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Abstract

While Multimodal Large Language Models (MLLMs) have achieved re-
markable success on single-chart question-answering tasks, reaching over
90% accuracy on benchmarks such as PlotQA, this apparent success masks
a critical limitation. Current models struggle to perform well on com-
plex, multi-chart reasoning tasks that closely mirror real-world analytical
scenarios. In professional document analysis, users typically integrate in-
formation across multiple visualizations within rich contextual frameworks,
rather than examining isolated charts, a capability that remains largely un-
explored in existing evaluations. To bridge this gap, we introduce Chart-
Nexus, a novel and challenging benchmark specifically designed to assess
multi-chart reasoning capabilities of MLLMs in authentic document con-
texts. ChartNexus comprises 1,370 carefully curated question-answering
pairs derived from 6,793 real-world charts spanning 18 domains, including
scientific papers, government reports, and industry analyses. Each question
demands complex reasoning skills, such as comparative analysis, sequential
information integration, and cross-modal synthesis between visual and tex-
tual elements. We design a comprehensive taxonomy featuring 4 high-level
difficulty categories and 11 fine-grained sub-categories to systematically
evaluate these capabilities. Our comprehensive evaluation of 23 state-of-
the-art MLLMs reveals significant performance degradation compared to
single-chart benchmarks. While the best commercial model achieves over
90% accuracy on simpler tasks, its performance drops by more than half
on ChartNexus. Through systematic failure analysis, we identify critical
weaknesses in current models’ ability to maintain working memory across
multiple charts, perform cross-modal reasoning, and integrate contextual
information effectively. ChartNexus establishes a new frontier for evalu-
ating complex chart understanding capabilities, demonstrating that robust
multi-chart reasoning remains an open challenge. Our benchmark and com-
prehensive analysis provide the research community with essential diagnos-
tic tools to advance the development of more capable and practically useful
MLLMs for real-world document analysis scenarios.

1 Introduction

Data visualization, especially charts, serves as a fundamental medium for conveying com-
plex information across scientific research, financial reporting, and journalism (Huang et al.,
2025). The rapid development of MLLMs has brought unprecedented opportunities for au-
tomating the understanding of these visual representations. Chart Question-Answering
(ChartQA) has emerged as a critical benchmark task that evaluates how well these models
can integrate visual perception with cognitive reasoning. The field has witnessed a re-
markable paradigm shift from specialized domain-specific models (Methani et al., 2020) to
large-scale foundation models like GPT-4o, has driven significant progress in ChartQA.
However, this apparent success masks significant limitations in current MLLM capabilities.
Leading MLLMs are approaching or surpassing human-level performance on established
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Table 1: Comparison with other benchmarks

Dataset Real-World
Charts

Human
Annotated

Multi
Charts

Chart
Types

Task
Types

Unanswerable
Question

Fine-Grained
Difficulty Multilingual Document

Context

PlotQA (Methani et al., 2020) ! !– % 3 3 % % % %

ChartQA (Masry et al., 2022) ! !– % 3 4 % % % %

RealCQA (Ahmed et al., 2023) ! % % 5 4 % % % %

ChartLlama (Han et al., 2023) % % % 10 7 % % % %

UniChart (Masry et al., 2023) ! % % 3 4 % % % %

ChartBench (Xu et al., 2023) % % % 9 5 % % % %

ChartSFT (Meng et al., 2024) ! % % 4 5 % % % %

SBS_figures (Shinoda et al., 2024) % % % 10 11 % % % %

Dcqa (Wu et al., 2023) ! ! % 6 2 % ! % %

Chart-llm (Ko et al., 2024) ! % % 10 4 % ! % !

MultiChartQA (Zhu et al., 2025c) ! ! ! - 4 % % % %

ReachQA (He et al., 2024b) % % % 10 2 % % % %

ChartInsights (Wu et al., 2024) ! % % 7 10 % % % %

RealCQA-V2 (Ahmed et al., 2024) ! % % 5 3 % % % %

StructChart (Xia et al., 2023) % % % 3 3 % % % %

CharXiv (Wang et al., 2024b) ! !– ! 15 6 ! % % %

DomainCQA (Zhong et al., 2025) ! % ! - 6 % ! % %

ChartQA-MLLM (Zeng et al., 2025) % !– % 11 4 % % % %

SPIQA (Pramanick et al., 2024) ! % ! - 3 % % % !

ChartX (Xia et al., 2024) % % % 18 7 % % % %

PolyChartQA (Xu et al., 2025a) !– % % 16 - % % ! %

ChartQAPro (Masry et al., 2025a) ! ! ! 9 5 ! % % !–

ChartNexus (Ours) ! ! ! 17 6 ! ! ! !

benchmarks such as FigureQA (Kahou et al., 2017), UniChart (Masry et al., 2023). Yet
recent evaluations on more challenging single-chart benchmarks, like ChartQAPro (Masry
et al., 2025a), DomainCQA (Zhong et al., 2025), reveal substantial performance drops when
models encounter diverse visual elements and complex question types. This performance
degradation indicates that existing benchmarks lack sufficient complexity to adequately
assess model capabilities in realistic chart understanding scenarios.
More critically, a fundamental dimension of chart understanding remains underexplored:
multi-chart reasoning. In real-world analytical workflows, users rarely examine charts in
isolation. Instead, they must integrate information across multiple visualizations, often
combining insights with the surrounding textual context to form a comprehensive under-
standing. This process demands cross-modal reasoning and multi-hop inference across di-
verse information sources. Despite its importance in practical applications, most existing
benchmarks are confined to single-chart scenarios. Although MultiChartQA (Zhu et al.,
2025c) has begun to address this gap, its coverage of diverse chart domains and the com-
plexity of its reasoning chains remain limited and focused only on charts themselves. The
research community urgently requires larger, more complex benchmarks with broader real-
world scenarios and more extensive reasoning capabilities.
Moving from single-chart to multi-chart QA constitutes a qualitative leap in computational
requirements, representing far more than a simple incremental increase in difficulty. Single-
chart tasks assess a model’s ability to parse visual elements within confined contexts, such
as identifying peak values in line graphs, extracting specific data points, or performing
straightforward calculations. The analytical scope remains strictly bounded within individ-
ual images. Multi-chart QA, particularly requiring multi-hop and comparative reasoning,
demands fundamentally different model capabilities. Models must retain information ex-
tracted from one chart while processing subsequent visualizations, compare attributes across
various visual contexts, and track entities as they evolve across multiple representations.
This requires models to manage larger information spaces while executing multi-step infer-
ences across interconnected visual elements.
Therefore, we introduce ChartNexus, a novel, challenging benchmark designed to assess
the multi-chart reasoning capabilities of MLLMs in authentic document contexts. Chart-
Nexus comprises 6,793 carefully selected charts from real-world documents, including sci-
entific papers, government reports, and industry analyses, and features 1,370 high-quality
human-annotated QA pairs. Each question demands complex reasoning skills, such as com-
parative analysis across multiple charts and cross-modal synthesis between visual elements
and their surrounding text. We design a comprehensive taxonomy to evaluate these capa-
bilities, featuring 4 high-level difficulty categories and 11 fine-grained subcategories. Our
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Data Collection

Is a chart?

Original Text: … For the OECD’s 21st Century 

Children project (OECD, 2025[152]), a detail 

questionnaire on school partnerships with 

external actors was submitted to OECD 

education ministries in 2022 (see Figure 4.8)… 

Health  and  well-being  partnerships  were  

reported  as  the  most  prevalent  in  2022…

Extract 

context

Context: a detail 

questionnaire on 

school partnerships 

with external actors 

was submitted to 

OECD education 

ministries in 2022 

(see Figure 4.8). 
Context: According to the International Energy Agency’s (IEA) Net Zero 

Roadmap,21 solar photovoltaic capacity is expected to increase nearly 

fivefold and wind capacity threefold in the next decade, while EV sales are 

projected to grow 18-fold by 2030… 

Which of the following countries 

is highlighted in the CCDRs as 

having a comparative advantage in 

over 25 products in the solar value 

chain and over 40 in the wind 

value chain, and also benefits 

from economic considerations 

driving renewable energy 

adoption? 

A. … B. … C. … D. …

The CCDRs state that in 

fragile or conflict-affected 

countries like Yemen, 

distributed solar power can 

address both climate 

vulnerability and social 

exclusion by providing 

energy for critical facilities. 

Calculate the benefit-cost ratio 

(BCR) for Brazil’s climate-

resilient transport infrastructure 

adaptation, given that  estimated 

cost is $22 billion and avoided 

losses are $47 billion. 

How do the divergent paths of 

renewable energy transition in 

Moldova and Yemen reveal 

the different ways societies 

can leverage clean energy to 

build economic and social 

resilience in vastly different 

contexts?

