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ABSTRACT

Asynchronous federated learning (FL) has recently gained attention for its en-
hanced efficiency and scalability, enabling local clients to send model updates
to the server at their own pace without waiting for slower participants. How-
ever, such a design encounters significant challenges, such as the risk of outdated
updates from straggler clients degrading the overall model performance and the
potential bias introduced by faster clients dominating the learning process, espe-
cially under heterogeneous data distributions. Existing methods typically address
only one of these issues, creating a conflict where mitigating the impact of out-
dated updates can exacerbate the bias created by faster clients, and vice versa. To
address these challenges, we propose FedEcho, a novel framework that incorpo-
rates uncertainty-aware distillation to enhance the asynchronous FL performances
under large asynchronous delays and data heterogeneity. Specifically, uncertainty-
aware distillation enables the server to assess the reliability of predictions made
by straggler clients, dynamically adjusting the influence of these predictions based
on their estimated uncertainty. By prioritizing more certain predictions while still
leveraging the diverse information from all clients, FedEcho effectively mitigates
the negative impacts of outdated updates and data heterogeneity. Through exten-
sive experiments, we demonstrate that FedEcho consistently outperforms existing
asynchronous federated learning baselines, achieving robust performance without
requiring access to private client data.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has emerged as a promising paradigm of collabo-
ratively training machine learning models across edge clients without sharing private data. In the
standard synchronous FL setting, the central server waits for all assigned clients to complete their
local training before aggregating the local updates to the global model (McMahan et al., 2017;
Karimireddy et al., 2020; Wang et al., 2022; 2020b; Wei et al., 2020). However, this synchronous
aggregation scheme suffers from poor scalability in heterogeneous environments due to system dis-
crepancies: faster clients remain idle while waiting for straggler clients, leading to significant inef-
ficiency in training (Xie et al., 2019; Nguyen et al., 2022; Yang et al., 2022).

Asynchronous FL alleviates the inefficiency by allowing clients to upload updates at their own pace,
enabling the faster clients and the server to process global updates without waiting for all participant
clients (Xie et al., 2019; Nguyen et al., 2022; Toghani & Uribe, 2022; Wang et al., 2024c;d; Liu
et al., 2024). Although asynchronous methods improve training efficiency, they do not come without
costs. Updates from straggler clients usually suffer from asynchronous delay, as their local models
are trained on an outdated global model rather than the current one. Consequently, incorporating
such outdated updates into the global model would impede the overall convergence, especially when
encountering large asynchronous delays. Meanwhile, faster clients usually contribute more frequent
updates due to smaller delays, and thus cause the global model to be biased towards their data
distributions. This would deteriorate the overall performance in the presence of heterogeneous client
data distributions.
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Despite several prior works attempting to enhance the performance of asynchronous FL, the two
issues appear to be in conflict, with existing research primarily addressing only one of them. Specif-
ically, one line of work aims to balance the client contributions in the global update by using the
historical model updates or applying gradient correction (Wang et al., 2024c; Zang et al., 2024).
However, such methods directly merge the outdated parameter updates from straggler clients into
the global model, which distorts the training and leads to degraded performance under large delays1.
Another line of work aims to reduce the effect of outdated updates by employing momentum-based
training design (Yu et al., 2024; Wang et al., 2024d), thus reducing the impact brought by straggler
clients. However, since the momentum terms are even more dominated by frequent updates from
faster clients, the model updates of stragglers are gradually diminished, resulting in their updates be-
ing largely neglected and finally leading to convergence slowdown under severe data heterogeneity.
This motivates us to explore the following question:

Can we solve the two above-mentioned issues simultaneously by developing a new asyn-
chronous FL approach that works under both large asynchronous delays and client data
heterogeneity?

Specifically, this necessitates a more nuanced approach to managing outdated client updates from
straggler clients: on one hand, we aim to avoid directly merging or averaging these outdated updates
into the global model to prevent performance degradation; on the other hand, we seek to retain the
useful information from the outdated updates, as they hold valuable insights regarding the unique
data distributions of the clients.

Based on this, we propose FedEcho, a novel uncertainty-aware distillation framework for asyn-
chronous FL. Building upon knowledge distillation, FedEcho operates at the prediction logits level
to update model parameters, thereby avoiding direct parameter contamination from straggler up-
dates. Specifically, FedEcho aggregates client predictions into ensemble teacher logits and performs
server-side distillation. To further make sure that FedEcho could retain useful information from
the outdated updates, we design uncertainty-aware distillation: predictions obtained from straggler
clients (who trained on outdated models), may still be noisy and unreliable. This motivates the
need for uncertainty-aware distillation, where the server dynamically adjusts its confidence in the
teacher’s predictions based on prediction uncertainty. This makes FedEcho a robust framework that
effectively leverages the insights from straggler updates while minimizing the risks associated with
outdated information. By integrating uncertainty-aware distillation, FedEcho ensures that the global
model benefits from the diverse data distributions of all clients, fostering more accurate and reliable
learning outcomes in the presence of both large asynchronous delays and heterogeneous client data.

Our main contributions are summarized as follows:

• We propose FedEcho, a novel asynchronous FL framework that incorporates uncertainty-aware
distillation to effectively address the challenges posed by large asynchronous delays and hetero-
geneous client data distributions. FedEcho builds upon the principles of knowledge distillation,
enabling the dynamic adjustment of distillation loss based on uncertainty, while ensuring balanced
contributions from all clients.

• We provide theoretical convergence analysis of the proposed FedEcho and with a convergence rate
ofO( 1√

TM
) w.r.t. the number of global communication rounds T , and the number of accumulated

gradients M . This rate is consistent with that of asynchronous FL methods, ensuring that the
involvement of uncertainty-aware distillation does not compromise the convergence.

• We conduct extensive experiments under varying degrees of data heterogeneity and asynchronous
delay. The results demonstrate that FedEcho consistently outperforms existing asynchronous FL
baselines under various experimental settings.

1While Wang et al. (2024c) mentioned alleviating the joint effect of asynchronous delay and client data het-
erogeneity, experimental results suggest that their effectiveness deteriorates under large asynchronous delays.
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2 RELATED WORKS

Asynchronous FL Asynchronous optimizations and their various adaptations, such as Hog-
wild (Niu et al., 2011) and asynchronous SGD (Mania et al., 2017; Nguyen et al., 2018; Stich et al.,
2021; Leblond et al., 2018; Glasgow & Wootters, 2022), have been widely discussed due to their
advantage in computational efficiency and scalability. Recently, asynchronous update algorithms in
FL, including FedAsync (Xie et al., 2019) and FedBuff (Nguyen et al., 2022), have also garnered
significant attention, as they provide a more flexible and efficient solution for adapting to client
systematic heterogeneity. Based on FedBuff (Nguyen et al., 2022), recent works have focused on
various aspects of asynchronous FL, including theoretical analysis (Toghani & Uribe, 2022), com-
munication efficiency (Ortega & Jafarkhani, 2023), and data heterogeneity (Wang et al., 2024c;b).
Moreover, recent studies have investigated the integration of advanced optimization techniques such
as momentum acceleration (Yu et al., 2024; Zang et al., 2024) and adaptive optimization (Wang
et al., 2024d) within asynchronous FL frameworks.

