CHARTNEXUS: EVALUATING MULTI-CHART REASONING CAPABILITIES OF MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors

000

001

002

003

004 005 006

008 009 010

011

013

014

015

016

017

018

019

021

022

025

026

027

028

029

031

032

033

034

039

040

042 043

044 045

046

048

049

051

052

Paper under double-blind review

Abstract

While Multimodal Large Language Models (MLLMs) have achieved remarkable success on single-chart question-answering tasks, reaching over 90% accuracy on benchmarks such as PlotQA, this apparent success masks a critical limitation. Current models struggle to perform well on complex, multi-chart reasoning tasks that closely mirror real-world analytical scenarios. In professional document analysis, users typically integrate information across multiple visualizations within rich contextual frameworks, rather than examining isolated charts, a capability that remains largely unexplored in existing evaluations. To bridge this gap, we introduce Chart-Nexus, a novel and challenging benchmark specifically designed to assess multi-chart reasoning capabilities of MLLMs in authentic document contexts. ChartNexus comprises 1,370 carefully curated question-answering pairs derived from 6,793 real-world charts spanning 18 domains, including scientific papers, government reports, and industry analyses. Each question demands complex reasoning skills, such as comparative analysis, sequential information integration, and cross-modal synthesis between visual and textual elements. We design a comprehensive taxonomy featuring 4 high-level difficulty categories and 11 fine-grained sub-categories to systematically evaluate these capabilities. Our comprehensive evaluation of 23 state-ofthe-art MLLMs reveals significant performance degradation compared to single-chart benchmarks. While the best commercial model achieves over 90% accuracy on simpler tasks, its performance drops by more than half on ChartNexus. Through systematic failure analysis, we identify critical weaknesses in current models' ability to maintain working memory across multiple charts, perform cross-modal reasoning, and integrate contextual information effectively. ChartNexus establishes a new frontier for evaluating complex chart understanding capabilities, demonstrating that robust multi-chart reasoning remains an open challenge. Our benchmark and comprehensive analysis provide the research community with essential diagnostic tools to advance the development of more capable and practically useful MLLMs for real-world document analysis scenarios.

1 Introduction

Data visualization, especially charts, serves as a fundamental medium for conveying complex information across scientific research, financial reporting, and journalism (Huang et al., 2025). The rapid development of MLLMs has brought unprecedented opportunities for automating the understanding of these visual representations. Chart Question-Answering (ChartQA) has emerged as a critical benchmark task that evaluates how well these models can integrate visual perception with cognitive reasoning. The field has witnessed a remarkable paradigm shift from specialized domain-specific models (Methani et al., 2020) to large-scale foundation models like GPT-40, has driven significant progress in ChartQA.

However, this apparent success masks significant limitations in current MLLM capabilities. Leading MLLMs are approaching or surpassing human-level performance on established

Table 1: Comparison with other benchmarks

Dataset	Real-World Charts	Human Annotated	Multi Charts	Chart Types	Task Types	Unanswer Question	Fine-Grained Difficulty	Multilingual	Document Context
PlotQA (Methani et al., 2020)	✓	✓	×	3	3	Х	Х	Х	Х
ChartQA (Masry et al., 2022)	✓	✓	×	3	4	×	×	×	×
RealCQA (Ahmed et al., 2023)	✓	×	×	5	4	×	×	×	X
ChartLlama (Han et al., 2023)	×	×	×	10	7	×	×	×	×
UniChart (Masry et al., 2023)	✓	×	×	3	4	×	×	×	X
ChartBench (Xu et al., 2023)	×	×	×	9	5	×	×	×	×
ChartSFT (Meng et al., 2024)	✓	×	×	4	5	×	×	×	X
SBS_figures (Shinoda et al., 2024)	×	×	×	10	11	×	×	×	×
Dcga (Wu et al., 2023)	✓	✓	X	6	2	×	✓	×	×
Chart-llm (Ko et al., 2024)	✓	×	×	10	4	×	✓	×	✓
MultiChartQA (Zhu et al., 2025b)	✓	✓	✓	_	4	×	×	×	×
ReachQA (He et al., 2024b)	×	×	×	10	2	×	×	×	×
ChartInsights (Wu et al., 2024)	✓	×	X	7	10	×	×	×	×
RealCQA-V2 (Ahmed et al., 2024)	✓	×	×	5	3	×	×	×	×
StructChart (Xia et al., 2023)	×	×	×	3	3	×	×	×	X
CharXiv (Wang et al., 2024b)	✓	✓	✓	15	6	×	×	×	×
DomainCQA (Zhong et al., 2025)	✓	×	✓	-	6	×	✓	×	X
ChartQA-MLLM (Zeng et al., 2025)	×	✓	X	11	4	×	×	×	×
SPIQA (Pramanick et al., 2024)	✓	×	✓	-	3	×	×	×	✓
ChartX (Xia et al., 2024)	×	×	×	18	7	X	×	×	X
ChartQAPro (Masry et al., 2025)	✓	\checkmark	✓	9	5	✓	×	X	✓
ChartNexus (Ours)	✓	✓	✓	17	6	✓	✓	✓	✓

benchmarks such as FigureQA (Kahou et al., 2017), UniChart (Masry et al., 2023). Yet recent evaluations on more challenging single-chart benchmarks, like ChartQAPro (Masry et al., 2025), DomainCQA (Zhong et al., 2025), reveal substantial performance drops when models encounter diverse visual elements and complex question types. This performance degradation indicates that existing benchmarks lack sufficient complexity to adequately assess model capabilities in realistic chart understanding scenarios.

More critically, a fundamental dimension of chart understanding remains underexplored: multi-chart reasoning. In real-world analytical workflows, users rarely examine charts in isolation. Instead, they must integrate information across multiple visualizations, often combining insights with the surrounding textual context to form a comprehensive understanding. This process demands cross-modal reasoning and multi-hop inference across diverse information sources. Despite its importance in practical applications, most existing benchmarks are confined to single-chart scenarios. Although MultiChartQA (Zhu et al., 2025b) has begun to address this gap, its coverage of diverse chart domains and the complexity of its reasoning chains remain limited and focused only on charts themselves. The research community urgently requires larger, more complex benchmarks with broader real-world scenarios and more extensive reasoning capabilities.

Moving from single-chart to multi-chart QA constitutes a qualitative leap in computational requirements, representing far more than a simple incremental increase in difficulty. Single-chart tasks assess a model's ability to parse visual elements within confined contexts, such as identifying peak values in line graphs, extracting specific data points, or performing straightforward calculations. The analytical scope remains strictly bounded within individual images. Multi-chart QA, particularly requiring multi-hop and comparative reasoning, demands fundamentally different model capabilities. Models must retain information extracted from one chart while processing subsequent visualizations, compare attributes across various visual contexts, and track entities as they evolve across multiple representations. This requires models to manage larger information spaces while executing multi-step inferences across interconnected visual elements.

Therefore, we introduce **ChartNexus**, a novel, challenging benchmark designed to assess the multi-chart reasoning capabilities of MLLMs in authentic document contexts. Chart-Nexus comprises 6,793 carefully selected charts from real-world documents, including scientific papers, government reports, and industry analyses, and features 1,370 high-quality human-annotated QA pairs. Each question demands complex reasoning skills, such as comparative analysis across multiple charts and cross-modal synthesis between visual elements and their surrounding text. We design a comprehensive taxonomy to evaluate these capabilities, featuring 4 high-level difficulty categories and 11 fine-grained subcategories. Our

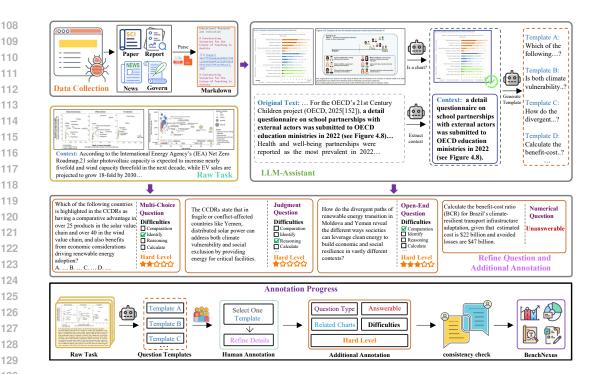


Figure 1: Overview of data construction. We first collect a diverse range of documents from the internet. Then, employ MLLMs to filter the raw data and generate several candidate question templates. Following this, human annotators select the most suitable template, refine the question, and complete the annotation.

comprehensive evaluation of 23 leading MLLMs reveals significant performance degradation compared to single-chart benchmarks. While the best-performing model achieves over 90% accuracy on simple tasks, its score drops by more than half on ChartNexus. Through systematic failure analysis, we identify critical weaknesses in the current MLLMs' ability to maintain information across multiple charts, perform cross-modal reasoning, and effectively integrate contextual information. Our main contributions are as follows.

- We introduce the ChartNexus benchmark, a novel and highly challenging multi-chart QA benchmark featuring charts from authentic real-world documents, human-annotated question-answer pairs, and associated descriptive text, designed to rigorously test complex cross-modal synthesis and reasoning abilities.
- We comprehensively evaluate leading closed- and open-source MLLMs, establishing realistic performance that reveals current models' true capabilities and limitations.
- We provide detailed failure analysis that moves beyond simple accuracy metrics to offer a systematic taxonomy of failure modes, delivering insights into why and how current models struggle with multi-chart reasoning and illuminating directions for future research.

