inputs.
Given the notations for the Query, Key, and Value of the
Multi-head Attention in i-th layer as follows:

qi = H iW i
Q; ki = H iW i

K ; vi = H iW i
V (8)

where W i
Q,W i

K ,W i
V ∈ Rd×d are the projection weights

of the Multi-head Attention in the i-th layer. We split the
learnable prompt tokens pipMAP into pipMAPk

and pipMAPv
,

then we respectively prefix them to the key and value of each
attention module to implement the proposed pMAP, i.e.,

f iattn( p
i
pMAP , hi ) = Attentioni ( pipMAP , hi ) (9)

Fig. 2 (a) The overview pipeline of the proposed missingness-aware Prompting (MAP) framework for RGBT tracking. (b) The inner details of the
Multi-modal Transformer Block in a typical RGBT tracker backbone
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Attention(qi , [ki , pipMAPk ], [vi , pipMAPv
])

= Sof tmax(
qi [ki , pipMAPk

]T√
d

)[vi , pipMAPv
]

(10)

where f iattn represents the attentionoperationof the i-th layer,
hi represents the image features of the i-th layer. As shown in
Fig. 3c, since all prompts are prefixed only for the Key and
Value but not for the Query, the dimensionality for output
tokens remains the same as that of the input sequence. There-
fore, no additional post-processing operation is required and
we could directly feed the compensated representation from
the last transformer layer to the box head for bounding box
prediction.

3.2.3 Contextual Missingness-aware Prompts (cMAP)

Although the above pMAP moves an effective step to
alleviate the performance degradation caused by random
modality-missing, solely relying on prototypical modality
information cannot compensate for instance-specificmissing
information. Therefore, we propose contextual missingness-
aware prompts (cMAP) to generate contextual prompt tokens
to further compensate for instance-specific information. As
shown inFig. 3a, the cMAP tokens are generated fromcurrent
and historical video frames which contain abundant contex-
tual information about the missing instances.

Specifically, the contextual prompting tokens are gener-
ated by a lightweight Context Network (Fig. 3a). Firstly,
We reshape the feature from 1D token sequences back
into 2D feature maps. Then, a missingness-aware convolu-
tional layer that chooses learnable convolutional branches
for different scenarios (including the RGB missing, TIR
Missing, and Complete), where each convolutional branch
with kernels of 3 × 3 and stride of 2. This is followed by
a two-layer bottleneck structure (Linear-LayerNorm-ReLU-

Linear) that generates the final contextual prompting tokens.
Eventually, the generated instance-specific cMAP tokens and
the above instance-agnostic pMAP tokens are concatenated
to collaboratively compensate for missing information that
is essential for tracking. Formally, we denote the Context
Network comprises of the missingness-aware convolutional
layer and two fully connected layers as hθ (·), in which the
θ denotes its parameter set. The contextual tokens pm for
each transformer layer are obtained via a recursive manner
tm+1 = Concat(tm, pm), pm = hθ (tm), tm ∈ {km, vm},
m ∈ {1, 2, 3, ..., n}, and km, vm are computed via (8) with
the representations of the template and search regions for
each modality in the m-th layer. The implementation details
of prompts incorporation are shown in Figs. 3b and c.

3.2.4 Multi-modal transformer block

As shown in Fig. 2b, the Multi-modal Transformer block is
the basic unit for feature interaction and missingness-aware
prompting. The interaction between template and search
features has been introduced in (4) and (5). The modality
interaction in RGBT tracking could be achieved similarly,
i.e. further adding the key and value from the other modality
to the concatenation operation in (4). Moreover, since this
paper tackles the more complicated RGBT tracking scenario
that involves modality-missing, we also need to incorporate
two types of MAP tokens into multi-modal attention oper-
ations. Finally, taking the RGB branch as an example, the
interaction and compensation are implemented by (11) and
(12) as follows:

k = Concat(kZrgb , kXrgb , kXtir , pMAPk ),

v = Concat(vZrgb , vXrgb , vXtir , pMAPv )
(11)

