

000 001 CHARTNEXUS: EVALUATING MULTI-CHART REA- 002 SONING CAPABILITIES OF MULTIMODAL LARGE 003 LANGUAGE MODELS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 While Multimodal Large Language Models (MLLMs) have achieved re-
014 markable success on single-chart question-answering tasks, reaching over
015 90% accuracy on benchmarks such as PlotQA, this apparent success masks
016 a critical limitation. Current models struggle to perform well on com-
017 plex, multi-chart reasoning tasks that closely mirror real-world analytical
018 scenarios. In professional document analysis, users typically integrate in-
019 formation across multiple visualizations within rich contextual frameworks,
020 rather than examining isolated charts, a capability that remains largely un-
021 explored in existing evaluations. To bridge this gap, we introduce Chart-
022 Nexus, a novel and challenging benchmark specifically designed to assess
023 multi-chart reasoning capabilities of MLLMs in authentic document con-
024 texts. ChartNexus comprises 1,370 carefully curated question-answering
025 pairs derived from 6,793 real-world charts spanning 18 domains, including
026 scientific papers, government reports, and industry analyses. Each question
027 demands complex reasoning skills, such as comparative analysis, sequential
028 information integration, and cross-modal synthesis between visual and tex-
029 tual elements. We design a comprehensive taxonomy featuring 4 high-level
030 difficulty categories and 11 fine-grained sub-categories to systematically
031 evaluate these capabilities. Our comprehensive evaluation of 23 state-of-
032 the-art MLLMs reveals significant performance degradation compared to
033 single-chart benchmarks. While the best commercial model achieves over
034 90% accuracy on simpler tasks, its performance drops by more than half
035 on ChartNexus. Through systematic failure analysis, we identify critical
036 weaknesses in current models' ability to maintain working memory across
037 multiple charts, perform cross-modal reasoning, and integrate contextual
038 information effectively. ChartNexus establishes a new frontier for eval-
039 uating complex chart understanding capabilities, demonstrating that robust
040 multi-chart reasoning remains an open challenge. Our benchmark and com-
041 prehensive analysis provide the research community with essential diagno-
042 stic tools to advance the development of more capable and practically useful
043 MLLMs for real-world document analysis scenarios.

044 1 INTRODUCTION

045 Data visualization, especially charts, serves as a fundamental medium for conveying com-
046 plex information across scientific research, financial reporting, and journalism (Huang et al.,
047 2025). The rapid development of MLLMs has brought unprecedented opportunities for au-
048 tomating the understanding of these visual representations. Chart Question-Answering
049 (ChartQA) has emerged as a critical benchmark task that evaluates how well these models
050 can integrate visual perception with cognitive reasoning. The field has witnessed a re-
051 markable paradigm shift from specialized domain-specific models (Methani et al., 2020) to
052 large-scale foundation models like GPT-4o, has driven significant progress in ChartQA.

053 However, this apparent success masks significant limitations in current MLLM capabilities.
Leading MLLMs are approaching or surpassing human-level performance on established

Table 1: Comparison with other benchmarks

Dataset	Real-World Charts	Human Annotated	Multi Charts	Chart Types	Task Types	Unanswerable Question	Fine-Grained Difficulty	Multilingual	Document Context
PlotQA (Methani et al., 2020)	✓	✗	✗	3	3	✗	✗	✗	✗
ChartQA (Masry et al., 2022)	✓	✓	✗	3	4	✗	✗	✗	✗
RealCQA (Ahmed et al., 2023)	✓	✗	✗	5	4	✗	✗	✗	✗
ChartLlama (Han et al., 2023)	✗	✗	✗	10	7	✗	✗	✗	✗
UniChart (Masry et al., 2023)	✓	✗	✗	3	4	✗	✗	✗	✗
ChartBench (Xu et al., 2023)	✗	✗	✗	9	5	✗	✗	✗	✗
ChartSFT (Meng et al., 2024)	✓	✗	✗	4	5	✗	✗	✗	✗
SBS_figures (Shinoda et al., 2024)	✗	✗	✗	10	11	✗	✗	✗	✗
Deqa (Wu et al., 2023)	✓	✓	✗	6	2	✗	✓	✗	✗
Chart-llm (Ko et al., 2024)	✓	✗	✗	10	4	✗	✓	✗	✓
MultiChartQA (Zhu et al., 2025c)	✓	✓	✓	-	4	✗	✗	✗	✗
ReachQA (He et al., 2024b)	✗	✗	✗	10	2	✗	✗	✗	✗
ChartInsights (Wu et al., 2024)	✓	✗	✗	7	10	✗	✗	✗	✗
RealCQA-V2 (Ahmed et al., 2024)	✓	✗	✗	5	3	✗	✗	✗	✗
StructChart (Xia et al., 2023)	✗	✗	✗	3	3	✗	✗	✗	✗
CharXiv (Wang et al., 2024b)	✓	✓	✓	15	6	✓	✗	✗	✗
DomainCQA (Zhong et al., 2025)	✓	✗	✓	-	6	✗	✓	✗	✗
ChartQA-MLLM (Zeng et al., 2025)	✗	✓	✗	11	4	✗	✗	✗	✗
SPIQA (Pramanick et al., 2024)	✓	✗	✓	-	3	✗	✗	✗	✓
ChartX (Xia et al., 2024)	✗	✗	✗	18	7	✗	✗	✗	✗
PolyChartQA (Xu et al., 2025a)	✓	✗	✗	16	-	✗	✗	✓	✗
ChartQAPro (Masry et al., 2025a)	✓	✓	✓	9	5	✓	✗	✗	✓
ChartNexus (Ours)	✓	✓	✓	17	6	✓	✓	✓	✓

benchmarks such as FigureQA (Kahou et al., 2017), UniChart (Masry et al., 2023). Yet recent evaluations on more challenging single-chart benchmarks, like ChartQAPro (Masry et al., 2025a), DomainCQA (Zhong et al., 2025), reveal substantial performance drops when models encounter diverse visual elements and complex question types. This performance degradation indicates that existing benchmarks lack sufficient complexity to adequately assess model capabilities in realistic chart understanding scenarios.

More critically, a fundamental dimension of chart understanding remains underexplored: multi-chart reasoning. In real-world analytical workflows, users rarely examine charts in isolation. Instead, they must integrate information across multiple visualizations, often combining insights with the surrounding textual context to form a comprehensive understanding. This process demands cross-modal reasoning and multi-hop inference across diverse information sources. Despite its importance in practical applications, most existing benchmarks are confined to single-chart scenarios. Although MultiChartQA (Zhu et al., 2025c) has begun to address this gap, its coverage of diverse chart domains and the complexity of its reasoning chains remain limited and focused only on charts themselves. The research community urgently requires larger, more complex benchmarks with broader real-world scenarios and more extensive reasoning capabilities.

Moving from single-chart to multi-chart QA constitutes a qualitative leap in computational requirements, representing far more than a simple incremental increase in difficulty. Single-chart tasks assess a model’s ability to parse visual elements within confined contexts, such as identifying peak values in line graphs, extracting specific data points, or performing straightforward calculations. The analytical scope remains strictly bounded within individual images. Multi-chart QA, particularly requiring multi-hop and comparative reasoning, demands fundamentally different model capabilities. Models must retain information extracted from one chart while processing subsequent visualizations, compare attributes across various visual contexts, and track entities as they evolve across multiple representations. This requires models to manage larger information spaces while executing multi-step inferences across interconnected visual elements.

Therefore, we introduce **ChartNexus**, a novel, challenging benchmark designed to assess the multi-chart reasoning capabilities of MLLMs in authentic document contexts. ChartNexus comprises 6,793 carefully selected charts from real-world documents, including scientific papers, government reports, and industry analyses, and features 1,370 high-quality human-annotated QA pairs. Each question demands complex reasoning skills, such as comparative analysis across multiple charts and cross-modal synthesis between visual elements and their surrounding text. We design a comprehensive taxonomy to evaluate these capabilities, featuring 4 high-level difficulty categories and 11 fine-grained subcategories. Our

Figure 1: Overview of data construction. We first collect a diverse range of documents from the internet. Then, employ MLLMs to filter the raw data and generate several candidate question templates. Following this, human annotators select the most suitable template, refine the question, and complete the annotation.

comprehensive evaluation of 23 leading MLLMs reveals significant performance degradation compared to single-chart benchmarks. While the best-performing model achieves over 90% accuracy on simple tasks, its score drops by more than half on ChartNexus. Through systematic failure analysis, we identify critical weaknesses in the current MLLMs’ ability to maintain information across multiple charts, perform cross-modal reasoning, and effectively integrate contextual information. Our main contributions are as follows.

- We introduce the ChartNexus benchmark, a novel and highly challenging multi-chart QA benchmark featuring charts from authentic real-world documents, human-annotated question-answer pairs, and associated descriptive text, designed to rigorously test complex cross-modal synthesis and reasoning abilities.
- We comprehensively evaluate leading closed- and open-source MLLMs, establishing realistic performance that reveals current models’ true capabilities and limitations.
- We provide detailed failure analysis that moves beyond simple accuracy metrics to offer a systematic taxonomy of failure modes, delivering insights into why and how current models struggle with multi-chart reasoning and illuminating directions for future research.

2 RELATED WORKS

Existing Benchmarks. Early studies lay the foundation for the field, but their data relies on synthetic charts, creating a significant gap with the real world. FigureQA provides over a million QA pairs based on synthetic, scientific-style charts (Kahou et al., 2017). It establishes the task paradigm with templated questions (e.g., identifying max/min values), but its synthetic nature lacks the diversity of real data. Although PlotQA uses charts scraped from the web, ensuring authentic chart styles, its QA pairs are similarly constrained by templates (Methani et al., 2020). ChartQA utilizes the T5 model for auxiliary generation, which improves issues such as unnatural text, resulting in the generation of template-based questions (Masry et al., 2022). Recently, PolyChartQA (Xu et al., 2025a) has expanded the field’s horizon by introducing a large-scale multilingual benchmark. However, like its prede-

162
163 Table 2: Chart types in ChartNexus
164

Bar	Line	Pie	Table	Scatter	Tree	Radar	Area	Other	Sunburst	Graph	Boxplot	Sankey	Heatmap	3D	Candlestick	Funnel
2704	1947	330	37	261	243	20	270	774	17	15	51	19	45	36	11	13

165
166 Table 3: Sub-categories of fine-grained difficulties in ChartNexus
167

Numerical		Identification				Comparison			Reasoning		
calculate	element	color	shape	overlap	3d-chart	numerical	trend	a lot of charts	chart context	general knowledge	
415	132	127	145	133	125	63	519	67	516	393	

170 ccessors, it remains constrained to single-chart scenarios and does not address the complexity
 171 of cross-chart information synthesis. These datasets contain vast amounts of data, but the
 172 quality of their QA pairs is limited to templates, simple data retrieval, and fixed-vocabulary
 173 questions. While these QA pairs include out-of-vocabulary words, which are challenging for
 174 models of this era, they are no longer sufficient for evaluating modern MLLMs.