RELATED WORKS

Existing Benchmarks. Early studies lay the foundation for the field, but their data relies on synthetic charts, creating a significant gap with the real world. FigureQA provides over a million QA pairs based on synthetic, scientific-style charts (Kahou et al., 2017). It establishes the task paradigm with templated questions (e.g., identifying max/min values), but its synthetic nature lacks the diversity of real data. Although PlotQA uses charts scraped from the web, ensuring authentic chart styles, its QA pairs are similarly constrained by templates (Methani et al., 2020). ChartQA utilizes the T5 model for auxiliary generation, which improves issues such as unnatural text, resulting in the generation of template-based

Table 2: Chart types in ChartNexus

Bar	Line	Pie	Table	Scatter	Tree	Radar	Area	Other	Sunburst	Graph	Boxplot	Sankey	Heatmap	3D	Candlestick	Funnel
2704	1947	330	37	261	243	20	270	774	17	15	51	19	45	36	11	13

Table 3: Sub-categories of fine-grained difficulties in ChartNexus

Numerical		I	dentifica	tion			Compar	rison	Reasoning					
calculate	element	color	shape	overlap	3d-chart	numerical	trend	a lot of charts	chart context	general knowledge				
415	132	127	145	133	125	63	519	67	516	393				

questions (Masry et al., 2022). These datasets contain vast amounts of data, but the quality of their QA pairs is limited to templates, simple data retrieval, and fixed-vocabulary questions. While these QA pairs include out-of-vocabulary words, which are challenging for models of this era, they are no longer sufficient for evaluating modern MLLMs.

Challenges in Single-Chart Understanding. Given the limitations of these benchmarks, recent research has begun to introduce new dimensions of difficulty into single-chart tasks. ChartLLama uses GPT-4 to construct its tasks. Compelling models to possess advanced chart understanding and code-based plotting abilities to achieve higher scores through new tasks like chart reconstruction, generation, and editing (Han et al., 2023). ChartQAPro aims to address the lack of diversity in ChartQA (Masry et al., 2025) by introducing more complex visual forms such as info-graphics and dashboards, as well as more challenging question types such as conversational, hypothetical, and unanswerable questions. Other benchmarks such as UniChart, MatCha, and ChartAssistant have introduced open-ended questions like inverse-rendering charts into code or tables to test models' deeper understanding of charts (Masry et al., 2023; Liu et al., 2023; Meng et al., 2024).

However, these datasets are limited to understanding single charts. Furthermore, many are annotated using LLMs, making the quality highly dependent on the prompts, creating a significant gap with the needs of professional researchers in real-world chart analysis.

Multi-Chart QA. Beyond single charts, multi-chart QA has recently become a new research hotspot. MultiChartQA crawls charts from websites and features manually annotated questions that test various reasoning abilities of models (Zhu et al., 2025b). SPIQA focuses on scientific charts from top-tier computer science conference papers and uses Gemini to generate candidate questions, which are then refined by humans (Pramanick et al., 2024).

These excellent studies have extended chart QA from single- to multi-chart scenarios, significantly raising the requirements for models' visual reasoning capabilities. However, in real-world scenarios, analysts rarely draw conclusions based on just a few charts alone. Charts are often used as a visualization method to help personnel understand the content of the document more quickly. A deep understanding of charts is inseparable from the specific descriptions provided by their surrounding context. While only simple numerical values and trend information can be obtained from the chart itself, the deeper causal factors are hidden in the contextual text associated with that chart. In real-world document QA scenarios, MLLMs may produce incorrect answers by focusing only on the chart and overlooking crucial information within the surrounding text. For an illustrative example of this failure mode, please refer to the error case Figure 35 in Appendix F.

Due to the lack of benchmarks for multi-chart reasoning that incorporate contextual information, we introduce ChartNexus to effectively evaluate the multi-modal reasoning capabilities of existing models. ChartNexus not only incorporates the pursuit of authenticity, diversity, and complex reasoning from ChartQAPro but also introduces the novel multi-chart reasoning dimension pioneered by MultiChartQA, along with the innovative inclusion of cross-modal reasoning with document context. Through these comprehensive features, ChartNexus establishes a new frontier specifically designed to challenge MLLMs.

3 Construction of ChartNexus

ChartNexus is a benchmark designed to reflect real-world document chart comprehension needs, comprising a total of 6,793 charts and 1,370 question-answering (QA) tasks. All

charts are sourced from real-world documents and span various types of documents and topics. This section details the design principles of the ChartNexus benchmark, its data construction process, the QA annotation methodology, and data analysis of ChartNexus. Our data construction pipeline is illustrated in Figure 1.

3.1 Data Collection

The primary motivation behind constructing ChartNexus is to establish a benchmark that genuinely reflects the cognitive processes involved in analyzing multi-chart documents in real-world scenarios. We collect recent source documents that contain substantive information from real-world, data-intensive websites. This approach ensures that the charts and their semantic relationships are authentic and require reasoning, thus simulating a real-world application while avoiding overlap with the training corpora of existing models as much as possible. Specifically, we collect data, including charts and their relevant contextual information, from 10 distinct data sources.

Scientific Papers from arXiv: Referencing the work of SPIQA (Pramanick et al., 2024), which collects documents from top-tier computer science conference papers and provides all charts along with their descriptions, we select 425 source documents and re-annotate QA pairs to meet our requirements.

In-depth News Reports: We obtain news reports from Statista and the Pew Research Center. While each article from the Pew Research Center contains multiple charts, reports from Statista typically include a single chart. To construct multi-chart reasoning tasks, we search for additional reports on the same topics within Statista and group them to create multi-chart QA entries. Ultimately, we acquire 318 and 334 data entries from Statista and Pew Research Center, respectively.

Government Reports: This category includes reports from the National Bureau of Statistics of China (1,000 entries), the Guizhou Provincial Statistical Bulletin (17 entries), the World Bank (300 entries), and the Organisation for Economic Co-operation and Development (OECD) (282 entries). We download statistical data and research reports, from which we extract charts and their related contexts.

Industry Data: We also collect research reports from specific industries, including the China Internet Network Information Center (CNNIC), Communications World, and the National Consortium for the Study of Terrorism and Responses to Terrorism (START). These reports contain research documents on specialized fields such as the internet, telecommu-

Table 4: ChartNexus dataset statistics. Tokens are calculated based on the Qwen3 tokenizer.

Statistics	Value
Charts	
total charts	3198
Sub-Charts	
- max	57
- mean	4.78
Related Charts Per Qu	estion
- max	7
- mean	3.67
Average Tokens	
context	95.71
question	66.64
answer	125.86
Answer Type	
Multi Choice	335
Judge	200
Numerical	276
Open-End (vocabulary)	187
Open-End (sentence)	263
Unanswer	109

nications, and public safety. We create QA pairs from these sources to investigate the visual-textual understanding capabilities of MLLMs in professional domains.

The data collected from these sources are primarily in PDF or HTML format. For PDF documents, we use MinerU for parsing, converting the text into Markdown, and segmenting charts and tables as images (Wang et al., 2024a; He et al., 2024a). For HTML files, we extract the main body of the text and chart links, saving the content and images locally. While HTML data can be directly converted into a structured document based on its tags, for Markdown data, we parse its syntax, using headings to define the nesting hierarchy, and then convert it to a structured JSON document. It is noteworthy that the initially extracted

images were not all charts. Therefore, we employ Qwen2.5-VL-7B for a preliminary filter, retaining only those images identified as charts.

3.2 Question-Answer Annotation

A core design principle of ChartNexus is that each question must necessitate multi-hop reasoning, compelling a model to synthesize information from at least two charts. To ensure high-quality and complex QA pairs, we employ a human-in-the-loop annotation pipeline that uses an LLM to assist expert annotators, and iteratively refine the annotation process and guidelines, as shown in Figure 1. Before beginning the formal annotation, we first invite graduate students with backgrounds in data analysis and deep learning to conduct a pilot study. Through this process, we finalize the necessary annotation items for the benchmark and provide the LLM in our formal pipeline with the few-shot examples needed to generate candidate questions. Trained annotators then either refine these suggestions or create entirely new questions to ensure they are logically sound, deeply integrated with the provided charts, and require non-trivial reasoning. Crucially, annotators also provide ground-truth answers, with a portion of questions intentionally designed to be unanswerable from the given context to test model robustness.

To validate the quality and consistency of our dataset, we conducted a rigorous verification process. A randomly selected 20% subset of the annotations was independently re-annotated, and we achieved an inter-annotator agreement rate of 93.4%. This high consistency underscores the clarity of our annotation guidelines and the objective nature of the tasks. A final expert review resolved any discrepancies to establish the definitive ground truth. More details on the annotation pipeline, including the pilot study, question generation prompts, and annotator guidelines, are available in the Appendix A.