Template A

Template B

Template C
…

Select Template 

or

Rewrite Question

Refine Details

Question Type

DifficultiesRelated Charts

Answerable

Hard Level

LLM-Assistant

Annotation Progress

Question Templates Human Annotation Additional Annotation consistency check ChartNexus

Paper

News

Report

Govern Markdown

Raw Task

Multi-Choice 

Question

Difficulties
Comparation

Identify

Reasoning

Calculate
…

Hard Level

Judgment  

Question

Difficulties
Comparation

Identify

Reasoning

Calculate
…

Hard Level

Numerical  

Question

Unanswerable

Open-End 

Question

Difficulties
Comparation

Hard Level

Parse

Refine Question and

Additional Annotation

Identify

Reasoning

Calculate
…

Template A:

Which of the 

following…?

Template B:

Is both climate 

vulnerability..?

Template C:

How do the 

divergent...?

Template D:

Calculate the 

benefit-cost..?

…

Generate

Template

Raw Task

Figure 1: Overview of data construction. We first collect a diverse range of documents from
the internet. Then, employ MLLMs to filter the raw data and generate several candidate
question templates. Following this, human annotators select the most suitable template,
refine the question, and complete the annotation.

comprehensive evaluation of 23 leading MLLMs reveals significant performance degradation
compared to single-chart benchmarks. While the best-performing model achieves over 90%
accuracy on simple tasks, its score drops by more than half on ChartNexus. Through sys-
tematic failure analysis, we identify critical weaknesses in the current MLLMs’ ability to
maintain information across multiple charts, perform cross-modal reasoning, and effectively
integrate contextual information. Our main contributions are as follows.

• We introduce the ChartNexus benchmark, a novel and highly challenging multi-chart
QA benchmark featuring charts from authentic real-world documents, human-annotated
question-answer pairs, and associated descriptive text, designed to rigorously test complex
cross-modal synthesis and reasoning abilities.

• We comprehensively evaluate leading closed- and open-source MLLMs, establishing real-
istic performance that reveals current models’ true capabilities and limitations.

• We provide detailed failure analysis that moves beyond simple accuracy metrics to offer a
systematic taxonomy of failure modes, delivering insights into why and how current models
struggle with multi-chart reasoning and illuminating directions for future research.

2 Related Works

Existing Benchmarks. Early studies lay the foundation for the field, but their data relies
on synthetic charts, creating a significant gap with the real world. FigureQA provides over
a million QA pairs based on synthetic, scientific-style charts (Kahou et al., 2017). It estab-
lishes the task paradigm with templated questions (e.g., identifying max/min values), but
its synthetic nature lacks the diversity of real data. Although PlotQA uses charts scraped
from the web, ensuring authentic chart styles, its QA pairs are similarly constrained by
templates (Methani et al., 2020). ChartQA utilizes the T5 model for auxiliary generation,
which improves issues such as unnatural text, resulting in the generation of template-based
questions (Masry et al., 2022). Recently, PolyChartQA (Xu et al., 2025a) has expanded the
field’s horizon by introducing a large-scale multilingual benchmark. However, like its prede-
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Table 2: Chart types in ChartNexus
Bar Line Pie Table Scatter Tree Radar Area Other Sunburst Graph Boxplot Sankey Heatmap 3D Candlestick Funnel
2704 1947 330 37 261 243 20 270 774 17 15 51 19 45 36 11 13

Table 3: Sub-categories of fine-grained difficulties in ChartNexus
Numerical Identification Comparison Reasoning
calculate element color shape overlap 3d-chart numerical trend a lot of charts chart context general knowledge

415 132 127 145 133 125 63 519 67 516 393

cessors, it remains constrained to single-chart scenarios and does not address the complexity
of cross-chart information synthesis. These datasets contain vast amounts of data, but the
quality of their QA pairs is limited to templates, simple data retrieval, and fixed-vocabulary
questions. While these QA pairs include out-of-vocabulary words, which are challenging for
models of this era, they are no longer sufficient for evaluating modern MLLMs.
Challenges in Single-Chart Understanding. Given the limitations of these bench-
marks, recent research has begun to introduce new dimensions of difficulty into single-chart
tasks. ChartLLama uses GPT-4 to construct its tasks. Compelling models to possess
advanced chart understanding and code-based plotting abilities to achieve higher scores
through new tasks like chart reconstruction, generation, and editing (Han et al., 2023).
ChartQAPro aims to address the lack of diversity in ChartQA (Masry et al., 2025a) by in-
troducing more complex visual forms such as info-graphics and dashboards, as well as more
challenging question types such as conversational, hypothetical, and unanswerable ques-
tions. Other benchmarks such as UniChart, MatCha, and ChartAssistant have introduced
open-ended questions like inverse-rendering charts into code or tables to test models’ deeper
understanding of charts (Masry et al., 2023; Liu et al., 2023; Meng et al., 2024).
However, these datasets are limited to understanding single charts. Furthermore, many are
annotated using LLMs, making the quality highly dependent on the prompts, creating a
significant gap with the needs of professional researchers in real-world chart analysis.
Multi-Chart QA. Beyond single charts, multi-chart QA has recently become a new re-
search hotspot. MultiChartQA crawls charts from websites and features manually annotated
questions that test various reasoning abilities of models (Zhu et al., 2025c). SPIQA focuses
on scientific charts from top-tier computer science conference papers and uses Gemini to
generate candidate questions, which are then refined by humans (Pramanick et al., 2024).
These excellent studies have extended chart QA from single- to multi-chart scenarios, sig-
nificantly raising the requirements for models’ visual reasoning capabilities. However, in
real-world scenarios, analysts rarely draw conclusions based on just a few charts alone.
Charts are often used as a visualization method to help personnel understand the content
of the document more quickly. A deep understanding of charts is inseparable from the
specific descriptions provided by their surrounding context. While only simple numerical
values and trend information can be obtained from the chart itself, the deeper causal fac-
tors are hidden in the contextual text associated with that chart. In real-world document
QA scenarios, MLLMs may produce incorrect answers by focusing only on the chart and
overlooking crucial information within the surrounding text. For an illustrative example of
this failure mode, please refer to the error case Figure 35 in Appendix F.
Due to the lack of benchmarks for multi-chart reasoning that incorporate contextual infor-
mation, we introduce ChartNexus to effectively evaluate the multi-modal reasoning capa-
bilities of existing models. ChartNexus not only incorporates the pursuit of authenticity,
diversity, and complex reasoning from ChartQAPro but also introduces the novel multi-
chart reasoning dimension pioneered by MultiChartQA, along with the innovative inclusion
of cross-modal reasoning with document context. Through these comprehensive features,
ChartNexus establishes a new frontier specifically designed to challenge MLLMs.

3 Construction of ChartNexus

ChartNexus is a benchmark designed to reflect real-world document chart comprehension
needs, comprising a total of 6,793 charts and 1,370 question-answering (QA) tasks. All
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charts are sourced from real-world documents and span various types of documents and
topics. This section details the design principles of the ChartNexus benchmark, its data
construction process, the QA annotation methodology, and data analysis of ChartNexus.
Our data construction pipeline is illustrated in Figure 1.

3.1 Data Collection

The primary motivation behind constructing ChartNexus is to establish a benchmark that
genuinely reflects the cognitive processes involved in analyzing multi-chart documents in
real-world scenarios. We collect recent source documents that contain substantive informa-
tion from real-world, data-intensive websites. This approach ensures that the charts and
their semantic relationships are authentic and require reasoning, thus simulating a real-
world application while avoiding overlap with the training corpora of existing models as
much as possible. Specifically, we collect data, including charts and their relevant contex-
tual information, from 10 distinct data sources.

Table 4: ChartNexus dataset statis-
tics. Tokens are calculated based on
the Qwen3 tokenizer.