Federated Distillation Federated distillation has been widely studied for knowledge transfer
in FL, addressing data heterogeneity and model heterogeneity issues. Early works such as
FedKD Jeong et al. (2018) transmit the mean of client logits to the server, which are then used
as teacher signals for local distillation regularization. Several studies focus on enhancing robustness
in the face of data heterogeneity. For example, FedDF (Lin et al., 2020) ensembles soft labels from
unlabeled data, Itahara et al. (2021) proposes entropy reduction aggregation, and Zhang et al. (2022)
proposes a data-free knowledge distillation method to fine-tune the global model on the server. An-
other line of work is model heterogeneity, e.g., FedMD (Li & Wang, 2019) aligns client logits on a
public dataset, FedGKT (He et al., 2020) transfers the knowledge from small client models to a large
server-side model, and FedType (Wang et al., 2024a) deploys lightweight proxy models on clients
to exchange knowledge with private large models, thereby eliminating the need for private data.
There are also some prototype-based approaches (Tan et al., 2022; Zhang et al., 2024), multilevel
distillation methods (Khan et al., 2024; Hao et al., 2023; Qi et al.) for FL.

3 THE PROPOSED METHOD: FEDECHO

3.1 PRELIMINARIES

Generally, in FL frameworks, we aim to minimize the following objective through N local clients:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

Fi(x) =
1

N

N∑
i=1

Eξ∼Di
[Fi(x; ξi)], (1)

where x represents the model parameters with d dimensions, Fi(x) = Eξ∼Di
[Fi(x, ξi)] represents

the local loss function corresponding to client i, and Di denotes the local data distribution. Based
on FedAvg (McMahan et al., 2017) and its variants, synchronous FL algorithms solve Eq. (1) by
allowing each participating client to perform local updates, and the server receives the local updates
from assigned clients and aggregates them to update the global model.

Asynchronous updates with buffer. To alleviate this inefficiency and enhance scalability, asyn-
chronous federated learning has been introduced as a solution for optimizing the objective in Eq. (1).
In asynchronous FL, clients conduct local training independently and upload their updates to the
server upon completion. Building upon the first few asynchronous works such as FedAsync (Xie
et al., 2019), FedBuff (Nguyen et al., 2022) FADAS (Wang et al., 2024d) and CA2FL (Wang
et al., 2024c), they utilize a buffer-based mechanism to improve global updates. Such asyn-
chronous methods maintain a fixed number of concurrency Mc (the server typically ensures that
Mc clients are actively performing local training simultaneously, with Mc usually determined by
the server). Then at global round t, when client i finishes K steps of local training, it sends the up-
date ∆i

t = xit−τ,K − xt−τ to the server, where t− τ indicates the global round when local training
began. The server accumulates the local updates to ∆t, and dispatches the latest global model to a
randomly selected idle client for local training. Once M updates are collected, the server updates
the global model. Clients who are performing local training still continue with their current local
models, which would be unaffected by global updates. Through this asynchronous design, the FL
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training system maintains a fixed number of concurrency by assigning a new idle client to training
whenever one finishes.

3.2 FEDECHO: UNCERTAINTY-ARARE DISTILLATION FOR ASYNCHRONOUS FL

To address the challenges related to stale update and achieve better convergence, we propose FedE-
cho, a novel uncertainty-aware distillation methods for asynchronous FL. Our intuition is that local
models can provide coarse guidance on how the global model should adapt to diverse local data dis-
tributions. We summarize the proposed FedEcho in Algorithm 1. FedEcho adopts a standard local
training procedure similar to Nguyen et al. (2022); Wang et al. (2024c), where each client uploads
its model update upon completing local training. FedEcho also maintains the concept of server con-
currency Mc and buffer size M for flexible control of the number of active clients and the frequency
of global model update.

Uncertainty-aware distillation. At the server, FedEcho employs a novel distillation process to
enable the global model to learn from local models. Upon receiving an update ∆i

t from client i,
the server temporarily constructs a client-specific model xit, performs inference on an unlabeled
dataset U , and stores the resulting logits yi for future distillation. The temporary model is discarded
immediately after inference. Once the server has aggregated M local updates to obtain a new global
model x̂t+1, it performs knowledge distillation using the stored logits. Specifically, for each batch
B from the unlabeled dataset U , the server aggregates the logits from all teacher models, i.e., the
most recent stored logits from each client (if available), and takes their average prediction yt as the
distillation target (Line 14).

For the distillation process, the available teacher (client) models, which represented by their stored
output logits on the server, are simultaneously used for the knowledge distillation:

x̂t+1 ← x̂t+1 − ηd · Clip(∇fd(yt, ŷt), ν), ŷt = Logits(x̂t+1(B)) (2)

where ηd is the distillation learning rate, ν is the clipping threshold. We adopt a novel uncertainty-
aware distillation loss fd which weighting the Kullback–Leibler (KL) divergence loss and Cross-
Entropy (CE) loss,

fd(yt, ŷt) = αKL
(
σ(yt)||σ(ŷt)

)
+ (1− α)CE

(
ŷt, argmax(yt)

)
, (3)

where σ is the softmax function. To dynamically adjust between the richer uncertainty information
which encourage by KL divergence loss and the less uncertain information providing by the CE
loss, we define α as a function of predictive uncertainty. Given teacher logits yut for sample u, we
compute and the entropy Hu and the normalized batch entropy Ĥ for batch B:

Hu = −
C∑
c=1

puc log p
u
c , Ĥ =

1

logC

1

|B|
∑
u∈B

Hu. (4)

We set α to interpolate between αmin and αmax according to Ĥ , i.e., α = Ĥαmax + (1− Ĥ)αmin.
In general, when the batch of teacher logits exhibits high entropy, the weight α increases and the
contribution of the CE loss is reduced. This design reflects the intuition that when teacher predictions
are highly uncertain, the hard labels derived from them may be unreliable, and relying more on soft
labels helps the global student model avoid learning from inaccurate or noisy signals. Conversely,
when the teacher logits are more confident (i.e., with low entropy Ĥ), a larger proportion of CE
loss is emphasized, allowing the student model to benefit from more deterministic and trustworthy
supervision.

Moreover, to prevent the imperfect guidance during the early stages of training when teacher logits
may be inaccurate and fail to fully represent the local knowledge. We employ gradient clipping
to constrain the magnitude of the distillation gradient as shown in Eq. (2). This ensures that the
global model can still learn from coarse signals of local models, thereby enhancing resilience to the
staleness and heterogeneous data distribution.

In a nutshell, the proposed FedEcho decouples the contribution of stale clients’ information from
the current global model update by avoiding direct aggregate auxiliary variables to the global model.
Instead, it leverages knowledge distillation to incorporate information from local models. Intuitively,
FedEcho captures the predictive behavior of each client: the server learns from the averaged logits
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Algorithm 1 FedEcho: Uncertainty-aware distillation for asynchronous federated learning
Input: local learning rate ηl, global learning rate η, distillation learning rate ηd, server concurrency
Mc, buffer size M

1: Initialize model x1, initialize ∆1 = 0, m = 0, server first sample a set ofM0 with size Mc of
active clients to run local SGD updates with local learning rate ηl, logits list y = 0;

2: repeat
3: if receive client update then
4: Server accumulates update from client i: ∆t ←∆t +∆i

t and set m← m+ 1;
5: Server infers client i’s local model xit = xt−τ i

t
+∆i

t on the unlabeled set U and stores the
logits yi for client i;

6: Sample another client j from available clients;
7: Send the current model xt to client j, and run local SGD updates on client j;
8: end if
9: if m =M then

10: ∆t ← ∆t

M ;
11: Update global model x̂t+1 = xt + η∆t;
12: for Server distillation steps q = 1 to Q do
13: Sample an unlabeled mini-batch B from unlabeled set U ;
14: Get the teacher logits yt = 1

|Su|
∑
i∈Su

yi[B], where Su = {i|yi[B] is available} , and
student logits ŷt = Logits(x̂t+1(B));

15: Update global student model via knowledge distillation x̂t+1 ← x̂t+1 − ηd ·
Clip(∇fd(yt, ŷt), ν);

16: end for
17: Update global model xt+1 ← x̂t+1; set m← 0, ∆t+1 ← 0, t← t+ 1;
18: end if
19: until convergence

provided by local models and uses them as soft targets. This enables the global model to assimilate
diverse client knowledge in a more stable and delay-tolerant manner. Importantly, even clients with
large delays can still contribute meaningful label-distribution signals to the global model through
their predictions. As a result, the global update is less dominated by recently updated or faster
clients, thereby mitigating the negative effects of data heterogeneity and asynchronous delay.

