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ABSTRACT

Transformer-based Large Language Models (LLMs) have demonstrated remarkable capa-
bilities, yet their autoregressive nature forces sequential token-by-token decoding, leading
to inefficiencies during inference. Furthermore, autoregressive language models lack in-
herent self-correction abilities, which hinders their capacity to refine and improve gener-
ated content without relying on external prompting or retraining techniques. In contrast,
diffusion-based models offer the advantage of fast parallel generation through iterative
refinement, while leveraging bi-directional attention to utilize full context at once. How-
ever, diffusion models are unable to match their autoregressive counterparts. This moti-
vates us to explore the possibility of distilling a pre-trained autoregressive (AR) language
model (teacher) into a non-autoregressive diffusion (non-AR) language model (student),
combining the best of both worlds. In this work, we present Target Concrete Score (TCS)
distillation, a theoretically grounded framework that bridges autoregressive and diffusion
paradigms. TCS distillation is broadly applicable to both discrete and continuous diffu-
sion models, with any pre-trained autoregressive teacher model. We propose techniques
to make TCS distillation scalable and efficient for transformer-based models, and show
how it can both improve pre-trained diffusion language models and also train new mod-
els from scratch. Through comprehensive experiments on language modeling tasks, we
demonstrate the effectiveness of our proposed methods.

1 INTRODUCTION

Autoregressive (AR) architectures are the bread and butter for the modern revolution in Large Language
Models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Shoeybi et al., 2019). These models have shown
amazing capabilities on a large variety of NLP tasks, but they still suffer from inefficient inference, hal-
lucinations (Ji et al., 2023a; Zhang et al., 2023), overconfidence (Xiong et al., 2023), and “reversal curse”
(Berglund et al.). These problems probably arise from their causal nature as they are learned in a left-to-right
manner. First, the causal nature of AR models prevents them from generating tokens in parallel, unless spe-
cific multi-token-prediction training strategies has been applied (Gloeckle et al., 2024; Cai et al.). Second,
they are unable to undo actions made earlier in generation easily. In some tasks, the ability to refine their
generations, for example, through self-reflection (Ji et al., 2023b), or chain of thought (Wei et al., 2022)
type approaches, can enhance the performance of autoregressive LLMs. However, this iterative inference
process can be time consuming, because iterative improvement is performed by extending the autoregressive
generation process, to mimic the “error-correction” training of these models.

Motivated by these limitations, the research community has attempted to use diffusion modeling techniques
for language modeling. Diffusion models have been very successful in image generation (Ho et al., 2020;
2022; Rombach et al., 2021; Gu et al., 2023) using an implicit progressive denoising technique that is akin to
self-refinement. The image generation models, which work in continuous spaces, start from Gaussian noise
and progressively turn them into images, by iteratively cleaning up intermediate images that they generate.
A large body of works has been developed which extend diffusion models to discrete space to match the
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target domain of language (Lou et al., 2024; Campbell et al., 2022; Austin et al., 2021; Dieleman et al.,
2022). These models generate text by starting with a categorical distribution that is easy to sample from and
progressively turn them into sensible language; since these discrete diffusion models enable tokens to be
generated in parallel, it leads to faster inference speed (higher bandwidth of generated tokens), especially
for longer generations. Unfortunately, discrete diffusion models have been challenging to train and do
not always achieve optimal fluency and performance. Research, such as the SEDD (Lou et al., 2024) and
Plaid (Gulrajani & Hashimoto, 2023), suggests that they are approximately at the level of GPT-2, still lagging
behind state-of-the-art AR LLMs.

Distillation has long been used to transfer knowledge from stronger models to weaker models (Hinton et al.,
2015) because learning from a teacher can be more effective than learning from data distribution because the
teacher can provide distributional supervision over the whole space, not just the observed data. In this paper
we aim to distill a strong AR teacher into a diffusion language model1. Since the diffusion model student
is a parallel generation model, while the teacher is an AR model, off the shelf distillation techniques do not
apply. To address this gap, we made the following contributions in this work:

• We propose a target concrete score (TCS) distillation objective to bridge the gap between autore-
gressive teacher and non-autoregressive student, to combine the benefits of both worlds. We show
the connection of gradient-informed estimation to the target score matching in continuous diffusion.

• We introduce methods to apply TCS to transformer-based language models, by proposed methods
for efficient estimation of the target concrete score from AR teacher model. resulting a family of
distillation methods called Distilled Diffusion Language Models (DDLM). To optimize the compute,
we propose top-K and gradient-informed estimation techniques.

• Our proposed methods work for diffusion models that operate in discrete space (e.g. Lou et al.
(2023)), and for those that map discrete tokens to continuous spaces and learn the model in contin-
uous space (e.g. Gulrajani & Hashimoto (2023))

• We demonstrate through extensive experiments that the proposed methods achieve faster conver-
gence, efficient parallel generation and lower perplexity and superior downstream reasoning and
controlled generation task performance DDLM inherits the strengths of autoregressive models while
bringing novel benefits such as iterative refinement during generation, which shines particularly in
complex tasks like in-filling, arithmetic and arbitrary prompting.

2 PRELIMINARIES

Notation Let X = {1, . . . , V } be the discrete data space, where V = |X | denotes the cardinality of
X , or the vocabulary size in language modeling. We use x ∈ X to denote a single discrete token, and
x ≜

[
x1, . . . , xL

]
∈ XL to denote a finite sequence of discrete tokens, where L is the sequence length.

We use xi ≜ xi ∈ X to denote the i-th token in the sequence. For any data token x ∈ X , denote ex as
the corresponding one-hot vector. For a sequence of tokens x, we use ex ∈ RV×L to denote its one-hot
representation ex ≜ [ex1 , . . . , exL ] ∈ RV×L. Given a matrix M, we use Mij to denote the element at the
i-th row and j-th column, and use Mi,: and M:,j to represent the i-th row and j-th column, respectively.
The identity matrix is denoted by I. Throughout this paper, q(·) represents the distributions in forward
process (adding noise), while p(·) denotes the distributions in reverse process (denoising). The base noise
distribution is denoted as pT (x). We use [M] ∈ X to denote the absorbing state in discrete diffusion model.
We include a notation table for the distributions used in this paper in Table 2.