Statistics Value
Charts
total charts 3198

Sub-Charts
- max 57
- mean 4.78

Related Charts Per Question
- max 7
- mean 3.67

Average Tokens
context 95.71
question 66.64
answer 125.86
Answer Type
Multi Choice 335
Judge 200
Numerical 276
Open-Ended (vocabulary) 187
Open-Ended (sentence) 263
Unanswerable 109

Scientific Papers from arXiv: Referencing the
work of SPIQA (Pramanick et al., 2024), which col-
lects documents from top-tier computer science con-
ference papers and provides all charts along with
their descriptions, we select 425 source documents
and re-annotate QA pairs to meet our requirements.
In-depth News Reports: We obtain news reports
from Statista and the Pew Research Center. While
each article from the Pew Research Center contains
multiple charts, reports from Statista typically in-
clude a single chart. To construct multi-chart rea-
soning tasks, we search for additional reports on the
same topics within Statista and group them to create
multi-chart QA entries. Ultimately, we acquire 318
and 334 data entries from Statista and Pew Research
Center, respectively.
Government Reports: This category includes re-
ports from the National Bureau of Statistics of China
(1,000 entries), the Guizhou Provincial Statistical
Bulletin (17 entries), the World Bank (300 entries),
and the Organisation for Economic Co-operation and
Development (OECD) (282 entries). We download
statistical data and research reports, from which we
extract charts and their related contexts.
Industry Data: We also collect research reports
from specific industries, including the China Inter-
net Network Information Center (CNNIC), Commu-
nications World, and the National Consortium for
the Study of Terrorism and Responses to Terrorism
(START). These reports contain research documents
on specialized fields such as the internet, telecommu-
nications, and public safety. We create QA pairs from these sources to investigate the
visual-textual understanding capabilities of MLLMs in professional domains.
The data collected from these sources are primarily in PDF or HTML format. For PDF
documents, we use MinerU for parsing, converting the text into Markdown, and segmenting
charts and tables as images (Wang et al., 2024a; He et al., 2024a). For HTML files, we
extract the main body of the text and chart links, saving the content and images locally.
While HTML data can be directly converted into a structured document based on its tags,
for Markdown data, we parse its syntax, using headings to define the nesting hierarchy, and
then convert it to a structured JSON document. It is noteworthy that the initially extracted
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images were not all charts. Therefore, we employ Qwen2.5-VL-7B for a preliminary filter,
retaining only those images identified as charts.

3.2 Question-Answer Annotation

A core design principle of ChartNexus is that each question must necessitate multi-hop
reasoning, compelling a model to synthesize information from at least two charts. To ensure
high-quality and complex QA pairs, we employ a human-in-the-loop annotation pipeline
that uses an LLM to assist expert annotators, and iteratively refine the annotation process
and guidelines, as shown in Figure 1. Before beginning the formal annotation, we first
invite graduate students with backgrounds in data analysis and deep learning to conduct
a pilot study. Through this process, we finalize the necessary annotation items for the
benchmark and provide the LLM in our formal pipeline with the few-shot examples needed
to generate candidate questions. Trained annotators then either refine these suggestions
or create entirely new questions to ensure they are logically sound, deeply integrated with
the provided charts, and require non-trivial reasoning. Crucially, annotators also provide
ground-truth answers, with a portion of questions intentionally designed to be unanswerable
from the given context to test model robustness.
To validate the quality and consistency of our dataset, we conducted a rigorous verifi-
cation process. A randomly selected 20% subset of the annotations was independently
re-annotated, and we achieved an inter-annotator agreement rate of 93.4%. This high con-
sistency underscores the clarity of our annotation guidelines and the objective nature of the
tasks. A final expert review resolved any discrepancies to establish the definitive ground
truth. More details on the annotation pipeline, including the pilot study, question genera-
tion prompts, and annotator guidelines, are available in the Appendix A.

3.3 Data Analysis

ChartNexus contains 17 types of charts and tables from 3,198 original real-world documents,
with bar charts accounting for 39.8%, line charts for 28.7%, pie charts for 3.44%, and the
remaining 14 types (such as scatter plots, area charts, etc.) shown in Table 2. Furthermore,
16.69% charts that contain subplots, with an average of 4.78 subplots per chart. This
diversity evaluate models’ capabilities of processing global complex layouts and handling
local information. On average, each context related to the charts contains 95.71 tokens,
which brings the challenge of carrying text and vision together.
The distribution of topics about our charts is presented in Figure 2. The charts span 18 dif-
ferent domains, ensuring both breadth and depth. Economics is the most dominant subject.
This is followed by Social and Government, which typically involves the analysis of com-
plex socioeconomic data. Furthermore, ChartNexus also covers a wide array of specialized
fields, including Science, Finance, as well as environment, education, etc. On average, each
task involves 1.65 subject domains. This indicates that many questions require models to
perform comprehensive analysis by integrating background knowledge from different fields,
which aligns with the interdisciplinary nature of real-world problems.
Our ChartNexus dataset contains question-answer pairs in both English and Chinese, with
questions averaging 66.64 tokens and answers averaging 125.86 tokens in length. On average,
each question requires information from 3.72 charts to be answered. ChartNexus has 4
types of questions and 6 types of answer formats. The primary formats include Open-
Ended question and Multi-Choice questions. There are 8% questions that are intentionally
designed to be unanswerable. To more precisely evaluate specific model capabilities, we
classify the task difficulties into 11 fine-grained categories (see Table 3).

4 Experiments

To comprehensively evaluate the capabilities of MLLMs in ChartNexus, we conduct a series
of experiments. This section details our experimental setup, presents the overall performance
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Table 5: Performance of MLLMs on ChartNexus. We report the Accuracy (%) and F1 score
calculated from SEAT method (Zhu et al., 2025b). Bold values indicate the best result
within each category.

Model Question Type Difficulty Language
Multi
Choice Judge Approximate

Value
Open-Ended
(vocabulary)

Open-Ended
(sentence) Unanswerable Numerical Identify Compare Reason ZH EN

Commercial Model
GPT-4o 58.62 67.56 41.37 44.43 74.13 23.80 65.60 63.63 47.82 66.46 70.58 62.61
GPT-o4-mini 62.06 60.81 38.70 44.45 81.71 16.67 68.13 63.44 43.47 69.34 77.94 63.89
GPT-o3 63.79 59.45 21.87 40.74 83.42 19.04 66.67 61.37 42.23 68.84 80.88 61.84
Claude-Sonnet4 65.71 70.96 32.22 40.05 72.66 18.19 63.60 60.15 45.43 67.87 79.41 61.25
Gemini-2.5-Pro 56.89 60.81 15.62 31.48 80.00 40.47 61.94 64.13 39.13 63.50 72.05 58.76
Gemini-2.5-Flash 55.17 54.05 28.12 35.18 71.26 50.03 56.78 65.97 34.78 57.14 57.35 57.09
Doubao-Seed-1.6 46.55 43.24 37.50 23.37 70.85 45.23 53.77 59.31 21.73 56.97 67.64 49.23
Qwen-VL-MAX 62.06 75.67 30.02 50.00 71.42 26.19 65.18 67.58 34.78 67.55 65.70 64.58
HunYuan-Turbos-Vision 59.64 70.27 29.03 29.62 74.85 11.90 63.60 57.63 30.43 67.46 76.11 58.95
HunYuan-Vision 61.14 59.45 19.53 20.37 61.14 16.68 50.15 43.05 26.08 55.05 60.29 48.14
Ernie-4.5-Turbo-VL 51.72 52.05 31.30 30.18 65.71 45.23 54.25 54.48 26.08 57.14 62.68 51.54

Open-Source Model
SmolVLM-2.3B 8.62 10.81 6.25 1.88 1.14 26.19 2.83 10.34 4.34 3.86 2.98 4.93
Phi-4-multimodal-Instruct 35.08 55.40 12.5 18.51 31.42 9.52 31.86 33.10 13.04 36.60 20.59 35.80
Bagel 29.31 33.78 15.62 24.07 41.14 38.09 33.64 26.89 17.39 36.49 48.52 30.46
Kimi-VL-A3B-Thinking 53.44 67.54 25.00 29.62 72.83 21.42 58.75 56.25 43.47 64.88 73.13 56.17
Qwen2.5-VL-7B 34.48 31.08 35.02 18.51 46.67 54.76 41.13 23.44 21.73 43.54 42.43 44.92
GLM-4.1V-9B 50.03 49.31 35.61 33.32 50.28 35.71 53.02 39.31 37.73 54.33 63.41 59.23
InternVL3-14B 57.89 48.49 26.25 18.51 72.21 23.80 52.54 50.17 30.43 54.58 65.14 48.79
Qwen2.5-VL-32B 59.65 56.02 32.50 20.75 63.36 38.09 56.06 52.55 38.66 47.84 62.90 55.24
InternVL3-38B 60.34 55.56 31.25 30.18 74.28 28.57 59.62 55.94 39.13 61.72 71.64 56.65

Chart Model
ChartGemma 6.89 21.62 3.52 11.53 2.87 21.42 6.30 6.94 13.04 5.68 7.35 8.07
ChartInstruct-LLama2 24.13 19.17 6.25 5.56 9.19 33.34 12.65 15.17 8.69 12.50 9.09 13.23
ChartMoe 41.37 20.27 12.52 7.40 24.57 47.61 21.69 23.44 10.27 25.22 30.88 21.23

of various models, and provides an in-depth analysis of their strengths and weaknesses across
different tasks, difficulties, and languages.