3.3 Data Analysis

ChartNexus contains 17 types of charts and tables from 3,198 original real-world documents, with bar charts accounting for 39.8%, line charts for 28.7%, pie charts for 3.44%, and the remaining 14 types (such as scatter plots, area charts, etc.) shown in Table 2. Furthermore, 16.69% charts that contain subplots, with an average of 4.78 subplots per chart. This diversity evaluate models' capabilities of processing global complex layouts and handling local information. On average, each context related to the charts contains 95.71 tokens, which brings the challenge of carrying text and vision together.

The distribution of topics about our charts is presented in Figure 2. The charts span 18 different domains, ensuring both breadth and depth. Economics is the most dominant subject. This is followed by Social and Government, which typically involves the analysis of complex socioeconomic data. Furthermore, ChartNexus also covers a wide array of specialized fields, including Science, Finance, as well as environment, education, etc. On average, each task involves 1.65 subject domains. This indicates that many questions require models to perform comprehensive analysis by integrating background knowledge from different fields, which aligns with the interdisciplinary nature of real-world problems.

Our ChartNexus dataset contains question-answer pairs in both English and Chinese, with questions averaging 66.64 tokens and answers averaging 125.86 tokens in length. On average, each question requires information from 3.72 charts to be answered. ChartNexus has 4 types of questions and 6 types of answer formats. The primary formats include Open-End question and Multi-Choice questions. There are 8% questions that are intentionally designed to be unanswerable. To more precisely evaluate specific model capabilities, we classify the task difficulties into 11 fine-grained categories (see Table 3).

4 Experiments

To comprehensively evaluate the capabilities of MLLMs in ChartNexus, we conduct a series of experiments. This section details our experimental setup, presents the overall performance

Table 5: Performance of MLLMs on ChartNexus. We report the Accuracy (%) and F1 score calculated from SEAT method (Zhu et al., 2025a). Bold values indicate the best result within each category.

Model			Que	estion Type				Diffic	culty		Lang	uage				
Wodel	Multi Choice	Judge	Approximate Value	Open-End (vocabulary)	Open-End (sentence)	Unanswer	Numerical	Identify	Compare	Reason	ZH	EN				
		Commercial Model														
GPT-4o	58.62	67.56	41.37	44.43	74.13	23.80	65.60	63.63	47.82	66.46	70.58	62.61				
GPT-o4-mini	62.06	60.81	38.70	44.45	81.71	16.67	68.13	63.44	43.47	69.34	77.94	63.89				
GPT-o3	3 63.79 59.45 21.87 40.7		40.74	83.42	19.04	66.67	61.37	42.23	68.84	80.88	61.84					
Claude-Sonnet4	65.71	70.96	32.22	40.05	72.66	18.19	63.60	60.15	45.43	67.87	79.41	61.25				
Gemini-2.5-Pro	56.89	60.81	15.62	31.48	80.00	40.47	61.94	64.13	39.13	63.50	72.05	58.76				
Gemini-2.5-Flash	55.17	54.05	28.12	35.18	71.26	50.03	56.78	65.97	34.78	57.14	57.35	57.09				
Doubao-Seed-1.6	46.55	43.24	37.50	23.37	70.85	45.23	53.77	59.31	21.73	56.97	67.64	49.23				
Qwen-VL-MAX	62.06	75.67	30.02	50.00	71.42	26.19	65.18	67.58	34.78	67.55	65.70	64.58				
HunYuan-Turbos-Vision	59.64	70.27	29.03	29.62	74.85	11.90	63.60	57.63	30.43	67.46	76.11	58.95				
HunYuan-Vision	61.14	59.45	19.53	20.37	61.14	16.68	50.15	43.05	26.08	55.05	60.29	48.14				
				Oper	n-Source Mod	el										
Ernie-4.5-Turbo-VL	51.72	52.05	31.30	30.18	65.71	45.23	54.25	54.48	26.08	57.14	62.68	51.54				
SmolVLM-2.3B	8.62	10.81	6.25	1.88	1.14	26.19	2.83	10.34	4.34	3.86	2.98	4.93				
Phi-4-multimodal-Instruct	35.08	55.40	12.5	18.51	31.42	9.52	31.86	33.10	13.04	36.60	20.59	35.80				
Bagel	29.31	33.78	15.62	24.07	41.14	38.09	33.64	26.89	17.39	36.49	48.52	30.46				
Kimi-VL-A3B-Thinking	53.44	67.54	25.00	29.62	72.83	21.42	58.75	56.25	43.47	64.88	73.13	56.17				
Qwen2.5-VL-7B	34.48	31.08	35.02	18.51	46.67	54.76	41.13	23.44	21.73	43.54	42.43	44.92				
GLM-4.1V-9B	50.03	49.31	35.61	33.32	50.28	35.71	53.02	39.31	37.73	54.33	63.41	59.23				
InternVL3-14B	57.89	48.49	26.25	18.51	72.21	23.80	52.54	50.17	30.43	54.58	65.14	48.79				
Qwen2.5-VL-32B	59.65	56.02	32.50	20.75	63.36	38.09	56.06	52.55	38.66	47.84	62.90	55.24				
InternVL3-38B	60.34	55.56	31.25	30.18	74.28	28.57	59.62	55.94	39.13	61.72	71.64	56.65				
				C	Chart Model											
ChartGemma	6.89	21.62	3.52	11.53	2.87	21.42	6.30	6.94	13.04	5.68	7.35	8.07				
ChartInstruct-LLama2	24.13	19.17	6.25	5.56	9.19	33.34	12.65	15.17	8.69	12.50	9.09	13.23				
ChartMoe	41.37	20.27	12.52	7.40	24.57	47.61	21.69	23.44	10.27	25.22	21.23					

of various models, and provides an in-depth analysis of their strengths and weaknesses across different tasks, difficulties, and languages.

4.1 Experimental Setup

Model Selection. We select a series of MLLMs that represent the state-of-the-art performance to ensure a comprehensive and impartial evaluation of the field. Our selection encompasses the latest commercial models and leading open-source models with varying parameter scales. For commercial models, we primarily focus on the series from OpenAI, Anthropic, and Google. For open-source models, our main choices include the Qwen and InternVL series, as well as several specialized models designed for chart-related tasks.

Setup. To ensure the reproducibility of our experiments, we follow the official guidelines to call the APIs when testing the commercial models. For the open-source models, we adapt our benchmark with minimal modifications to the example code provided in each model's repository and conducted the experiments with NVIDIA RTX 6000 Ada GPUs.

Evaluation Metric. We employ scoring methods for different types of questions. For "Multiple-Choice", "Judgement", "Open-End vocabulary" questions and "Unanswerable" questions, we report the model's performance using accuracy. Since many answers contain variations, such as different numerical units, that make traditional character-matching methods ineffective, we employ a Qwen3-32B model as an automated evaluator to judge the correctness of the answers. For questions of the "Approximate Value" type (e.g., values estimated from charts), we consider an answer to be correct if the model's estimation fell within a 10% margin of error relative to the ground truth. For "Open-ended sentence" questions, we utilize the SEAT method (Zhu et al., 2025a) to calculate the F1 score. Specifically, this method involves decomposing the question and ground-truth answer into multiple sub-questions and corresponding sub-answers. The F1 score is then computed based on the matching between the model's generated response and these sub-answers.

4.2 Results

Main Results. Commercial models demonstrate superior overall performance. Models like GPT-40 and its brothers and Qwen-VL-MAX achieve the highest scores across most categories. For example, GPT-03 shows strong performance in generating open-ended sentences (83. 42%) and handling queries in Chinese (80. 88%). Open-source models exhibit significant performance variability. While larger models such as InternVL3-38B and Kimi-

Table 6: Performance of MLLMs on ChartNexus using Chain-of-Thought strategy.

Model			Que	estion Type				Diffic	culty		Lang	uage
Trioder .	Multi Choice Judge		Approximate Value	Open-End (vocabulary)	Open-End (sentence)	Unanswer	Numerical	Identify	Compare	Reason	ZH	EN
				Cor	mmercial Mo	del						
GPT-40 Claude-Sonnet4 Gemini-2.5-Pro Doubao-Seed-1.6 Qwen-VL-MAX	65.57 67.47 62.50 47.48 67.82	74.29 72.54 66.97 42.80 79.25	53.71 45.82 31.02 38.65 35.58	38.56 42.47 36.88 23.15 53.25	72.88 70.25 83.20 71.48 76.13	22.31 19.24 45.59 46.33 30.71	64.61 67.47 67.32 54.20 63.45	66.29 62.15 69.33 58.23 72.10	46.34 43.74 44.25 22.85 39.66	65.12 63.45 68.82 63.54 64.14	66.30 75.54 76.88 68.68 66.25	62.82 63.23 64.14 48.63 67.32
				Ope	en-Source Mo	del						
Qwen2.5-VL-7B GLM-4.1V-9B InternVL3-14B Qwen2.5-VL-32B InternVL3-38B	47.61 62.16 56.47 67.85 52.09	50.20 61.14 60.65 62.63 71.42	40.33 45.22 36.56 46.60 58.88	17.30 30.09 25.29 31.37 22.03	49.49 68.77 56.25 72.67 58.96	44.29 17.27 14.37 22.50 20.68	46.59 67.34 63.02 65.77 64.98	28.57 56.09 48.78 60.52 51.21	29.26 43.90 41.46 41.46 53.84	48.72 56.44 62.08 58.08 63.83	43.71 68.76 58.94 64.58 64.13	47.95 58.03 51.12 58.37 63.08
				1	Chart Model							
ChartGemma ChartInstruct-LLama2 ChartMoe	13.16 20.57 61.31	17.70 27.00 19.32	9.16 8.47 13.33	9.74 5.56 11.61	3.41 6.45 26.44	44.51 32.29 48.66	10.17 14.89 29.06	13.25 18.32 17.78	8.10 9.75 14.63	9.16 13.73 31.66	9.36 14.97 26.67	10.82 14.15 31.06

VL-A3B-Thinking are competitive, many smaller models struggle significantly. Models like SmolVLM-2.3B and Phi-4-multimodal-Instruct post scores below 10% in some categories, highlighting that strong multi-chart reasoning has not yet been democratized in smaller, more accessible models. A surprising finding is the underperformance of specialized chart models. ChartGemma, ChartInstruct-Llama2, and ChartMoe all lag considerably behind the leading general-purpose commercial and open-source MLLMs. This suggests that their specialized training has not been sufficient to overcome the complex, multi-step reasoning required by this benchmark.