Memory overhead on the server. While FedEcho is designed to address the impact of high la-
tency under data heterogeneity through server-side distillation, it implicitly introduces additional
memory overhead compared to standard optimization-based asynchronous FL methods (Nguyen
et al., 2022; Wang et al., 2024d). Specifically, as shown in Line 5 of Algorithm 1, the server needs
to temporarily construct a client-specific model xit for inference. This requires the server storing
the corresponding global model checkpoints xt−τ i

t
used by client i at the start of its local training.

However, since multiple clients may share the same initialization, the server only needs to store at
most Mc global model checkpoints, where Mc is the concurrency number (i.e., the maximum num-
ber of concurrently active clients). In addition, the server needs to store the logits copy for each
client (no matter whether actively calculating the gradient or not), yet this memory cost is modest.
As FedEcho only requires hundreds to a few thousand distillation samples, the total size of stored
logits is typically on the same order of magnitude as a single model copy.

Discussion on privacy-preserving concerns. Local data privacy is usually one of the most critical
factors in federated learning. Unlike many distillation methods that rely on data from the training
domain, the proposed FedEcho can achieve the desired performance by utilizing an unlabeled dataset
U without getting the data distribution from the local clients’ training data. Moreover, as shown in
our experiments, FedEcho also supports the use of synthetic data generated from diffusion models
for distillation, helping to alleviate practical limitations of unlabeled datasets. Furthermore, the local
model update and communication process in FedEcho closely follows the standard asynchronous
FL framework and does not introduce additional privacy risks. It is also compatible with privacy-
preserving techniques such as differential privacy.
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4 THEORETICAL ANALYSIS

In this section, we first study the convergence analysis under general non-convex settings for the
proposed method. Moreover, we investigate the distillation gradient with one student and N teacher
models in Appendix B.

In this section, we delve into the convergence analysis of our proposed FedEcho algorithm. We first
introduce some common assumptions required for the analysis.
Assumption 4.1 (Smoothness). Each objective function on the i-th worker Fi(x) is L-smooth, i.e.,
∀x,y ∈ Rd,

∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥.

Assumption 4.2 (Bounded Variance). Each stochastic gradient is unbiased and has a bounded lo-
cal variance, i.e., for all x, i ∈ [N ], we have E

[
∥∇Fi(x; ξ) − ∇Fi(x)∥2

]
≤ σ2

l , for the distil-
lation loss fd, the stochastic gradient is unbiased and has a bounded local variance as well, i.e.,
E
[
∥∇fd(x|x1, ...,xn; ξ) − ∇fd(x|x1, ...,xn)∥2

]
≤ σ2

d and the loss function on each client has a
global variance bound, 1

N

∑N
i=1 ∥∇Fi(x)−∇f(x)∥2 ≤ σ2

g .

Assumptions 4.1 and 4.2 are standard assumptions in federated non-convex optimization literature
(Li et al., 2019; Yang et al., 2021; Reddi et al., 2021; Wang et al., 2022; Wang & Ji, 2023). The global
variance upper bound of σ2

g in Assumption 4.2 measures the data heterogeneity across clients, and a
global variance of σ2

g = 0 indicates a uniform data distribution across clients.

Assumption 4.3 (Bounded Delay of Gradient Computation). Let τ it represent the delay for global
round t and client i which is applied in Algorithm 1. The delay τ it is the difference between
the current global round t and the global round at which client i started to compute the gradi-
ent. We assume that the maximum gradient delay (worst-case delay) is bounded, i.e., τmax =
maxt∈[T ],i∈[N ]{τ it} < ∞. Moreover, we further define the average of the maximum delay over
time τavg = 1

T

∑T
t=1 τ

max
t = 1

T

∑T
t=1 maxi∈[N ]{τ it}, which its bounded-ness is naturally hold if

the maximum gradient delay holds.

Assumption 4.3 is common in analyzing asynchronous and anarchic FL algorithms which incor-
porate the gradient delays into their algorithm design (Koloskova et al., 2022; Yang et al., 2021;
Nguyen et al., 2022; Toghani & Uribe, 2022; Wang et al., 2023).
Assumption 4.4 (Uniform Arrivals of Gradient Computation). Let the setMt (with sizeM ) include
clients that transmit their local updates to the server in global round t. We assume that the clients’
update arrivals are uniformly distributed, i.e., from a theoretical perspective, the M clients inMt

are randomly sampled without replacement from all clients [N ] according to a uniform distribution.

Assumption 4.4 is also discussed in Anarchic FL (Yang et al., 2022) and FADAS (Wang et al.,
2024d). Note that this assumption is only used for the convenience of theoretical analysis. Our
experimental settings does not rely on this assumption.

Theorem 4.5. Under Assumptions 4.1-4.4, if the global learning rate satisfies η = Θ(
√
M), the

local learning rate satisfies ηl = Θ(
√
F/

√
TK(σ2

l +Kσ2
g)) and and distillation learning rate

satisfies ηd = Θ(F/
√
T 3(σ2

l +Kσ2
g)Q), where F = f1 − f∗ and f∗ = argminx f(x), then the

global rounds of Algorithm 1 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
( √

Fσ√
TKM

+

√
Fσg√
TM

+
Fτmaxτavg

T
+

√
Fν2

T

)
, (5)

Remark 4.6. Theorem 4.5 indicates that, given a sufficiently large T , the proposed FedEcho algo-
rithm achieves a convergence rate of O

(
1√
TM

)
with respect to both T and M .

Compared to existing asynchronous FL methods in non-convex scenarios, the proposed FedEcho
achieves a comparable convergence rate and delay dependency, consistent with the analyses in
(Wang et al., 2024c) and (Wang et al., 2024d). Moreover, relative to the original analysis of Fed-
Buff (Nguyen et al., 2022; Toghani & Uribe, 2022), FedEcho demonstrates a slightly improved
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dependency on τmax in the convergence rate. It is worth noting that, the bounded stochastic variance
σd for FedEcho contributes solely to a negligible residual term that is asymptotically dominated by
O
(
1
T

)
. Moreover, while CA2FL (Wang et al., 2024c) attempts to mitigate the adverse effects of

stale updates by incorporating cached model updates hit into global aggregation, its performance
highly relies on the practical conditions that these cached updates remain sufficiently informative
over time. This limitation is reflected in the theoretical analysis as well, as the convergence rate
relies an additional assumption of maximum staleness ρmax, and the rate includes the term ζmaxσ

2
l

T .
As such, when a client has not participated in the training process for many rounds, a large ζmax can
significantly degrade the overall convergence rate.

5 EXPERIMENTAL RESULTS

We evaluate the performance of our proposed algorithm through experiments on vision and text
classification tasks, as well as a natural language generation task. For vision classification, we use
CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) datasets with ResNet-18 model (He et al.,
2016). For text classification, we adopt the MRPC subtask from the GLUE benchmark (Wang
et al., 2018) with the BERT-base model (Devlin et al., 2018). To extend our study to natural lan-
guage generation, we fine-tune the Qwen-2.5 1.5B Instruct model (Team, 2024) on the MathInstruct
dataset (Yue et al., 2023). We compare our proposed FedEcho against several representative FL
baselines, such as FedBuff (without differential privacy) (Nguyen et al., 2022), CA2FL (Wang et al.,
2024c), FedAC (Zang et al., 2024), and FADAS (Wang et al., 2024d). We exclude FedAsync (Xie
et al., 2019) from comparison, as its convergence is known to be unstable under significant data het-
erogeneity and communication delays. The key implementation details are summarized below, and
all experiments are conducted on a single NVIDIA A6000 GPU, with additional results and settings
provided in Appendix A.