4.1 Experimental Setup

Model Selection. We select a series of MLLMs that represent the state-of-the-art per-
formance to ensure a comprehensive and impartial evaluation of the field. Our selection
encompasses the latest commercial models and leading open-source models with varying
parameter scales. For commercial models, we primarily focus on the series from OpenAI,
Anthropic, and Google. For open-source models, our main choices include the Qwen and
InternVL series (Bai et al., 2025; Zhu et al., 2025a), as well as several specialized models
designed for chart-related tasks (Xu et al., 2025b; Masry et al., 2024; 2025b).
Setup. To ensure the reproducibility of our experiments, we follow the official guidelines to
call the APIs when testing the commercial models. For the open-source models, we adapt
our benchmark with minimal modifications to the example code provided in each model’s
repository and conducted the experiments with NVIDIA RTX 6000 Ada GPUs.
Evaluation Metric. We employ scoring methods for different types of questions. For
“Multiple-Choice”, “Judgement”, “Open-Ended vocabulary” questions and “Unanswerable”
questions, we report the model’s performance using accuracy. Since many answers con-
tain variations, such as different numerical units, that make traditional character-matching
methods ineffective, we employ a Qwen3-32B model as an automated evaluator to judge
the correctness of the answers. For questions of the “Approximate Value” type (e.g., val-
ues estimated from charts), we consider an answer to be correct if the model’s estimation
fell within a 5% margin of error relative to the ground truth. For “Open-ended sentence”
questions, we utilize the SEAT method (Zhu et al., 2025b) to calculate the F1 score. Specifi-
cally, this method involves decomposing the question and ground-truth answer into multiple
sub-questions and corresponding sub-answers. The F1 score is then computed based on the
matching between the model’s generated response and these sub-answers.

4.2 Results

Human Performance Upper Bound. To establish a rigorous upper bound, we recruited
experts to evaluate a sample of the ChartNexus (detailed in Appendix H.1). Humans
achieved an average accuracy of 93.3% on Boolean and Vocabulary tasks, and 85.7% on
complex Open-Ended Sentence tasks. This highlights a significant gap compared to SOTA
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Table 6: Performance of MLLMs on ChartNexus using Chain-of-Thought strategy.

Model Question Type Difficulty Language
Multi
Choice Judge Approximate

Value
Open-Ended
(vocabulary)

Open-Ended
(sentence) Unanswerable Numerical Identify Compare Reason ZH EN

Commercial Model
GPT-4o 65.57 74.29 53.71 38.56 72.88 22.31 64.61 66.29 46.34 65.12 66.30 62.82
Claude-Sonnet4 67.47 72.54 45.82 42.47 70.25 19.24 67.47 62.15 43.74 63.45 75.54 63.23
Gemini-2.5-Pro 62.50 66.97 31.02 36.88 83.20 45.59 67.32 69.33 44.25 68.82 76.88 64.14
Doubao-Seed-1.6 47.48 42.80 38.65 23.15 71.48 46.33 54.20 58.23 22.85 63.54 68.68 48.63
Qwen-VL-MAX 67.82 79.25 35.58 53.25 76.13 30.71 63.45 72.10 39.66 64.14 66.25 67.32

Open-Source Model
Qwen2.5-VL-7B 47.61 50.20 40.33 17.30 49.49 44.29 46.59 28.57 29.26 48.72 43.71 47.95
GLM-4.1V-9B 62.16 61.14 45.22 30.09 68.77 17.27 67.34 56.09 43.90 56.44 68.76 58.03
InternVL3-14B 56.47 60.65 36.56 25.29 56.25 14.37 63.02 48.78 41.46 62.08 58.94 51.12
Qwen2.5-VL-32B 67.85 62.63 46.60 31.37 72.67 22.50 65.77 60.52 41.46 58.08 64.58 58.37
InternVL3-38B 52.09 71.42 58.88 22.03 58.96 20.68 64.98 51.21 53.84 63.83 64.13 63.08

Chart Model
ChartGemma 13.16 17.70 9.16 9.74 3.41 44.51 10.17 13.25 8.10 9.16 9.36 10.82
ChartInstruct-LLama2 20.57 27.00 8.47 5.56 6.45 32.29 14.89 18.32 9.75 13.73 14.97 14.15
ChartMoe 61.31 19.32 13.33 11.61 26.44 48.66 29.06 17.78 14.63 31.66 26.67 31.06

models, which hover around 60-70%, confirming that ChartNexus remains a challenging
benchmark for current MLLMs.
Main Results. Commercial models demonstrate superior overall performance. Models
like the ChatGPT family and Qwen-VL-MAX achieve the highest scores across most cat-
egories. For example, GPT-o3 shows strong performance in generating open-ended sen-
tences (83. 42%) and handling queries in Chinese (80. 88%). Open-source models exhibit
significant performance variability. While larger models such as InternVL3-38B and Kimi-
VL-A3B-Thinking are competitive, many smaller models struggle significantly. Models like
SmolVLM-2.3B and Phi-4-multimodal-Instruct post scores below 5% in some categories,
highlighting that strong multi-chart reasoning has not yet been democratized in smaller,
more accessible models. A surprising finding is the underperformance of specialized chart
models. ChartGemma, ChartInstruct-Llama2, and ChartMoe all lag considerably behind
the leading general-purpose commercial and open-source MLLMs. This suggests that their
specialized training has not been sufficient to overcome the complex, multi-step reasoning
required by this benchmark.
Performance by Task and Difficulty. Most models perform best on generating open-
ended sentences, where they can formulate descriptive answers. In contrast, they are weakest
on tasks requiring precise numerical approximation and identifying unanswerable questions.
The difficulty with numerical tasks points to a known weakness in MLLMs for precise cal-
culation. Tasks that require estimation and the inability to correctly identify unanswerable
questions indicate a tendency to hallucinate or force an answer from the provided charts.
Across the board, models find identification and trend analysis to be easier than tasks
requiring deeper reasoning. Performance drops significantly for comparison tasks, which
often require integrating information from multiple charts or performing multi-hop logical
steps. This underscores that complex reasoning remains a primary challenge for all models.
Many leading models perform better in Chinese than in English. This is especially true
for models developed in China, such as HunYuan and Kimi, but it can also be observed
in the GPT series. This suggests that the visual nature of charts may interact with the
language of the query in some ways, or that the training data for these MLLMs has a strong
Chinese-language component.
Performance using Chain-of-Thought strategy. The application of a CoT strategy
brings consistent performance gains for SOTA commercial models such as GPT-4o, Gemini-
2.5-Pro, and Qwen-VL-MAX, improving results across most evaluation dimensions. The
enhancement is particularly pronounced on tasks that demand precise interpretation of
chart data and subsequent logical reasoning or calculation, including “Approximate Value”,
“Numerical”, and “Judge” tasks. For example, the score for Gemini-2.5-Pro on the “Ap-
proximate Value” task doubled from 15.62% to 31.02%. This indicates that CoT effectively
guides the model in deconstructing complex problems into manageable steps, thus increas-
ing accuracy. However, the efficacy of CoT is not universal and is highly dependent on the
model. A crucial finding is that, for many open-source models, employing a CoT strategy
led to a significant performance degradation on the “Unanswerable” and “Open-Ended (sen-
tence)” tasks. As a notable example, the accuracy of GLM-4.1V-9B in the “Unanswerable”
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task plummeted from 35.71% to 17.27%. This reveals that CoT’s effectiveness is deeply
linked to a model’s ability to suppress hallucinations and follow instructions. For models
that lack specific fine-tuning on CoT-style data or possess insufficient reasoning abilities,
forcing a step-by-step thought process can introduce interference, leading to logical confu-
sion or an outright failure to produce a final answer. Furthermore, the impact of CoT varies
between different types of tasks. It excels in tasks that require deep reasoning, but is less
effective and even harmful for tasks with simple information extraction. For example, while
GPT-4o’s performance on “Approximate Value” improved by more than 12%, its score on
“Open-Ended (vocabulary)” slightly decreased. This suggests that for simple, direct queries,
the additional inferential steps introduced by CoT are unnecessary and may increase the risk
of error� highlighting the need for a dynamic prompting strategy in practical applications.
Performance on Chart-Specific Models. The results reveal that common MLLMs con-
sistently outperform models specifically designed or fine-tuned for charts. This superiority
is maintained across most tasks and persists regardless of whether CoT prompting strate-
gies are used. While chart-specific models are highly optimized for existing benchmarks,
the strong performance on curated datasets does not translate to the complex real-world
document question-answering. Consequently, we think a more promising direction for fu-
ture research is how to effectively adapt the powerful, generalizable abilities of foundation
models to the document QA domain. The goal should be to leverage and enhance their core
analytical capabilities for this task, rather than building specialized models that may lack
real-world applicability.
Key Insights and Observations. Our experimental evaluation yields several critical
insights into the current state of multi-chart question-answering. (1) Top-tier commercial
models are the most capable and balanced performers. However, even these leading models
struggle with numerical precision and complex reasoning, showing there is still significant
room for improvement. (2) The open-source models present a wide spectrum of capabilities.
While a few large models are competitive, the majority are not yet equipped to handle
complex multi-chart reasoning tasks, indicating that further research and scaling are needed
to close the performance gap. (3) Models explicitly trained for chart understanding did not
outperform general-purpose MLLMs. This suggests that the ability to reason over complex
visual data is more dependent on the scale of the foundational model and general reasoning
capabilities than on narrow, task-specific training. (4) The most significant performance
drops across all models occurred in tasks that required multi-step reasoning, numerical
computation, and cross-chart comparisons. Future research should focus on enhancing these
deep reasoning abilities to unlock the next level of performance in visual data understanding.
(5) For complex chart analysis, CoT is a useful technique for achieving model’s full potential.
However, CoT prompts must be customized and optimized for specific models. Directly
applying a prompt designed for a model like GPT-4 to an open-source alternative is likely
to be counterproductive. (6) By further analyzing specific failure cases, we find that the
models’ failures are not merely due to visual perception issues, but more profoundly stem
from a lack of cognitive capabilities such as working memory and multi-step planning. Many
questions within ChartNexus require the model to perform multi-hop to compare data and
to understand the implicit logic embedded within the context. This presents a significant
challenge to the models’ logical discrimination and reasoning abilities.