Performance by Task and Difficulty. Most models perform best on generating openended sentences, where they can formulate descriptive answers. In contrast, they are weakest on tasks requiring precise numerical approximation and identifying unanswerable questions. The difficulty with numerical tasks points to a known weakness in MLLMs for precise calculation. Tasks that require estimation and the inability to correctly identify unanswerable questions indicate a tendency to hallucinate or force an answer from the provided charts. Across the board, models find identification and trend analysis to be easier than tasks requiring deeper reasoning. Performance drops significantly for comparison tasks, which often require integrating information from multiple charts or performing multi-hop logical steps. This underscores that complex reasoning remains a primary challenge for all models. Many leading models perform better in Chinese than in English. This is especially true for models developed in China, such as HunYuan and Kimi, but it can also be observed in the GPT series. This suggests that the visual nature of charts may interact with the language of the query in some ways, or that the training data for these MLLMs has a strong Chinese-language component.

Performance using Chain-of-Thought strategy. The application of a CoT strategy brings consistent performance gains for SOTA commercial models such as GPT-40, Gemini-2.5-Pro, and Qwen-VL-MAX, improving results across most evaluation dimensions. The enhancement is particularly pronounced on tasks that demand precise interpretation of chart data and subsequent logical reasoning or calculation, including "Approximate Value", "Numerical", and "Judge" tasks. For example, the score for Gemini-2.5-Pro on the "Approximate Value" task doubled from 15.62% to 31.02%. This indicates that CoT effectively guides the model in deconstructing complex problems into manageable steps, thus increasing accuracy. However, the efficacy of CoT is not universal and is highly dependent on the model. A crucial finding is that, for many open-source models, employing a CoT strategy led to a significant performance degradation on the "Unanswerable" and "Open-End (sentence)" tasks. As a notable example, the accuracy of GLM-4.1V-9B in the "Unanswerable" task plummeted from 35.71% to 17.27%. This reveals that CoT's effectiveness is deeply linked to a model's ability to suppress hallucinations and follow instructions. For models that lack specific fine-tuning on CoT-style data or possess insufficient reasoning abilities, forcing a step-by-step thought process can introduce interference, leading to logical confusion or an outright failure to produce a final answer. Furthermore, the impact of CoT varies between different types of tasks. It excels in tasks that require deep reasoning, but is less effective and even harmful for tasks with simple information extraction. For example, while

433

434

435

436

437

438

439

440

441

442

443

444

445 446

447

448 449

450

451

452

453

454

455

457

458

459

460

461

462

463

464

465

466

467 468

469 470 471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

GPT-4o's performance on "Approximate Value" improved by more than 12%, its score on "Open-End (vocabulary)" slightly decreased. This suggests that for simple, direct queries, the additional inferential steps introduced by CoT are unnecessary and may increase the risk of error highlighting the need for a dynamic prompting strategy in practical applications.

Performance on Chart-Specific Models. The results reveal that common MLLMs consistently outperform models specifically designed or fine-tuned for charts. This superiority is maintained across most tasks and persists regardless of whether CoT prompting strategies are used. While chart-specific models are highly optimized for existing benchmarks, the strong performance on curated datasets does not translate to the complex real-world document question-answering. Consequently, we think a more promising direction for future research is how to effectively adapt the powerful, generalizable abilities of foundation models to the document QA domain. The goal should be to leverage and enhance their core analytical capabilities for this task, rather than building specialized models that may lack real-world applicability.

Key Insights and Observations. Our experimental evaluation yields several critical insights into the current state of multi-chart question-answering. (1) Top-tier commercial models are the most capable and balanced performers. However, even these leading models struggle with numerical precision and complex reasoning, showing there is still significant room for improvement. (2) The open-source models present a wide spectrum of capabilities. While a few large models are competitive, the majority are not yet equipped to handle complex multi-chart reasoning tasks, indicating that further research and scaling are needed to close the performance gap. (3) Models explicitly trained for chart understanding did not outperform general-purpose MLLMs. This suggests that the ability to reason over complex visual data is more dependent on the scale of the foundational model and general reasoning capabilities than on narrow, task-specific training. (4) The most significant performance drops across all models occurred in tasks that required multi-step reasoning, numerical computation, and cross-chart comparisons. Future research should focus on enhancing these deep reasoning abilities to unlock the next level of performance in visual data understanding. (5) For complex chart analysis, CoT is a useful technique for achieving model's full potential. However, CoT prompts must be customized and optimized for specific models. Directly applying a prompt designed for a model like GPT-4 to an open-source alternative is likely to be counterproductive. (6) By further analyzing specific failure cases, we find that the models' failures are not merely due to visual perception issues, but more profoundly stem from a lack of cognitive capabilities such as working memory and multi-step planning. Many questions within ChartNexus require the model to perform multi-hop to compare data and to understand the implicit logic embedded within the context. This presents a significant challenge to the models' logical discrimination and reasoning abilities.

5 Conclusion

This study introduces ChartNexus, a novel and challenging multi-chart question-answering benchmark that addresses a critical gap in evaluating MLLMs for real-world document analysis scenarios. Unlike existing benchmarks that focus on isolated chart understanding, ChartNexus evaluates models' ability to synthesize information across multiple interrelated charts within authentic document contexts, incorporating surrounding textual information and complex reasoning chains. Our benchmark comprises 6,793 real-world charts and 1,370 meticulously human-annotated question-answer pairs, systematically organized through a comprehensive taxonomy. Our evaluation of 23 state-of-the-art MLLMs reveals substantial limitations in current multi-chart reasoning capabilities. While leading models achieve over 90% accuracy on single-chart benchmarks, their performance drops by more than half on ChartNexus, demonstrating that multi-chart reasoning remains a largely unsolved challenge. Through systematic failure analysis, we identify critical weaknesses in models' ability to retain information across multiple visualizations, perform cross-modal reasoning, and execute multi-hop inferences. By shifting evaluation focus from isolated visual perception to complex cross-modal synthesis, ChartNexus provides essential diagnostic tools for advancing MLLM development and serves as a roadmap for developing more capable models for authentic document analysis scenarios.

References

- Saleem Ahmed, Bhavin Jawade, Shubham Pandey, Srirangaraj Setlur, and Venu Govindaraju. Realcqa: Scientific chart question answering as a test-bed for first-order logic. In *International Conference on Document Analysis and Recognition (ICDAR)*, pp. 66–83. Springer, 2023.
- Saleem Ahmed, Ranga Setlur, and Venu Govindaraju. Realcqa-v2: Visual premise proving a manual cot dataset for charts. arXiv preprint arXiv:2410.22492, 2024.
- Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang Zhang. Chartlama: A multimodal llm for chart understanding and generation. arXiv preprint arXiv:2311.16483, 2023.
- Conghui He, Wei Li, Zhenjiang Jin, Chao Xu, Bin Wang, and Dahua Lin. Opendata-lab: Empowering general artificial intelligence with open datasets. arXiv preprint arXiv:2407.13773, 2024a.
- Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang, and Xuanjing Huang. Distill visual chart reasoning ability from llms to mllms. arXiv preprint arXiv:2410.18798, 2024b.
- Kung-Hsiang Huang, Hou Pong Chan, May Fung, Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu Chang, and Heng Ji. From pixels to insights: A survey on automatic chart understanding in the era of large foundation models. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 37(5):2550–2568, 2025. doi: 10.1109/TKDE.2024.3513320.
- Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Ákos Kádár, Adam Trischler, and Yoshua Bengio. Figureqa: An annotated figure dataset for visual reasoning. arXiv preprint arXiv:1710.07300, 2017.
- Hyung-Kwon Ko, Hyeon Jeon, Gwanmo Park, Dae Hyun Kim, Nam Wook Kim, Juho Kim, and Jinwook Seo. Natural language dataset generation framework for visualizations powered by large language models. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI)*, pp. 1–22, 2024.
- Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, and Julian Martin Eisenschlos. Matcha: Enhancing visual language pretraining with math reasoning and chart derendering. In *The 61st Annual Meeting Of The Association for Computational Linguistics (ACL)*, pp. 12756–12770, 2023.
- Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. In Findings of the Association for Computational Linguistics: ACL 2022, pp. 2263–2279, 2022.
- Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. Unichart: A universal vision-language pretrained model for chart comprehension and reasoning. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 14662–14684, 2023.
- Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmohammadi, Megh Thakkar, Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty. ChartQAPro: A more diverse and challenging benchmark for chart question answering. In Findings of the Association for Computational Linguistics: ACL 2025, pp. 19123–19151, 2025.
- Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo. Chartassistant: A universal chart multimodal language model via chart-to-table pre-training and multitask instruction tuning. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 7775–7803, 2024.

- Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. Plotqa: Reasoning over scientific plots. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1516–1525, 2020.
- Shraman Pramanick, Rama Chellappa, and Subhashini Venugopalan. SPIQA: A dataset for multimodal question answering on scientific papers. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
- Risa Shinoda, Kuniaki Saito, Shohei Tanaka, Tosho Hirasawa, and Yoshitaka Ushiku. Sbs figures: Pre-training figure qa from stage-by-stage synthesized images. arXiv preprint arXiv:2412.17606, 2024.
- Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu, Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content extraction. arXiv preprint arXiv:2409.18839, 2024a.
- Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv: Charting gaps in realistic chart understanding in multimodal LLMs. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b.
- Anran Wu, Luwei Xiao, Xingjiao Wu, Shuwen Yang, Junjie Xu, Zisong Zhuang, Nian Xie, Cheng Jin, and Liang He. Dcqa: Document-level chart question answering towards complex reasoning and common-sense understanding. arXiv preprint arXiv:2310.18983, 2023.
- Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, and Yuyu Luo. ChartInsights: Evaluating multimodal large language models for low-level chart question answering. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 12174—12200, 2024.
- Renqiu Xia, Haoyang Peng, Hancheng Ye, Mingsheng Li, Xiangchao Yan, Peng Ye, Botian Shi, Yu Qiao, Junchi Yan, and Bo Zhang. Structchart: On the schema, metric, and augmentation for visual chart understanding. arXiv preprint arXiv:2309.11268, 2023.
- Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye, Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model for complicated chart reasoning. arXiv preprint arXiv:2402.12185, 2024.
- Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench: A benchmark for complex visual reasoning in charts. arXiv preprint arXiv:2312.15915, 2023.
- Xingchen Zeng, Haichuan Lin, Yilin Ye, and Wei Zeng. Advancing multimodal large language models in chart question answering with visualization-referenced instruction tuning. *IEEE Transactions on Visualization and Computer Graphics (TVCG)*, 31(1):525–535, 2025. ISSN 1077-2626. doi: 10.1109/TVCG.2024.3456159.
- Ling Zhong, Yujing Lu, Jing Yang, Weiming Li, Peng Wei, Yongheng Wang, Manni Duan, and Qing Zhang. Domaincqa: Crafting expert-level qa from domain-specific charts. arXiv preprint arXiv:2503.19498, 2025.
- Junnan Zhu, Jingyi Wang, Bohan Yu, Xiaoyu Wu, Junbo Li, Lei Wang, and Nan Xu. Tableeval: A real-world benchmark for complex, multilingual, and multi-structured table question answering. arXiv preprint arXiv:2506.03949, 2025a.
- Zifeng Zhu, Mengzhao Jia, Zhihan Zhang, Lang Li, and Meng Jiang. MultiChartQA: Benchmarking vision-language models on multi-chart problems. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL)*, pp. 11341–11359, 2025b.

APPENDIX A Data Annotation **B** Chart Examples C Details of Evaluation Metrics D Model Configurations and Prompting Methods E QA Examples F Cases of Error Analysis

A DATA ANNOTATION

A.1 Data Collection Principles

The construction of our benchmark was predicated on a set of rigorous principles designed to ensure its validity, relevance, and robustness for evaluating the chart-to-code generation capabilities of MLLMs.

Mitigation of Data Leakage through Novel Data Sourcing. A primary consideration was the reduction of potential data leakage, wherein a model's performance could be artificially inflated due to the inclusion of benchmark data in its pre-training corpus. To counteract this, we deliberately avoided common online repositories and auto-generated examples. Instead, our dataset was exclusively curated from contemporary and domain-specific sources, including academic papers from arXiv, economic reports from the World Bank¹ and the Organisation for Economic Co-operation and Development (OECD)², sociological studies from the Pew Research Center³, Statista⁴, various public government datasets⁵⁶ and industries research reports, including the China Internet Network Information Center (CNNIC)⁷, Communications World⁸, and the National Consortium for the Study of Terrorism and Responses to Terrorism (START)⁹. This methodology ensures that the benchmark serves as a true test of a model's generalization and reasoning abilities.

Adherence to Real-World Application Scenarios. The benchmark is designed to reflect the authentic data visualization requirements of users in practical settings. By sourcing charts directly from academic, financial, and governmental publications, we ensure that each task is grounded in a genuine use case. This alignment with real-world scenarios enables a more precise and relevant evaluation of LMMs, steering their development toward greater utility in professional and research contexts.

Comprehensive Coverage of Chart Type and Topic. Our sourcing strategy naturally produces a dataset with significant diversity in both chart typology and complexity. The collection intentionally moves beyond rudimentary chart types (e.g., simple bar, line, and pie charts) to encompass a wide spectrum of visualizations used in specialized fields. Furthermore, the benchmark includes charts with varying levels of information density and structural complexity, from single-series plots to multi-faceted figures with composite elements. This ensures a thorough assessment of a model's ability to handle a wide range of visualization challenges.

A.2 Data Annotation Principles And Pipeline

A.2.1 Principles

Emulation of Authentic User Inquiries. All questions must be framed to reflect plausible, real-world scenarios. The objective is to simulate the analytical tasks a user would perform when encountering a multi-chart figure. Therefore, questions are designed to be pragmatic, focusing on core analytical goals such as comparison, trend identification, summarization, or anomaly detection. Abstract or contrived questions that do not correspond to a genuine analytical intent are explicitly disallowed.

Mandatory Synthesis of Multi-Chart Information. A fundamental criterion is that every question must necessitate the integration of information from two or more individual charts to be answered correctly. Questions that can be resolved by analyzing a single sub-

```
694
           ^1https://openknowledge.worldbank.org
695
           <sup>2</sup>https://www.oecd.org/en.html
696
           ^3https://www.pewresearch.org/publications
697
           4https://www.statista.com
698
           ^5https://www.stats.gov.cn/sj/zxfb
699
           ^6https://www.guizhou.gov.cn/zwgk/zfsj/tjgb
           <sup>7</sup>https://www.cnnic.cn/6/180/index.html
700
           8https://www.cww.net.cn/subjects/cha/download
           9https://www.start.umd.edu/publications
```

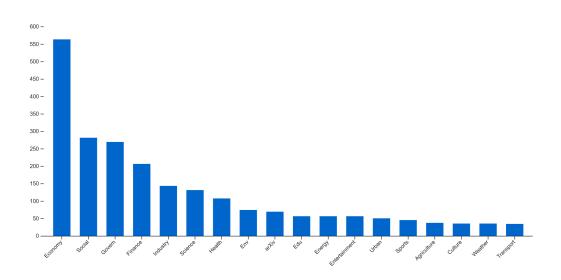


Figure 2: Different chart types in ChartNexus.

chart in isolation are considered invalid for this benchmark. This principle ensures that the tasks specifically target the model's capability for cross-referencing and synthesizing data from disparate visual sources within a single scene. For example, a valid question might ask to correlate the trend in a line chart with the composition shown in a corresponding pie chart.

Requirement for Contextual Understanding in Complex Reasoning. For questions categorized as requiring complex reasoning, the model must do more than simply extract and compare data points. These questions are constructed to require the integration of contextual information derived from the figure's title, caption, or other textual elements. The answer should depend on a holistic understanding of the scene, compelling the model to, for instance, explain a trend visible in the charts by referencing a cause mentioned in the accompanying text. This tests a deeper level of multimodal comprehension beyond basic visual data retrieval.

A.2.2 PIPELINE

Automated Data Pre-processing Pipeline. The initial stage involved the automated extraction and structuring of chart-centric data from raw PDF documents. First, each source document was parsed into Markdown format using the Mineru library. Following this, a crucial filtering step was executed where the Qwen2.5-VL model programmatically analyzed all extracted images, identifying and discarding those irrelevant to the ChartNexus theme, such as natural photographs or schematic diagrams. The refined Markdown content was then reconstituted into a structured JSON format using markdown-it-py. In the final pre-processing step, a hybrid approach was utilized combining rule-based heuristics and the Qwen3 model to extract salient contextual information (e.g. captions and surrounding paragraphs) associated with each chart. This automated pipeline resulted in a high-quality candidate dataset primed for human annotation.