Attention(qXrgb , k, v) = Sof tmax(
qXrgb × kT√

d
)v (12)

Fig. 3 The implementation details of the MAP in each transformer layer. (a) The implementation details of contextual missingness-aware prompts
(cMAP). (b) The implementation details of prototypical missingness-aware prompts (pMAP). (c) The implementation details of prompts incorpo-
ration
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Algorithm 1 Overall pipeline of the MAP.
1: Input: Images (Zrgb,Xrgb,Ztir ,Xtir ), Number of blocks N
2: Output: Predicted box (Pred_box)
3: � E denotes Embedding operation
4: � ⊕

denotes Concatenation operation
5: � The f lag ∈ {rgb, tir , cpl} denote missing rgb

modality, tir modality and complete modal-
ity, respectively

6: � The function MAP is the missing compen-
sation method proposed in this paper

7: function pMAPk , pMAPv ← MAP(X , i, f lag)
8: ppMAPk , ppMAPv ← pMAP(i, f lag)
9: pcMAPk , pcMAPv ← cMAP(i, X)

10: pMAPk ← ppMAPk
⊕

pcMAPk
11: pMAPv ← ppMAPv

⊕
pcMAPv

12: end function
13: Z1

rgb, X
1
rgb, Z

1
tir , X

1
tir=E(Zrgb,Xrgb,Ztir ,Xtir )

14: for i ← 1 to N do
15: Calculate q, k, v of Zi

rgb, X
i
rgb, Z

i
tir , X

i
tir

according to (8)
16: � The process of RGB branch
17: if RGB is missing then
18: pMAPk , pMAPv ← MAP(Xi

rgb, i, rgb)
19: else
20: pMAPk , pMAPv ← MAP(Xi

rgb, i, cpl)
21: end if
22: Calculate k, v according to (11)
23: Xi+1

rgb ← Attn(qXi
rgb

, k, v)

24: � The process of TIR branch
25: if TIR is missing then
26: pMAPk , pMAPv ← MAP(Xi

tir , i, tir)
27: else
28: pMAPk , pMAPv ← MAP(Xi

tir , i, cpl)
29: end if
30: Calculate k, v according to (11)
31: Xi+1

tir ← Attn(qXi
tir

, k, v)

32: end for
33: Pred_box ← Tracking_Head(Xrgb, Xtir )

where the subscript Z and X represent the template and
search, while the subscript MAP represents the token con-
catenation of the pMAP and cMAP.

Eventually, taking the Mixformer (Cui et al. 2022) model
as an example, we illustrate implementation of the pro-
posed MAP in Algorithm 1. It contains the the generation
and integration process of pMAP and cMAP prompt vectors
to collaboratively compensate for modality-missing infor-
mation, and the implementation details of the Multi-modal
Transformer block.

4 Experiments

4.1 Datasets

RGBT210 TheoriginalRGBT210dataset (Li et al. 2017) is an
RGBT tracking dataset that comprises 210 video sequences
with varying lengths. It contains about 210K frames in total
and the lengthiest video sequence extends up to 8K frames.

The visible light and infrared video pairs are highly registered
and have detailed attribute annotations.

RGBT234 The original RGBT234 dataset (Li et al. 2019) is
an extension of above RGBT210 with more accurate annota-
tions and richer scenes. It contains 234 highly aligned video
sequences consisting of 234k images in total and the length-
iest video sequence also extends up to 8K frames.

LasHeR The original LasHeR dataset (Li et al. 2021) is
a large-scale RGBT dataset that includes 979 training
sequences and 245 testing sequences, offering diverse scene
variations and dense bounding box annotations. The LasHeR
encompasses over 730K frames of RGBT pairs and each pair
is temporally and spatially aligned.