1Note that our method can actually use non-AR teachers as well, but not the focus in this paper.
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Discrete diffusion models: All you need is a good concrete score estimation
[
qt(x̂t)
qt(xt)

]
← sθ(xt, t)

FORWARD PROCESS The forward process of a discrete diffusion model can be formulated as a continuous-
time Markov chain (Campbell et al., 2022) (CTMC) {Xt}t∈[0,T ], characterized by a rate matrix Rt ∈
RV×V , which satisfies Rt(b, b) = −

∑V
a ̸=b Rt(b, a), and Rt(a, b) ≥ 0 if a ̸= b. In particular, the transition

probability of the CTMC is qt|0(xt = b|x0 = a) =
(
exp

(∫ t

0
Rsds

))
ab

, a, b ∈ X . For a small ∆t→ 0, it

can be approximated using the Euler discretization qt+∆t(xt+∆t = b|xt = a) ≈ δ(b, a) +∆tRt(b, a), with
δ(b, a) = 1 when b = a and zero otherwise. By designing an appropriate rate matrix, one can transform a
data distribution into a target distribution that is more accessible. For example, (Austin et al., 2021; Campbell
et al., 2022; Sun et al., 2023) describe a diffusion with a uniform target and (Lou et al., 2024; Shi et al., 2024)
model the rate matrix associated to an absorbing (masking) state

Runif
t = 11T − V I, Rmask

t (b, a) = δ([M], a)− Iba, (1)

REVERSE PROCESS Similar to continuous diffusion, discrete diffusion defined above has a time reversal
governed by the reverse transition rate matrix

Rt(xt, x̂t) =
qt(x̂t)

qt(xt)
Rt(x̂t), x̂t ̸= xt (2)

where qt is the marginal distribution of xt of the forward process. The intractable ratio qt(x̂t)
qt(xt)

acts as
an analog to the score function ∇xt

log qt(xt) in continuous diffusion as shown above. To estimate the
intractable ratio, existing approaches resort estimating this density ratio with a neural network. Examples
of such approaches include concrete score matching (Meng et al., 2022), categorical ratio matching (Sun
et al., 2023), and denoising score entropy estimation (Lou et al., 2024). While these methods have achieved
success in various applications, diffusion models are generally considered less effective than autoregressive
models for language modeling.

3 TARGET CONCRETE SCORE DISTILLATION

In this work we focus on the problem of learning a diffusion model pθ(x0) from a known distribution
q0(x0). We depart from the standard diffusion setting whereby pθ is trained with access to only samples
from unknown data distribution pdata. In our setting we explore the advantages of additionally having
access to the true data distribution density q0, as well its score∇x0

log q0(x0), as in Bortoli et al. (2024).

We introduce Target Concrete Score (TCS) distillation as a general framework to make this possible. We first
present the method in the context of discrete diffusion models, and then discuss its extension and connections
to continuous diffusion models.

We assume access to a given pretrained autoregressive model qAR(x) =
∏L

l=1 qAR(x
l|x<l), for x ∈ X , xl ∈

V as our target distribution. x<l represents a vector containing the variables from x1 up to and including
xl−1, while x>l is similarly defined for variables with index greater than l. Note that the proposed TCS
distillation is applicable to any known distribution q0, but we limit our scope to an autoregressive density
estimator given the potential benefits of parallel sampling, as discussed in Section 1.

Given q0(x0) ≜ qAR(x0), we construct a probability path with the marginal distribution qt(xt) =∑
x0

qt|0(xt|x0)q0(x0). As introduced in Section 2, the reverse process can be described by the backward
rate matrix Rt(x, x̂) (Campbell et al., 2022, Prop. 1), which has the following form :

Rt(x, x̂) = Rt(x̂,x)
∑

x0

qt|0(x̂|x0)

qt|0(x|x0)
q0|t(x0|x). (3)
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Notice that the forward process conditional qt|0 is known and tractable, while the time-reversal conditional
q0|t is unknown and intractable. Thus, to recover the exact time-reversal of the defined forward process
induced by qAR and qt|0, we use a parametric denoising model p0|t(x0|xt; θ) ≜ pθ(x0|xt) to approximate
the time-reversal conditional q0|t(x0|xt). This can be achieved by minimizing the following objective:

J (θ;w(·),D (· ∥ ·)) :=
∫ T

0

w(t)Eq(xt)D
(
q0|t(x0|xt) ∥ pθ(x0|xt)

)
dt, (4)

where w : [0, T ] → R>0 is a positive weighting function and D(·||·) is a discrepancy measure between
two distributions. Note that this objective resembles the score matching objective (Song et al., 2021) in
continuous diffusion models, which shares essentially the same goal of matching the score of the forward
marginal distribution qt(xt).

After training θ∗ = argminθ J (θ), the backward rate matrix R̄ can be computed by replacing q0|t ≈
pθ∗(x0|xt) in Equation (2). Samples can then be drawn by simulating the backward CTMC using Euler
discretization as described in Section 2. To optimize the objective in Equation (4), we should specify the
discrepancy measure D.
Remark 1. One option is the Kullback-Leibler (KL) divergence, which gives us the objective resemble
the maximum likelihood LKL(θ) = −Et∼U(0,1)EqAR(x0)qt|0(xt|x0)[log pθ(x0|xt)] + C where C denotes a
constant independent of θ.

We propose Target Concrete Score (TCS) distillation, an effective approach to train a diffusion model pθ(x0)
by distilling a pretrained autoregressive language model qAR(x0). We resort to matching the concrete score
(Meng et al., 2022) in Equation (4). To be precise, given a distribution p(x), we define the log-density ratio
vector of a token at the l-th position to be rp(x)(x

l) ∈ RV×1 with rp(x)(x
l) =

[
log p(x<l,x′,x>l)

p(x<l,xl,x>l)

]
x′∈V

.

Similarly, we define the log-density ratio matrix rp(x)(x) ∈ RV×L for distribution p(x) evaluated at x =[
x1, . . . , xL

]
as follows:

rp(x)(x) ≜
[
rp(x)(x

1) · · · rp(x)(x
l) · · · rp(x)(x

L)
]
∈ RV×L. (5)

We can relate the defined log-density ratio matrix rp(x)(x) to the concrete score2 cp(x)(x) for distribution
p(x) evaluated at x by

cp(x)(x;N ) ≜ exp
[
rp(x)(x

1), . . . , rp(x)(x
l), . . . , rp(x)(x

L)
]
. (6)

where we define the neighbors set N (x) ≜ {y | y ∈ XL,Hamming distance(x,y) = 1} and the exp
function is applied element-wise to the matrix. Analogous to score matching in continuous domains, we
can utilize such concrete score-based discrepancy measure to quantify the difference between two discrete
probability distributions. This concept is formally stated in the following proposition:
Proposition 1. (Meng et al., 2022) Let p(x) and q(x) be two distributions over the discrete support XL,
cp(x)(x;N ) = cq(x)(x;N ), or equivalently rp(x)(x) = rq(x)(x), implies that p(x) = q(x),∀x ∈ XL.