Table 1: Details for wall-clock delay simulation
(in units of 10 seconds).

Delay/Runtime Short Medium Long

Large delay U(1, 2) U(3, 5) U(50, 80)
Mild delay U(1, 2) U(3, 5) U(10, 20)

Overview of running time and delay simu-
lation. We simulate client runtimes as fol-
lows. At the beginning of training, each client
is assigned to a runtime category based on a
parameter γ and the number of local training
samples. This design reflects the practical ob-
servation that clients with larger datasets some-
times require more training time. In general,
a smaller γ indicates a stronger dependence of
runtime on the number of local samples. To simulate wall-clock runtime, we uniformly sample the
runtime of each client from category-specific distributions, as detailed in Table 1. In practice, we
ensure that no more than 10% of the clients are assigned to the large-delay group.

5.1 EXPERIMENTS FOR VISION CLASSIFICATION

Overview of server-distillation. For CIFAR-10 experiments, we use CIFAR-100 (Krizhevsky
et al., 2009), STL10 (Coates et al., 2011), and synthetic data generated by a denoising diffusion
probabilistic model (DDPM)2 as unlabeled distillation datasets. For CIFAR-100 experiments, we
use CIFAR-10 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011), and the same synthetic dataset.
The default number of distillation samples is set to 2000, the clipping threshold ν is fixed at 5, and
the minimum and maximum coefficients are set to αmin = 0.2 and αmax = 0.8, respectively. We
use the Adam optimizer for server-side distillation with learning rate ηd = 3 × 10−6, β1 = 0.9,
β2 = 0.999, and ϵ = 10−8.

Overview of data partition and local training details. We consider the total number of clients of
50, the concurrency Mc is set to 25, and the buffer size M = 5. The client data is partitioned using
a Dirichlet distribution (Wang et al., 2020a;b), where the concentration parameter αDir controls the
degree of heterogeneity. For CIFAR-10, we consider two levels of heterogeneity with αDir = 0.1
and αDir = 0.3. For CIFAR-100, we adopt αDir = 0.03 and αDir = 0.1 due to its larger number of
classes. Each client performs two local training epochs per communication round with a mini-batch

2https://huggingface.co/google/ddpm-cifar10-32
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Table 2: The test accuracy on the training ResNet-18 model on the CIFAR-10 dataset with two data
heterogeneity levels in the mild and large delay scenarios for 500 communication rounds. We report
the average accuracy and standard deviation for three different seeds.

Large delay Mild delay
Method Dir (0.1) Dir (0.3) Dir (0.1) Dir (0.3)

FedBuff 52.85±7.76 51.44±8.74 42.57±5.00 41.60±5.10
CA2FL 55.33±7.87 50.37±7.27 42.99±7.93 57.31±7.03
FedAC 62.06±3.16 74.67±1.95 69.54±1.43 76.23±1.14
FADAS 61.25±1.16 75.43±2.77 65.51±2.04 74.85±1.30

FedEcho (CIFAR-100) 75.39±2.93 84.11±1.49 79.69±0.68 83.74±0.96
FedEcho (STL10) 77.81±0.48 84.96±0.86 77.99±0.94 83.98±0.67
FedEcho (synthetic w. diffusion) 74.93±1.75 80.68±1.35 72.95±5.20 81.27±1.71

Table 3: The test accuracy on the training ResNet-18 model on the CIFAR-100 dataset with two data
heterogeneity levels in the mild and large delay scenarios for 1000 communication rounds.

Large delay Mild delay
Method Dir (0.03) Dir (0.1) Dir (0.03) Dir (0.1)

FedBuff 30.58±1.13 44.28±0.49 32.24±1.70 45.41±0.58
CA2FL 37.32±0.49 43.88±0.24 35.02±2.25 45.03±0.16
FedAC 50.09±0.64 58.07±0.52 51.09±0.47 58.61±0.29
FADAS 48.22±0.70 57.95±0.40 49.29±0.37 58.22±0.32

FedEcho (CIFAR-10) 53.74±0.29 61.54±0.14 55.55±0.26 63.05±0.21
FedEcho (STL10) 53.94±0.18 62.30±0.09 55.26±0.21 59.68±0.10
FedEcho (synthetic w. diffusion) 48.04±0.55 57.58±0.13 49.23±0.45 62.04±0.20

size of 50. All baseline methods use SGD with weight decay 10−4 as the local optimizer, and both
global and local learning rates are tuned for each method via grid search.

Main results. Table 2 and Table 3 report the test accuracy of ResNet-18 on CIFAR-10 and CIFAR-
100 under varying heterogeneity levels and delay scenarios. FedEcho consistently achieves substan-
tially higher accuracy across all settings, regardless of the chosen server-side distillation dataset.
Both tables also show that existing asynchronous FL baselines, particularly FedBuff and CA2FL,
suffer from pronounced accuracy degradation under asynchronous delays. In contrast, FedEcho
demonstrates greater stability, yielding more consistent performance across delay and heterogene-
ity conditions. On CIFAR-100, FedEcho outperforms the best-performing baseline by at least 3
percentage points. We further observe that external unlabeled datasets such as STL10, as well as
cross-dataset CIFAR-100/10, provide more stable and effective distillation targets than synthetic
data generated by diffusion models.

Table 4: The test accuracy on the
training BERT-base model on the
GLUE-MRPC dataset under large
delay scenarios for 200 communi-
cation rounds.

Method Accuracy

FedBuff 71.47±0.12
CA2FL 72.14±3.19
FedAC 73.19±0.85
FADAS 68.38±0.00

FedEcho 77.30±1.31

Server computation costs and memory overhead.

To evaluate the additional computation cost introduced by this
design, we analysis the real runtime during server aggrega-
tion steps. With the default distillation setting of 2,000 sam-
ples, since each distillation step involves the same procedure of
back-propagation steps as regular training, the average server-
side distillation process in our image classification experi-
ments takes approximately 2.2–3.5 seconds per global round,
which is reasonably acceptable.

Moreover, as discussed in previous sections, the proposed
FedEcho requires the server to maintain both the global model
checkpoints used for each client’s local training and the corre-
sponding client logits. To quantify this storage cost, we track
the number of global model checkpoints required. Our experiments show that the server needs to

8
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store at most 8 different checkpoints (i.e., global models from previous rounds), which is acceptable
for a central server.

5.2 EXPERIMENTS ON LANGUAGE TASKS

Due to space constraints, we provide the experimental details in Appendix A. As shown in Table 4,
FedEcho achieves the highest validation accuracy, demonstrating the effectiveness of uncertainty-
aware distillation in exploiting straggler contributions for the text classification task. Furthermore,
when applied to generative language models, FedEcho attains the best GSM8K score performance
on the Qwen2.5-1.5B Instruct model fine-tuned with MathInstruct (Table 5), improving over the best
baseline FedAC and significantly surpassing the original Qwen2.5-1.5B Instruct model. These re-
sults confirm that our uncertainty-aware distillation mechanism benefits both language classification
and generative reasoning tasks, highlighting its robustness in leveraging straggler contributions.