Missing Variants (Ours): To evaluate the tracking perfor-
mance of our missingness-aware prompting framework, we
simulate corresponding missing variants for the RGBT210,
RGBT234, and LasHeR datasets, respectively. Specifically,
we define the missing rate as the proportion of missing dura-
tion w.r.t the entire sequence duration. Unless otherwise
specified, the overall missing rate is set as 60% consisting of
30% evenly for the RGB and TIRmodalities, respectively. In
detail, we focus on the challenging missing scenario where
random consecutive framemissing occurs within a period for
arbitrary modality.

4.2 Evaluationmetrics

The Precision Rate (PR) and Success Rate (SR) are the most
common twometrics for assessing the performance of RGBT
trackers (Li et al. 2016, 2017, 2019). Specifically, the Pre-
cision Rate (PR) is the percentage of video frames whose
bounding box center distance between the prediction and the
groundtruth is less than a predefined distance threshold. For
fair comparisons with existing RGBT trackers, we set the
distance threshold as 20 pixels following the protocol in Li
et al. (2017, 2019, 2021) for the RGBT210 and RGBT234
datasets. Since the PR metric is sensitive to the image reso-
lution and bounding box size. A Normalized Precision Rate
(NPR) is also introduced in Muller et al. (2018) for the
LasHeR dataset to enhance the evaluation robustness, thus
we also report both PR and NPR on the LasHeR dataset. In
addition, the Success Rate (SR) is defined as the percentage
of video frames in which the bounding box overlap between
the prediction and the groundtruth exceeds an overlapping
threshold. When varying the overlapping threshold, a suc-
cess rate curve can be obtained. The final SR score is defined
as the area under this success rate curve following Li et al.
(2016, 2017, 2019, 2021).
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4.3 Implementation details

The image sizes of search images and templates are set as 320
× 320 pixels and 128 × 128 pixels, respectively. Unless oth-
erwise specified, the missing rate is empirically set as 60%
for all dataset variants with missing modalities in our exper-
iments. If one or several consecutive frame-missing occurs,
we utilize the nearest non-missing frame in the same modal-
ity as a padding value for the missing input. The random
modality-missing occurs only in search images. Regarding
the tracking backbone, we utilize multiple representative
off-the-shelf RGBT trackers based on the popular Vision
Transformer to validate our missingness-aware Prompting
framework, including both the RGBT extension of single-
modal RGB tracking models (Mixformer (Cui et al. 2022)
and OSTrack (Ye et al. 2022)) and native multi-modal track-
ing models (TBSI (Hui et al. 2023) and BAT (Cao et al.
2024)).

As for the training details, we use the Adam optimizer
with a learning rate value of 0.0001. Following the widely-
used protocols in RGBT tracking (Hui et al. 2023; Li et al.
2021; Luo et al. 2023), we utilize the training subset in the
large-scale LasHeR dataset as training data and prompt our
MAP framework for 35 epochs. Then, we directly evaluate
the performances on RGB210, RGBT234, and the testing
subset of the LasHeR dataset without any further tuning. For
the single-modal RGB tracking backbones, we first extend
them to multi-modal RGBT trackers by pre-training them
on large-scale multi-modal RGBT dataset LasHeR train-
ing subset. We then freeze all tracker parameters and treat
it as an off-the-shelf multi-modal RGBT tracker, and fur-
ther parameter-efficiently prompt it with the proposed MAP
framework. Additionally, we construct a padding set using
the preceding N frames at each missing timestep. In each
training iteration, we randomly select one frame from this
padding set and jointly train it with the frames correspond-
ing to non-missingmodality, thus simulating and augmenting
the real-world modality missing scenarios.