Therefore, we can align the concrete scores of the student and teacher models to minimize the objective in
Equation (4), leading to the target concrete score distillation objective

J (θ;w(·)) :=
∫ T

0

w(t)Eq(x0,xt)D(rq0|t(x0|xt)(x0), rpθ(x0|xt)(x0))dt. (7)

2Note that the concrete score defined in this paper differs from that in Meng et al. (2022), though they are equivalent
up to a constant. Specifically, the relationship is given by cMeng(x) = cOurs(x)− 1.

4
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where D : RV×L × RV×L → R represents a general loss function that measures the discrepancy between
two matrices. This can include various forms such as distance metrics or divergence measures.

To minimize the objective, it requires an estimation of the log-density ratio of q0|t, which is

log
q0|t(x̂0|xt)

q0|t(x0|xt)
= log

qAR(x̂0)

qAR(x0)
+ log

qt|0(xt|x̂0)

qt|0(xt|x0)
. (8)

Thanks to the tractability of qAR, both terms log qAR(x0) =
∑L

l=1 log qAR(x
l
0|x<l) and log qt|0(xt|x0) are

known and tractable. This gives us a tractable form of the target concrete score distillation objective:

Target Concrete Score (TCS) Distillation Objective

JTCS(θ;w(·)) :=
∫ T

0

w(t)Eq(x0,xt)D(rqAR(x0)(x0)︸ ︷︷ ︸
Teacher

+rqt|0(xt|x0)(x0), rpθ(x0|xt)(x0)︸ ︷︷ ︸
Student

)dt. (9)

Remark 2. When the forward process is associated with the masking rate matrix Rmask
t , we have

qt|0(xt|x0) = qt|0(xt|x̂0) (Shi et al., 2024; Sahoo et al., 2024), which implies rq0|t(x0|xt)(x0) =

rqAR(x0)(x0). Consequently, the TCS distillation objective can be further simplified as

Jmask
TCS (θ;w(·)) :=

∫ T

0

w(t)Eq(x0,xt)D(rqAR(x0)(x0), rpθ(x0|xt)(x0))dt. (10)

3.1 MODEL PARAMETERIZATION

We have previously introduced the TCS distillation objective in Equation (9) for the general discrete diffusion
case. However, we have not yet discussed how to parameterize the concrete score of the denoising model
distribution rpθ(x0|xt)(x0) in detail, which will be addressed in this section.

Concrete Score Parameterization rpθ(x0|xt)(x0) ≜ sθ(xt, t) ∈ RV×L Similar to Lou et al. (2024),
we can use a neural network sθ(xt, t) to approximate the target concrete score cq0|t(x0|xt)(x0) ≜

exp
[
rqAR(x0)(x0)

]
. Particularly, we can use the score entropy loss function used by Lou et al. (2024)

as the discrepancy measure D(·, ·) in Equation (9), where D = DF

(
sθ(xt, t), exp

[
rqAR(x0)(x0)

])
is the

Bregman divergence DF (p, q) = F (p) − F (q) − ⟨∇F (q), p − q⟩. with convex function F = − log. This
gives us the following TCS objective with score parameterization:

JTCS(θ;w(·)) :=
∫ T

0

w(t)Eq(x0,xt)DF (exp
[
rqAR(x0)(x0)

]
, sθ(xt, t))dt. (11)

Denoising Mean Parameterization pθ(x0|xt) =
∏L

l=1 Cat(x
l
0; softmax [µθ(xt, t)]:,l) Similar to Camp-

bell et al. (2022); Shi et al. (2024), we can directly parameterize the denoising distribution pθ(x0|xt) by a
neural network µθ(xt, t) ∈ RV×L which outputs the logits of the categorical distribution at each position.

With this factorized parameterization, matching the concrete score between q0|t(x0|xt) and pθ(x0|xt) is
equivalent to matching the concrete score at each position, which leads us to the following objective based
on cross-entropy minimization

JTCS(θ;w(·)) :=
∫ T

0

w(t)Eq(x0,xt)

L∑
l=1

H
(
Cat
(
xl
0; softmax

[
rq0|t(x

l
0|xt)

])
, pθ(x

l
0|xt)

)
dt. (12)

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

4 DISTILLED DIFFUSION LANGUAGE MODELS

In this section, we demonstrate how to apply the TCS objective to a specific setup of interest: distilling a pre-
trained transformer-based autoregressive language model qAR to a denoising diffusion language model pθ.
We present a set of techniques to facilitate the efficient computation of the target concrete score rqAR

(x0) in
practice for transformer-based language models. We refer to the family of models resulting from this process
as Distilled Diffusion Language Models, or DDLM.

4.1 EFFICIENT ESTIMATION OF TARGET CONCRETE SCORE

To optimize the TCS distillation objective, we need to compute the target concrete score rqAR(x0)(x0).
Naively, this requires (V − 1)× L+ 1 log-density evaluations of the teacher autoregressive model for each
sequence x, where for each position 1 ≤ l ≤ L, the l-th token is replaced with all other V − 1 tokens,
and the log probability of each altered sequence is explicitly computed by the teacher model to obtain the
log-density ratio, ultimately resulting in the target concrete score rqAR

(x0). However, this procedure is
computationally prohibitive. To address this challenge, we propose two practical estimation approaches.
For example, GPT-2 (Radford et al., 2019) has 50257 vocabulary size and Llama3 (Dubey et al., 2024)
model has 128_000 vocabulary size. We introduce two approaches to efficiently estimate the target concrete
score, top-K estimation and gradient-informed estimation.

Top-K Estimation. Empirically, the concrete score is highly sparse. As illustrated in Figure 2, tokens
with high density ratios closely resemble the one-hot encoding of original tokens in the simplex space, but
enriched with distributional information. This observation motivates approximating the score vector with
only the top-K items, treating the rest as zero, for efficient computation. In particular, we approximate
the computation of rqAR(x0)(x0) by replacing the l-th token only with the top-K most probable tokens,
determined by the logits output of teacher model based on the preceding l−1 tokens, estimated by the teacher
model itself qAR(x

l|x<l). This approach reduces the total number of sequence log-probability evaluations
from (V − 1)×L to K ×L+1, thus eliminating the dependency on vocabulary size. Note that we can read
out qAR(x

l|x<l) from the teacher model’s logits output at each position l, which can be done in one batched
forward pass with causal attention. Additionally, we employ KV-caching during the teacher model’s forward
pass to further reduce computational overhead. The details of the top-K estimation algorithm is described
in Algorithm 2. We found this approach to be effective in practice with a relatively small K ≤ 128.