4.3 Diagnostic Analysis: Boundaries and Bottlenecks

To rigorously pinpoint the limitations of current MLLMs within the ChartNexus, we con-
ducted a series of fine-grained ablation studies and stratified analyses. These diagnostics
reveal three fundamental bottlenecks: spatial projection failures, semantic grounding de-
pendency, and resolution constraints in dense visual contexts.
The Dimensionality Barrier in Visual Encoders. Our stratified performance analysis
by chart type (see Appendix G.1) exposes a critical deficiency in handling spatial informa-
tion. While SOTA models demonstrate robustness on 2D charts, we observe a significant
“performance drop” when processing 3D charts. As detailed in Table 8, Even the best-
performing model (Qwen2.5-VL-32B) falling to 36.1%. This universal degradation suggests
that current vision encoders, predominantly pre-trained on 2D web images, struggle to re-
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solve the projection loss inherent in rendering 3D data onto a 2D plane. The models fail to
accurately perceive depth and perspective, leading to severe hallucinations in reading data
points from 3D axes.
The Necessity of Cross-Modal Semantic Bridging. ChartNexus is designed to simu-
late real-world document analysis where charts rarely exist alone. To quantify the models’
reliance on textual context, we performed an ablation study removing all captions and sur-
rounding paragraphs (see Appendix G.2). The results reveal a sharp “Context Gap,” with
performance degrading in the “No-Context” setting. For instance, Qwen2.5-VL-7B’s accu-
racy on Open-Ended Vocabulary tasks plummeted from 46.67% to 15.1%. This confirms
that MLLMs do not merely “see” the chart; they rely heavily on textual cues to disambiguate
visual features and ground their reasoning. The text serves as a semantic bridge; without
it, the models struggle to infer the implicit logic and domain-specific nuances required for
complex reasoning.
Visual Resolution vs. Reasoning Capacity. We further disentangled whether er-
rors in multi-chart tasks stem from logical complexity (reasoning across entities) or visual
density (perception limits). By comparing performance on composite images (single im-
age containing multiple subplots) versus multiple discrete image files (see Appendix G.3),
we identified a distinct scaling law. Smaller models, such as InternVL3-14B, suffer a mas-
sive performance drop of 23.5% when processing composite subplots compared to discrete
images. This highlights a “resolution bottleneck”: when multiple charts are packed into a
single token sequence or image patch grid, the effective resolution per chart diminishes, over-
whelming the encoder’s capacity. In contrast, larger models (e.g., InternVL3-38B) maintain
robustness across both settings, suggesting that increased parameter scale correlates with a
superior ability to attend to fine-grained visual details within dense information streams.
Hallucination and Format Bias. We further investigate model faithfulness by analyzing
“Unanswerable” questions, defining a hallucination as providing a specific answer when
the ground truth is “Unanswerable”. Our analysis reveals a severe “Selection Bias” in the
Multiple-Choice (MC) format compared to the Judgment (Boolean) format. As detailed
in Appendix G.4, models like GLM-4.1V-9B and Qwen2.5-VL-32B achieved 0 successful
refusals (TP = 0) in the MC setting, hallucinating an answer in 100% of unanswerable
cases, whereas they demonstrated some capacity to refuse in the Judgment format correctly.
This dissociation—recognizing a lack of evidence in one format while generating an answer
in another—suggests that hallucinations are not mainly due to visual encoding failures.
Instead, they likely stem from structural biases in the pre-training corpus, which lead models
to follow selection formats instead of rigorously verifying premises.

5 Conclusion

This study introduces ChartNexus, a novel and challenging multi-chart question-answering
benchmark that addresses a critical gap in evaluating MLLMs for real-world document
analysis scenarios. Unlike existing benchmarks that focus on isolated chart understanding,
ChartNexus evaluates models’ ability to synthesize information across multiple interrelated
charts within authentic document contexts, incorporating surrounding textual information
and complex reasoning chains. Our benchmark comprises 6,793 real-world charts and 1,370
meticulously human-annotated question-answer pairs, systematically organized through a
comprehensive taxonomy. Our evaluation of 23 state-of-the-art MLLMs reveals substantial
limitations in current multi-chart reasoning capabilities. While leading models achieve over
90% accuracy on single-chart benchmarks, their performance drops by more than half on
ChartNexus, demonstrating that multi-chart reasoning remains a largely unsolved challenge.
Through systematic failure analysis, we identify critical weaknesses in models’ ability to re-
tain information across multiple visualizations, perform cross-modal reasoning, and execute
multi-hop inferences. By shifting evaluation focus from isolated visual perception to complex
cross-modal synthesis, ChartNexus provides essential diagnostic tools for advancing MLLM
development and serves as a roadmap for developing more capable models for authentic
document analysis scenarios.
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A Data Annotation

A.1 Data Collection Principles

The construction of our benchmark was predicated on a set of rigorous principles designed
to ensure its validity, relevance, and robustness for evaluating the chart-to-code generation
capabilities of MLLMs.
Mitigation of Data Leakage through Novel Data Sourcing. A primary consider-
ation was the reduction of potential data leakage, wherein a model’s performance could
be artificially inflated due to the inclusion of benchmark data in its pre-training corpus.
To counteract this, we deliberately avoided common online repositories and auto-generated
examples. Instead, our dataset was exclusively curated from contemporary and domain-
specific sources, including academic papers from arXiv, economic reports from the World
Bank1 and the Organisation for Economic Co-operation and Development (OECD)2, so-
ciological studies from the Pew Research Center3, Statista4, various public government
datasets56 and industries research reports, including the China Internet Network Infor-
mation Center (CNNIC)7, Communications World8, and the National Consortium for the
Study of Terrorism and Responses to Terrorism (START)9. This methodology ensures that
the benchmark serves as a true test of a model’s generalization and reasoning abilities.
Adherence to Real-World Application Scenarios. The benchmark is designed to re-
flect the authentic data visualization requirements of users in practical settings. By sourcing
charts directly from academic, financial, and governmental publications, we ensure that each
task is grounded in a genuine use case. This alignment with real-world scenarios enables a
more precise and relevant evaluation of LMMs, steering their development toward greater
utility in professional and research contexts.
Comprehensive Coverage of Chart Type and Topic. Our sourcing strategy natu-
rally produces a dataset with significant diversity in both chart typology and complexity.
The collection intentionally moves beyond rudimentary chart types (e.g., simple bar, line,
and pie charts) to encompass a wide spectrum of visualizations used in specialized fields.
Furthermore, the benchmark includes charts with varying levels of information density and
structural complexity, from single-series plots to multi-faceted figures with composite ele-
ments. This ensures a thorough assessment of a model’s ability to handle a wide range of
visualization challenges.

A.2 Data Annotation Principles And Pipeline

A.2.1 Principles

Emulation of Authentic User Inquiries. All questions must be framed to reflect plau-
sible, real-world scenarios. The objective is to simulate the analytical tasks a user would
perform when encountering a multi-chart figure. Therefore, questions are designed to be
pragmatic, focusing on core analytical goals such as comparison, trend identification, sum-
marization, or anomaly detection. Abstract or contrived questions that do not correspond
to a genuine analytical intent are explicitly disallowed.
Mandatory Synthesis of Multi-Chart Information. A fundamental criterion is that
every question must necessitate the integration of information from two or more individual
charts to be answered correctly. Questions that can be resolved by analyzing a single sub-

1https://openknowledge.worldbank.org
2https://www.oecd.org/en.html
3https://www.pewresearch.org/publications
4https://www.statista.com
5https://www.stats.gov.cn/sj/zxfb
6https://www.guizhou.gov.cn/zwgk/zfsj/tjgb
7https://www.cnnic.cn/6/180/index.html
8https://www.cww.net.cn/subjects/cha/download
9https://www.start.umd.edu/publications
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Figure 2: Different chart types in ChartNexus.

chart in isolation are considered invalid for this benchmark. This principle ensures that the
tasks specifically target the model’s capability for cross-referencing and synthesizing data
from disparate visual sources within a single scene. For example, a valid question might ask
to correlate the trend in a line chart with the composition shown in a corresponding pie
chart.
Requirement for Contextual Understanding in Complex Reasoning. For questions
categorized as requiring complex reasoning, the model must do more than simply extract
and compare data points. These questions are constructed to require the integration of
contextual information derived from the figure’s title, caption, or other textual elements.
The answer should depend on a holistic understanding of the scene, compelling the model
to, for instance, explain a trend visible in the charts by referencing a cause mentioned in the
accompanying text. This tests a deeper level of multimodal comprehension beyond basic
visual data retrieval.