175 **Challenges in Single-Chart Understanding.** Given the limitations of these benchmarks,
 176 recent research has begun to introduce new dimensions of difficulty into single-chart
 177 tasks. ChartLLama uses GPT-4 to construct its tasks. Compelling models to possess
 178 advanced chart understanding and code-based plotting abilities to achieve higher scores
 179 through new tasks like chart reconstruction, generation, and editing (Han et al., 2023).
 180 ChartQAPro aims to address the lack of diversity in ChartQA (Masry et al., 2025a) by in-
 181 troducing more complex visual forms such as info-graphics and dashboards, as well as more
 182 challenging question types such as conversational, hypothetical, and unanswerable ques-
 183 tions. Other benchmarks such as UniChart, MatCha, and ChartAssistant have introduced
 184 open-ended questions like inverse-rendering charts into code or tables to test models’ deeper
 185 understanding of charts (Masry et al., 2023; Liu et al., 2023; Meng et al., 2024).

186 However, these datasets are limited to understanding single charts. Furthermore, many are
 187 annotated using LLMs, making the quality highly dependent on the prompts, creating a
 188 significant gap with the needs of professional researchers in real-world chart analysis.

189 **Multi-Chart QA.** Beyond single charts, multi-chart QA has recently become a new re-
 190 search hotspot. MultiChartQA crawls charts from websites and features manually annotated
 191 questions that test various reasoning abilities of models (Zhu et al., 2025c). SPIQQA focuses
 192 on scientific charts from top-tier computer science conference papers and uses Gemini to
 193 generate candidate questions, which are then refined by humans (Pramanick et al., 2024).

194 These excellent studies have extended chart QA from single- to multi-chart scenarios, sig-
 195 nificantly raising the requirements for models’ visual reasoning capabilities. However, in
 196 real-world scenarios, analysts rarely draw conclusions based on just a few charts alone.
 197 Charts are often used as a visualization method to help personnel understand the content
 198 of the document more quickly. A deep understanding of charts is inseparable from the
 199 specific descriptions provided by their surrounding context. While only simple numerical
 200 values and trend information can be obtained from the chart itself, the deeper causal fac-
 201 tors are hidden in the contextual text associated with that chart. In real-world document
 202 QA scenarios, MLLMs may produce incorrect answers by focusing only on the chart and
 203 overlooking crucial information within the surrounding text. For an illustrative example of
 204 this failure mode, please refer to the error case Figure 35 in Appendix F.

205 Due to the lack of benchmarks for multi-chart reasoning that incorporate contextual in-
 206 formation, we introduce ChartNexus to effectively evaluate the multi-modal reasoning capa-
 207 bilities of existing models. ChartNexus not only incorporates the pursuit of authenticity,
 208 diversity, and complex reasoning from ChartQAPro but also introduces the novel multi-
 209 chart reasoning dimension pioneered by MultiChartQA, along with the innovative inclusion
 210 of cross-modal reasoning with document context. Through these comprehensive features,
 211 ChartNexus establishes a new frontier specifically designed to challenge MLLMs.

212 3 CONSTRUCTION OF CHARTNEXUS

213 ChartNexus is a benchmark designed to reflect real-world document chart comprehen-
 214 sion needs, comprising a total of 6,793 charts and 1,370 question-answering (QA) tasks. All

216 charts are sourced from real-world documents and span various types of documents and
 217 topics. This section details the design principles of the ChartNexus benchmark, its data
 218 construction process, the QA annotation methodology, and data analysis of ChartNexus.
 219 Our data construction pipeline is illustrated in Figure 1.
 220
 221

222 3.1 DATA COLLECTION

224 The primary motivation behind constructing ChartNexus is to establish a benchmark that
 225 genuinely reflects the cognitive processes involved in analyzing multi-chart documents in
 226 real-world scenarios. We collect recent source documents that contain substantive information
 227 from real-world, data-intensive websites. This approach ensures that the charts and
 228 their semantic relationships are authentic and require reasoning, thus simulating a real-
 229 world application while avoiding overlap with the training corpora of existing models as
 230 much as possible. Specifically, we collect data, including charts and their relevant context-
 231 ual information, from 10 distinct data sources.
 232

Scientific Papers from arXiv: Referencing the work of SPIQA (Pramanick et al., 2024), which collects documents from top-tier computer science conference papers and provides all charts along with their descriptions, we select 425 source documents and re-annotate QA pairs to meet our requirements.

In-depth News Reports: We obtain news reports from Statista and the Pew Research Center. While each article from the Pew Research Center contains multiple charts, reports from Statista typically include a single chart. To construct multi-chart reasoning tasks, we search for additional reports on the same topics within Statista and group them to create multi-chart QA entries. Ultimately, we acquire 318 and 334 data entries from Statista and Pew Research Center, respectively.

Government Reports: This category includes reports from the National Bureau of Statistics of China (1,000 entries), the Guizhou Provincial Statistical Bulletin (17 entries), the World Bank (300 entries), and the Organisation for Economic Co-operation and Development (OECD) (282 entries). We download statistical data and research reports, from which we extract charts and their related contexts.

Industry Data: We also collect research reports from specific industries, including the China Internet Network Information Center (CNNIC), Communications World, and the National Consortium for the Study of Terrorism and Responses to Terrorism (START). These reports contain research documents on specialized fields such as the internet, telecommunications, and public safety. We create QA pairs from these sources to investigate the visual-textual understanding capabilities of MLLMs in professional domains.

The data collected from these sources are primarily in PDF or HTML format. For PDF documents, we use MinerU for parsing, converting the text into Markdown, and segmenting charts and tables as images (Wang et al., 2024a; He et al., 2024a). For HTML files, we extract the main body of the text and chart links, saving the content and images locally. While HTML data can be directly converted into a structured document based on its tags, for Markdown data, we parse its syntax, using headings to define the nesting hierarchy, and then convert it to a structured JSON document. It is noteworthy that the initially extracted

Table 4: ChartNexus dataset statistics. Tokens are calculated based on the Qwen3 tokenizer.

Statistics	Value
Charts	
total charts	3198
<i>Sub-Charts</i>	
- max	57
- mean	4.78
<i>Related Charts Per Question</i>	
- max	7
- mean	3.67
Average Tokens	
context	95.71
question	66.64
answer	125.86
Answer Type	
Multi Choice	335
Judge	200
Numerical	276
Open-Ended (vocabulary)	187
Open-Ended (sentence)	263
Unanswerable	109

270 images were not all charts. Therefore, we employ Qwen2.5-VL-7B for a preliminary filter,
 271 retaining only those images identified as charts.
 272

273 **3.2 QUESTION-ANSWER ANNOTATION**
 274

275 A core design principle of ChartNexus is that each question must necessitate multi-hop
 276 reasoning, compelling a model to synthesize information from at least two charts. To ensure
 277 high-quality and complex QA pairs, we employ a human-in-the-loop annotation pipeline
 278 that uses an LLM to assist expert annotators, and iteratively refine the annotation process
 279 and guidelines, as shown in Figure 1. Before beginning the formal annotation, we first
 280 invite graduate students with backgrounds in data analysis and deep learning to conduct
 281 a pilot study. Through this process, we finalize the necessary annotation items for the
 282 benchmark and provide the LLM in our formal pipeline with the few-shot examples needed
 283 to generate candidate questions. Trained annotators then either refine these suggestions
 284 or create entirely new questions to ensure they are logically sound, deeply integrated with
 285 the provided charts, and require non-trivial reasoning. Crucially, annotators also provide
 286 ground-truth answers, with a portion of questions intentionally designed to be unanswerable
 287 from the given context to test model robustness.
 288

289 To validate the quality and consistency of our dataset, we conducted a rigorous verifica-
 290 tion process. A randomly selected 20% subset of the annotations was independently
 291 re-annotated, and we achieved an inter-annotator agreement rate of 93.4%. This high con-
 292 sistency underscores the clarity of our annotation guidelines and the objective nature of the
 293 tasks. A final expert review resolved any discrepancies to establish the definitive ground
 294 truth. More details on the annotation pipeline, including the pilot study, question genera-
 295 tion prompts, and annotator guidelines, are available in the Appendix A.
 296

297 **3.3 DATA ANALYSIS**
 298

299 ChartNexus contains 17 types of charts and tables from 3,198 original real-world documents,
 300 with bar charts accounting for 39.8%, line charts for 28.7%, pie charts for 3.44%, and the
 301 remaining 14 types (such as scatter plots, area charts, etc.) shown in Table 2. Furthermore,
 302 16.69% charts that contain subplots, with an average of 4.78 subplots per chart. This
 303 diversity evaluate models’ capabilities of processing global complex layouts and handling
 304 local information. On average, each context related to the charts contains 95.71 tokens,
 305 which brings the challenge of carrying text and vision together.
 306

307 The distribution of topics about our charts is presented in Figure 2. The charts span 18 dif-
 308 ferent domains, ensuring both breadth and depth. Economics is the most dominant subject.
 309 This is followed by Social and Government, which typically involves the analysis of com-
 310 plex socioeconomic data. Furthermore, ChartNexus also covers a wide array of specialized
 311 fields, including Science, Finance, as well as environment, education, etc. On average, each
 312 task involves 1.65 subject domains. This indicates that many questions require models to
 313 perform comprehensive analysis by integrating background knowledge from different fields,
 314 which aligns with the interdisciplinary nature of real-world problems.
 315

316 Our ChartNexus dataset contains question-answer pairs in both English and Chinese, with
 317 questions averaging 66.64 tokens and answers averaging 125.86 tokens in length. On average,
 318 each question requires information from 3.72 charts to be answered. ChartNexus has 4
 319 types of questions and 6 types of answer formats. The primary formats include Open-
 320 Ended question and Multi-Choice questions. There are 8% questions that are intentionally
 321 designed to be unanswerable. To more precisely evaluate specific model capabilities, we
 322 classify the task difficulties into 11 fine-grained categories (see Table 3).
 323

324 **4 EXPERIMENTS**
 325

326 To comprehensively evaluate the capabilities of MLLMs in ChartNexus, we conduct a series
 327 of experiments. This section details our experimental setup, presents the overall performance
 328

324 Table 5: Performance of MLLMs on ChartNexus. We report the Accuracy (%) and F1 score
 325 calculated from SEAT method (Zhu et al., 2025b). Bold values indicate the best result
 326 within each category.