Gradient-informed Estimation. We now present another method to estimate the target concrete score
rqAR(x0)(x0). The key insight is that while autoregressive language models operate over discrete state
spaces, they are, in fact, continuous and differentiable functions that accept real-valued one-hot encoded
input tokens, though they are typically evaluated on a discrete subset of their domain. This observation has
been employed in previous work to accelerate the convergence rate of Gibbs sampling in discrete energy-
based models (Grathwohl et al., 2021).

To compute the log-density ratio log qAR(x̂0)
qAR(x0)

, we can use the first-order Taylor approximation to estimate

it log q0(x̂0)
q0(x0)

= ∇x0
log q0(x0)

⊤(x̂0 − x0) + o(∥x̂0 − x0∥) ≈ ∇x0
log q0(x0)

⊤(x̂0 − x0) Note that
by the definition x̂0 and x0 only differ in one position, we can estimate the concrete score efficiently
r̂qAR(x0)(x0)ij = ∇x0

log q0(x0;ϕ)ij − exj
0

⊤∇x0
log q0(x0):,j , where r̂qAR(x0)(x0)ij approximates log-

probability ratio at replacing the j-th token of sentence x0 with the i-th token in the vocabulary V . Compared
to the exact computation, such gradient-based estimation r̂ involves just one forward and backward pass to
evaluate the log-probability of the teacher model and one backward pass to obtain its gradient, significantly
reducing the computational cost. For further details, see the pseudo-code in Listing 1.

6
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Algorithm 1 Baseline Diffusion LM Training (Left) & DDLM Training (Right)
1: procedure LM-BATCH(x0,model, optim)
2: x0 ← one_hot(x)
3: targets← one_hot(x)
4: xt ∼ qt|0(xt|x0)
5: logits← model(xt)
6: loss← CE(logits, targets)
7: loss.backward(); optim.step()
8: end procedure

1: procedure DDLM-BATCH(x0,model, teacher, optim, L, V,K)
2: x0 ← one_hot(x)
3: targets← one_hot(x)
4: tcs← tcs_estimate(x0, teacher, L, V,K)
5: tcs_targets← softmax(tcs), dim=−1)
6: xt ∼ qt|0(xt|x0)
7: logits← model(xt)
8: loss← λCE(logits, targets) + CE(logits, tcs_targets)
9: loss.backward(); optim.step()

10: end procedure

4.2 TCS DISTILLATION FOR CONTINUOUS DIFFUSION LANGUAGE MODELS

Our DDLM is a versatile distillation framework that can be easily extended to not only discrete target distri-
butions but also continuous ones. To see this, we define the forward process of continuous diffusion models
as qt|0(zt|x0) =

∏L
l=1 qt|0(z

l
t|xl

0) and qt|0(zt|x0) = N (zt;αtE
⊤ex0

, σ2
t I),

3 where E ∈ RV×d denotes the
word embedding matrix, ex0

is the one-hot representation of the token x0 ∈ V . The diffusion model can be
parametrize as a denoising prediction pθ(x0|zt). To learn the student pθ through distillation from the teacher
qAR, we can apply the objective in Remark 1, which straightforwardly extends to continuous scenarios as
the same objective applies. Similarly, the TCS objective in Equation (9) remains valid since the posterior
q0|t(x0|zt) is discrete, and Proposition 1 still holds. To estimate the concrete score, we can employ both
top-K and gradient-based estimation. Moreover, we can establish the connection between our TCS objec-
tive Equation (9) and target score matching (Bortoli et al., 2024) (TSM) is proposed for continuous diffusion
models, as introduced below and detailed in Appendix A.

Proposition 2. Target score matching objective above is equivalent to a first-order Taylor approximation of
our TCS objective.

4.3 DDLM TRAINING ALGORITHM

Building on the TCS objective introduced in Equation (9) and the two practical estimation methods discussed
earlier, we present the full training procedure for DDLM, as illustrated in Algorithm 1. In TCS distillation,
data examples must be sampled from the target teacher distribution. However, relying exclusively on teacher-
policy data for distillation may not yield optimal results. When autoregressive LLMs are trained using the
teacher-forcing objective, their learned distributions can become biased and skewed, potentially resulting
in less diverse and artificially generated data samples. Alternatively, when real data is available, it can
be sampled and evaluated by the teacher model to compute the target concrete score. Indeed, the TCS
distillation objective is also effective for any x0 ∼ q0(x0) with full support overXL, enabling off-policy data
learning. In practice, to balance data efficiency with sample quality, we sample from a mixture of teacher-
generated data and real data: x0 ∼ ωqAR(x0)+(1−ω)qdata(x0), with the default value of ω = 0.5. Similar
to the classical knowledge distillation (Hinton et al., 2015), we combine the TCS distillation loss with the
denoising score matching loss of the baseline student model as a weighted sum controlled by λ as shown in
Algorithm 1.

3Rather than using xt, here we denote the latent variable of diffusion models as zt = [z1t , . . . , z
L
t ], z

l ∈ Rd, to
emphasize that it lies in a continuous space.
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Figure 1: Progression of validation negative log-likelihood
(NLL) loss on the OPENWEBTEXT dataset during training.
The inset magnifies the first 50,000 steps for clarity.

Autoregressive
Transformer-XL 23.5

Discrete Diffusion - Uniform
SEDD Uniform ≤ 40.25
DDLM Student SEDD Uniform

Discrete Diffusion - Absorb
SEDD Absorb (33B tokens) ≤ 32.79
DDLM Student SEDD Absorb

Autoregressive (Retrained)
Transformer (33B tokens) 22.32
MDLM (33B tokens) ≤ 27.04
MDLM (327B tokens) ≤ 23.00
Discrete Diffusion
DDLM AR Teacher(327B) 20.86
DDLM Student MDLM (33B tokens) ≤ 24.2
DDLM Student MDLM (327B tokens) ≤ 22.1

Table 1: Test perplexities (PPL ↓) on LM1B
dataset.

5 EXPERIMENTS

In this section, we empirically assess the performance of DDLM with TCS distillation across various language
modeling and reasoning tasks to investigate the following research questions: RQ1: Is TCS distillation an
effective training objective for distilling a pre-trained autoregressive (AR) language model into a diffusion
language model? RQ2: Does such distillation offer novel benefits for AR language modeling? RQ3: What
are the limitations of the proposed TCS distillation? Under what conditions does TCS distillation perform
best, and when does it fall short? We present a summary of our findings in this section. Detailed descriptions
of the datasets and model configurations can be found in the appendix due to space constraints.