A.2.2 Pipeline

Automated Data Pre-processing Pipeline. The initial stage involved the automated
extraction and structuring of chart-centric data from raw PDF documents. First, each
source document was parsed into Markdown format using the Mineru library. Following
this, a crucial filtering step was executed where the Qwen2.5-VL model programmatically
analyzed all extracted images, identifying and discarding those irrelevant to the ChartNexus
theme, such as natural photographs or schematic diagrams. The refined Markdown content
was then reconstituted into a structured JSON format using markdown-it-py. In the final
pre-processing step, a hybrid approach was utilized combining rule-based heuristics and
the Qwen3 model to extract salient contextual information (e.g. captions and surrounding
paragraphs) associated with each chart. This automated pipeline resulted in a high-quality
candidate dataset primed for human annotation.
Pilot Annotation: We use Label Studio10 to construct the annotation tasks, allowing
for iterative refinement of the requirements. Initially, graduate students with backgrounds
in data analysis and deep learning conduct a pilot annotation. Through this process, we
finalize the necessary annotation items for the benchmark. Based on this experience, we
categorize the QA formats into five types: multiple-choice, judgment, vocabulary-answer,

10A labeling platform: https://labelstud.io
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numerical estimation, and open-ended questions. In addition to the QA pair, annotators
were required to specify the question’s difficulty level and its key difficulties. The pipeline
of our annotations is illustrated in the corresponding Figure 1.
Reference Question Generation: In the formal annotation phase, we summarize the
question templates from the pilot stage. These manually crafted seed questions served as
few-shot examples for an LLM. The model was instructed to mimic the reasoning patterns
of these examples and generate multiple sets of candidate questions for each task based on
the provided charts and context, offering a convenient starting point for human annotators.
Manual Question Annotation: We recruit well-trained annotators and provide them
with a meticulous annotation guide. They are tasked with either refining the questions
generated by an LLM based on specific chart information or using these reference templates
as inspiration to formulate new questions with greater reasoning depth. This process ensures
that each question is closely related to the charts, logically self-consistent, and requires the
synthesis of information from at least two charts.
Answer Annotation: Subsequently, annotators are required to answer these questions
and write the corresponding ground-truth answers. It is important to note that not all
annotated QA pairs are answerable; a portion of the questions is intentionally designed to
be unanswerable based on the provided charts.
Detailed Annotation Schema. The annotation process was systematically divided into
two primary, sequential tasks: chart-level annotation and QA pair annotation.
A. Chart Annotation Task: This initial task focused on the structural and typological
properties of the visual elements. Annotators were required to label the primary chart type
(e.g., bar, line, scatter plot) and determine if the image contained sub-charts, quantifying
them if present.
B. Question-Answer Pair Annotation Task: This second, more complex task involved as-
sessing and labeling the generated QA pairs. Annotators were required to provide multiple
labels for each pair:
Suitability: A binary judgment on whether the associated chart combination is appropriate
for formulating a reasonable and unambiguous question.
Answer Type: Classification of the correct answer’s format, categorized as Numerical, Open-
Ended, Boolean (True/False), or Multiple Choice.
Reasoning Skill: Identification of the core challenge or difficulty element the question targets,
such as Numerical Calculation, Visual Grounding (locating specific elements), or Compar-
ative Reasoning (comparing trends across charts).
Answerability and Difficulty: A final assessment indicating if the question is answerable
given the provided context, accompanied by a quantitative score representing its overall
difficulty.
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B Chart Examples

This section presents each chart type in ChartNexus. ChartNexus comprises a total of 3,198
distinct image files sourced from real-world documents. However, to accurately reflect the
information density models must process, we define our atomic unit as a “semantic chart.”
Since approximately 16.69% of our images are composite figures containing multiple subplots
(averaging 4.78 subplots per composite image), the total count of atomic semantic charts is
6,793. This distinction is crucial, as reasoning often requires extracting specific data from a
single subplot within a dense composite figure.
ChartNexus encompasses a structure of 17 types. The categories comprise of: Line, Bar, Pie,
Scatter, Radar, Candlestick, Boxplot, Heatmap, Graph, Tree, Sunburst, Sankey, Funnel, 3D,
Area, and Table. Here are some examples for different chart types in our ChartNexus.

Figure 3: Examples of Line Charts in ChartNexus

Figure 4: Examples of Bar Charts in ChartNexus
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Figure 5: Examples of Pie Charts in ChartNexus

Figure 6: Examples of Scatter Charts in ChartNexus
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Figure 7: Examples of Radar Charts in ChartNexus

Figure 8: Examples of Candlestick Charts in ChartNexus

Figure 9: Examples of Boxplot Charts in ChartNexus
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Figure 10: Examples of Heatmap Charts in ChartNexus

Figure 11: Examples of Graph Charts in ChartNexus

Figure 12: Examples of Tree and Treemap Charts in ChartNexus
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Figure 13: Examples of Sunburst Charts in ChartNexus

Figure 14: Examples of Sankey Charts in ChartNexus

Figure 15: Examples of Funnel Charts in ChartNexus
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Figure 16: Examples of 3D Charts in ChartNexus

Figure 17: Examples of Area Charts in ChartNexus

Figure 18: Examples of Tables in ChartNexus
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C Details of Evaluation

In this section, we present the details of evaluation models and metrics, including prompts
in calculating Accuracy and F1 Score from SEAT Method (Zhu et al., 2025b).
Models. For commercial models, we utilize the official APIs to access their stable versions.
For open-source models, the model weights can be downloaded from the links provided
below:

Table 7: List of Open-Source Models and Download Links

Model Name URL
SmolVLM-2.3B https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
Phi-4-multimodal-Instruct https://huggingface.co/microsoft/Phi-4-multimodal-instruct
Bagel https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
Kimi-VL-A3B-Thinking https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking
Qwen2.5-VL-7B https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
GLM-4.1V-9B https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
InternVL3-14B https://huggingface.co/OpenGVLab/InternVL3-14B
Qwen2.5-VL-32B https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
InternVL3-38B https://huggingface.co/OpenGVLab/InternVL3-38B
ChartGemma https://huggingface.co/ahmed-masry/chartgemma
ChartInstruct-LLama2 https://huggingface.co/ahmed-masry/ChartInstruct-LLama2
ChartMoe https://huggingface.co/IDEA-FinAI/chartmoe

Accuracy for Close-Ended Questions. For question categories with definitive, single-
ground-truth answers—specifically Multiple Choice, True/False, Numerical Calculation, and
Open-Ended(vocabulary) (single word/phrase) questions—we utilize Accuracy as the pri-
mary evaluation metric. A model’s response is considered correct only if it exactly matches
the ground-truth answer. The overall accuracy is calculated as:

Accuracy =
Number of Correct Predictions

Total Number of Questions (1)

This strict metric is appropriate for tasks where precision is unambiguous and semantic
variance is not a factor.
F1 Score for Open-Ended Questions. For open-ended questions that require a full
sentence as an answer, a direct string match is often inadequate, as semantically equivalent
responses can have different phrasings. To account for this, we evaluate these responses using
the F1 Score, which provides a balanced measure of precision and recall. The calculation
is facilitated by the SEAT methodology, which is designed to handle semantic similarities.
To standardize the evaluation, we first process the model’s raw generation to isolate the
final answer. This is achieved using a specifically designed extraction prompt, presented
below:
The following are prompts for evaluating the model’s output.
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  General prompt for extracting predict answer from model's response

You will be given a question about some charts. You need to answer this question based on the provided
charts as well as its related context. The context corresponding to each chart will be placed within <context>
</context> tags, and the question to be answered will be placed within <question></question> tags.

Your answer should be a single word, number, or phrase. If the question is unanswerable based on the
information in the provided image, your answer should be unanswerable.

Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact
notation shown in the chart.  If there are multiple answers, put them in brackets using this format
["Answer1", "Answer2"].

Figure 19: General prompt for extracting the answer from the model’s output, which will
pass to Qwen3-32B for extraction.

  General prompt for evaluating answer

System Prompt:

You are a helpful assistant. You need to compare a given answer with the ground truth to determine if it is
correct. Always place your final answer within <answer></answer> tags.