4.4 Experimental results

To validate the effectiveness of the proposed missingness-
aware prompting framework (MAP), we conduct compar-
ison experiments on three large-scale datasets (including
RGBT210 (Li et al. 2017), RGBT234 (Li et al. 2019), and
LasHeR (Li et al. 2021)) and theirmissing variants for RGBT
tracking. We report the Precision Rate (PR) and Success
Rate (SR) for these three datasets in Table 1. We compare
four representative state-of-the-art RGBT tracking methods
under the missingness-free (Fig. 1a), missingness-unaware
(Fig. 1b), and missingness-aware (Fig. 1c) paradigms, res-
pectively. First, we directly apply four representative state-
of-the-art missingness-free RGBT tracking methods to the

missingness-unaware scenario where they undergo severe
performance decline (see Table 1, indicating the necessity
for exploring missingness-aware approaches. Then, we plug
the proposed MAP prompting framework into these RGBT
tracking approaches formissing compensation. The results in
Table 1 show that ourMAPframework significantly improves
the performance of RGBT trackers in situations with random
missing modalities. Specifically, our MAP boosts the Mix-
former (Cui et al. 2022) with large performance gains of
4.8 (PR) and 2.6 (SP) on the RGBT210 dataset. Our MAP
brings significant performance gains of 7.8, 9.1, and 3.9 for
the TBSI (Hui et al. 2023) on the large-scale LasHeR dataset.
Our MAP framework boosts the BAT (Cao et al. 2024) with
large performance gains of 3.8 (PR) and 3.0 (SR) on the
RGBT210 dataset.

5 Ablation studies

5.1 Contribution examination of the cMAP
and pMAP

To analyze the effectiveness of every primary component
in the missingness-aware framework (including pMAP and
cMAP), extensive ablation experiments have been conducted
on the RGBT234 (Li et al. 2019) and LasHeR (Li et al. 2021)
datasets (Table 2).

The results from pMAP or cMAP prompting improve
the missingness-unaware baseline method (Mixformer (Cui
et al. 2022) *) across different datasets, which indicates the
individual effectiveness of the proposed two categories of
prompts. Specifically, the pMAP exploits prototypical infor-
mation as compensation for missing modalities enhancing
the overall robustness of RGBT trackers. In contrast, the
cMAP compensates for missing modalities using instance-
specific prompts adapting better to each missing instance. In
Table 2, the performance of prototypical missingness-aware
prompts (pMAP) surpasses that of contextual missingness-
aware prompts (cMAP) on the RGBT234 dataset because
the RGBT234 dataset contains relatively simple scenes that
the pMAP could be compensated well. However, the cMAP

Table 2 Ablation experiments for assessing the individual contribution
of the pMAP and cMAP components in our MAP framework on the
RGBT234 and LasHeR datasets

Method pMAP cMAP RGBT234 LasHeR
PR↑ SR↑ PR↑ SR↑

Baseline 79.7 57.0 56.0 44.8

1 � 82.4 58.9 58.8 46.4

2 � 81.3 58.7 59.4 47.0

3 � � 83.6 60.3 60.8 48.1
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significantly outperforms the pMAP on the LasHeR dataset
since LasHeR contains more complicated scenes, thus the
cMAP could provide richer instance-specific context infor-
mation for miss compensation. Eventually, the full MAP
framework that contains both the cMAP and pMAP prompts
achieves the best for missingness-aware RGBT tracking by
exploiting the advantages of these two prompts.

5.2 Impact of missing rates

To analyze the effectiveness and robustness of our MAP
towards different missing rates, we conduct experiments
on dataset variants of RGBT234 and LasHeR with various
missing rates including 30%, 60%, and 90%, the results
are reported in Fig. 4 and Table 3. We observe that the
tracking performance of the missingness-unaware baselines
Mixformer (Cui et al. 2022)* and TBSI (Hui et al. 2023)
decline significantly with the increasing of missing rate, e.g.,
they drop over 10% regarding the PR and SR metrics on
the LasHeR dataset under a missing rate of 90%. At the rel-
atively low missing rate (e.g. 30%), our MAP effectively
compensates for modality-missing and reaches a roughly
comparable performance with the original missingness-
free (complete) method. When the missing rate increased,
the missing impact on RGBT tracking became more pro-
nounced. The performance gain obtained from applying our
missingness-aware promoting framework became more sig-
nificant, which indicates the effectiveness and robustness
of the proposed MAP framework towards different missing
rates. For example, at the missing rate of 60%, our MAP
improves 4.8 % on LasHeR datasets regarding PR metrics.
While at a 90% missing rate, the performances improve by
more than four points regarding 4.2metrics on the RGBT234
dataset.