Baselines We use state-of-the-art diffusion language models in both discrete and continuous settings as the
baseline models, including SEDD (Shi et al., 2024), MD4 (Shi et al., 2024), MDLM (Sahoo et al., 2024) in
discte space and Plaid (Gulrajani & Hashimoto, 2023) in continuous space.

DDLM Models In our experiments, we consider the following DDLM models: DDLM-Full refers to the
model that uses the exact TCS estimation computed by replacing each token with all other tokens in the
vocabulary. This is possible when the vocabulary size V is small such as character-level language modeling
tasks. DDLM-TopK refers to the model that uses the top-K approximation of the TCS estimation. DDLM-∇
refers to the model that uses the gradient-based estimation of the TCS. We include the name of the base
student model in the name of the DDLM model for clarity, e.g., DDLM-Student-SEDD meaning that we use
SEDD as the diffusion language model formulation to distill the teacher AR model. We use DDLM-from-
scratch to refer to the model that is trained from scratch, and DDLM-fine-tune to refer to the model that the
student model is first pre-trained by regular denoising score matching objective and then fine-tuned by our
TCS distillation.

Summary of Findings I

TCS distillation in DDLM significantly and consistently enhances the learning efficiency of student
diffusion language models.

LANGUAGE MODELING We conducted experiments in language modeling using the OPENWEBTEXT dataset.
Initially, we pre-trained a transformer-based autoregressive model with the same configurations as in (Sahoo
et al., 2024). We employed the absorbing discrete diffusion model (Sahoo et al., 2024; Shi et al., 2024) as
our base student model. Utilizing DDLM with Top-K estimation where K = 128, we trained the model from
scratch. We experimented with various weighting schemes for the TCS objective, ranging from 0.01 to 1.0,

8
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and compared the results with a baseline model that did not use TCS distillation. We plot the validation
negative log-likelihood (NLL) loss on the OPENWEBTEXT dataset in Figure 1. The results indicate that TCS
distillation indeed accelerates the learning process of the student model. Additionally, we observed that the
distillation loss consistently resulted in lower perplexity compared to the baseline throughout the training.

We also present perplexity results on the LM1B dataset in Table 1. For this, we pre-trained an AR teacher
model from (Sahoo et al., 2024) and applied DDLM-TopK with K = 128. We experimented with different
backbone models for the student model, including SEDD and MDLM. Our findings show that, with the same
number of training tokens, the distilled student model outperforms the baseline SEDD and MDLM models.

REASONING We also test the reasoning ability of the distilled student model following the setting in (Deng
et al., 2023; Ye et al., 2024). We follow the same training recipe in (Ye et al., 2024) to fine-tune the AR
model the augmented GSM8K dataset, as well as training the diffusion language model for the task. Figure 3
illustrates the validation accuracy on the GSM8K-Aug dataset during training, comparing an autoregressive
(AR) fine-tuned model and DDLM against a teacher model benchmark. The DDLM demonstrates superior
performance, achieving faster initial learning and higher overall accuracy compared to the fine-tuned AR
model. This performance difference highlights the DDLM’s efficiency in convergence and generalization,
making it a preferable choice for tasks that require rapid and effective learning.

Summary of Findings II

DDLM can unlock new capabilities for teacher model into distilled student model.

DDLM enables faster parallel generation DISCRETE DIFFUSION We employed GPT2-Medium as our
teacher model and used DDLM-Top-K for distillation. For the student model, we utilized GPT2-Small with
an absorbing discrete diffusion model. Unlike previous language modeling experiments, we solely used the
data generated by the teacher model to distill the student model. We conducted experiments with both DDLM-
from-scratch and DDLM-fine-tune approaches. Our findings indicate that we can retain approximately 3% of
the original performance in terms of generative perplexity, as evaluated by GPT2-Large, while achieving at
least a 3x speedup in generation.

CONTINUOUS DIFFUSION Parallel generation can be pushed even further by using continuous Gaussian
diffusion models, where advanced samplers (Lu et al., 2022) and ODE solvers (Karras et al., 2022) can
be readily applied in straight-forward manner. To test the limit of this approach, we re-train the Plaid
model (Gulrajani & Hashimoto, 2023) using the GPT2 tokenizer, and apply DDLM-TopK to distill from the
AR teacher model, which is GPT2-Medium. We show the results in Figure 5, where

In-filling, Arbitrary Prompting, and Controlled Generation As shown in SEDD paper (Lou et al., 2024),
the concrete score formulation of discrete diffusion model naturally extends to in-filling, arbitrary prompting,
and controlled generation tasks. Based on the established framework, we further combine it with DDLM fine-
tuning to enable controlled generation via external constraints. Here we consider a toy task following the
work (Hu et al., 2023). The task is to prompt the language model to generate random numbers from a
given distribution, different from the work (Hu et al., 2023) which uses autoregressive style left to right
prompt: “The following is a random single-digit integer drawn uniformly between 0 and 9:”. Here our
diffusion language model student allows us to prompt the model in arbitrary order. We format the prompt
as: "The single-digit integer [M] is uniformly drawn between 0 and 9.". In this controlled generation task,
the constraint can be formulated as pconstraint(x) ∝ δ(x ∈ {0, . . . , 9}). We can either apply the constraint
during the sampling process in a training-free manner, or via DDLM-fine-tuning, where the previous one
is garantted to work. The DDLM-fine-tuning results are presented in Figure 4, along with the results from
the AR teacher model. It’s evident that for both causal left-to-right prediction and the estimated target
concrete score, the autoregressive (AR) teacher model displays a highly biased and skewed distribution. By
employing DDLM to distill this into a diffusion model, we can achieve controlled generation in a much more
straightforward manner.
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Summary of Findings III

DDLM-fine-tuning with TCS distillation can transfer the reasoning ability of the teacher model to the
student model. The distilled student model can maintain the teacher model’s reasoning capability
without requiring additional intermediate reasoning tokens. Thanks to the parallel sampling process,
the distilled student model can reason more efficiently.

Following the methodology outlined by (Ye et al., 2024), we evaluated the reasoning capability of the dis-
tilled student model on the multi-digit multiplication task from the BIG-bench benchmark (Srivastava et al.,
2022), which is considered the most challenging among arithmetic tasks. Specifically, we focused on four-
digit (4 x 4) and five-digit (5 x 5) multiplication problems, as these tasks are particularly difficult to solve
without using Chain of Thought (CoT) reasoning. We employed a fine-tuned AR model as the teacher model
and tested the distilled student model on these tasks. The results are presented in Table 3. Our findings in-
dicate that the DDLM-fine-tune approach can achieve comparable or even better results than the baseline,
relying solely on the supervision provided by the teacher model.