Pilot Annotation: We use Label Studio¹⁰ to construct the annotation tasks, allowing for iterative refinement of the requirements. Initially, graduate students with backgrounds in data analysis and deep learning conduct a pilot annotation. Through this process, we finalize the necessary annotation items for the benchmark. Based on this experience, we categorize the QA formats into five types: multiple-choice, judgment, vocabulary-answer,

¹⁰A labeling platform: https://labelstud.io

numerical estimation, and open-ended questions. In addition to the QA pair, annotators were required to specify the question's difficulty level and its key difficulties. The pipeline of our annotations is illustrated in the corresponding Figure 1.

Reference Question Generation: In the formal annotation phase, we summarize the question templates from the pilot stage. These manually crafted seed questions served as few-shot examples for an LLM. The model was instructed to mimic the reasoning patterns of these examples and generate multiple sets of candidate questions for each task based on the provided charts and context, offering a convenient starting point for human annotators.

Manual Question Annotation: We recruit well-trained annotators and provide them with a meticulous annotation guide. They are tasked with either refining the questions generated by an LLM based on specific chart information or using these reference templates as inspiration to formulate new questions with greater reasoning depth. This process ensures that each question is closely related to the charts, logically self-consistent, and requires the synthesis of information from at least two charts.

Answer Annotation: Subsequently, annotators are required to answer these questions and write the corresponding ground-truth answers. It is important to note that not all annotated QA pairs are answerable; a portion of the questions is intentionally designed to be unanswerable based on the provided charts.

Detailed Annotation Schema. The annotation process was systematically divided into two primary, sequential tasks: chart-level annotation and QA pair annotation.

- A. Chart Annotation Task: This initial task focused on the structural and typological properties of the visual elements. Annotators were required to label the primary chart type (e.g., bar, line, scatter plot) and determine if the image contained sub-charts, quantifying them if present.
- B. Question-Answer Pair Annotation Task: This second, more complex task involved assessing and labeling the generated QA pairs. Annotators were required to provide multiple labels for each pair:
- Suitability: A binary judgment on whether the associated chart combination is appropriate for formulating a reasonable and unambiguous question.
- Answer Type: Classification of the correct answer's format, categorized as Numerical, Open-End, Boolean (True/False), or Multiple Choice.
- Reasoning Skill: Identification of the core challenge or difficulty element the question targets, such as Numerical Calculation, Visual Grounding (locating specific elements), or Comparative Reasoning (comparing trends across charts).

Answerability and Difficulty: A final assessment indicating if the question is answerable given the provided context, accompanied by a quantitative score representing its overall difficulty.

B CHART EXAMPLES

This section presents each chart type in ChartNexus. It encompasses a structure of 17 types. The categories comprise of: Line, Bar, Pie, Scatter, Radar, Candlestick, Boxplot, Heatmap, Graph, Tree, Sunburst, Sankey, Funnel, 3D, Area, and Table. Here are some examples for different chart types in our ChartNexus.