5.3 ABLATION STUDIES

In the following, we analyze several aspects of the proposed FedEcho, including how to choose
the number of distillation samples and the impact of mixing weight α in the uncertainty-aware
distillation loss. Additionally, we discuss the effect of clipping threshold ν in Appendix A.

Table 5: GSM8K accuracy of the
Qwen2.5-1.5B Instruct model fine-
tuned on the MathInstruct dataset for
5 communication rounds under large-
delay scenarios.

Method GSM8K acc.

Qwen 2.5-1.5B Instruct 42.38

FedBuff 52.08
CA2FL 51.70
FedAC 52.16
FADAS 46.40

FedEcho 52.62

Number of distillation samples. We investigate the im-
pact of the number of distillation samples on the server-
distillation procedures. Specifically, we consider an ex-
perimental setting where we train a ResNet-18 model
with a local CIFAR-10 dataset, and use CIFAR-100 as a
server distillation set. We compare 500, 1000, 2000, and
5000 distillation samples. As shown in Table 6, increas-
ing the number of distillation samples consistently leads
to higher final accuracy.

Mixing weight α in the uncertainty-aware distilla-
tion loss We investigate the impact of weight α on the
uncertainty-aware distillation loss and its effect on over-
all performance. Specifically, we compare the dynamic
α with αmin = 0.2, αmax = 0.8 with α = 0 (CE loss)
and α = 1 (KL divergence loss) and the mixed loss with
fixed α = 0.5. Table 7 shows that using only CE loss leads to the lowest accuracy, while applying
solely KL divergence or a fixed mixture number improves the performance. Notably, the dynamic
α achieves the best overall result, which indicates that balancing CE and KL losses based on the
entropy-based uncertainty provides effective guidance for the global model under asynchronous set-
tings.

6 CONCLUSIONS
Table 6: Ablations of the number
of distillation data samples.

# samples Acc.

500 61.86±6.05
1000 67.91±6.22
2000 75.39±2.93
5000 77.03±0.43

Table 7: Ablations of α.

Acc.

α = 0 71.01±2.79
α = 1 74.86±3.14
α = 0.5 74.92±2.54
dynamic α 75.39±2.93

In this work, we addressed the critical challenges of asyn-
chronous FL, where outdated updates from straggler clients and
the dominance of faster clients under heterogeneous data distri-
butions often degrade model performance. We proposed FedE-
cho, a novel uncertainty-aware distillation framework to retain
the useful information from the prediction level rather than di-
rectly merging stale parameter updates. FedEcho mitigates the
dual issues of asynchronous delay and data heterogeneity while
preserving the diverse knowledge from all clients. We pro-
vide theoretical convergence guarantee, and extensive experi-
ments demonstrate that FedEcho consistently outperforms ex-
isting asynchronous FL baselines across both classification and
generation tasks, achieving robust and scalable performance
without accessing private client data.

9
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ETHICS STATEMENT

This work focuses on the development and evaluation of federated learning algorithms using pub-
licly available benchmark datasets. No human subjects or personally identifiable information are
involved in this study. The research does not raise additional ethical concerns related to privacy,
fairness, safety, or potential misuse beyond those already inherent in standard machine learning
research.

REPRODUCIBILITY STATEMENT

We have made detailed efforts to ensure the reproducibility of our results. The experimental setup,
including datasets, hyperparameter configurations, and implementation details, is provided in the
main text and Appendix A. Complete proofs of the theoretical results and assumptions are included
in Appendix C. The datasets we use are publicly available, and we describe all necessary preprocess-
ing steps in the supplementary materials. Code will be released upon acceptance to further facilitate
reproducibility.

STATEMENT OF LLMS USAGE

We use LLMs solely as general-purpose assistive tools for minor tasks such as English proofreading,
rephrasing, code debugging, and formatting adjustments.
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A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTAL SETTINGS

A.1.1 IMAGE CLASSIFICATION

We report the local and global learning rates for image classification tasks as follows.

Table 8: Learning rates details for CIFAR-10 experiment. The learning rates is reported by ηl/ηg
(local/global).

Large delay Mild delay
Method Dir (0.1) Dir (0.3) Dir (0.1) Dir (0.3)

FedBuff 0.01/1.0 0.01/1.0 0.01/1.0 0.01/1.0
CA2FL 0.01/1.0 0.01/1.0 0.01/1.0 0.01/1.0
FedAC 0.1/0.0001 0.1/0.0001 0.1/0.0001 0.1/0.0001
FADAS 0.1/0.0001 0.1/0.0001 0.1/0.0001 0.1/0.0001

FedEcho (CIFAR-100) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0
FedEcho (STL10) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0
FedEcho (synthetic w. diffusion) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0

Table 9: Learning rates details for CIFAR-100 experiment. The learning rates is reported by ηl/ηg
(local/global).

Large delay Mild delay
Method Dir (0.1) Dir (0.3) Dir (0.1) Dir (0.3)

FedBuff 0.003/1.0 0.003/1.0 0.003/1.0 0.003/1.0
CA2FL 0.003/1.0 0.003/1.0 0.003/1.0 0.003/1.0
FedAC 0.1/0.0001 0.1/0.0001 0.1/0.0001 0.1/0.0001
FADAS 0.1/0.0001 0.1/0.0001 0.1/0.0001 0.1/0.0001

FedEcho (CIFAR-10) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0
FedEcho (STL10) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0
FedEcho (synthetic w. diffusion) 0.03/1.0 0.03/1.0 0.03/1.0 0.03/1.0

A.1.2 TEXT CLASSIFICATION AND LANGUAGE GENERATION

Overview of experimental setups. For the text classification tasks on MRPC, we use the validation
dataset as evaluation set, and the unlabeled test as the distillation set. For the natural language
generation, we randomly select 100 mathematical queries and exclude them from the training set.
The default number of distillation samples is set to 100. Same as the previous image classification
task, we set ν = 5, αmin = 0.2 and αmax = 0.8. We use the Adam optimizer for server-side
distillation with learning rate ηd = 3 × 10−7 for classification experiment and ηd = 3 × 10−6

for generation, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We consider the total number of clients
of 10, the concurrency Mc is set to 5, and the buffer size M = 3. The client data is partitioned
using a Dirichlet distribution with αDir = 0.6 Each client performs one local training epochs per
communication round with a mini-batch size of 8. We adopt AdamW as the local optimizer, and the
local and global learning rate list are summarized in Table 10.

A.2 ADDITIONAL DISCUSSIONS

As shown in Eq. (2), we incorporate gradient clipping into the distillation loss. This is particularly
important in the early stages of training, when teacher logits may be inaccurate and fail to fully
capture local knowledge. To mitigate such imperfect guidance, we constrain the magnitude of the
distillation gradient using a clipping threshold. In this section, we conduct an ablation study to ex-
amine the impact of different clipping thresholds on the overall performance. As shown in Table 11,
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Table 10: Learning rates details for CIFAR-100 experiment. The learning rates is reported by ηl/ηg
(local/global).

Method MRPC MathInstruct

FedBuff 3e-5/1.0 3e-5/1.0
CA2FL 3e-5/1.0 3e-5/1.0
FedAC 3e-6/0.1 3e-6/0.1
FADAS 3e-6/0.1 3e-6/0.1

FedEcho 3e-5/1.0 3e-5/1.0

setting ν = 5 yields the best accuracy, while smaller (ν = 1) or no clipping (ν = ∞) slightly
reduces performance, highlighting the importance of a moderate threshold.

Table 11: Ablations of clipping threshold ν.

Acc.