Summary of Findings IV

While DDLM-from-scratch and DDLM-fine-tune can improve the sample efficiency of the student
model, they do not always improve the final task performance, particularly with the presence of
extensive data augmentation and amount of data.

We observe that the benefits of DDLM-fine-tune are task-dependent. Specifically, DDLM-fine-tune does not
consistently enhance the student model’s performance in terms of perplexity for language modeling tasks. It
is crucial to use ground-truth data during fine-tuning to maintain the teacher model’s perplexity. However,
DDLM-fine-tune can yield better results in terms of generative perplexity. Additionally, we note that when
the dataset is large and data augmentation is extensive, as in the case of GSM8K-Aug, the distillation benefits
may plateau.

6 CONCLUSION

In this work, we propose a novel framework for distilling pre-trained autoregressive models into denoising
diffusion language models. We proposed a novel target concrete score (TCS) distillation objective, along
with DDLM models for transformer-based language models. Extensive experiments on language modeling
tasks demonstrate the effectiveness of the proposed framework.
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Notation Description
q0(x0) Teacher model distribution
qt|0(xt|x0) Forward process (adding noise)
q0,t(x0,xt) = qt|0(xt|x0)q0(x0) Joint distribution at time t
qt(xt) =

∑
x0

qt|0(xt|x0)q0(x0) Marginal distribution at time t

q0|t(x0|xt) =
qt|0(xt|x0)q0(x0)

qt(xt)
Time-reversal conditional distribution at time t

Table 2: Notations and their descriptions

A CONNECTION TO TARGET SCORE MATCHING

In this section, we establish the connection between the proposed target concrete score distillation objective
and the original target score matching objective (Bortoli et al., 2024). We begin by introducing target score
matching, which serves as an objective for training a distilled diffusion model. We then demonstrate its
equivalence to our target concrete score distillation objective under specific assumptions.

Recall that in continuous diffusion language models, the forward process is defined as qt|0(zt|x0) =∏L
l=1 qt|0(z

l
t|exl

0
) =

∏L
l=1N (zlt;αtE

⊤exl
0
, σ2

t I). To learn a diffusion model through knowledge distil-
lation, we can parameterize its score function using a neural network sθ(zt, t), which is trained to approxi-
mate the true score ∇zt

log qt(zt). To achieve this, we employ target score matching (Bortoli et al., 2024).
Specifically, we present the following Lemma.
Lemma 1 (Target Score Matching Identity). Let p(zt|x0) = N (zt;αtx0, σ

2
t I) and p(x0) be any differen-

tiable distribution. We have the identity

∇zt
log p(zt) =

1

αt
Ep(x0|zt) [∇x0

log p(x0)] . (13)

Proof. The proof follows that in Bortoli et al. (2024) with the generalization to the scaled Gaussian
convolutions. Specifically, using the translation-invariant property of Gaussian distribution, we obtain
∇x0

log p(zt|x0) = −αt∇zt
log p(zt|x0). Applying Bayes’ rule, we then have:

∇zt log p(zt|x0) = −
1

αt
∇x0 log p(zt|x0)

= − 1

αt
∇x0

log p(x0|zt) +
1

αt
∇x0

log p(x0).

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

Together with the denoising score identity, we have

∇zt
log p(zt) =

∫
p(x0|zt)∇zt

log p(zt|x0)dx0

=
1

αt

∫
p(x0|zt)

(
−∇x0

log p(x0|zt) +∇x0
log p(x0)

)
dx0

=
1

αt

∫
∇x0

p(x0|zt) log p(x0)dx0,

where the last equality holds since Ep(x0|zt)∇x0
log p(x0|zt) = 0.

Using Lemma 1, the score neural network can be learned by minimizing the target score matching loss

LTSM(θ) = Et∼U(0,1)Eq0(x0)qt|0(zt|x0)

∥∥∥∥sθ(zt, t)− 1

αt
∇x0

log p(x0)

∥∥∥∥2
2

. (14)

To draw a connection to the proposed TCS objective, we utilize the mean prediction parametrization
µθ(zt, t) ≈ Eq0|t(x0|zt)[x0] instead. Using Tweedie’s formula Eq0|t(x0|zt)[x0] =

1
α (σ

2
t∇zt

log qt(zt) + zt)

and rescaling it by the signal-noise ratio λt ≜
α2

t

σ2
t

, we can reparametrize LTSM as

argmin
θ
LTSM(θ)⇔ argmin

θ
Et∼U(0,1)Eq0(x0)qt|0(zt|x0)

∥∥∥∥µθ(zt, t)−
(
∇x0

log p0(x0)+
αt

σ2
t

zt

)∥∥∥∥2
2

. (15)

In optimal training, we have µθ∗(zt, t) =
1
λt
Eq0|t(x0|zt)[x0]. Then, we are ready to prove Proposition 2.

Proposition 2. Target score matching objective above is equivalent to a first-order Taylor approximation of
our TCS objective.

Proof. Consider the log-probability ratio log
q0|t(x̂0|zt)

q0|t(x0|zt)
, in which x̂0 only differs x0 in the i-th position with

x̂i
0 ̸= xi

0. By applying the Bayes’ rule, we have

log
q0|t(x̂0|zt)
q0|t(x0|zt)

= log
q0(x̂0)

q0(x0)
+ log

q0|t(zt|x̂0)

q0|t(zt|x0)
.

The second term in RHS can be further simplified as

log
q0|t(zt|x̂0)

q0|t(zt|x0)
=

L∑
l=1

log
qt|0(z

l
t|ex̂l

0
)

qt|0(z
l
t|exl

0
)
= log

qt|0(z
i
t|ex̂i

0
)

qt|0(z
i
t|exi

0
)

because x̂0 and x0 only differ at the i-th position. Assume the word embedding matrix E used in the forward
process is the identity matrix, then

log qt|0(z
i
t|exi

0
) ∝ −

∥zit − αtexi
0
∥2

2σ2
t

= − 1

2σ2
t

[
∥zit∥2 − 2αt⟨zit, exi

0
⟩+ α2

t ∥exi
0
∥2
]

log
qt|0(z

i
t|ex̂i

0
)

qt|0(z
i
t|exi

0
)
=

αt

σ2
t

⟨zit, ex̂i
0
− exi

0
⟩ − α2

t

2σ2
t

(∥ex̂i
0
∥2 − ∥exi

0
∥2)

Since both ex̂i
0

and exi
0

are one-hot encoding, we can simplify the above term as

log
qt|0(z

i
t|ex̂i

0
)

qt|0(z
i
t|exi

0
)
=

αt

σ2
t

⟨zit, ex̂i
0
− exi

0
⟩
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For the marginal log-density ratio at t = 0, we estimate it using Taylor approximation, which gives

log
q0(x̂0)

q0(x0)
≈ ⟨∇x0

log q0(x0), ex̂0
− ex0⟩.