5.3 Comparison of different implementations
of the cMAP

As shown in Fig. 3a, the contextual missingness-aware
prompts (cMAP) are generated via a lightweight network

consisting of missingness-aware convolution layers (Conv)
and a series of fully-connected layers (FC). The Conv layers
operate on the 2D image features for essential representa-
tion extraction and dimensionality reduction. The FC layers
model the channel-wised global information, followed by a
LayerNorm and ReLU for feature recalibration. The exper-
imental results in Table 4 show that individual FC or Conv
layers are not enough to generate satisfiedmissingness-aware
contextual tokens, because missing-compensating requires
both contextual 2D spatial information and 1D channel-wise
global contextual information.

5.4 Comparison of different model tuningmethods

In this section, we compare our prompt choice with alter-
native model tuning methods (including finetuning and a
input-level prompting strategy Zhu et al. 2023) on the
RGBT234 and LasHeR datasets. Specifically, the fully fine-
tuning method tunes the tracking model on the modality-
missing RGBT dataset without prompt (Table 5). The results
reveal large performance degradation since the parameter
corruption issue on modality-missing datasets, proving the
necessity of our prompt learning strategy. In addition, our
attention-level prompting operation inserts prompt vectors
into the Key (K) and Value (V) in each attention block. To
further validate the rationality of this design, we compare
it with an input-level prompting variant (Zhu et al. 2023).
Although the input-level prompting method also achieves
reasonable compensation for missing information, its per-
formance is inferior to our approach (attention-level prompt-
ing). Furthermore, the input-level method also requires 1.5
times learnable parameters than our method, which is less
parameter-efficient.

5.5 Influence of the size of the padding set

As shown inFig. 2, the padding frames (formissingmodality)
are randomly selected fromapadding set during training. The
padding set consists of N contextual frames from N nearest
frame in front of the missing frame at the same modality

Fig. 4 Impact of different modality-missing rates on various trackers under the proposed MAP framework
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Table 4 Implementation rationality of the cMAP

Method cMAP RGBT234 LasHeR
PR↑ SR↑ PR↑ SR↑

Baseline+pMAP − 82.4 58.9 58.8 46.4

1 FC 83.3 59.8 60.1 47.4

2 Conv 82.0 58.9 59.5 47.0

3 FC+Conv 83.6 60.3 60.8 48.1

during the training process. Since the test subsets of missing
datasets are set to randomly and continuously miss 10 to 15
framesmeeting a certain level of themissing rate, we vary the
size number N in a range of [10,15] on the LasHeR (Li et al.
2021) dataset to examine the choosing padding set size, the
results are shown in Fig. 5. We observe that the performance
is poor with too large or too small choices of padding set,
and achieving the best at a middle padding set of N = 12.
Therefore, we empirically set the padding set size N as 12
except specially clarified.

In addition, we conduct experimental comparison of
different padding methods in our MAP, including near-
est padding and random padding strategies (Table 6). For
the nearest padding strategy, we utilize the N most recent
frames for compensation. For the random padding strat-
egy, we respectively test varying historical ranges of 50,
100, and 200 frames, in which the padding images are
randomly selected fromhistorical ranges. The results demon-
strate that our nearest padding strategy achieving optimal
performance. Moreover, relative larger historical ranges will
degrade tracking performance since the context information
is less identical with original missing frames. These results
effectively validate the soundness of the 12 frames of nearest
padding strategy.