Model	Question Type						Difficulty			Language		
	Multi Choice	Judge	Approximate Value	Open-Ended (vocabulary)	Open-Ended (sentence)	Unanswerable	Numerical	Identify	Compare	Reason	ZH	EN
Commercial Model												
GPT-4o	58.62	67.56	41.37	44.43	74.13	23.80	65.60	63.63	47.82	66.46	70.58	62.61
GPT-o4-mini	62.06	60.81	38.70	44.45	81.71	16.67	68.13	63.44	43.47	69.34	77.94	63.89
GPT-o3	63.79	59.45	21.87	40.74	83.42	19.04	66.67	61.37	42.23	68.84	80.88	61.84
Claude-Sonnet4	65.71	70.96	32.22	40.05	72.66	18.19	63.60	60.15	45.43	67.87	79.41	61.25
Gemini-2.5-Pro	56.89	60.81	15.62	31.48	80.00	40.47	61.94	64.13	39.13	63.50	72.05	58.76
Gemini-2.5-Flash	55.17	54.05	28.12	35.18	71.26	50.03	56.78	65.97	34.75	57.14	57.35	57.09
Doubaoo-Seed-1.6	46.55	43.24	37.50	23.37	70.85	45.23	53.77	59.31	21.73	56.97	67.64	49.23
Qwen-VL-MAX	62.06	75.67	30.02	50.00	71.42	26.19	65.18	67.58	34.78	67.55	65.70	64.58
HunYuan-Turbos-Vision	59.64	70.27	29.03	29.62	74.85	11.90	63.60	57.63	30.43	67.46	76.11	58.95
HunYuan-Vision	61.14	59.45	19.53	20.37	61.14	16.68	50.15	43.05	26.08	55.05	60.29	48.14
Ernie-4-Turbo-VL	51.72	52.05	31.30	30.18	65.71	45.23	54.25	54.48	26.08	57.14	62.68	51.54
Open-Source Model												
SmolVLM-2.3B	8.62	10.81	6.25	1.88	1.14	26.19	2.83	10.34	4.34	3.86	2.98	4.93
Phi-4-multimodal-Instruct	35.08	55.40	12.5	18.51	31.42	9.52	31.86	33.10	13.04	36.60	20.59	35.80
Bagel	29.31	33.78	15.62	24.07	41.14	38.09	33.64	26.89	17.39	36.49	48.52	30.46
Kimi-VL-A3B-Thinking	53.44	67.54	25.00	29.62	72.83	21.42	58.75	56.25	43.47	64.88	73.13	56.17
Qwen2.5-VL-7B	34.48	31.08	35.02	18.51	46.67	54.76	41.13	23.44	21.73	43.54	42.43	44.92
GLM-4.1V-9B	50.03	49.31	35.61	33.32	50.28	35.71	53.02	39.31	37.73	54.33	63.41	59.23
InternVL3-14B	57.89	48.49	26.25	18.51	72.21	23.80	52.54	50.17	30.43	54.58	65.14	48.79
Qwen2.5-VL-32B	59.65	56.02	32.50	20.75	63.36	38.09	56.06	52.55	38.66	47.84	62.90	55.24
InternVL3-38B	60.34	55.56	31.25	30.18	74.28	28.57	59.62	55.94	39.13	61.72	71.64	56.65
Chart Model												
ChartGemma	6.89	21.62	3.52	11.53	2.87	21.42	6.30	6.94	13.04	5.68	7.35	8.07
ChartInstruct-LLama2	24.13	19.17	6.25	5.56	9.19	33.34	12.65	15.17	8.69	12.50	9.09	13.23
ChartMoe	41.37	20.27	12.52	7.40	24.57	47.61	21.69	23.44	10.27	25.22	30.88	21.23

344 of various models, and provides an in-depth analysis of their strengths and weaknesses across
 345 different tasks, difficulties, and languages.

347 4.1 EXPERIMENTAL SETUP

348 **Model Selection.** We select a series of MLLMs that represent the state-of-the-art per-
 349 formance to ensure a comprehensive and impartial evaluation of the field. Our selection
 350 encompasses the latest commercial models and leading open-source models with varying
 351 parameter scales. For commercial models, we primarily focus on the series from OpenAI,
 352 Anthropic, and Google. For open-source models, our main choices include the Qwen and
 353 InternVL series (Bai et al., 2025; Zhu et al., 2025a), as well as several specialized models
 354 designed for chart-related tasks (Xu et al., 2025b; Masry et al., 2024; 2025b).

355 **Setup.** To ensure the reproducibility of our experiments, we follow the official guidelines to
 356 call the APIs when testing the commercial models. For the open-source models, we adapt
 357 our benchmark with minimal modifications to the example code provided in each model’s
 358 repository and conducted the experiments with NVIDIA RTX 6000 Ada GPUs.

359 **Evaluation Metric.** We employ scoring methods for different types of questions. For
 360 “Multiple-Choice”, “Judgement”, “Open-Ended vocabulary” questions and “Unanswerable”
 361 questions, we report the model’s performance using accuracy. Since many answers con-
 362 tain variations, such as different numerical units, that make traditional character-matching
 363 methods ineffective, we employ a Qwen3-32B model as an automated evaluator to judge
 364 the correctness of the answers. For questions of the “Approximate Value” type (e.g., val-
 365 ues estimated from charts), we consider an answer to be correct if the model’s estimation
 366 fell within a 5% margin of error relative to the ground truth. For “Open-ended sentence”
 367 questions, we utilize the SEAT method (Zhu et al., 2025b) to calculate the F1 score. Speci-
 368 cally, this method involves decomposing the question and ground-truth answer into multiple
 369 sub-questions and corresponding sub-answers. The F1 score is then computed based on the
 370 matching between the model’s generated response and these sub-answers.

372 4.2 RESULTS

373 **Human Performance Upper Bound.** To establish a rigorous upper bound, we recruited
 374 experts to evaluate a sample of the ChartNexus (detailed in Appendix H.1). Humans
 375 achieved an average accuracy of 93.3% on Boolean and Vocabulary tasks, and 85.7% on
 376 complex Open-Ended Sentence tasks. This highlights a significant gap compared to SOTA

378
379

Table 6: Performance of MLLMs on ChartNexus using Chain-of-Thought strategy.

380

Model	Question Type						Difficulty			Language		
	Multi Choice	Judge	Approximate Value	Open-Ended (vocabulary)	Open-Ended (sentence)	Unanswerable	Numerical	Identify	Compare	Reason	ZH	EN
Commercial Model												
GPT-4o	65.57	74.29	53.71	38.56	72.88	22.31	64.61	66.29	46.34	65.12	66.30	62.82
Claude-Sonnet4	67.47	72.54	45.82	42.47	70.25	19.24	67.47	62.15	43.74	63.45	75.54	63.23
Gemini-2.5-Pro	62.50	66.97	31.02	36.88	83.20	45.59	67.32	69.33	44.25	68.82	76.88	64.14
Doubaod-Seed-1.6	47.48	42.80	38.65	23.15	71.48	46.33	54.20	58.23	22.85	63.54	68.68	48.63
Qwen-VL-MAX	67.82	79.25	35.58	53.25	76.13	30.71	63.45	72.10	39.66	64.14	66.25	67.32
Open-Source Model												
Qwen2.5-VL-7B	47.61	50.20	40.33	17.30	49.49	44.29	46.59	28.57	29.26	48.72	43.71	47.95
GLM-4.1V-9B	62.16	61.14	45.22	30.09	68.77	17.27	67.34	56.09	43.90	56.44	68.76	58.03
InternVL3-14B	56.47	60.65	36.56	25.29	56.25	14.37	63.02	48.78	41.46	62.08	58.94	51.12
Qwen2.5-VL-32B	67.85	62.63	46.60	31.37	72.67	22.50	65.77	60.52	41.46	58.08	64.58	58.37
InternVL3-38B	52.09	71.42	58.88	22.03	58.96	20.68	64.98	51.21	53.84	63.83	64.13	63.08
Chart Model												
ChartGemma	13.16	17.70	9.16	9.74	3.41	44.51	10.17	13.25	8.10	9.16	9.36	10.82
ChartInstruct-LLama2	20.57	27.00	8.47	5.56	6.45	32.29	14.89	18.32	9.75	13.73	14.97	14.15
ChartMoe	61.31	19.32	13.33	11.61	26.44	48.66	29.06	17.78	14.63	31.66	26.67	31.06

392
393
394

models, which hover around 60-70%, confirming that ChartNexus remains a challenging benchmark for current MLLMs.

395

Main Results. Commercial models demonstrate superior overall performance. Models like the ChatGPT family and Qwen-VL-MAX achieve the highest scores across most categories. For example, GPT-o3 shows strong performance in generating open-ended sentences (83. 42%) and handling queries in Chinese (80. 88%). Open-source models exhibit significant performance variability. While larger models such as InternVL3-38B and Kimi-VL-A3B-Thinking are competitive, many smaller models struggle significantly. Models like SmolVLM-2.3B and Phi-4-multimodal-Instruct post scores below 5% in some categories, highlighting that strong multi-chart reasoning has not yet been democratized in smaller, more accessible models. A surprising finding is the underperformance of specialized chart models. ChartGemma, ChartInstruct-LLama2, and ChartMoe all lag considerably behind the leading general-purpose commercial and open-source MLLMs. This suggests that their specialized training has not been sufficient to overcome the complex, multi-step reasoning required by this benchmark.

407

Performance by Task and Difficulty. Most models perform best on generating open-ended sentences, where they can formulate descriptive answers. In contrast, they are weakest on tasks requiring precise numerical approximation and identifying unanswerable questions. The difficulty with numerical tasks points to a known weakness in MLLMs for precise calculation. Tasks that require estimation and the inability to correctly identify unanswerable questions indicate a tendency to hallucinate or force an answer from the provided charts. Across the board, models find identification and trend analysis to be easier than tasks requiring deeper reasoning. Performance drops significantly for comparison tasks, which often require integrating information from multiple charts or performing multi-hop logical steps. This underscores that complex reasoning remains a primary challenge for all models. Many leading models perform better in Chinese than in English. This is especially true for models developed in China, such as HunYuan and Kimi, but it can also be observed in the GPT series. This suggests that the visual nature of charts may interact with the language of the query in some ways, or that the training data for these MLLMs has a strong Chinese-language component.