Combine above two results, we get

log
q0|t(x̂0|zt)
q0|t(x0|zt)

≈ ⟨∇x0 log q0(x0), ex̂0
− ex0⟩+

αt

σ2
t

⟨zit, ex̂i
0
− exi

0
⟩

Thus, the TCS target is

rq0|t(x0|zt)i,j = log
q0|t(x̂0|zt)
q0|t(x0|zt)

≈ ⟨∇x0
log q0(x0), ex̂0

− ex0
⟩+ αt

σ2
t

⟨zit, ex̂i
0
− exi

0
⟩

Written in column vector form, this yields:

rq0|t(x0|zt):,i =
[
⟨∇x0

log q0(x0), ex0|xi
0←j − ex0

⟩+ αt

σ2
t

⟨zit, ej − exi
0
⟩
]V
j=1

where x0|xi
0 ← j ≜ [x1

0, . . . , x
i
0 = j, . . . , xL

0 ]. By taking softmax operator on both sides, we have

softmax(rq0|t(x0|zt):,i) = softmax

([
⟨(∇x0

log q0(x0)):,i, ej⟩+
αt

σ2
t

⟨zit, ej⟩
]V
j=1

)
Written this in the matrix form, it yields:

softmax(rq0|t(x0|zt)) = softmax

(
∇x0 log p0(x0) +

αt

σ2
t

zt

)
.

Using the denoising mean parametrization pθ(x0|zt) =
∏L

l=1 Cat(x
l
0; softmax [µθ(zt, t)]:,l) as mentioned

in Section 3.1, we can learn the neural network µθ(xt, t) by minimizing the loss

L(θ) = Et∼U(0,1)Eq0(x0)qt|0(zt|x0)

∥∥∥∥µθ(zt, t)−
(
∇x0

log p0(x0)+
αt

σ2
t

zt

)∥∥∥∥2
2

, (16)

which is identical to the original TSM loss defined in Equation (15).

B ALGORITM AND PSEUDO CODE

In this section, we present the pseudo-code for the proposed estimation methods of the target concrete score.

Algorithm 2 demonstrate the proposed Top-K estimation. First, we compute the teacher model’s logit
output based on the preceding tokens. This can be achieved in a single forward pass using causal attention
calculated in parallel. Next, the top-K tokens at each position are selected to compute the log-density ratio,
ultimately leading to the estimated concrete score.

We also introduce a variant called Top-K with N -Gram estimation. In Algorithm 3, we highlight the differ-
ences in blue. This variant employs a distinct procedure for selecting the top tokens. At the l-th position, we
use an N-Gram language model to compute n-gram scores and select additional top-K tokens based on these
scores, combining them with the original top-K tokens selected from the teacher’s logit. This results in a
total of 2K tokens. Specifically, the n-gram score at position l is computed as [p(xl+1, . . . , xl+N−1|x)]x∈V
with p(xl+1, . . . , xl+N−1|x) ∝ p(x)p(x, xl+1, . . . , xl+N−1), where p(x) and p(x, xl+1, . . . , xl+N−1) can
be estimated using the empirical distribution. Empirically, we observe that this approach performs similarly
to that in Algorithm 2.

We also provide the pseudo-code in Listing 1 for gradient-informed estimation. In this method, we use a
first-order Taylor approximation to estimate the concrete score, significantly reducing computational costs.
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Algorithm 2 DDLM Top-K Estimation

1: procedure tcs_estimate(x0, teacher_model, L, V,K, tcs)
2: ▷ x0: Input tokens; L: Sequence length; V : Vocabulary size; K: Top-K tokens to select; tcs: list
3: logits← teacher_model(x0) ∈ RV×L; original_log_prob← teacher_model_log_prob(x0)
4: for l = 1 to L do
5: Get top-K tokens: top_tokens← TopK(logits[:, l],K)
6: If x0[l] /∈ top_tokens, add it to top_tokens
7: Construct a batch of new sequences x̂0 ← [x<l

0 , top_tokens,x>l
0 ]

8: Compute log probability of sequences log_prob from new_logits← teacher_model(x̂0)
9: Compute log-density ratio: log_density_ratio← log_prob− orig_log_prob

10: Append log-density ratio to list: tcs← tcs+ log_density_ratio
11: end for
12: return tcs
13: end procedure

Algorithm 3 DDLM Top-K with N-Gram Estimation

1: procedure tcs_estimate(x0, teacher_model, ngram_model, L, V,K, tcs)
2: ▷ x0: Input tokens; L: Sequence length; V : Vocabulary size; K: Top-K tokens to select; tcs: list
3: logits← teacher_model(x0) ∈ RV×L; original_log_prob← teacher_model_log_prob(x0)
4: for l = 1 to L do
5: Get top-K tokens: top_tokens← TopK(logits[:, l],K)

6: Get N-Gram score for all tokens: n-gram_scores← ngram_model([xl+1
0 , . . . ,xl+N−1

0 ])
7: Add another top-K tokens: top_tokens← top_tokens+ TopK(n-gram_scores,K)
8: If x0[l] /∈ top_tokens, add it to top_tokens
9: Construct a batch of new sequences x̂0 ← [x<l

0 , top_tokens,x>l
0 ]

10: Compute log probability of sequences log_prob from new_logits← teacher_model(x̂0)
11: Compute log-density ratio: log_density_ratio← log_prob− orig_log_prob
12: Append log-density ratio to list: tcs← tcs+ log_density_ratio
13: end for
14: return tcs
15: end procedure

Listing 1: Concrete Score Estimation with first-order Taylor approximation
1 import torch
2 import torch.nn.functional as F
3

4 def ddlm_target_score_distillation(teacher_model, tokens, vocab_size,
temperature=1.0):

5 B, L = tokens.shape
6 x_0 = F.one_hot(tokens.long(), num_classes=vocab_size).to(torch.float)
7 with torch.enable_grad():
8 x_0.requires_grad_(True)
9 logits = teacher_model(x_0)

10 log_prob = F.log_softmax(logits, dim=-1)
11 log_prob = (x_0[:, 1:, :] * log_prob[:, :-1, :]).sum()
12 log_prob.backward()
13 grad_log_prob = x_0.grad
14 # Compute log-density ratios
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15 log_prob_ratio = grad_log_prob - (x_0 * grad_log_prob).sum(dim=-1,
keepdim=True)

16

17 # Temperature adjustment
18 log_prob_ratio /= temperature
19

20 prob_ratio = torch.exp(log_prob_ratio)
21 return prob_ratio

C DETAILS OF EXPERIMENT
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Figure 4: Distribution comparison when
prompted with generating a random single-digit
number between 0 and 0.
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Figure 5: Parallel generation capabilities of
DDLM

We first present experimental results of datasets: TEXT8 and LM1B, OPENWEBTEXT, and include a detailed
analysis and summarization of our finding at the end of this ection.