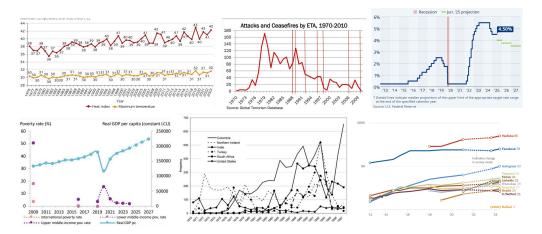


Figure 3: Examples of Line Charts in ChartNexus

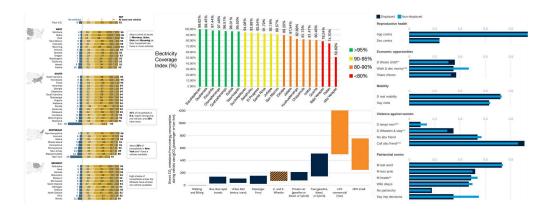


Figure 4: Examples of Bar Charts in ChartNexus

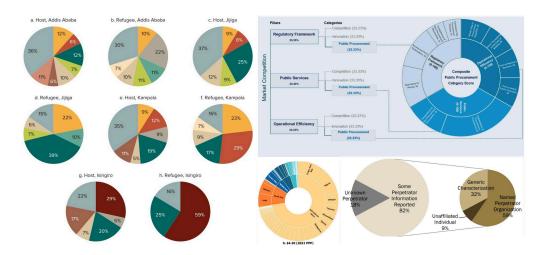


Figure 5: Examples of Pie Charts in ChartNexus

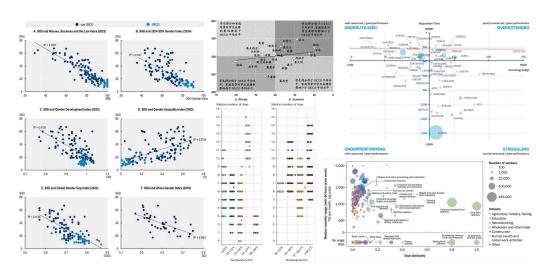


Figure 6: Examples of Scatter Charts in ChartNexus

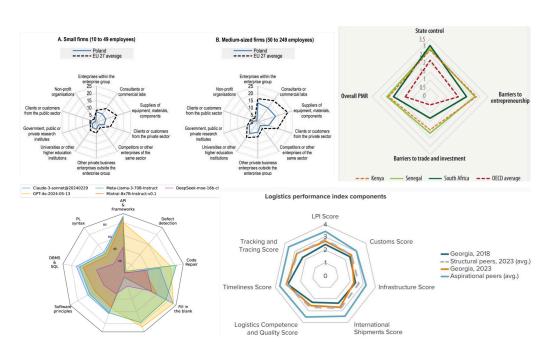


Figure 7: Examples of Radar Charts in ChartNexus

Figure 8: Examples of Candlestick Charts in ChartNexus

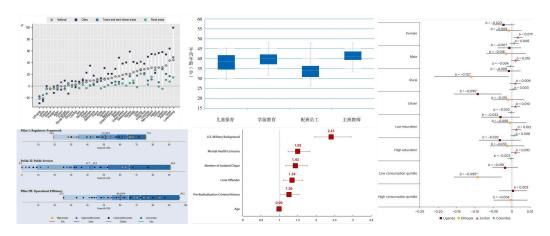


Figure 9: Examples of Boxplot Charts in ChartNexus

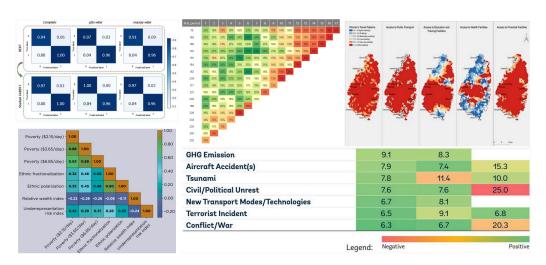


Figure 10: Examples of Heatmap Charts in ChartNexus

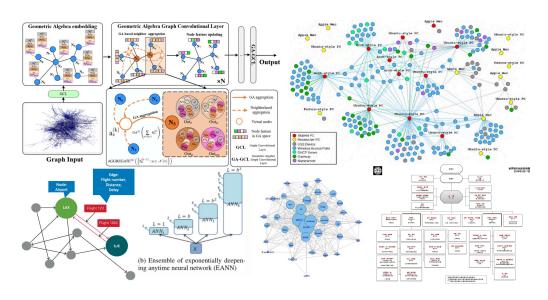


Figure 11: Examples of Graph Charts in ChartNexus

Figure 12: Examples of Tree and Treemap Charts in ChartNexus

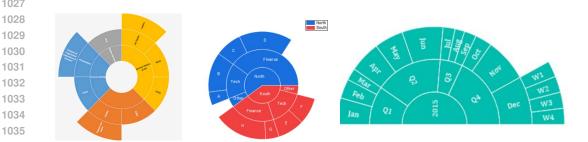


Figure 13: Examples of Sunburst Charts in ChartNexus

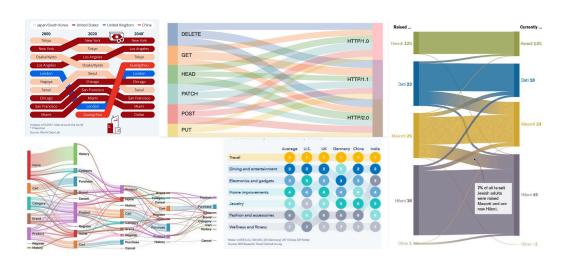


Figure 14: Examples of Sankey Charts in ChartNexus

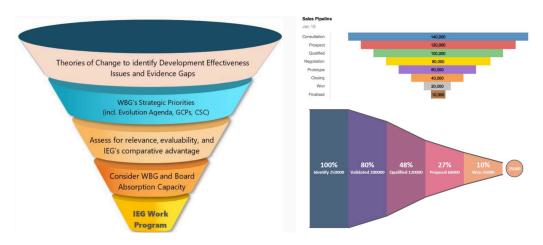


Figure 15: Examples of Funnel Charts in ChartNexus

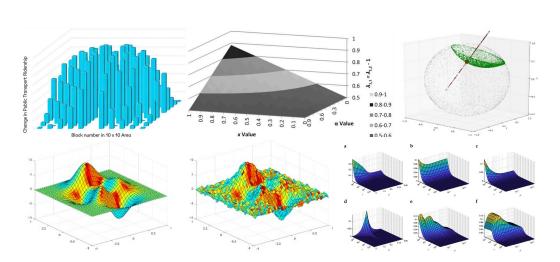


Figure 16: Examples of 3D Charts in ChartNexus

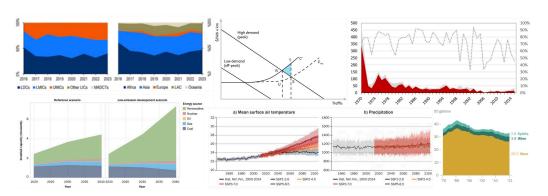


Figure 17: Examples of Area Charts in ChartNexus

_		×1	med enti		- lel								_		_	-	-			-					-	_									
_		Nai	neu enu	ty recog	muon					Model	Model Train en fr es de el bg ru tr ar vi th zh hi sw ur avg																								
	System	nw (ID)	be	bn	mz	pt	tc	wb	OOD Avg								ine trans	lated in	o Evglu								System	bc	bn	mz	nw	pt	tc	wb	Avg
Baselines	Single task Hard parameter sharing Low supervision Cross-stitch network Sluice network	95.04 94.16 94.94 95.09	93.42 91.36 91.97 92.39 93.50	93.81 93.18 93.69 93.79	93.25 93.37 92.83 93.05	94.29 95.17 94.26 94.14	94.27 93.23 93.51 93.60	92.52 92.99 92.51 92.59	93.59 93.22 93.13 93.26	ROBERTA	ORIG BT-ES	91. 91. 90. 90.	6 85.7 4 86.8 3 82.7	7 87,4 0 87,4 2 84.3 1 86.3	4 85.7 2 82.6 3 84.5	85.1 85.7 81.9	85.1 85.4 82.0 84.1	84.4 8 79.3 7 82.2 7		5 78.7 1 79.0 5 75.0	78.2 79.3 73.7 77.3	81.1 81.8 77.5	76.3 77.6 70.9 75.2	72.7 7 73.5 T 67.8 6 72.5 7	6.8 77.7 atc 1.5 81.7 atz 3.6 82.3 atz 7.2 77.9 atz 1.2 80.8 atz 2.5 81.3 atz	Baselines	Single task Hard parameter sharing Low supervision Cross-stitch network Sluice network	90.80 90.31 90.95 91.40	92.20 91.73 91.70 92.49	91.97 92.33 92.37 92.59		97.13 96.40 96.87 96.99	90.59 90.93 91.47	92.95 92.84 93.82 94.00 94.40	92.35 92.86 93.21
		Simplit	ied sem	intic rol	e labelin	g							8 83.3 8 84.4		6 84.2 3 <u>84.7</u>	84.0 84.1		81.6 7 82.0 7	3.4 79. 3.8 80.						0.1 80.0 at 6 1.3 80.5 at 3	Outs	State network		it-of-dor			97.47	90.99	74.40	73340
slines	Single task Hard parameter sharing	97.41 97.09	95.67 95.50	95.24 95.00	95.86 95.77	95.28 95.57	98.27 98.46		96.36 96.32				4 84.4			81.9	83.6	80.1 8		81.8	78.3				4.5 81.0 m2	lines	Single task Hard parameter sharing	85.95 86.31	87.73 87.73	86.81 86.96	84.29 84.99	90.76		73.56	84.97
Base	Low supervision Cross-stitch network	97.26 97.32	95.57 95.44	95.09 95.14	95.89 95.82	95.50 95.57	98.68 98.69	97.79 97.67	96.42 96.39	XLM-R	BT-FI	89.	5 864	0 86.3	9 <u>86.5</u> 2 86.2 3 85.6	83.9		83.4 8			81.2	83.9	80.1	75.2 7	7.1 83.1 asz 8.1 83.2 asz 6.8 82.9 asz	Base	Low supervision Cross-stitch network	86.53 87.13	88.39 88.40	87.15 87.67	85.02 85.37			73.24 73.97	
Ours	Sluice network	97.67	95.64	95.30	96.12	95.07	98.61	98.01	96.49								85.5	83.4 8	3.0 82	83.6	80.5	83.6	80.4	76.5 7	7.9 83.4 sa.1	Ours	Sluice network	87.95	88.95	88.22	86.23	91.87	85.32	74.48	86.15

Figure 18: Examples of Tables in ChartNexus

C DETAILS OF EVALUATION METRICS

In this section, we present the details of evaluation metrics, including prompts in calculating Accuracy and F1 Score from SEAT Method (Zhu et al., 2025a).

Accuracy for Close-Ended Questions. For question categories with definitive, single-ground-truth answers—specifically Multiple Choice, True/False, Numerical Calculation, and Open-End(vocabulary) (single word/phrase) questions—we utilize Accuracy as the primary evaluation metric. A model's response is considered correct only if it exactly matches the ground-truth answer. The overall accuracy is calculated as:

$$Accuracy = \frac{Number of Correct Predictions}{Total Number of Questions}$$
 (1)

This strict metric is appropriate for tasks where precision is unambiguous and semantic variance is not a factor.

F1 Score for Open-Ended Questions. For open-ended questions that require a full sentence as an answer, a direct string match is often inadequate, as semantically equivalent responses can have different phrasings. To account for this, we evaluate these responses using the **F1 Score**, which provides a balanced measure of precision and recall. The calculation is facilitated by the **SEAT** methodology, which is designed to handle semantic similarities.

To standardize the evaluation, we first process the model's raw generation to isolate the final answer. This is achieved using a specifically designed extraction prompt, presented below:

General prompt for extracting predict answer from model's response

You will be given a question about some charts. You need to answer this question based on the provided charts as well as its related context. The context corresponding to each chart will be placed within <context> </context> tags, and the question to be answered will be placed within <question> </question> tags.

Your answer should be a single word, number, or phrase. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact notation shown in the chart. If there are multiple answers, put them in brackets using this format ["Answer1", "Answer2"].

Figure 19: General prompt for extracting the answer from the model's output, which will pass to Qwen3-32B for extraction.

The following are prompts for evaluating the model's output.

General prompt for evaluating answer

System Prompt:

You are a helpful assistant. You need to compare a given answer with the ground truth to determine if it is correct. Always place your final answer within <answer></answer> tags.

User Prompt:

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within predict> tags, and the ground truth answer will be placed within <gt>/gt> tags.

The predicted answer may contain some thought or reasoning content in addition to the final answer. You must first find the correct answer: a word, phrase, or number within the prediction, and then compare it with the ground truth.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Question: <question>{question}</question>
Predict Answer: redict>{predict}

Ground Truth: <gt>{gt}</gt>

Figure 20: Prompt to evaluate model's response.

Evaluating Multi-Choice questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within c/predict></predict> tags, and the ground truth answer will be placed within <gt>/gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must first extract the correct answer from within the prediction. The answer should be a single multiple-choice option (e.g., A, B, C, etc.). You should then compare this extracted option with the ground truth.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 21: Prompt to evaluate Multi-Choice questions.

Evaluating Numerical-Calculation questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within predict> tags, and the ground truth answer will be placed within <gt>/gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must first extract the correct answer from within the prediction, which should be an estimated numerical value. You should then compare this extracted number with the ground truth.

The predicted numerical value is considered correct if it is within a 5% margin of error relative to the ground truth value.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 22: Prompt to evaluate Numerical questions.

Evaluating True/False questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The question will be placed within <question></question> tags, predicted answer will be placed within predict></predict> tags, and the ground truth answer will be placed within <gt>/gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must first extract the correct answer from within the prediction. The answer should be a response to a true/false or yes/no type of question (e.g., 'true', 'false', 'yes', 'no').

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 23: Prompt to evaluate True/False questions.

Evaluating Open-End questions by SEAT ## 目标 请将大模型的回答与用户提供的参考答案进行对比,步骤如下: 1. 提取关键答案 1. 定位大模型回答的"最终总结",逐个对照参考答案中的子问题,从大模型的"最终总结"中提 取每个问题对应所有关键回答。关键回答应仅包含核心的、直接回答问题的内容。 2. 对已识别出的某个关键回答进行补充说明的内容,应与该关键回答合并为一个整体,不要拆 分成新的答案要素。只有在内容明显独立、可与参考答案中不同要素相对应时,才视为新答 案。 2. 对比并标注:将提取出的回答与参考答案逐一对比,按以下标准进行标注: 1. 错误答案(false): 如果大模型多输出了一些要素,并且这些要素与参考答案无法对应或仅是 多余的补充信息(不是在同一个要素中补充,而是产生了多余答案要素),则判定为错误。 2. 正确答案(true): 如果该条回答与参考答案某一要素含义一致或高度吻合,视为正确。 3. 注意:每个从大模型回答中提取出的答案要素,都要有相应的 true 或 false 标签,确保每个回 答要素都被检查。 ### 输出格式 ```\n{{\n "问题列表": [\n {{\n "问题": "子问题1",\n "参考答案": ["答案1", "答案2"],\n 型的回答": ["关键回答1", "关键回答2"],\n "是否正确": [true, false]\n }},\n {{\n "参考答案": ["答案1"],\n"大模型的回答": ["关键回答1", "关键回答2", "关键回答3", "关 键回答4"],\n "是否正确": [false, true, false, false]\n }}\n]\n}\n\`` ### 参考答案 {answer}

Figure 24: Prompt to evaluate Open-End(sentence) questions by SEAT method.