5.6 Analysis of computational efficiency

In this section, We analysis the computational efficiency in
the metrics of the number of model parameters (Params)
and Multiply–Accumulate Operations (MACs). As shown
in Table 7, our MAP effectively compensates for modal-
ity missing in RGBT tracking with slightly parameter
increasing, i.e., only accounting for approximately 10% of
total parameters. Notably, as the parameter scale of non-

Table 5 Comparison of different model tuning methods

Method Params RGBT234 LasHeR
PR↑ SR↑ PR↑ SR↑

Baseline − 79.7 57.0 56.0 44.8

Finetuning 45.99M 78.7 54.8 57.7 46.1

Input-level Prompting 5.27M 82.6 57.4 60.4 47.5

Ours 3.51M 83.6 60.3 60.8 48.1

Table 6 Comparison of different padding methods

Padding Method RGBT234 LasHeR
PR↑ SR↑ PR↑ SR↑

Missingness-unaware 79.7 57.0 56.0 44.8

Random padding (50 frames) 82.9 58.2 58.8 46.5

Random padding (100 frames) 82.8 58.1 58.6 46.2

Random padding (200 frames) 81.4 56.8 57.1 45.3

Nearest frames (ours) 83.6 60.3 60.8 48.1

missing baseline models expands, the parameter increasing
proportion substantially decreases which is more parameter-
efficient. Furthermore, our MAP only introduces a modest
computational overhead, typically within 15% of the original
non-missing baselines, thus maintaining efficiency of origi-
nal trackers. This high efficiency stems from our innovative
attention-level prompt insertion mechanism, where prompt
tokens are inserted into the key and value branches for
attention computation, which effectively eliminates redun-
dant operations. Moreover, this innovative insertion strategy
will not increase feature size during the attention process,
enabling direct bounding box prediction without additional
post-processing steps. Additionally, we conduct inference
speed comparisons on a same server for Mixformer (Cui
et al. 2022)*, OSTrack (Ye et al. 2022)* and TBSI (Hui
et al. 2023). As shown in Table 7, the baseline method
Mixformer*, OSTrack*, and TBSI respectively achieves an
inference speed of 8.8 FPS, 29.8 FPS and 23.2 FPS. In con-
trast, the enhanced implementation that incorporating our
MAP respectively achieves 7.2 FPS, 23.3 FPS and 18.5
FPS, which effectively compensates for modality missing
in RGBT tracking with limited speed reduction (i.e., less
than 20% compared to corresponding baselines). The results
effectively demonstrate the effectiveness and efficiency of
the proposed MAP framework in modality-missing RGBT
tracking scenarios.

Fig. 5 The influence of the size of the padding set N towards the perfor-
mance of the proposed MAP framework regarding PR and SR metrics
on the LasHeR dataset
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Table 7 Comparisons of the
computational complexity, the
number of model parameters
and the inference speed

Method MACs (G) Params (M) FPS

Mixformer (Cui et al. 2022)* 40.51 45.99 8.8

Mixformer (Cui et al. 2022)*+MAP 46.23 49.50 7.2

OSTrack (Ye et al. 2022)* 57.80 97.83 29.8

OSTrack (Ye et al. 2022)*+MAP 66.95 108.93 23.3

TBSI (Hui et al. 2023) 82.52 202.37 23.2

TBSI (Hui et al. 2023)+MAP 91.62 213.48 18.5

5.7 Visualization analysis

To conduct intuitive comparisons, we further visualize the
RGBT tracking results from three representative approaches
(including the Mixformer (Cui et al. 2022) *, OSTrack
(Ye et al. 2022) *, and TBSI (Hui et al. 2023)) under all
trackingparadigms, including themissingness-free paradigm
(Fig. 1a), missingness-unaware paradigm (Fig. 1b) and
missingness-aware paradigm (Fig. 1c). The results of 4 track-
ing sequences with random missing modalities are shown
in Fig. 6, which contains 2 sequences with RGB-missing
and 2 sequences with TIR-missing, respectively. The blue
boxes represent the tracking results from the original RGBT
trackers (missingness-free paradigm), the yellow boxes rep-
resent the tracking results from corresponding missingness-
unaware RGBT trackers (missingness-unaware paradigm),
and the red boxes represent the tracking results correspond-

ing to ourmissingness-aware prompting (MAP) aidedRGBT
trackers (missingness-aware paradigm). The results in Fig. 6
indicate that classical RGBT trackers undergo heavy per-
formance degradation when applied to real-world scenarios
having inevitable modality-missing. Fortunately, plugging
the proposed concise missingness-aware prompting (MAP)
framework into classical missingness-unaware RGBT track-
ers could significantly alleviate the robustness degradation
and achieve satisfactory tracking results in real-world sce-
narios with random missing modalities.