ν = 1 74.38±2.67
ν = 5 75.39±2.93
ν = ∞ 74.14±2.07

B DISCUSSION OF DISTILLATION GRADIENT

Classification with a single hidden layer. Given the original loss function with input data an
and ground truth bn on the server, the server aims to optimize min f(x) = min ℓ(ϕx(an), bn). In
this section, we investigate the distillation process defined as min ℓ(ϕx(an),

1
N

∑N
i=1(ϕxi(an)) :=

min fd(x|x1, ...,xN ) which is applied at the end of each global round. For notational simplicity,
we omit the global round index t and refer to x as the current global model and xi are local models.

Consider a K-classification model with one hidden layer, i.e., ϕx(an) = Softmax(xTan) ∈ RK ,
where x ∈ Rd×K are the student model parameters, suppose there is an input data an ∈ A = Rd.
Then we have the following related to distillation loss
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f(x|x1, ...,xn) = ℓ(ϕx(an),
1

N

N∑
i=1

(ϕxi
(an))

= ℓ(σ(xTan), sn)

= −
K∑
k=1

sn,k log σ(xTan)k

= −
K∑
k=1

sn,k log
e(x1)

T an∑K
j=1 e

(xj)T an

=

K∑
k=1

sn,k(log

K∑
j=1

e(xj)
T an − log e(xk)

T an)

=

K∑
k=1

sn,k log

K∑
j=1

e(xj)
T an −

K∑
k=1

sn,k log e
(xk)

T an

= log

K∑
k=1

e(xk)
T an −

K∑
k=1

sn,k log e
(xk)

T an

= log

K∑
k=1

e(xk)
T an −

K∑
k=1

sn,k(xk)
Tan, (6)

where the second to last one is due to the sum of soft labels are equal to 1. Therefore,

∇xk
f(x|x1, ...,xn) = ∇xk

[log

K∑
k=1

e(xk)
T an −

K∑
k=1

sn,k(xk)
Tan]

=
e(xk)

T an∑K
i=1 e

(xi)T an
an − sn,kan

= (σ(xTan)− sn)kan

= (σ(xTan)− bn)kan − (
1

N

N∑
i=1

σ(xTi an)− bn)kan

= ∇xk
f(x)− 1

N

N∑
i=1

∇xk
i
f(xi). (7)

Therefore, we can conclude the distillation gradient as

∇xf(x|x1, ...,xn) = ∇xf(x)−
1

N

N∑
i=1

∇xi
f(xi). (8)

Generic classification. Consider an arbitrary neural network architecture for classification that ends
with a softmax layer. Let ψ(x) denote the logits produced by the model with parameters x. Define
the loss function associated with logits z and true label bn as ϕx(z) = ℓ(Softmax(z), bn), where ℓ
is a loss function. In this setting, ψ(x) computes the logits from the input data, and ϕ evaluates the
loss given the logits. We define the overall loss function as f(x) = ϕ(ψ(x)). Then, the following
relationship holds:

an → ψn(x)→ ϕx(an) := Softmax(ψn(x)) ∈ RK . (9)
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Then we have the following for the distillation loss

f(x|x1, ...,xn) = ℓ(ϕx(an),
1

N

N∑
i=1

(ϕxi
(an))

= ℓ(σ(ψn(x)),
1

N

N∑
i=1

σ(ψn(xi)))

= ℓ(σ(ψn(x)), sn)

= −
K∑
k=1

sn,k log σ(ψn(x))k

= −
K∑
k=1

sn,k log
eψn,k(x)∑K
j=1 e

ψn,j (x)

=

K∑
k=1

sn,k(log

K∑
j=1

eψn,j(x) − ψn,k(x))

=

K∑
k=1

sn,k log

K∑
j=1

eψn,j(x) −
K∑
k=1

sn,kψn,k(x)

= log

K∑
k=1

eψn,k(x) −
K∑
k=1

sn,kψn,k(x). (10)

Applying the gradient operator, we have

∇xf(x|x1, ...,xn) = ∇x[log

K∑
k=1

eψn,k(x) −
K∑
k=1

sn,kψn,k(x)]

=

K∑
k=1

eψn,k(x)∑K
j=1 e

ψn,j (x)
∇xψn,k(x)−

K∑
k=1

sn,k∇xψn,k(x)

=

K∑
k=1

(σ(ψn(x))− sn)k∇xψn,k(x)

=
∂ψn(x)

∂x
(σ(ψn(x))− sn). (11)

Therefore, we have

σ(ψn(x))− sn = (σ(ψn(x))− bn)− (
1

N

N∑
i=1

σ(ψn(xi))− bn)

= ∇ψℓ(σ(ψn(x)), bn)−
1

N

N∑
i=1

∇ψℓ(σ(ψn(xi)), bn)

= ∇φn(ψn(x))−
1

N

N∑
i=1

∇φn(ψn(xi)), (12)

further if taking into account that fn(x) = φn(ψn(x)), we show the following for the distillation
gradient,

∇xf(x|x1, ...,xn) =
∂ψn(x)

∂x
(∇φn(ψn(x))−

1

N

N∑
i=1

∇φn(ψn(xi)))

=
∂ψn(x)

∂x

∂fn(x)

∂ψn(x)
− 1

N

N∑
i=1

∂ψn(x)

∂x

∂fn(xi)

∂ψn(xi)
. (13)

The first term is the student’ gradient, while the second term differs from the average of the teachers’
gradient 1

N

∑N
i=1∇xif(xi) as the partial derivatives of logits are with respect to the student model.
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C CONVERGENCE ANALYSIS

Proof of Theorem 4.5. Following several previous works studied asynchronous federated methods
(Chen et al., 2018; Wang et al., 2022), we have

From Assumption 4.1, f is L-smooth, taking the total expectation over all previous round,
0, 1, ..., t− 1 on the auxiliary sequence xt,

E[f(xt+1)− f(xt)]
= E[f(xt+1)− f(x̂t+1) + f(x̂t+1)− f(xt)]
= E[f(xt+1)− f(x̂t+1)]︸ ︷︷ ︸

Edistill

+E[f(x̂t+1)− f(xt)]︸ ︷︷ ︸
Eoriginal

, (14)

where by Assumption 4.1, there is

E[f(xt+1)− f(x̂t+1)] ≤ E[⟨∇f(x̂t+1),xt+1 − x̂t+1⟩] +
L

2
E[∥xt+1 − x̂t+1∥2]

= E[⟨∇f(x̂t+1), ηd∆̂t⟩]︸ ︷︷ ︸
I1

+
L

2
E[∥∆̂t∥2]︸ ︷︷ ︸

I2

, (15)

and

E[f(x̂t+1)− f(xt)] ≤ E[⟨∇f(xt), x̂t+1 − xt⟩] +
L

2
E[∥x̂t+1 − xt∥2]

= E[⟨∇f(xt), η∆t⟩]︸ ︷︷ ︸
I3

+
η2L

2
E[∥∆t∥2]︸ ︷︷ ︸
I4

. (16)

Bounding I1 For I1, there is

I1 = ηdE[⟨∇f(x̂t+1), ∆̂t⟩]

= ηdE[⟨∇f(x̂t+1), ∆̂t +Q∇f(x̂t+1)−Q∇f(x̂t+1)⟩]

= −ηdQE[∥∇f(x̂t+1)∥2] + ηdE[⟨∇f(x̂t+1), ∆̂t +Q∇f(x̂t+1)⟩]

= −ηdQE[∥∇f(x̂t+1)∥2] + ηdE[⟨∇f(x̂t+1),−
Q∑
q=1

∇fd(x̂t+1,q; ξ) +Q∇f(x̂t+1)⟩], (17)

by the fact of ⟨a, b⟩ = 1
2 [∥a∥

2 + ∥b∥2 − ∥a− b∥2], for second term in (24), we have

ηdE[⟨∇f(x̂t+1),−
Q∑
q=1

∇fd(x̂t+1,q; ξ) +Q∇f(x̂t+1)⟩]