D Model Configurations and Prompting Methods

D.1 Generation Configurations

For open-weight models, we set the temperature $\tau=0.1$ to achieve optimal results, while for proprietary models, we set the temperature $\tau=0$ for greedy decoding. For all models, we set the maximum generation length to 4096. Additionally, we use BF16 for model inference for open-weight models. All models are inferred on RTX 6000 Ada.

D.2 Prompts

To investigate the model's reasoning capabilities, we conducted experiments using a Chain-of-Thought (CoT) prompting strategy. This approach was implemented by modifying the model's default system prompt to explicitly elicit a step-by-step reasoning process before providing a final answer.

The specific system prompt employed for our CoT experiments is detailed below:

CoT prompt

System Prompt:

You are a helpful assistant for a question-answering task.

Your goal is to answer the question based on the provided contexts.

First, think step-by-step and write down your reasoning process within <reasoning></reasoning> tags. This process should break down how you use the contexts to arrive at the answer.

Finally, provide your final answer within <answer></answer> tags.

Figure 25: Prompt for CoT experiments.

After the system prompt, the model is instructed to generate associated answer for the given question.

Extracting predict answer for Multi-Choice questions

You will be given a multiple-choice question about charts. You need to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context></context>tags, and the question will be placed within <question></question> tags.

Your answer should be the letter of the correct option (e.g., A, B, C, etc.). If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 26: Prompt to extract answers from model's responses.

Then, the context, images and question will be fed into the model.

Extracting predict answer for Numerical-Calculation questions

based on the provided charts and its related context. The context for each chart will be placed within <context></context> tags, and the question will be placed within <question></question> tags.

You will be given a numerical question-answering task about charts. You are required to answer this question

Your answer should be the most appropriate approximate numerical value. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact notation shown in the chart. If there are multiple answers, put them in brackets using this format ["Answer1", "Answer2"].

Figure 27: Prompt to extract answers for Numerical questions.

Extracting predict answer for True/False questions

You will be given a true/false question about charts. You are required to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context></context> tags, and the question will be placed within <question></question> tags.

Your answer should be either 'true' or 'false'. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 28: Prompt to extract answers for True/False questions.

Extracting predict answer for Open-End questions

You will be given an open-ended question about charts. You are required to answer this question based on the provided charts and its related context. The context for each chart will be placed within <context> </context> tags, and the question will be placed within <question></question> tags.

Your answer should be a logical and well-reasoned explanation that addresses the question. If the question is unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 29: Prompt to extract answers for Open-End(vocabulary) questions.

E QA EXAMPLES

In this section, we use several examples in ChartNexus to illustrate our annotation methodology for different answer types and difficulty factors.

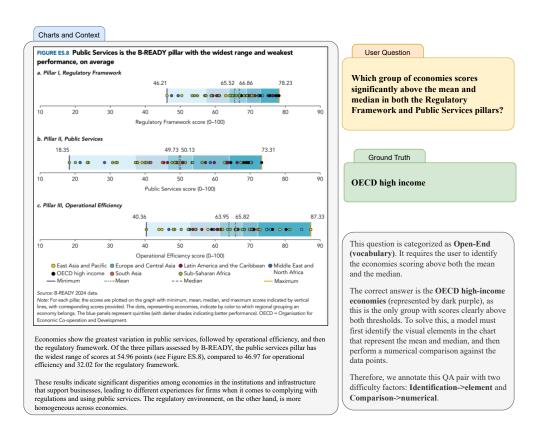


Figure 30: Example 1 of Annotations.

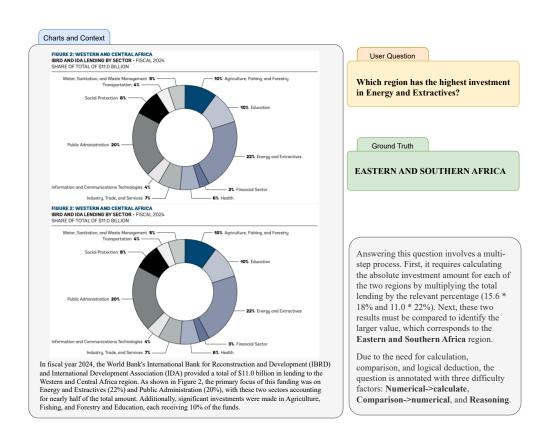


Figure 31: Example 2 of Annotations.

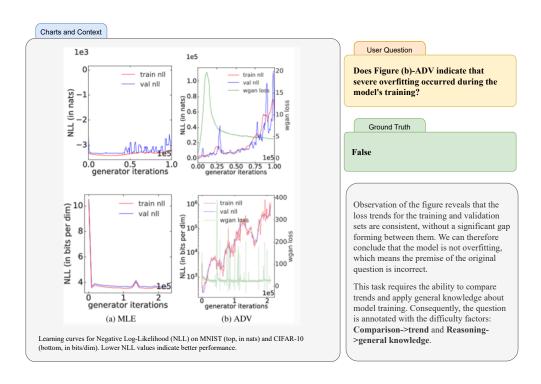


Figure 32: Example 3 of Annotations.

F CASES OF ERROR ANALYSIS

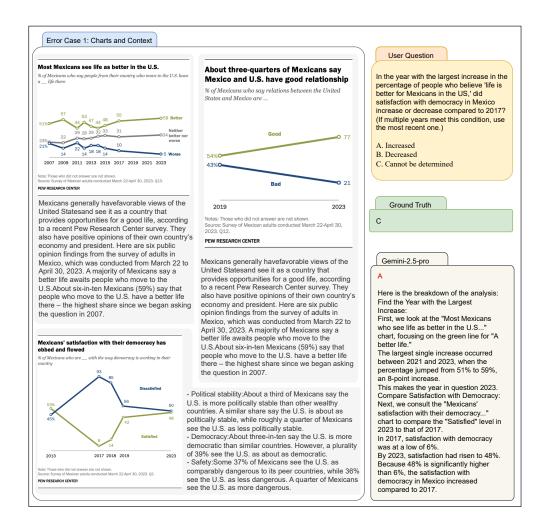


Figure 33: Error case 1. For this case, the correct procedure is to first identify the year with the largest increase for the "Better" metric in the top-left chart (which is approximately 2012). Then, this year's "satisfaction with democracy in Mexico" should be compared with the 2017 value. However, since the satisfaction data for 2012 is not provided, the correct answer is "C. Cannot be determined". Gemini-2.5-pro erred by using incorrect data from 2023 for comparison.

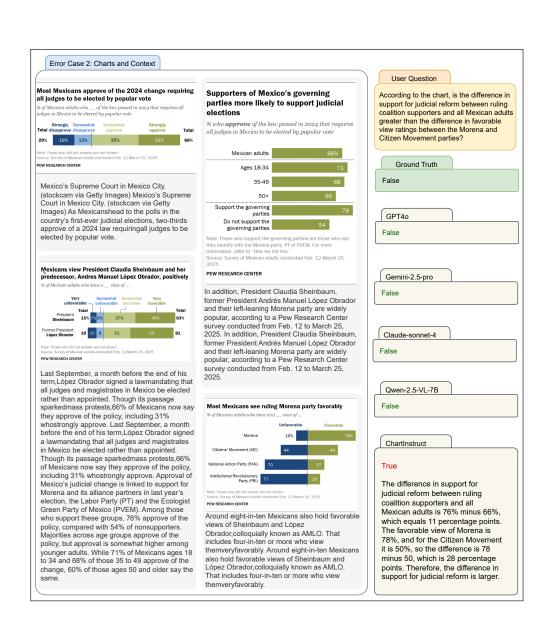


Figure 34: Error case 2. In this case, the general-purpose MLLMs successfully identified the required elements, whereas the specialized chart model, ChartInstruct, failed. This outcome suggests that models trained primarily on existing chart benchmarks may not be well-suited for the complexities of real-world document question-answering scenarios.

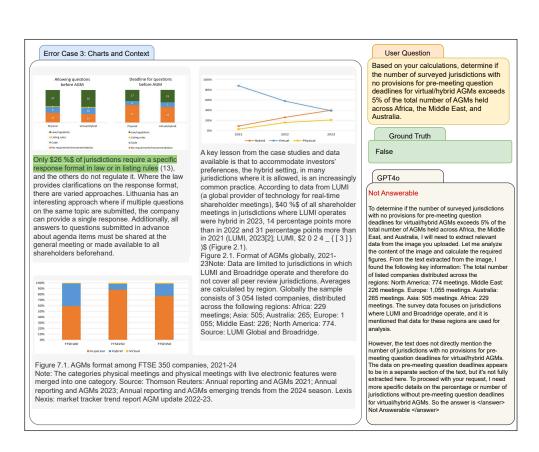


Figure 35: Error case 3. In this case, GPT-40 focused only on the chart and overlooked the accompanying context. The highlighted section in the context implicitly states the total value, and the model could only answer correctly by integrating information from both the document context and the chart itself. This highlights how our benchmark better reflects real-world document understanding scenarios.