421

Performance using Chain-of-Thought strategy. The application of a CoT strategy brings consistent performance gains for SOTA commercial models such as GPT-4o, Gemini-2.5-Pro, and Qwen-VL-MAX, improving results across most evaluation dimensions. The enhancement is particularly pronounced on tasks that demand precise interpretation of chart data and subsequent logical reasoning or calculation, including “Approximate Value”, “Numerical”, and “Judge” tasks. For example, the score for Gemini-2.5-Pro on the “Approximate Value” task doubled from 15.62% to 31.02%. This indicates that CoT effectively guides the model in deconstructing complex problems into manageable steps, thus increasing accuracy. However, the efficacy of CoT is not universal and is highly dependent on the model. A crucial finding is that, for many open-source models, employing a CoT strategy led to a significant performance degradation on the “Unanswerable” and “Open-Ended (sentence)” tasks. As a notable example, the accuracy of GLM-4.1V-9B in the “Unanswerable”

task plummeted from 35.71% to 17.27%. This reveals that CoT’s effectiveness is deeply linked to a model’s ability to suppress hallucinations and follow instructions. For models that lack specific fine-tuning on CoT-style data or possess insufficient reasoning abilities, forcing a step-by-step thought process can introduce interference, leading to logical confusion or an outright failure to produce a final answer. Furthermore, the impact of CoT varies between different types of tasks. It excels in tasks that require deep reasoning, but is less effective and even harmful for tasks with simple information extraction. For example, while GPT-4o’s performance on “Approximate Value” improved by more than 12%, its score on “Open-Ended (vocabulary)” slightly decreased. This suggests that for simple, direct queries, the additional inferential steps introduced by CoT are unnecessary and may increase the risk of error highlighting the need for a dynamic prompting strategy in practical applications.

Performance on Chart-Specific Models. The results reveal that common MLLMs consistently outperform models specifically designed or fine-tuned for charts. This superiority is maintained across most tasks and persists regardless of whether CoT prompting strategies are used. While chart-specific models are highly optimized for existing benchmarks, the strong performance on curated datasets does not translate to the complex real-world document question-answering. Consequently, we think a more promising direction for future research is how to effectively adapt the powerful, generalizable abilities of foundation models to the document QA domain. The goal should be to leverage and enhance their core analytical capabilities for this task, rather than building specialized models that may lack real-world applicability.

Key Insights and Observations. Our experimental evaluation yields several critical insights into the current state of multi-chart question-answering. (1) Top-tier commercial models are the most capable and balanced performers. However, even these leading models struggle with numerical precision and complex reasoning, showing there is still significant room for improvement. (2) The open-source models present a wide spectrum of capabilities. While a few large models are competitive, the majority are not yet equipped to handle complex multi-chart reasoning tasks, indicating that further research and scaling are needed to close the performance gap. (3) Models explicitly trained for chart understanding did not outperform general-purpose MLLMs. This suggests that the ability to reason over complex visual data is more dependent on the scale of the foundational model and general reasoning capabilities than on narrow, task-specific training. (4) The most significant performance drops across all models occurred in tasks that required multi-step reasoning, numerical computation, and cross-chart comparisons. Future research should focus on enhancing these deep reasoning abilities to unlock the next level of performance in visual data understanding. (5) For complex chart analysis, CoT is a useful technique for achieving model’s full potential. However, CoT prompts must be customized and optimized for specific models. Directly applying a prompt designed for a model like GPT-4 to an open-source alternative is likely to be counterproductive. (6) By further analyzing specific failure cases, we find that the models’ failures are not merely due to visual perception issues, but more profoundly stem from a lack of cognitive capabilities such as working memory and multi-step planning. Many questions within ChartNexus require the model to perform multi-hop to compare data and to understand the implicit logic embedded within the context. This presents a significant challenge to the models’ logical discrimination and reasoning abilities.

4.3 DIAGNOSTIC ANALYSIS: BOUNDARIES AND BOTTLENECKS

To rigorously pinpoint the limitations of current MLLMs within the ChartNexus, we conducted a series of fine-grained ablation studies and stratified analyses. These diagnostics reveal three fundamental bottlenecks: spatial projection failures, semantic grounding dependency, and resolution constraints in dense visual contexts.

The Dimensionality Barrier in Visual Encoders. Our stratified performance analysis by chart type (see Appendix G.1) exposes a critical deficiency in handling spatial information. While SOTA models demonstrate robustness on 2D charts, we observe a significant “performance drop” when processing 3D charts. As detailed in Table 8, Even the best-performing model (Qwen2.5-VL-32B) falling to 36.1%. This universal degradation suggests that current vision encoders, predominantly pre-trained on 2D web images, struggle to re-

486 solve the projection loss inherent in rendering 3D data onto a 2D plane. The models fail to
 487 accurately perceive depth and perspective, leading to severe hallucinations in reading data
 488 points from 3D axes.

489 **The Necessity of Cross-Modal Semantic Bridging.** ChartNexus is designed to simulate
 490 real-world document analysis where charts rarely exist alone. To quantify the models’
 491 reliance on textual context, we performed an ablation study removing all captions and sur-
 492 rounding paragraphs (see Appendix G.2). The results reveal a sharp “Context Gap,” with
 493 performance degrading in the “No-Context” setting. For instance, Qwen2.5-VL-7B’s accu-
 494 racy on Open-Ended Vocabulary tasks plummeted from 46.67% to 15.1%. This confirms
 495 that MLLMs do not merely “see” the chart; they rely heavily on textual cues to disambiguate
 496 visual features and ground their reasoning. The text serves as a semantic bridge; without
 497 it, the models struggle to infer the implicit logic and domain-specific nuances required for
 498 complex reasoning.

499 **Visual Resolution vs. Reasoning Capacity.** We further disentangled whether er-
 500 rors in multi-chart tasks stem from logical complexity (reasoning across entities) or visual
 501 density (perception limits). By comparing performance on composite images (single im-
 502 age containing multiple subplots) versus multiple discrete image files (see Appendix G.3),
 503 we identified a distinct scaling law. Smaller models, such as InternVL3-14B, suffer a mas-
 504 sive performance drop of 23.5% when processing composite subplots compared to discrete
 505 images. This highlights a “resolution bottleneck”: when multiple charts are packed into a
 506 single token sequence or image patch grid, the effective resolution per chart diminishes, over-
 507 whelming the encoder’s capacity. In contrast, larger models (e.g., InternVL3-38B) maintain
 508 robustness across both settings, suggesting that increased parameter scale correlates with a
 509 superior ability to attend to fine-grained visual details within dense information streams.

510 **Hallucination and Format Bias.** We further investigate model faithfulness by analyzing
 511 “Unanswerable” questions, defining a hallucination as providing a specific answer when
 512 the ground truth is “Unanswerable”. Our analysis reveals a severe “Selection Bias” in the
 513 Multiple-Choice (MC) format compared to the Judgment (Boolean) format. As detailed
 514 in Appendix G.4, models like GLM-4.1V-9B and Qwen2.5-VL-32B achieved 0 successful
 515 refusals ($TP = 0$) in the MC setting, hallucinating an answer in 100% of unanswerable
 516 cases, whereas they demonstrated some capacity to refuse in the Judgment format correctly.
 517 This dissociation—recognizing a lack of evidence in one format while generating an answer
 518 in another—suggests that hallucinations are not mainly due to visual encoding failures.
 519 Instead, they likely stem from structural biases in the pre-training corpus, which lead models
 520 to follow selection formats instead of rigorously verifying premises.

521

522

523 5 CONCLUSION

524

525 This study introduces ChartNexus, a novel and challenging multi-chart question-answering
 526 benchmark that addresses a critical gap in evaluating MLLMs for real-world document
 527 analysis scenarios. Unlike existing benchmarks that focus on isolated chart understanding,
 528 ChartNexus evaluates models’ ability to synthesize information across multiple interrelated
 529 charts within authentic document contexts, incorporating surrounding textual information
 530 and complex reasoning chains. Our benchmark comprises 6,793 real-world charts and 1,370
 531 meticulously human-annotated question-answer pairs, systematically organized through a
 532 comprehensive taxonomy. Our evaluation of 23 state-of-the-art MLLMs reveals substantial
 533 limitations in current multi-chart reasoning capabilities. While leading models achieve over
 534 90% accuracy on single-chart benchmarks, their performance drops by more than half on
 535 ChartNexus, demonstrating that multi-chart reasoning remains a largely unsolved challenge.
 536 Through systematic failure analysis, we identify critical weaknesses in models’ ability to re-
 537 tain information across multiple visualizations, perform cross-modal reasoning, and execute
 538 multi-hop inferences. By shifting evaluation focus from isolated visual perception to complex
 539 cross-modal synthesis, ChartNexus provides essential diagnostic tools for advancing MLLM
 development and serves as a roadmap for developing more capable models for authentic
 document analysis scenarios.

540 REFERENCES
541

- 542 Saleem Ahmed, Bhavin Jawade, Shubham Pandey, Srirangaraj Setlur, and Venu Govin-
543 daraju. Realcqa: Scientific chart question answering as a test-bed for first-order logic. In
544 *International Conference on Document Analysis and Recognition (ICDAR)*, pp. 66–83.
545 Springer, 2023.
- 546 Saleem Ahmed, Ranga Setlur, and Venu Govindaraju. Realcqa-v2: Visual premise proving
547 a manual cot dataset for charts. *arXiv preprint arXiv:2410.22492*, 2024.
- 548 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang,
549 Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint*
550 *arXiv:2502.13923*, 2025.
- 551 Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Han-
552 wang Zhang. Chartllama: A multimodal llm for chart understanding and generation.
553 *arXiv preprint arXiv:2311.16483*, 2023.
- 554 Conghui He, Wei Li, Zhenjiang Jin, Chao Xu, Bin Wang, and Dahua Lin. Opendata-
555 lab: Empowering general artificial intelligence with open datasets. *arXiv preprint*
556 *arXiv:2407.13773*, 2024a.
- 557 Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang,
558 and Xuanjing Huang. Distill visual chart reasoning ability from llms to mllms. *arXiv*
559 *preprint arXiv:2410.18798*, 2024b.
- 560 Kung-Hsiang Huang, Hou Pong Chan, May Fung, Haoyi Qiu, Mingyang Zhou, Shafiq Joty,
561 Shih-Fu Chang, and Heng Ji. From pixels to insights: A survey on automatic chart un-
562 derstanding in the era of large foundation models. *IEEE Transactions on Knowledge and*
563 *Data Engineering (TKDE)*, 37(5):2550–2568, 2025. doi: 10.1109/TKDE.2024.3513320.
- 564 Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Ákos Kádár, Adam Trischler,
565 and Yoshua Bengio. Figureqa: An annotated figure dataset for visual reasoning. *arXiv*
566 *preprint arXiv:1710.07300*, 2017.
- 567 Hyung-Kwon Ko, Hyeon Jeon, Gwanmo Park, Dae Hyun Kim, Nam Wook Kim, Juho
568 Kim, and Jinwook Seo. Natural language dataset generation framework for visualizations
569 powered by large language models. In *Proceedings of the 2024 CHI Conference on Human*
570 *Factors in Computing Systems (CHI)*, pp. 1–22, 2024.
- 571 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi,
572 Yasemin Altun, Nigel Collier, and Julian Martin Eisenschlos. Matcha: Enhancing visual
573 language pretraining with math reasoning and chart derendering. In *The 61st Annual*
574 *Meeting Of The Association for Computational Linguistics (ACL)*, pp. 12756–12770, 2023.
- 575 Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa:
576 A benchmark for question answering about charts with visual and logical reasoning. In
577 *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 2263–2279,
578 2022.
- 579 Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty.
580 Unichart: A universal vision-language pretrained model for chart comprehension and rea-
581 soning. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language*
582 *Processing (EMNLP)*, pp. 14662–14684, 2023.
- 583 Ahmed Masry, Mehrad Shahmohammadi, Md Rizwan Parvez, Enamul Hoque, and Shafiq
584 Joty. Chartinstruct: Instruction tuning for chart comprehension and reasoning. In *Find-
585 ings of the Association for Computational Linguistics ACL 2024*, pp. 10387–10409, 2024.
- 586 Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aarya-
587 man Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad
588 Shahmohammadi, Megh Thakkar, Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty.
589 ChartQAPro: A more diverse and challenging benchmark for chart question answering. In
590