= ηdE[⟨
√
Q∇f(x̂t+1),−

√
Q

Q

Q∑
q=1

[∇fd(x̂t+1,q)−∇f(x̂t+1)]⟩]

=
ηdQ

2
E[∥∇f(x̂t+1)∥2] +

ηd
2Q

E[∥
Q∑
q=1

[∇fd(x̂t+1,q)−∇f(x̂t+1)]∥2]

− ηd
2Q

E[∥
Q∑
q=1

∇fd(x̂t+1,q)∥2], (18)
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then for the second term, we have

ηd
2Q

E[∥
Q∑
q=1

[∇fd(x̂t+1,q)−∇f(x̂t+1)]∥2]

≤ ηd
2

Q∑
q=1

E[∥∇fd(x̂t+1,q)−∇f(x̂t+1)∥2]

≤ ηd
Q∑
q=1

E[∥∇fd(x̂t+1,q)∥2] + ηd

Q∑
q=1

E[∥∇f(x̂t+1)∥2]

≤ ηdQν2 + ηdQE[∥∇f(x̂t+1)∥2]. (19)

Thus we have

I1 ≤ −
ηdQ

2
E[∥∇f(x̂t+1)∥2] + ηdQν

2 + ηdQE[∥∇f(x̂t+1)∥2]

≤ ηdQ

2
E[∥∇f(x̂t+1)∥2] + ηdQν

2. (20)

For the first term in the previous inequality, there is

E[∥∇f(x̂t+1)∥2] = E[∥∇f(x̂t+1)−∇f(xt) +∇f(xt)∥2]
≤ 2L2E[∥x̂t+1 − xt∥2] + 2E[∥∇f(xt)∥2]
= 2η2L2E[∥∆t∥2] + 2E[∥∇f(xt)∥2]. (21)

By Lemma D.2, there is

1

N

N∑
i=1

E[∥xt−ρit,K − xt−ρit∥
2] ≤ 5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l
1

N

N∑
i=1

E[∥∇f(xt−ρit)∥
2]. (22)

thus

I1 + I2 ≤ η2ηdQL2E[∥∆t∥2 + ηdQE[∥∇f(xt)∥2] + ηdQν
2 +

L

2
E[∥∆̂t∥2]. (23)

Bounding I3 Denote a sequence ∆̄t = −ηlN
∑
i∈[N ]

∑K−1
k=0 gi

t−τ i
t ,k

=

−ηlN
∑
i∈[N ]

∑K−1
k=0 ∇Fi(xit−τ i

t ,k
; ξ), where ξ ∼ Di. For I3, there is

I3 = ηE[⟨∇f(xt),∆t⟩]
= ηE[⟨∇f(xt), ∆̄t⟩]
= ηE[⟨∇f(xt), ∆̄t + ηlK∇f(xt)− ηlK∇f(xt)⟩]
= −ηηlKE[∥∇f(xt)∥2] + ηE[⟨∇f(xt), ∆̄t + ηlK∇f(xt)⟩]

= −ηηlKE[∥∇f(xt)∥2] + ηE[⟨∇f(xt),−
ηl
N

∑
i∈[N ]

K−1∑
k=0

∇Fi(xit−τ i
t ,k

; ξi) +
ηlK

N

∑
i∈[N ]

∇Fi(xt)⟩],

(24)

where the second equality holds due to the characteristic of uniform arrivals (see Assumption 4.3),
thus E(∆t) = ∆̄t. The last inequality holds by the definition of ∆̄t and the fact of the objective
function f(x) = 1

N

∑N
i=1 Fi(x). By the fact of ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a − b∥2], for second
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term in (24), we have

ηE[⟨∇f(xt),−
ηl
N

∑
i∈[N ]

K−1∑
k=0

git−τ i
t ,k

+
ηlK

N

∑
i∈[N ]

∇Fi(xt)⟩]

= ηE[⟨
√
ηlK∇f(xt),−

√
ηlK

1

NK

∑
i∈[N ]

K−1∑
k=0

(git−τ i
t ,k
−∇Fi(xt))⟩]

= ηE[⟨
√
ηlK∇f(xt),−

√
ηlK

1

NK

∑
i∈[N ]

K−1∑
k=0

(∇Fi(xit−τ i
t ,k

)−∇Fi(xt))⟩]

=
ηηlK

2
E[∥∇f(xt)∥2] +

ηηl
2N2K

E[∥
∑
i∈[N ]

K−1∑
k=0

(∇Fi(xit−τ i
t ,k

)−∇Fi(xt))∥2]

− ηηl
2N2K

E[
∑
i∈[N ]

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2], (25)

where the second equality holds by E[gi
t−τ i

t ,k
] = E[∇Fi(xit−τ i

t ,k
)]. Then for the second term in Eq.

(25) , we have

ηηl
2N2K

E[∥
∑
i∈[N ]

K−1∑
k=0

(∇Fi(xit−τ i
t ,k

)−∇Fi(xt))∥2]

≤ ηηl
2N2K

E[∥
∑
i∈[N ]

K−1∑
k=0

(∇Fi(xit−τ i
t ,k

)−∇Fi(xt))∥2]

≤ ηηl
2N

∑
i∈[N ]

K−1∑
k=0

E[∥∇Fi(xt)−∇Fi(xit−τ i
t ,k

)∥2]

≤ ηηl
N

∑
i∈[N ]

K−1∑
k=0

[E[∥∇Fi(xt)−∇Fi(xt−τ i
t
)∥2] + E[∥∇Fi(xt−τ i

t
)−∇Fi(xit−τ i

t ,k
)∥2]]

≤ ηηl
N

∑
i∈[N ]

K−1∑
k=0

[L2E[∥xt − xt−τ i
t
∥2] + L2E[∥xt−τ i

t
− xit−τ i

t ,k
∥2]], (26)

where the second inequality holds by ∀ai, ∥
∑n
i=1 ai∥2 ≤ n

∑n
i=1 ∥ai∥2, and the last inequality

holds by Assumption 4.1. For the second term in Eq. (26), following by Lemma D.2, there is

E[∥xt−τ i
t
− xit−τ i

t ,k
∥2] = E[∥

k−1∑
m=0

ηlg
i
t−τ i

t ,m
∥2]

≤ 5Kη2l (σ
2
l + 6Kσ2

g) + 30K2η2l E[∥∇f(xt−τ i
t
)∥2]. (27)

For the first term in Eq. (26), since by ∀ai, ∥
∑n
i=1 ai∥2 ≤ n

∑n
i=1 ∥ai∥2, there is

E[∥xt − xt−τ i
t
∥2] = E[∥

t−1∑
s=t−τ i

t

(xs+1 − x̂s+1 + x̂s+1 − xs)∥2]

≤ 2τ it

t−1∑
s=t−τ i

t

E[∥xs+1 − x̂s+1∥2] + 2τ it

t−1∑
s=t−τ i

t

E[∥x̂s+1 − xs∥2]

≤ 2τ it

t−1∑
s=t−τ i

t

E[∥η∆s∥2] + 2τ it

t−1∑
s=t−τ i

t

E[∥∆̂s∥2], (28)
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Plugging Eq. (25), Eq. (26) and Eq. (27) to (24), we have

E[I3] ≤−
ηηlK

2
E[∥∇f(xt)∥2]−

ηηl
2K

E[∥ 1
N

N∑
i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2]

+ ηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l
1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2]]

+
2ηηl
N

∑
i∈[N ]

K−1∑
k=0

L2τ it [E[∥∆̂s∥2] + E[∥η∆s∥2]]. (29)