User Prompt:

You are required to determine if a predicted answer is correct when compared with the ground truth. The
question will be placed within <question></question> tags, predicted answer will be placed within <predict>
</predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain some thought or reasoning content in addition to the final answer. You
must first find the correct answer: a word, phrase, or number within the prediction, and then compare it with
the ground truth.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Question: <question>{question}</question>

Predict Answer: <predict>{predict}</predict>

Ground Truth: <gt>{gt}</gt>

Figure 20: Prompt to evaluate model’s response.
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  Evaluating Multi-Choice questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The
question will be placed within <question></question> tags, predicted answer will be placed within <predict>
</predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must
first extract the correct answer from within the prediction. The answer should be a single multiple-choice
option (e.g., A, B, C, etc.). You should then compare this extracted option with the ground truth.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 21: Prompt to evaluate Multi-Choice questions.

  Evaluating Numerical-Calculation questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The
question will be placed within <question></question> tags, predicted answer will be placed within <predict>
</predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must
first extract the correct answer from within the prediction, which should be an estimated numerical value.
You should then compare this extracted number with the ground truth.

The predicted numerical value is considered correct if it is within a 5% margin of error relative to the ground
truth value.

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 22: Prompt to evaluate Numerical questions.

  Evaluating True/False questions

You are required to determine if a predicted answer is correct when compared with the ground truth. The
question will be placed within <question></question> tags, predicted answer will be placed within <predict>
</predict> tags, and the ground truth answer will be placed within <gt></gt> tags.

The predicted answer may contain additional content, such as reasoning, besides the final answer. You must
first extract the correct answer from within the prediction. The answer should be a response to a true/false or
yes/no type of question (e.g., 'true', 'false', 'yes', 'no').

Remember to only respond with 'true' or 'false', and place your judgment within <answer></answer> tags.

Figure 23: Prompt to evaluate True/False questions.
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  Evaluating Open-End questions by SEAT

## 目标

请将大模型的回答与用户提供的参考答案进行对比，步骤如下：

1. 提取关键答案

1. 定位大模型回答的“最终总结”，逐个对照参考答案中的子问题，从大模型的“最终总结”中提
取每个问题对应所有关键回答。关键回答应仅包含核心的、直接回答问题的内容。

2. 对已识别出的某个关键回答进行补充说明的内容，应与该关键回答合并为一个整体，不要拆
分成新的答案要素。只有在内容明显独立、可与参考答案中不同要素相对应时，才视为新答

案。

2. 对比并标注：将提取出的回答与参考答案逐一对比，按以下标准进行标注：

1. 错误答案（false）：如果大模型多输出了一些要素，并且这些要素与参考答案无法对应或仅是
多余的补充信息（不是在同一个要素中补充，而是产生了多余答案要素），则判定为错误。