- 594 *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 19123–19151,
 595 2025a.
- 596
- 597 Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq
 598 Joty. Chartgemma: Visual instruction-tuning for chart reasoning in the wild. In *Proceed-
 599 ings of the 31st International Conference on Computational Linguistics: Industry Track*,
 600 pp. 625–643, 2025b.
- 601 Fanning Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping
 602 Luo. Chartassistant: A universal chart multimodal language model via chart-to-table
 603 pre-training and multitask instruction tuning. In *Findings of the Association for Com-
 604 putational Linguistics ACL 2024*, pp. 7775–7803, 2024.
- 605
- 606 Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. Plotqa: Reason-
 607 ing over scientific plots. In *2020 IEEE Winter Conference on Applications of Computer
 608 Vision (WACV)*, pp. 1516–1525, 2020.
- 609
- 610 Shraman Pramanick, Rama Chellappa, and Subhashini Venugopalan. SPIQA: A dataset for
 611 multimodal question answering on scientific papers. In *The Thirty-eight Conference on
 612 Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
- 613
- 614 Risa Shinoda, Kuniaki Saito, Shohei Tanaka, Toshio Hirasawa, and Yoshitaka Ushiku. Sbs
 615 figures: Pre-training figure qa from stage-by-stage synthesized images. *arXiv preprint
 616 arXiv:2412.17606*, 2024.
- 617
- 618 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu,
 619 Kaiwen Liu, Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise
 620 document content extraction. *arXiv preprint arXiv:2409.18839*, 2024a.
- 621
- 622 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang,
 623 Xindi Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi
 624 Chen. Charxiv: Charting gaps in realistic chart understanding in multimodal LLMs.
 625 In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and
 626 Benchmarks Track*, 2024b.
- 627
- 628 Anran Wu, Luwei Xiao, Xingjiao Wu, Shuwen Yang, Junjie Xu, Zisong Zhuang, Nian Xie,
 629 Cheng Jin, and Liang He. Dcqa: Document-level chart question answering towards com-
 630 plex reasoning and common-sense understanding. *arXiv preprint arXiv:2310.18983*, 2023.
- 631
- 632 Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, and Yuyu Luo. ChartInsights:
 633 Evaluating multimodal large language models for low-level chart question answering. In
 634 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 12174–
 635 12200, 2024.
- 636
- 637 Renqiu Xia, Haoyang Peng, Hancheng Ye, Mingsheng Li, Xiangchao Yan, Peng Ye, Botian
 638 Shi, Yu Qiao, Junchi Yan, and Bo Zhang. Structchart: On the schema, metric, and
 639 augmentation for visual chart understanding. *arXiv preprint arXiv:2309.11268*, 2023.
- 640
- 641 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen,
 642 Peng Ye, Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and
 643 foundation model for complicated chart reasoning. *arXiv preprint arXiv:2402.12185*, 2024.
- 644
- 645 Yichen Xu, Liangyu Chen, Liang Zhang, Wenxuan Wang, and Qin Jin. Polychartqa: Bench-
 646 marking large vision-language models with multilingual chart question answering. *arXiv
 647 preprint arXiv:2507.11939*, 2025a.
- 648
- 649 Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench:
 650 A benchmark for complex visual reasoning in charts. *arXiv preprint arXiv:2312.15915*,
 651 2023.
- 652
- 653 Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, Chengjin Xu, Chun Yuan, and Jian Guo.
 654 Chartmoe: Mixture of diversely aligned expert connector for chart understanding. In *The
 655 Thirteenth International Conference on Learning Representations*, 2025b.

- 648 Xingchen Zeng, Haichuan Lin, Yilin Ye, and Wei Zeng. Advancing multimodal large lan-
 649 guage models in chart question answering with visualization-referenced instruction tuning.
 650 *IEEE Transactions on Visualization and Computer Graphics (TVCG)*, 31(1):525–535,
 651 2025. ISSN 1077-2626. doi: 10.1109/TVCG.2024.3456159.
- 652 Ling Zhong, Yujing Lu, Jing Yang, Weiming Li, Peng Wei, Yongheng Wang, Manni Duan,
 653 and Qing Zhang. Domaincqa: Crafting expert-level qa from domain-specific charts. *arXiv*
 654 *preprint arXiv:2503.19498*, 2025.
- 655 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian,
 656 Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and
 657 test-time recipes for open-source multimodal models. *arXiv preprint arXiv:2504.10479*,
 658 2025a.
- 659 Junnan Zhu, Jingyi Wang, Bohan Yu, Xiaoyu Wu, Junbo Li, Lei Wang, and Nan Xu.
 660 Tableeval: A real-world benchmark for complex, multilingual, and multi-structured table
 661 question answering. *arXiv preprint arXiv:2506.03949*, 2025b.
- 662 Zifeng Zhu, Mengzhao Jia, Zhihan Zhang, Lang Li, and Meng Jiang. MultiChartQA: Bench-
 663 marking vision-language models on multi-chart problems. In *Proceedings of the 2025*
 664 *Conference of the Nations of the Americas Chapter of the Association for Computational*
 665 *Linguistics: Human Language Technologies (NAACL)*, pp. 11341–11359, 2025c.
- 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702	APPENDIX	
703		
704		
705	A Data Annotation	15
706	A.1 Data Collection Principles	15
707	A.2 Data Annotation Principles And Pipeline	15
708		
709		
710	B Chart Examples	18
711		
712	C Details of Evaluation	24
713		
714	D Model Configurations and Prompting Methods	28
715	D.1 Generation Configurations	28
716	D.2 Prompts	28
717		
718		
719	E QA Examples	30
720		
721		
722	F Cases of Error Analysis	32
723		
724	G Additional Experimental Analysis	35
725	G.1 Performance by Chart Type	35
726	G.2 Impact of Textual Context	35
727	G.3 Composite Subplots vs. Discrete Images	35
728	G.4 Hallucination Analysis: Boolean vs. Multi-Choice	36
729		
730		
731		
732	H Reliability and Validity Checks	37
733		
734	H.1 Human Performance Baseline	37
735	H.2 Sensitivity to Evaluation Prompt Language	37
736	H.3 Reliability of Automated Evaluation	37
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 A DATA ANNOTATION
757758 A.1 DATA COLLECTION PRINCIPLES
759

760 The construction of our benchmark was predicated on a set of rigorous principles designed
761 to ensure its validity, relevance, and robustness for evaluating the chart-to-code generation
762 capabilities of MLLMs.

763 **Mitigation of Data Leakage through Novel Data Sourcing.** A primary consideration
764 was the reduction of potential data leakage, wherein a model’s performance could
765 be artificially inflated due to the inclusion of benchmark data in its pre-training corpus.
766 To counteract this, we deliberately avoided common online repositories and auto-generated
767 examples. Instead, our dataset was exclusively curated from contemporary and domain-
768 specific sources, including academic papers from arXiv, economic reports from the World
769 Bank¹ and the Organisation for Economic Co-operation and Development (OECD)², so-
770 ciological studies from the Pew Research Center³, Statista⁴, various public government
771 datasets⁵⁶ and industries research reports, including the China Internet Network Infor-
772 mation Center (CNNIC)⁷, Communications World⁸, and the National Consortium for the
773 Study of Terrorism and Responses to Terrorism (START)⁹. This methodology ensures that
774 the benchmark serves as a true test of a model’s generalization and reasoning abilities.
775

776 **Adherence to Real-World Application Scenarios.** The benchmark is designed to re-
777 flect the authentic data visualization requirements of users in practical settings. By sourcing
778 charts directly from academic, financial, and governmental publications, we ensure that each
779 task is grounded in a genuine use case. This alignment with real-world scenarios enables a
780 more precise and relevant evaluation of LMMs, steering their development toward greater
781 utility in professional and research contexts.

782 **Comprehensive Coverage of Chart Type and Topic.** Our sourcing strategy natu-
783 rally produces a dataset with significant diversity in both chart typology and complexity.
784 The collection intentionally moves beyond rudimentary chart types (e.g., simple bar, line,
785 and pie charts) to encompass a wide spectrum of visualizations used in specialized fields.
786 Furthermore, the benchmark includes charts with varying levels of information density and
787 structural complexity, from single-series plots to multi-faceted figures with composite ele-
788 ments. This ensures a thorough assessment of a model’s ability to handle a wide range of
789 visualization challenges.

790 A.2 DATA ANNOTATION PRINCIPLES AND PIPELINE
791

792 A.2.1 PRINCIPLES

793 **Emulation of Authentic User Inquiries.** All questions must be framed to reflect plau-
794 sible, real-world scenarios. The objective is to simulate the analytical tasks a user would
795 perform when encountering a multi-chart figure. Therefore, questions are designed to be
796 pragmatic, focusing on core analytical goals such as comparison, trend identification, sum-
797 marization, or anomaly detection. Abstract or contrived questions that do not correspond
798 to a genuine analytical intent are explicitly disallowed.