Merging pieces. Therefore, by merging pieces together, we have

E[f(xt+1)− f(xt)] = E[I1 + I2 + I3 + I4]

≤− ηηlK

2
E[∥∇f(xt)∥2]−

ηηl
2K

E[∥ 1
N

N∑
i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2]

+ ηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l
1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2]]

+
2ηηl
N

∑
i∈[N ]

K−1∑
k=0

L2τ it

t−1∑
s=t−τ i

t

[E[∥η∆s∥2] + E[∥∆̂s∥2]] +
η2L

2
E[∥∆t∥2]

+ η2ηdQL
2E[∥∆t∥2] + ηdQE[∥∇f(xt)∥2] + ηdQν

2 +
η2dL

2
E[∥∆̂t∥2]

≤− ηηlK

2
E[∥∇f(xt)∥2]−

ηηl
2K

E[∥ 1
N

N∑
i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2]

+ ηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l
1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2]]

+ 2ηηlKL
2τ it

t−1∑
s=t−τ i

t

[E[∥η∆s∥2] + E[∥∆̂s∥2]] +
η2L

2
E[∥∆t∥2]

+ η2ηdQL
2E[∥∆t∥2] + ηdQE[∥∇f(xt)∥2] + ηdQν

2 +
η2dL

2
E[∥∆̂t∥2]. (30)
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Thus, summing up, we have

T∑
t=1

E[f(xt+1)− f(xt)]

≤− ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2]−
ηηl
2K

T∑
t=1

E[∥ 1
N

N∑
i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2]

+ TηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l
1

N

N∑
i=1

T∑
t=1

E[∥∇f(xt−τ i
t
)∥2]]

+ 2ηηlKL
2 1

N

N∑
i=1

T∑
t=1

τ it

t−1∑
s=t−τ i

t

[E[η∆s∥2] + E[ηd∆̂s∥2]] +
η2L

2

T∑
t=1

E[∥∆t∥2]

+ η2ηdQL
2
T∑
t=1

E[∥∆t∥2] + ηdQ

T∑
t=1

E[∥∇f(xt)∥2] + ηdTQν
2 +

η2dL

2

T∑
t=1

E[∥∆̂t∥2]

≤− ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2]−
ηηl
2K

T∑
t=1

E[∥ 1
N

N∑
i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)∥2]

+ TηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l τmax
1

N

N∑
i=1

T∑
t=1

E[∥∇f(xt)∥2]]

+ 2ηηlKL
2τmaxτavg

T∑
t=1

[E[∥η∆t∥2] + E[∥ηd∆̂t∥2]] +
η2L

2

T∑
t=1

E[∥∆t∥2]

+ η2ηdQL
2
T∑
t=1

E[∥∆t∥2] + ηdQ

T∑
t=1

E[∥∇f(xt)∥2] + ηdTQν
2 +

η2dL

2

T∑
t=1

E[∥∆̂t∥2], (31)

By applying Lemma D.1 to the E[|∆t|2] term and Lemma D.3 to the E[|∆̂t|2] term, and under
appropriate conditions on the learning rate, we obtain

T∑
t=1

E[f(xt+1)− f(xt)] ≤−
ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2]

+ TηηlKL
2[5Kη2l (σ

2
l + 6Kσ2

g)]

+

(
2ηηlKL

2τmaxτavg +
η2L

2
+ η2ηdQL

2

)
T

(
η2lK

M
σ2
l +

η2lK
2

M
σ2
g

)
+ TηdQν

2 +

(
η2dL

2
+ 2ηηlη

2
dKL

2τmaxτavg

)
T (5Q(σ2

d + 2Qν2))

⇒

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
2

TηηlK
[f1 − f∗] + 2L2[5Kη2l (σ

2
l + 6Kσ2

g)]

+

(
4ηlKL

2τmaxτavg + ηL+ 2η2ηdQL
2

)(
ηlK

M
σ2
l +

ηlK

M
σ2
g

)
+

2ηdQν
2

ηηlK
+

(
η2dL

ηηlK
+ 4η2dL

2τmaxτavg

)
(5Q(σ2

d + 2Qν2)), (32)

If the global learning rate satisfies η = Θ(
√
M), the local learning rate satis-

fies ηl = Θ(
√
F/

√
TK(σ2

l +Kσ2
g)) and and distillation learning rate satisfies ηd =

Θ(F/
√
T 3(σ2

l +Kσ2
g)Q), where F = f1 − f∗ and f∗ = argminx f(x), then the global rounds of
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Algorithm 1 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
( √

Fσ√
TKM

+

√
Fσg√
TM

+
Fτmaxτavg

T
+

√
Fν2

T

)
. (33)

D SUPPORTING LEMMAS

Lemma D.1. Recall the sequence ∆t = 1
M

∑
i∈Mt

∆i
t−τ i

t
= − ηl

M

∑
i∈Mt

∑K−1
k=0 gi

t−τ i
t ,k

=

− ηl
M

∑
i∈Mt

∑K−1
k=0 ∇Fi(xit−τ i

t ,k
; ξ) andMt be the set that include client send the local updates

to the server at global round t. The global model difference ∆t satisfies

E[∥∆t∥2] = E
[∥∥∥∥ 1

M

∑
i∈Mt

∆i
t−τ i

t

∥∥∥∥2]

≤ 2Kη2l
M

σ2
l +

2η2l (N −M)

NM(N − 1)

[
15NK3L2η2l (σ

2
l + 6Kσ2

g) + (90NK4L2η2l + 3K2)

·
N∑
i=1

E[∥∇f(xt−τ i
t
)∥2] + 3NK2σ2

g

]
+

2η2l (M − 1)

NM(N − 1)
E
[∥∥∥∥ N∑

i=1

K−1∑
k=0

∇Fi(xit−τ i
t ,k

)

∥∥∥∥2].
Proof. The proof of Lemma D.1 is similar to the proof of Lemma C.6 in (Wang et al., 2022).

Lemma D.2. (This lemma follows from Lemma 3 in FedAdam (Reddi et al., 2021). For local learn-
ing rate which satisfying ηl ≤ 1

8KL , the local model difference after k (∀k ∈ {0, 1, ...,K−1}) steps
local updates satisfies

1

N

N∑
i=1

E[∥xit,k − xt∥2] ≤ 5Kη2l (σ
2
l + 6Kσ2

g) + 30K2η2l E[∥∇f(xt)∥2]. (34)

Proof. The proof of Lemma D.2 is similar to the proof of Lemma 3 in Reddi et al. (2021).

Lemma D.3. For the intermediate update for distillation, we have

E[∥x̂t+1,q − x̂t+1∥2] ≤ 5η2dQ(σ2
d + 2Qν2). (35)

Proof.

E[∥x̂t+1,q − x̂t+1∥2]
= E[∥x̂t+1,q−1 − x̂t+1 − ηd∇fd(x̂t+1,q−1; ξ)∥2]
= E[∥x̂t+1,q−1 − x̂t+1 − ηd∇fd(x̂t+1,q−1; ξ) + ηd∇fd(x̂t+1,q−1)− ηd∇fd(x̂t+1,q−1)∥2]

= (1 +
1

2Q− 1
)E[∥x̂t+1,q−1 − x̂t+1∥2] + η2dσ

2
d + 2η2dQE[∥∇fd(x̂t+1,q−1)∥2]

≤ (1 +
1

2Q− 1
)E[∥x̂t+1,q−1 − x̂t+1∥2] + η2dσ

2
d + 2η2dQν

2, (36)

given the fact that (1 + 1
2Q−1 )

Q ≤ 5 for Q > 1, there is

E[∥x̂t+1,q − x̂t+1∥2] ≤ 5η2dQ(σ2
d + 2Qν2). (37)
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