We use the following datasets in our experiments. We use the same model configuration, training setup, and
optimization hyperparameters as the corresponding baseline student models.

TEXT8 TEXT8 is a character-level text dataset consisting of a small vocabulary of 27 tokens: the letters
a-z and the _ whitespace token. We follow the convention of training and evaluating text8 in chunks of
length 256 without any preprocessing(Hoogeboom et al., 2021). We used the standard bits-per-character
metric (BPC) for this dataset. Due to small vocabulary size 27, we can use DDLM-Full which uses teacher
AR model to compute the exact target concrete score by replacing each token with all other tokens in the
vocabulary.

LM1B We also evaluate DDLM on the One Billion Words dataset, which is of medium size and represents
real-world data. We adhere to the tokenization, training, and model size configurations outlined in (He
et al., 2023). Specifically, our baseline models are approximately the size of GPT-2 small. Consistent
with (He et al., 2023), we primarily compare against other language diffusion models, although we also train
a standard autoregressive transformer for benchmarking purposes.
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OPENWEBTEXT We follow (Lou et al., 2024) to test the language modeling capabilities of our model.
We use the same training, validation, and test splits as in (Lou et al., 2024). We use batch size of 512 and
sequence length of 1024 for training. We keep our evaluation setup the same as (Lou et al., 2024).

Model 4× 4 5× 5 GSM8K-Aug

No CoT
GPT-2 S 0.29 0.01 0.13
GPT-2 M 0.76 0.02 0.17
GPT-2 L 0.34 0.01 0.13

Implicit CoT
GPT-2 S 0.97 0.10 0.20
GPT-2 M 0.96 0.96 0.22

Explicit CoT
GPT-2 S 1.00 1.00 0.41
GPT-2 M 1.00 1.00 0.44
GPT-2 L 1.00 0.99 0.45

DoT Plaid 1.00 1.00 0.33
DDLM Plaid 1.00 1.00 0.34

Table 3: Main results. Accuracy for multiplication tasks and GSM8K-Aug.

D RELATED WORKS

Diffusion models (Austin et al., 2021; Campbell et al., 2022; Sahoo et al., 2024; Lou et al., 2024; Campbell
et al., 2024; Gat et al., 2024; Sun et al., 2023; Shi et al., 2024; He et al., 2023; Ye et al., 2023), grounded
in discrete-time Markov chains within continuous state spaces and employing Gaussian transitions (Sohl-
Dickstein et al., 2015; Ho et al., 2020), have been extended to continuous-time formulations through the
application of stochastic processes and score matching (Song et al., 2021). A parallel research direction ex-
plores discrete diffusion models operating on discrete data spaces, similarly based on Markov chains (Sohl-
Dickstein et al., 2015; Hoogeboom et al., 2021). D3PM (Austin et al., 2021) investigated discrete-time
Markov chains utilizing various transition matrices (uniform, absorbing, discretized Gaussian), deriving a
discrete-time variational lower bound (ELBO) that was subsequently generalized to continuous-time Markov
chains (CTMCs) (Campbell et al., 2022). This approach leverages mean-parameterization to learn the re-
verse transition probability.

An alternative perspective posits that D3PM implicitly learns the ratio of marginal distributions, termed the
"concrete score"—a discrete analogue of the continuous score function (Meng et al., 2022; Lou et al., 2024).
This ratio can be directly learned via concrete score matching, mirroring the continuous score matching
approach (Meng et al., 2022). However, practical implementation faces challenges due to the incompatibility
of the L2 loss with the inherent positivity constraint of this ratio. SEDD (Lou et al., 2024) addresses this
challenge by introducing a score entropy objective, providing a theoretically more robust surrogate and
establishing a connection between the concrete score and the continuous-time ELBO.

Although SEDD considers both uniform and absorbing transitions, masked diffusion (the absorbing case)
exhibits significantly improved empirical performance. This approach introduces a [MASK] token repre-
senting an absorbing state and models the transitions between masked and unmasked states, analogous to
the mechanism employed in masked language models. Recent work (Shi et al., 2024; Sahoo et al., 2024)
further unifies the masked diffusion framework with continuous diffusion principles, resulting in simplified
and theoretically grounded training and sampling procedures. This unification not only offers a more co-
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herent understanding of masked diffusion models but also facilitates both theoretical and empirical progress
through enhanced parameterization and engineering strategies. The present work primarily adopts this uni-
fied framework.

LLM distillation Recent research on LLM distillation (Xu et al., 2024) focus on enhancing the efficiency
and performance of smaller models while leveraging the strengths of larger ones. One of the main challenge
lies in addressing the discrepancy betweeen training and inference. MiniLLM (Gu et al., 2024) proposes
mixing teacher and student distributions to address training-inference mismatches, improving output qual-
ity and consistency. DistiLLM (Ko et al., 2024) builds on this by introducing a skew Kullback-Leibler
divergence (KLD) loss to stabilize optimization and an adaptive off-policy strategy to enhance training ef-
ficiency, significantly reducing the computational burden associated with generating self-generated outputs.
Hsieh et al. (2023) uses rationales generated by LLMs to train smaller, task-specific models effectively. This
method highlights the importance of reasoning in distillation, allowing smaller models to achieve competi-
tive performance even with limited data. Liu et al. (2024) explores a dynamic approach to distillation that
integrates active learning techniques by iteratively selecting the most informative examples, thereby improv-
ing the efficiency and effectiveness of knowledge transfer from larger to smaller models. Fundamentally
different from them, our distillation from the LLM to the diffusion model involves transferring knowledge
from a unidirectional model to a bidirectional model. Nevertheless, we have discovered that certain tech-
niques, like mitigating the distribution discrepancy between training and inference is helpful.
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