799 **Mandatory Synthesis of Multi-Chart Information.** A fundamental criterion is that
800 every question must necessitate the integration of information from two or more individual
801 charts to be answered correctly. Questions that can be resolved by analyzing a single sub-

802 ¹<https://openknowledge.worldbank.org>

803 ²<https://www.oecd.org/en.html>

804 ³<https://www.pewresearch.org/publications>

805 ⁴<https://www.statista.com>

806 ⁵<https://www.stats.gov.cn/sj/zxfb>

807 ⁶<https://www.guizhou.gov.cn/zwgk/zfsj/tjgb>

808 ⁷<https://www.cnnic.cn/6/180/index.html>

809 ⁸<https://www.cww.net.cn/subjects/cha/download>

⁹<https://www.start.umd.edu/publications>

Figure 2: Different chart types in ChartNexus.

chart in isolation are considered invalid for this benchmark. This principle ensures that the tasks specifically target the model’s capability for cross-referencing and synthesizing data from disparate visual sources within a single scene. For example, a valid question might ask to correlate the trend in a line chart with the composition shown in a corresponding pie chart.

Requirement for Contextual Understanding in Complex Reasoning. For questions categorized as requiring complex reasoning, the model must do more than simply extract and compare data points. These questions are constructed to require the integration of contextual information derived from the figure’s title, caption, or other textual elements. The answer should depend on a holistic understanding of the scene, compelling the model to, for instance, explain a trend visible in the charts by referencing a cause mentioned in the accompanying text. This tests a deeper level of multimodal comprehension beyond basic visual data retrieval.

A.2.2 PIPELINE

Automated Data Pre-processing Pipeline. The initial stage involved the automated extraction and structuring of chart-centric data from raw PDF documents. First, each source document was parsed into Markdown format using the Mineru library. Following this, a crucial filtering step was executed where the Qwen2.5-VL model programmatically analyzed all extracted images, identifying and discarding those irrelevant to the ChartNexus theme, such as natural photographs or schematic diagrams. The refined Markdown content was then reconstituted into a structured JSON format using markdown-it-py. In the final pre-processing step, a hybrid approach was utilized combining rule-based heuristics and the Qwen3 model to extract salient contextual information (e.g. captions and surrounding paragraphs) associated with each chart. This automated pipeline resulted in a high-quality candidate dataset primed for human annotation.

Pilot Annotation: We use Label Studio¹⁰ to construct the annotation tasks, allowing for iterative refinement of the requirements. Initially, graduate students with backgrounds in data analysis and deep learning conduct a pilot annotation. Through this process, we finalize the necessary annotation items for the benchmark. Based on this experience, we categorize the QA formats into five types: multiple-choice, judgment, vocabulary-answer,

¹⁰A labeling platform: <https://labelstud.io>

864 numerical estimation, and open-ended questions. In addition to the QA pair, annotators
 865 were required to specify the question’s difficulty level and its key difficulties. The pipeline
 866 of our annotations is illustrated in the corresponding Figure 1.

867 **Reference Question Generation:** In the formal annotation phase, we summarize the
 868 question templates from the pilot stage. These manually crafted seed questions served as
 869 few-shot examples for an LLM. The model was instructed to mimic the reasoning patterns
 870 of these examples and generate multiple sets of candidate questions for each task based on
 871 the provided charts and context, offering a convenient starting point for human annotators.
 872

873 **Manual Question Annotation:** We recruit well-trained annotators and provide them
 874 with a meticulous annotation guide. They are tasked with either refining the questions
 875 generated by an LLM based on specific chart information or using these reference templates
 876 as inspiration to formulate new questions with greater reasoning depth. This process ensures
 877 that each question is closely related to the charts, logically self-consistent, and requires the
 878 synthesis of information from at least two charts.

879 **Answer Annotation:** Subsequently, annotators are required to answer these questions
 880 and write the corresponding ground-truth answers. It is important to note that not all
 881 annotated QA pairs are answerable; a portion of the questions is intentionally designed to
 882 be unanswerable based on the provided charts.

883 **Detailed Annotation Schema.** The annotation process was systematically divided into
 884 two primary, sequential tasks: chart-level annotation and QA pair annotation.

885 A. Chart Annotation Task: This initial task focused on the structural and typological
 886 properties of the visual elements. Annotators were required to label the primary chart type
 887 (e.g., bar, line, scatter plot) and determine if the image contained sub-charts, quantifying
 888 them if present.

889 B. Question-Answer Pair Annotation Task: This second, more complex task involved as-
 890 sessing and labeling the generated QA pairs. Annotators were required to provide multiple
 891 labels for each pair:

892 **Suitability:** A binary judgment on whether the associated chart combination is appropriate
 893 for formulating a reasonable and unambiguous question.

894 **Answer Type:** Classification of the correct answer’s format, categorized as Numerical, Open-
 895 Ended, Boolean (True/False), or Multiple Choice.

896 **Reasoning Skill:** Identification of the core challenge or difficulty element the question targets,
 897 such as Numerical Calculation, Visual Grounding (locating specific elements), or Compar-
 898 ative Reasoning (comparing trends across charts).

899 **Answerability and Difficulty:** A final assessment indicating if the question is answerable
 900 given the provided context, accompanied by a quantitative score representing its overall
 901 difficulty.

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 B CHART EXAMPLES
919

920 This section presents each chart type in ChartNexus. ChartNexus comprises a total of 3,198
 921 distinct image files sourced from real-world documents. However, to accurately reflect the
 922 information density models must process, we define our atomic unit as a “semantic chart.”
 923 Since approximately 16.69% of our images are composite figures containing multiple subplots
 924 (averaging 4.78 subplots per composite image), the total count of atomic semantic charts is
 925 6,793. This distinction is crucial, as reasoning often requires extracting specific data from a
 926 single subplot within a dense composite figure.

927 ChartNexus encompasses a structure of 17 types. The categories comprise of: Line, Bar, Pie,
 928 Scatter, Radar, Candlestick, Boxplot, Heatmap, Graph, Tree, Sunburst, Sankey, Funnel, 3D,
 929 Area, and Table. Here are some examples for different chart types in our ChartNexus.
 930

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 3: Examples of Line Charts in ChartNexus

Figure 4: Examples of Bar Charts in ChartNexus

Figure 5: Examples of Pie Charts in ChartNexus

Figure 6: Examples of Scatter Charts in ChartNexus

Figure 7: Examples of Radar Charts in ChartNexus

Figure 8: Examples of Candlestick Charts in ChartNexus

Figure 9: Examples of Boxplot Charts in ChartNexus

Figure 10: Examples of Heatmap Charts in ChartNexus

Figure 11: Examples of Graph Charts in ChartNexus

Figure 12: Examples of Tree and Treemap Charts in ChartNexus

Figure 13: Examples of Sunburst Charts in ChartNexus

Figure 14: Examples of Sankey Charts in ChartNexus

Figure 15: Examples of Funnel Charts in ChartNexus

Figure 17: Examples of Area Charts in ChartNexus

Figure 18: Examples of Tables in ChartNexus

1242 **C DETAILS OF EVALUATION**

1243

1244 In this section, we present the details of evaluation models and metrics, including prompts
 1245 in calculating Accuracy and F1 Score from SEAT Method (Zhu et al., 2025b).

1246 **Models.** For commercial models, we utilize the official APIs to access their stable versions.
 1247 For open-source models, the model weights can be downloaded from the links provided
 1248 below:

1250 Table 7: List of Open-Source Models and Download Links

1251

1252 Model Name	1253 URL
1254 SmolVLM-2.3B	https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
1255 Phi-4-multimodal-Instruct	https://huggingface.co/microsoft/Phi-4-multimodal-instruct
1256 Bagel	https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
1257 Kimi-VL-A3B-Thinking	https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
1258 Qwen2.5-VL-7B	https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
1259 GLM-4.1V-9B	https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
1260 InternVL3-14B	https://huggingface.co/OpenGVLab/InternVL3-14B
1261 Qwen2.5-VL-32B	https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
1262 InternVL3-38B	https://huggingface.co/OpenGVLab/InternVL3-38B
1263 ChartGemma	https://huggingface.co/ahmed-masry/chartgemma
1264 ChartInstruct-LLama2	https://huggingface.co/ahmed-masry/ChartInstruct-LLama2
1265 ChartMoe	https://huggingface.co/IDEA-FinAI/chartmoe

1266 **Accuracy for Close-Ended Questions.** For question categories with definitive, single-
 1267 ground-truth answers—specifically Multiple Choice, True/False, Numerical Calculation, and
 1268 Open-Ended(vocabulary) (single word/phrase) questions—we utilize Accuracy as the pri-
 1269 mary evaluation metric. A model’s response is considered correct only if it exactly matches
 the ground-truth answer. The overall accuracy is calculated as:

$$1270 \text{Accuracy} = \frac{\text{Number of Correct Predictions}}{1271 \text{Total Number of Questions}} \quad (1)$$

1272

1273 This strict metric is appropriate for tasks where precision is unambiguous and semantic
 1274 variance is not a factor.

1275 **F1 Score for Open-Ended Questions.** For open-ended questions that require a full
 1276 sentence as an answer, a direct string match is often inadequate, as semantically equivalent
 1277 responses can have different phrasings. To account for this, we evaluate these responses using
 1278 the **F1 Score**, which provides a balanced measure of precision and recall. The calculation
 1279 is facilitated by the **SEAT** methodology, which is designed to handle semantic similarities.

1280 To standardize the evaluation, we first process the model’s raw generation to isolate the
 1281 final answer. This is achieved using a specifically designed extraction prompt, presented
 1282 below:

1283 The following are prompts for evaluating the model’s output.

1284

1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297
1298
1299
1300

1301 General prompt for extracting predict answer from model's response

1302
1303 You will be given a question about some charts. You need to answer this question based on the provided
1304 charts as well as its related context. The context corresponding to each chart will be placed within <context>
1305 </context> tags, and the question to be answered will be placed within <question></question> tags.
1306
1307 Your answer should be a single word, number, or phrase. If the question is unanswerable based on the
1308 information in the provided image, your answer should be unanswerable.
1309
1310 Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact
1311 notation shown in the chart. If there are multiple answers, put them in brackets using this format
1312
1313 ["Answer1", "Answer2"].

1314
1315 Figure 19: General prompt for extracting the answer from the model's output, which will
1316 pass to Qwen3-32B for extraction.

1317
1318
1319
1320
1321
1322
1323
1324

1325 General prompt for evaluating answer

1326 System Prompt:

1327
1328 You are a helpful assistant. You need to compare a given answer with the ground truth to determine if it is
1329 correct. Always place your final answer within <answer></answer> tags.
1330
1331

1332 User Prompt:

1333 You are required to determine if a predicted answer is correct when compared with the ground truth. The
1334 question will be placed within <question></question> tags, predicted answer will be placed within <predict>
1335 </predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

1336 The predicted answer may contain some thought or reasoning content in addition to the final answer. You
1337 must first find the correct answer: a word, phrase, or number within the prediction, and then compare it with
1338 the ground truth.

1339 Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

1340 Question: <question>{question}</question>

1341 Predict Answer: <predict>{predict}</predict>

1342 Ground Truth: <gt>{gt}</gt>

1343
1344
1345
1346
1347
1348
1349

Figure 20: Prompt to evaluate model's response.