5.8 Discussion

Our MAP framework compensates for random modal-
ity missingness with the prototypical missingness-aware
prompts (pMAP) and the contextual missingness-aware
prompts (cMAP). It is a general prompting framework and

Fig. 6 Visualization comparisons with three representative approaches
under three RGBT tracking paradigms (including the Mixfomer (Cui
et al. 2022) *, OSTrack (Ye et al. 2022) *, and TBSI (Hui et al. 2023))

on the LasHeR dataset. Each row is a tracking sequence with random
missing in the RGB or TIR modality
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Table 8 Validation of modality
generalization on the RGBD
tracking task on the DepthTrack
dataset

Paradigm Method F1 ↑ R↑ P↑
Missingness-free Mixformer (Cui et al. 2022)* 58.5 58.1 59.0

OSTrack (Ye et al. 2022)* 57.7 57.1 58.3

Missingness-unaware Mixformer (Cui et al. 2022)* 51.2 50.3 52.1

OSTrack (Ye et al. 2022)* 50.8 49.7 52.0

Missingness-aware
(ours)

Mixformer (Cui et al. 2022)*+MAP 54.2 53.5 55.0

OSTrack (Ye et al. 2022)*+MAP 53.5 52.6 54.5

don’t specify to modality type and tracking task, so it is
principally applicable to other visual multimodal modality-
missing scenarios, such as the mentioned RGBD (visible
and depth images), and RGBE (visible and event images).
For example, we extend the proposed MAP framework from
RGBT tracking to RGBD tracking tasks on the Depth-
Track (Yan et al. 2021) dataset. The results measured by
F1-score, Recall (R) and Precision (P) in Table 8 clearly indi-
cates that our MAP effectively compensates for modality-
missing in RGBD tracking scenarios, further demonstrating
the effectiveness and generalization for tackling modality-
missing under various modalities. However, when applying
it to image-text multimodal scenarios, the MAP framework
requires additional modification since the text modality can-
not be aligned with video modality at frame level in the
current MAP, so we leave it for future research.

Besides, we also include a failure case analysis of our
MAP framework (Mixformer (Cui et al. 2022) *+MAP) in
Fig. 7 to discuss the limitation of our MAP framework. The

Fig. 7 Failure cases visualization on the RGBT234 dataset. Each row
is a tracking sequence with random modality-missing

failure cases of our MAP method primarily stem from two
aspects. On one hand, when there is a significant quality
gap between the two video modalities and the lower-quality
modality is missing (Fig. 7a), our MAP has only limited
compensation effect since the missing modality itself has
limited impact on the baseline method. On the other hand,
when the baseline method itself fails to track the target in
somechallenging scenarios (Fig. 7b), incorporating ourMAP
framework still struggles to track the target effectively.

6 Conclusion

In this work, we propose a concise and effectivemissingness-
aware Prompting (MAP) framework for RGBT tracking to
alleviate the heavy modality-missing issue in real-world
scenarios. The MAP efficiently compensates essential miss-
ing information for RGBT tracking via two-stage parameter-
efficient prompting instead of recovering all details in the
missing frames. Prototypical missingness-aware prompts
(pMAP) approximate the modality-specific but instance-
agnostic missing information that reduces the information
gap between padding values and modality prototypes. Con-
textual missingness-aware prompts (cMAP) further compen-
sate for instance-specific missing information that reduces
the information gap between modality prototypes and miss-
ing instances. Eventually, our MAP achieves state-of-the-art
performanceon three datasets demonstrating its effectiveness
in tackling real-world RGBT tracking with random missing
modalities.
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