1350

1351

1352 **Evaluating Multi-Choice questions**

1353

1354

1355 You are required to determine if a predicted answer is correct when compared with the ground truth. The
1356 question will be placed within <question></question> tags, predicted answer will be placed within <predict>
1357 </predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

1358

1359

1360 The predicted answer may contain additional content, such as reasoning, besides the final answer. You must
1361 first extract the correct answer from within the prediction. The answer should be a single multiple-choice
1362 option (e.g., A, B, C, etc.). You should then compare this extracted option with the ground truth.

1363

1364 Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

1365

1366

1367

1368

1369

1370

Figure 21: Prompt to evaluate Multi-Choice questions.

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Evaluating Numerical-Calculation questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within <predict></predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must first extract the correct answer from within the prediction, which should be an estimated numerical value. You should then compare this extracted number with the ground truth.

The predicted numerical value is considered correct if it is within a 5% margin of error relative to the ground truth value.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 22: Prompt to evaluate Numerical questions.

Evaluating True/False questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within <predict></predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must first extract the correct answer from within the prediction. The answer should be a response to a true/false or yes/no type of question (e.g., 'true', 'false', 'yes', 'no').

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 23: Prompt to evaluate True/False questions.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

Evaluating Open-End questions by SEAT

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

目标

请将大模型的回答与用户提供的参考答案进行对比，步骤如下：

1. 提取关键答案

1. 定位大模型回答的“最终总结”，逐个对照参考答案中的子问题，从大模型的“最终总结”中提取每个问题对应所有关键回答。关键回答应仅包含核心的、直接回答问题的内容。
2. 对已识别出的某个关键回答进行补充说明的内容，应与该关键回答合并为一个整体，不要拆分成新的答案要素。只有在内容明显独立、可与参考答案中不同要素相对应时，才视为新答案。

2. 对比并标注：将提取出的回答与参考答案逐一对比，按以下标准进行标注：

1. 错误答案 (false)：如果大模型多输出了一些要素，并且这些要素与参考答案无法对应或仅是多余的补充信息（不是在同一个要素中补充，而是产生了多余答案要素），则判定为错误。
2. 正确答案 (true)：如果该条回答与参考答案某一要素含义一致或高度吻合，视为正确。
3. 注意：每个从大模型回答中提取出的答案要素，都要有相应的 true 或 false 标签，确保每个回答要素都被检查。

输出格式

```
```\n{\n  \"问题列表\": [\n    {\n      \"问题\": \"子问题1\", \n      \"参考答案\": [\"答案1\", \"答案2\"], \n      \"大模型的回答\": [\"关键回答1\", \"关键回答2\"], \n      \"是否正确\": [true, false]\n    },\n    {\n      \"问题\": \"子问题2\", \n      \"参考答案\": [\"答案1\"], \n      \"大模型的回答\": [\"关键回答1\", \"关键回答2\", \"关键回答3\", \"关键回答4\"], \n      \"是否正确\": [false, true, false, false]\n    }\n  ]\n}\n````
```

### 参考答案

{answer}

Figure 24: Prompt to evaluate Open-Ended(sentence) questions by SEAT method.

1458 D MODEL CONFIGURATIONS AND PROMPTING METHODS  
14591460 D.1 GENERATION CONFIGURATIONS  
14611462 For open-weight models, we set the temperature  $\tau = 0.1$  to achieve optimal results, while for  
1463 proprietary models, we set the temperature  $\tau = 0$  for greedy decoding. For all models, we  
1464 set the maximum generation length to 4096. Additionally, we use BF16 for model inference  
1465 for open-weight models. All models are inferred on RTX 6000 Ada.1466 D.2 PROMPTS  
14671468 To investigate the model’s reasoning capabilities, we conducted experiments using a Chain-  
1469 of-Thought (CoT) prompting strategy. This approach was implemented by modifying the  
1470 model’s default system prompt to explicitly elicit a step-by-step reasoning process before  
1471 providing a final answer.1472 The specific system prompt employed for our CoT experiments is detailed below:  
14731488 Figure 25: Prompt for CoT experiments.  
14891490 After the system prompt, the model is instructed to generate associated answer for the given  
1491 question.  
14921504 Figure 26: Prompt to extract answers from model’s responses.  
15051506 Then, the context, images and question will be fed into the model.  
1507

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

**Extracting predict answer for Numerical-Calculation questions**

You will be given a numerical question-answering task about charts. You are required to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context></context> tags, and the question will be placed within <question></question> tags.

Your answer should be the most appropriate approximate numerical value. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact notation shown in the chart. If there are multiple answers, put them in brackets using this format ["Answer1", "Answer2"].

Figure 27: Prompt to extract answers for Numerical questions.

**Extracting predict answer for True/False questions**

You will be given a true/false question about charts. You are required to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context></context> tags, and the question will be placed within <question></question> tags.

Your answer should be either 'true' or 'false'. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 28: Prompt to extract answers for True/False questions.

**Extracting predict answer for Open-End questions**

You will be given an open-ended question about charts. You are required to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context></context> tags, and the question will be placed within <question></question> tags.

Your answer should be a logical and well-reasoned explanation that addresses the question. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 29: Prompt to extract answers for Open-Ended(vocabulary) questions.

## 1566 E QA EXAMPLES

1568 In this section, we use several examples in ChartNexus to illustrate our annotation method-  
 1569 ology for different answer types and difficulty factors.



1598 Figure 30: Example 1 of Annotations.

1599  
 1600  
 1601  
 1602  
 1603  
 1604  
 1605  
 1606  
 1607  
 1608  
 1609  
 1610  
 1611  
 1612  
 1613  
 1614  
 1615  
 1616  
 1617  
 1618  
 1619



**User Question**

Which region has the highest investment in Energy and Extractives?

**Ground Truth**

**EASTERN AND SOUTHERN AFRICA**

Answering this question involves a multi-step process. First, it requires calculating the absolute investment amount for each of the two regions by multiplying the total lending by the relevant percentage ( $15.6 * 18\%$  and  $11.0 * 22\%$ ). Next, these two results must be compared to identify the larger value, which corresponds to the **Eastern and Southern Africa** region.

Due to the need for calculation, comparison, and logical deduction, the question is annotated with three difficulty factors: **Numerical->calculate**, **Comparison->numerical**, and **Reasoning**.



**User Question**

Does Figure (b)-ADV indicate that severe overfitting occurred during the model's training?

**Ground Truth**

**False**

Observation of the figure reveals that the loss trends for the training and validation sets are consistent, without a significant gap forming between them. We can therefore conclude that the model is not overfitting, which means the premise of the original question is incorrect.

This task requires the ability to compare trends and apply general knowledge about model training. Consequently, the question is annotated with the difficulty factors: **Comparison->trend** and **Reasoning->general knowledge**.

Figure 31: Example 2 of Annotations.

## F CASES OF ERROR ANALYSIS



Figure 33: Error case 1. For this case, the correct procedure is to first identify the year with the largest increase for the “Better” metric in the top-left chart (which is approximately 2012). Then, this year’s “satisfaction with democracy in Mexico” should be compared with the 2017 value. However, since the satisfaction data for 2012 is not provided, the correct answer is “C. Cannot be determined”. Gemini-2.5-pro erred by using incorrect data from 2023 for comparison.

1728  
 1729  
 1730  
 1731  
 1732  
 1733  
 1734  
 1735  
 1736  
 1737  
 1738  
 1739  
 1740  
 1741  
 1742  
 1743  
 1744  
 1745  
 1746  
 1747  
 1748  
 1749  
 1750  
 1751  
 1752  
 1753  
 1754  
 1755  
 1756  
 1757  
 1758  
 1759  
 1760  
 1761  
 1762  
 1763  
 1764  
 1765  
 1766  
 1767  
 1768  
 1769  
 1770  
 1771  
 1772  
 1773  
 1774  
 1775  
 1776  
 1777  
 1778  
 1779  
 1780  
 1781



Figure 34: Error case 2. In this case, the general-purpose MLLMs successfully identified the required elements, whereas the specialized chart model, ChartInstruct, failed. This outcome suggests that models trained primarily on existing chart benchmarks may not be well-suited for the complexities of real-world document question-answering scenarios.

1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835



Figure 35: Error case 3. In this case, GPT-4o focused only on the chart and overlooked the accompanying context. The highlighted section in the context implicitly states the total value, and the model could only answer correctly by integrating information from both the document context and the chart itself. This highlights how our benchmark better reflects real-world document understanding scenarios.

## 1836 G ADDITIONAL EXPERIMENTAL ANALYSIS

1838 To provide a comprehensive diagnosis of model capabilities and validate the unique challenges posed by ChartNexus, we conducted a series of fine-grained ablation studies and  
 1839 stratified analyses.

### 1842 G.1 PERFORMANCE BY CHART TYPE

1844 To address concerns regarding the distribution of chart types and to identify specific model “  
 1845 failure modes,” we performed a category-wise performance breakdown across all chart types  
 1846 present in the benchmark. As shown in Table 8, while models perform relatively well on  
 1847 common 2D charts (e.g., Bar, Line, Pie), we observe a significant performance degradation  
 1848 on complex spatial visualizations.

1849 Notably, all evaluated models exhibit a “performance cliff” on **3D charts**, with the best-  
 1850 performing model (Qwen2.5-VL-32B) achieving only 36.1% accuracy, compared to 65.4% on  
 1851 Bar charts. This universal deficit highlights a critical limitation in current Vision-Language  
 1852 Pretraining regarding spatial projection and depth perception.

1853 Table 8: Fine-grained performance breakdown by chart type. Note the significant per-  
 1854 formance drop on **3D charts** across all models compared to standard types, revealing a  
 1855 boundary in current spatial reasoning capabilities.

Model	Bar	Line	Pie	Table	Scatter	Tree	Radar	Area	Sunburst	Graph	Boxplot	Sankey	Heatmap	3D	Candle	Funnel	Other
GPT-4o	63.7	62.5	74.8	70.2	63.9	69.9	60.0	56.6	70.5	66.7	62.0	100.0	64.4	<b>33.3</b>	63.6	76.9	64.9
Qwen2.5-VL-32B	65.4	62.9	80.2	73.2	56.4	69.1	50.0	64.2	64.7	66.7	62.5	73.6	65.6	<b>36.1</b>	54.5	69.2	64.7
InternVL3-38B	63.1	63.8	65.2	77.2	81.6	66.6	65.0	66.6	64.7	46.7	68.6	100.0	85.0	<b>33.3</b>	63.6	84.6	75.0
GLM-4.1V-9B	66.7	65.7	77.3	79.0	66.5	70.2	50.0	59.5	58.8	66.7	37.5	84.2	55.4	<b>17.2</b>	63.6	61.5	64.6
InternVL3-14B	58.3	58.7	79.1	80.1	36.8	50.6	55.0	63.6	66.7	53.3	23.5	89.4	20.0	<b>20.0</b>	45.4	61.5	40.2
Qwen2.5-VL-7B	46.8	44.5	48.6	60.7	38.4	51.4	45.0	45.2	58.8	33.3	25.0	89.4	44.3	<b>16.8</b>	27.2	53.8	48.9

### 1862 G.2 IMPACT OF TEXTUAL CONTEXT

1864 To quantify the role of document context in multi-chart reasoning, we conducted an ablation  
 1865 study where all textual context (captions and related paragraphs) was removed, leaving only  
 1866 the chart images.

1867 As shown in Table 9, performance drops significantly in the “No-Context” setting compared  
 1868 to the full benchmark (e.g., Qwen2.5-VL-7B drops from 46.67% to 15.1% in Open-Ended  
 1869 Vocabulary tasks). This quantitative “Context Gap” confirms that visual perception alone  
 1870 is insufficient for ChartNexus tasks, which require the model to use text as a semantic bridge  
 1871 to interpret and connect visual data.

1872 Table 9: Model performance in the **No-Context** ablation setting. Comparing these results  
 1873 with the main table reveals the critical dependency on cross-modal grounding.

Models	Bool	Approx.	Value	Multi-Choice	Open-Ended (Vocab)	Open-Ended (Sent.)
Qwen2.5-VL-32B	52.3		42.7		60.1	30.5
InternVL3-38B	53.1		54.3		51.5	21.2
InternVL3-14B	43.0		37.8		53.4	25.2
GLM-4.1V-9B	41.7		40.6		54.6	27.8
Qwen2.5-VL-7B	31.7		34.5		44.6	15.1

### 1882 G.3 COMPOSITE SUBPLOTS VS. DISCRETE IMAGES

1884 We further analyzed whether the difficulty in multi-chart reasoning stems from logical com-  
 1885 plexity (reasoning across files) or visual density (parsing subplots). We categorized samples  
 1886 into **Single image containing multiple subplots** and **Multiple discrete image files**.

1887 Table 10 shows that models like InternVL3-14B suffer a massive drop on subplot samples  
 1888 (37.7%) compared to discrete images (61.2%), indicating a bottleneck in **visual resolu-**  
 1889 **tion** or encoder capacity when processing dense composite figures. Larger models (e.g.,  
 InternVL3-38B) show robustness across both settings.

1890 Table 10: Performance comparison between composite images (Subplots) and discrete im-  
 1891 ages. The discrepancy in smaller models highlights visual resolution bottlenecks.  
 1892

1893 <b>Models</b>	1894 <b>Multi-Charts with Subplots</b>	1895 <b>Multi-Charts w/o Subplots</b>
1896 InternVL3-38B	1897 64.2	1898 64.1
1899 Qwen2.5-VL-32B	1900 60.3	1901 65.7
1902 GLM-4.1V-9B	1903 61.5	1904 68.2
1905 InternVL3-14B	1906 37.7	1907 61.2
1908 Qwen2.5-VL-7B	1909 46.5	1910 46.3

#### 1900 1901 G.4 HALLUCINATION ANALYSIS: BOOLEAN VS. MULTI-CHOICE

1902 To justify the inclusion of a distinct “Judgment” (Boolean) category, we analyzed the models’  
 1903 refusal capabilities. We define a *Hallucination* as the model providing a specific answer  
 1904 when the ground truth is “Unanswerable” (False Negative). Conversely, a True Positive  
 1905 (TP) occurs when the model correctly identifies the question as unanswerable.  
 1906

1907 Table 11 illustrates a strong “Selection Bias” inherent in the Multiple-Choice format. Models  
 1908 like GLM-4.1V-9B, InternVL3-14B, and Qwen2.5-VL-32B achieved 0 successful refusals  
 1909 ( $TP = 0$ ) in the Multi-Choice setting, effectively hallucinating an answer in 100% of unan-  
 1910 swerable cases. Even GPT-4o showed a significantly higher hallucination rate in Multiple-  
 1911 Choice compared to Judgment tasks.  
 1912

1913 This dissociation demonstrates that the “Judgment” format effectively exposes a model’s la-  
 1914 tent fact-checking capabilities, which are often overridden by the structural bias of multiple-  
 1915 choice prompts. Therefore, the Boolean category serves as an indispensable diagnostic tool  
 1916 for evaluating faithfulness and refusal capability.  
 1917

1918 Table 11: Comparison of Hallucination Rates on Unanswerable Questions. **TP** (True Posi-  
 1919 tive) indicates a correct refusal (predicting “Unanswerable”); **FN** (False Negative) indicates  
 1920 a hallucination (predicting an option/value). The Judgment format significantly outper-  
 1921 forms Multi-Choice in eliciting correct refusals.  
 1922

1923 <b>Model</b>	1924 <b>Judgment (Boolean)</b>			1925 <b>Multiple-Choice</b>		
	1926 <b>TP</b>	1927 <b>FN (Hallucination)</b>	1928 <b>F1 Score</b>	1929 <b>TP</b>	1930 <b>FN (Hallucination)</b>	1931 <b>F1 Score</b>
1932 GPT-4o	1933 7	1934 5	1935 0.333	1936 3	1937 13	1938 0.124
1939 Qwen2.5-VL-7B	1940 6	1941 50	1942 0.176	1943 1	1944 15	1945 0.047
1946 GLM-4.1V-9B	1947 3	1948 9	1949 0.188	1950 0	1951 16	1952 0.000
1953 InternVL3-14B	1954 2	1955 10	1956 0.118	1957 0	1958 16	1959 0.000
1960 Qwen2.5-VL-32B	1961 2	1962 10	1963 0.182	1964 0	1965 16	1966 0.000
1967 InternVL3-38B	1968 10	1969 2	1970 0.589	1971 2	1972 14	1973 0.181

1944 H RELIABILITY AND VALIDITY CHECKS  
19451946 H.1 HUMAN PERFORMANCE BASELINE  
19471948 To quantify the gap between current MLLMs and human capabilities, we established an  
1949 explicit human performance baseline. Two expert annotators (graduate students) were  
1950 recruited to evaluate a stratified sample of 30 instances per question type.1951 As shown in Table 12, the average human accuracy is approximately **89.1%**, which signif-  
1952 icantly outperforms current SOTA models. This confirms that while the benchmark tasks  
1953 are solvable, they remain challenging even for humans due to the complexity of real-world  
1954 data.1955 Table 12: Human performance baseline across different task categories.  
1956

	Bool	Approx. Value	Multi-Choice	Open-Ended (Voc)	Open-Ended (Sent)
Human	93.3	90.0	83.3	93.3	85.7

1960 H.2 SENSITIVITY TO EVALUATION PROMPT LANGUAGE  
19611962 Given the multilingual nature of the community, we assessed whether the language of the  
1963 evaluation prompt (Chinese vs. English) affects the scoring of the SEAT metric. We com-  
1964 pared the original Chinese prompts with professionally translated English prompts.  
19651966 Table 13 shows a minor absolute performance shift (approx. 1.5% - 3.5%) but, crucially,  
1967 the **relative ranking of models remains identical**. This confirms the robustness of our  
1968 benchmark’s conclusions regardless of the evaluator’s prompt language.  
19691970 Table 13: Ablation study on SEAT evaluation prompt language.  
1971

Models	Chinese Prompt	English Prompt
Qwen2.5-VL-32B	72.67	70.28
GLM-4.1V-9B	68.77	65.29
InternVL3-38B	58.96	56.39
InternVL3-14B	56.25	52.98
Qwen2.5-VL-7B	49.49	48.01

1980 H.3 RELIABILITY OF AUTOMATED EVALUATION  
19811982 **Human-Model Alignment Study.** To address concerns regarding the reliability of  
1983 Qwen3-32B as an automated judge, we conducted a human verification study on a stratified  
1984 sample of 250 instances (50 per question type).  
19851986 As shown in Table 14, the judge achieves near-perfect alignment (98%–100%) for objec-  
1987 tive tasks (Boolean, Multi-Choice, Approximate Value). The 6.5% overall misalignment is  
1988 concentrated in Open-Ended tasks, primarily due to linguistic ambiguity in SEAT decom-  
1989 position rather than systematic bias. This confirms Qwen3-32B is a reliable proxy for human  
1990 evaluation.  
19911992 Table 14: Human-Model Agreement Rates by Question Type.  
1993

Type	Bool	Approx. Value	Multi-Choice	Open (Vocab)	Open (Sent)
Agreement (%)	100	98	100	92	86

1994 **Robustness of Automated Evaluation Across Judges**  
1995

1998 To ensure our rankings are not artifacts of a specific judge model’s bias, we conducted  
 1999 an extensive comparative study on the “Open-Ended (sentence)” category using the SEAT  
 2000 method. We employed Deepseek-chat and GPT-4o as independent judges, comparing their  
 2001 scoring distributions and resulting rankings against our original judge (Qwen3-32B) and  
 2002 human verification.

2003 For human verification, two experts evaluated a stratified sample of 30 responses per model,  
 2004 whereas the automated judges evaluated the full benchmark. As shown in Table 15, the  
 2005 results reveal a high degree of consistency in model rankings across diverse judges. While  
 2006 absolute scores vary—for instance, GPT-4o tends to be stricter, assigning lower scores across  
 2007 the board—the relative ordering of the evaluated models remains stable.

2008  
 2009 Table 15: Comparison of Model Performance Scores in the “Open-Ended (sentence)” Cate-  
 2010 gory under Different Evaluators. Despite variations in absolute scores, the relative ranking  
 2011 of models remains consistent.

Judge Model	Qwen2.5-VL-7B	GLM-4.1V-9B	InternVL3-14B	Qwen2.5-VL-32B	InternVL3-38B
Human (Sampled)	47.2	52.5	50.4	67.2	57.3
Qwen3-32B (Ours)	49.5	68.8	56.3	72.7	60.0
Deepseek-chat	44.8	64.7	59.1	70.9	61.0
GPT-4o	39.3	60.1	56.1	61.9	57.8

2012  
 2013  
 2014  
 2015  
 2016  
 2017  
 2018  
 2019  
 2020  
 2021  
 2022  
 2023  
 2024  
 2025  
 2026  
 2027  
 2028  
 2029  
 2030  
 2031  
 2032  
 2033  
 2034  
 2035  
 2036  
 2037  
 2038  
 2039  
 2040  
 2041  
 2042  
 2043  
 2044  
 2045  
 2046  
 2047  
 2048  
 2049  
 2050  
 2051