2. 正确答案（true）：如果该条回答与参考答案某一要素含义一致或高度吻合，视为正确。

3. 注意：每个从大模型回答中提取出的答案要素，都要有相应的 true 或 false 标签，确保每个回
答要素都被检查。

### 输出格式

```\n{{\n  "问题列表": [\n    {{\n      "问题": "子问题1",\n      "参考答案": ["答案1", "答案2"],\n      "大模
型的回答": ["关键回答1", "关键回答2"],\n      "是否正确": [true, false]\n    }},\n    {{\n      "问题": "子问
题2",\n      "参考答案": ["答案1"],\n      "大模型的回答": ["关键回答1", "关键回答2", "关键回答3", "关
键回答4"],\n      "是否正确": [false, true, false, false]\n    }}\n  ]\n}}\n```

### 参考答案

{answer}

Figure 24: Prompt to evaluate Open-Ended(sentence) questions by SEAT method.
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D Model Configurations and Prompting Methods

D.1 Generation Configurations

For open-weight models, we set the temperature τ = 0.1 to achieve optimal results, while for
proprietary models, we set the temperature τ = 0 for greedy decoding. For all models, we
set the maximum generation length to 4096. Additionally, we use BF16 for model inference
for open-weight models. All models are inferred on RTX 6000 Ada.

D.2 Prompts

To investigate the model’s reasoning capabilities, we conducted experiments using a Chain-
of-Thought (CoT) prompting strategy. This approach was implemented by modifying the
model’s default system prompt to explicitly elicit a step-by-step reasoning process before
providing a final answer.
The specific system prompt employed for our CoT experiments is detailed below:

  CoT prompt

System Prompt:

You are a helpful assistant for a question-answering task.

Your goal is to answer the question based on the provided contexts.

First, think step-by-step and write down your reasoning process within <reasoning></reasoning> tags. This
process should break down how you use the contexts to arrive at the answer.

Finally, provide your final answer within <answer></answer> tags.

Figure 25: Prompt for CoT experiments.

After the system prompt, the model is instructed to generate associated answer for the given
question.

  Extracting predict answer for Multi-Choice questions

You will be given a multiple-choice question about charts. You need to answer this question based on the
provided charts and its related context. The context for each chart will be placed within <context></context>
tags, and the question will be placed within <question></question> tags.

Your answer should be the letter of the correct option (e.g., A, B, C, etc.). If the question is unanswerable
based on the information in the provided image, your answer should be unanswerable.

Figure 26: Prompt to extract answers from model’s responses.

Then, the context, images and question will be fed into the model.
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  Extracting predict answer for Numerical-Calculation questions

You will be given a numerical question-answering task about charts. You are required to answer this question
based on the provided charts and its related context. The context for each chart will be placed within
<context></context> tags, and the question will be placed within <question></question> tags.

Your answer should be the most appropriate approximate numerical value. If the question is unanswerable
based on the information in the provided image, your answer should be unanswerable.

Do not generate units. But if numerical units such as million, m, billion, B, or K are required, use the exact
notation shown in the chart.  If there are multiple answers, put them in brackets using this format
["Answer1", "Answer2"].

Figure 27: Prompt to extract answers for Numerical questions.

  Extracting predict answer for True/False questions

You will be given a true/false question about charts. You are required to answer this question based on the
provided charts and its related context. The context for each chart will be placed within <context></context>
tags, and the question will be placed within <question></question> tags.

Your answer should be either 'true' or 'false'. If the question is unanswerable based on the information in the
provided image, your answer should be unanswerable.

Figure 28: Prompt to extract answers for True/False questions.

  Extracting predict answer for Open-End questions

You will be given an open-ended question about charts. You are required to answer this question based on
the provided charts and its related context. The context for each chart will be placed within <context>
</context> tags, and the question will be placed within <question></question> tags.

Your answer should be a logical and well-reasoned explanation that addresses the question. If the question is
unanswerable based on the information in the provided image, your answer should be unanswerable.

Figure 29: Prompt to extract answers for Open-Ended(vocabulary) questions.
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E QA Examples

In this section, we use several examples in ChartNexus to illustrate our annotation method-
ology for different answer types and difficulty factors.

Charts and Context

Economies show the greatest variation in public services, followed by operational efficiency, and then
the regulatory framework. Of the three pillars assessed by B-READY, the public services pillar has
the widest range of scores at 54.96 points (see Figure ES.8), compared to 46.97 for operational
efficiency and 32.02 for the regulatory framework.

These results indicate significant disparities among economies in the institutions and infrastructure
that support businesses, leading to different experiences for firms when it comes to complying with
regulations and using public services. The regulatory environment, on the other hand, is more
homogeneous across economies.

User Question

Which group of economies scores
significantly above the mean and
median in both the Regulatory
Framework and Public Services pillars?

Ground Truth

OECD high income

This question is categorized as Open-End
(vocabulary). It requires the user to identify
the economies scoring above both the mean
and the median.

The correct answer is the OECD high-income
economies (represented by dark purple), as
this is the only group with scores clearly above
both thresholds. To solve this, a model must
first identify the visual elements in the chart
that represent the mean and median, and then
perform a numerical comparison against the
data points.

Therefore, we annotate this QA pair with two
difficulty factors: Identification->element and
Comparison->numerical.

Figure 30: Example 1 of Annotations.
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Charts and Context

In fiscal year 2024, the World Bank's International Bank for Reconstruction and Development (IBRD)
and International Development Association (IDA) provided a total of $11.0 billion in lending to the
Western and Central Africa region. As shown in Figure 2, the primary focus of this funding was on
Energy and Extractives (22%) and Public Administration (20%), with these two sectors accounting
for nearly half of the total amount. Additionally, significant investments were made in Agriculture,
Fishing, and Forestry and Education, each receiving 10% of the funds.

User Question

Which region has the highest investment
in Energy and Extractives?

Ground Truth

EASTERN AND SOUTHERN AFRICA

Answering this question involves a multi-
step process. First, it requires calculating
the absolute investment amount for each of
the two regions by multiplying the total
lending by the relevant percentage (15.6 *
18% and 11.0 * 22%). Next, these two
results must be compared to identify the
larger value, which corresponds to the
Eastern and Southern Africa region.

Due to the need for calculation,
comparison, and logical deduction, the
question is annotated with three difficulty
factors: Numerical->calculate,
Comparison->numerical, and Reasoning.

Figure 31: Example 2 of Annotations.

Charts and Context

Learning curves for Negative Log-Likelihood (NLL) on MNIST (top, in nats) and CIFAR-10
(bottom, in bits/dim). Lower NLL values indicate better performance.

User Question

Does Figure (b)-ADV indicate that
severe overfitting occurred during the
model's training?

Ground Truth

False

Observation of the figure reveals that the
loss trends for the training and validation
sets are consistent, without a significant gap
forming between them. We can therefore
conclude that the model is not overfitting,
which means the premise of the original
question is incorrect.

This task requires the ability to compare
trends and apply general knowledge about
model training. Consequently, the question
is annotated with the difficulty factors:
Comparison->trend and Reasoning-
>general knowledge.

Figure 32: Example 3 of Annotations.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F Cases of Error Analysis

Error Case 1: Charts and Context

Mexicans generally havefavorable views of the
United Statesand see it as a country that
provides opportunities for a good life, according
to a recent Pew Research Center survey. They
also have positive opinions of their own country’s
economy and president. Here are six public
opinion findings from the survey of adults in
Mexico, which was conducted from March 22 to
April 30, 2023. A majority of Mexicans say a
better life awaits people who move to the
U.S.About six-in-ten Mexicans (59%) say that
people who move to the U.S. have a better life
there – the highest share since we began asking
the question in 2007.

User Question

In the year with the largest increase in the
percentage of people who believe 'life is
better for Mexicans in the US,' did
satisfaction with democracy in Mexico
increase or decrease compared to 2017?
(If multiple years meet this condition, use
the most recent one.)

A. Increased
B. Decreased
C. Cannot be determined

Ground Truth

C

Mexicans generally havefavorable views of the
United Statesand see it as a country that
provides opportunities for a good life, according
to a recent Pew Research Center survey. They
also have positive opinions of their own country’s
economy and president. Here are six public
opinion findings from the survey of adults in
Mexico, which was conducted from March 22 to
April 30, 2023. A majority of Mexicans say a
better life awaits people who move to the
U.S.About six-in-ten Mexicans (59%) say that
people who move to the U.S. have a better life
there – the highest share since we began asking
the question in 2007.

- Political stability:About a third of Mexicans say the
U.S. is more politically stable than other wealthy
countries. A similar share say the U.S. is about as
politically stable, while roughly a quarter of Mexicans
see the U.S. as less politically stable.
- Democracy:About three-in-ten say the U.S. is more
democratic than similar countries. However, a plurality
of 39% see the U.S. as about as democratic.
- Safety:Some 37% of Mexicans see the U.S. as
comparably dangerous to its peer countries, while 36%
see the U.S. as less dangerous. A quarter of Mexicans
see the U.S. as more dangerous.

  Gemini-2.5-pro

A

Here is the breakdown of the analysis:
Find the Year with the Largest
Increase:
First, we look at the "Most Mexicans
who see life as better in the U.S..."
chart, focusing on the green line for "A
better life."
The largest single increase occurred
between 2021 and 2023, when the
percentage jumped from 51% to 59%,
an 8-point increase.
This makes the year in question 2023.
Compare Satisfaction with Democracy:
Next, we consult the "Mexicans'
satisfaction with their democracy..."
chart to compare the "Satisfied" level in
2023 to that of 2017.
In 2017, satisfaction with democracy
was at a low of 6%.
By 2023, satisfaction had risen to 48%.
Because 48% is significantly higher
than 6%, the satisfaction with
democracy in Mexico increased
compared to 2017.

Figure 33: Error case 1. For this case, the correct procedure is to first identify the year with
the largest increase for the “Better” metric in the top-left chart (which is approximately
2012). Then, this year’s “satisfaction with democracy in Mexico” should be compared with
the 2017 value. However, since the satisfaction data for 2012 is not provided, the correct
answer is “C. Cannot be determined”. Gemini-2.5-pro erred by using incorrect data from
2023 for comparison.
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Error Case 2: Charts and Context

Mexico’s Supreme Court in Mexico City.
(stockcam via Getty Images) Mexico’s Supreme
Court in Mexico City. (stockcam via Getty
Images) As Mexicanshead to the polls in the
country’s first-ever judicial elections, two-thirds
approve of a 2024 law requiringall judges to be
elected by popular vote.

User Question

According to the chart, is the difference in
support for judicial reform between ruling
coalition supporters and all Mexican adults
greater than the difference in favorable
view ratings between the Morena and
Citizen Movement parties?

Ground Truth

False

In addition, President Claudia Sheinbaum,
former President Andrés Manuel López Obrador
and their left-leaning Morena party are widely
popular, according to a Pew Research Center
survey conducted from Feb. 12 to March 25,
2025. In addition, President Claudia Sheinbaum,
former President Andrés Manuel López Obrador
and their left-leaning Morena party are widely
popular, according to a Pew Research Center
survey conducted from Feb. 12 to March 25,
2025.

  GPT4o

False

  Gemini-2.5-pro

False

  Claude-sonnet-4

False

  Qwen-2.5-VL-7B

False

Last September, a month before the end of his
term,López Obrador signed a lawmandating that
all judges and magistrates in Mexico be elected
rather than appointed. Though its passage
sparkedmass protests,66% of Mexicans now say
they approve of the policy, including 31%
whostrongly approve. Last September, a month
before the end of his term,López Obrador signed
a lawmandating that all judges and magistrates
in Mexico be elected rather than appointed.
Though its passage sparkedmass protests,66%
of Mexicans now say they approve of the policy,
including 31% whostrongly approve. Approval of
Mexico’s judicial change is linked to support for
Morena and its alliance partners in last year’s
election, the Labor Party (PT) and the Ecologist
Green Party of Mexico (PVEM). Among those
who support these groups, 76% approve of the
policy, compared with 54% of nonsupporters.
Majorities across age groups approve of the
policy, but approval is somewhat higher among
younger adults. While 71% of Mexicans ages 18
to 34 and 68% of those 35 to 49 approve of the
change, 60% of those ages 50 and older say the
same.

Around eight-in-ten Mexicans also hold favorable
views of Sheinbaum and López
Obrador,colloquially known as AMLO. That
includes four-in-ten or more who view
themveryfavorably. Around eight-in-ten Mexicans
also hold favorable views of Sheinbaum and
López Obrador,colloquially known as AMLO.
That includes four-in-ten or more who view
themveryfavorably. 

  ChartInstruct

True

The difference in support for
judicial reform between ruling
coalition supporters and all
Mexican adults is 76% minus 66%,
which equals 11 percentage points.
The favorable view of Morena is
78%, and for the Citizen Movement
it is 50%, so the difference is 78
minus 50, which is 28 percentage
points. Therefore, the difference in
support for judicial reform is larger.

Figure 34: Error case 2. In this case, the general-purpose MLLMs successfully identified the
required elements, whereas the specialized chart model, ChartInstruct, failed. This outcome
suggests that models trained primarily on existing chart benchmarks may not be well-suited
for the complexities of real-world document question-answering scenarios.
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Error Case 3: Charts and Context

A key lesson from the case studies and data
available is that to accommodate investors’
preferences, the hybrid setting, in many
jurisdictions where it is allowed, is an increasingly
common practice. According to data from LUMI
(a global provider of technology for real-time
shareholder meetings), $40 %$ of all shareholder
meetings in jurisdictions where LUMI operates
were hybrid in 2023, 14 percentage points more
than in 2022 and 31 percentage points more than
in 2021 (LUMI, 2023[2]; LUMI, $2 0 2 4 _ { [ 3 ] }
)$ (Figure 2.1).
Figure 2.1. Format of AGMs globally, 2021-
23Note: Data are limited to jurisdictions in which
LUMI and Broadridge operate and therefore do
not cover all peer review jurisdictions. Averages
are calculated by region. Globally the sample
consists of 3 054 listed companies, distributed
across the following regions: Africa: 229
meetings; Asia: 505; Australia: 265; Europe: 1
055; Middle East: 226; North America: 774.
Source: LUMI Global and Broadridge.

User Question

Based on your calculations, determine if
the number of surveyed jurisdictions with
no provisions for pre-meeting question
deadlines for virtual/hybrid AGMs exceeds
5% of the total number of AGMs held
across Africa, the Middle East, and
Australia.

Ground Truth

False
Only $26 %$ of jurisdictions require a specific
response format in law or in listing rules (13),
and the others do not regulate it. Where the law
provides clarifications on the response format,
there are varied approaches. Lithuania has an
interesting approach where if multiple questions
on the same topic are submitted, the company
can provide a single response. Additionally, all
answers to questions submitted in advance
about agenda items must be shared at the
general meeting or made available to all
shareholders beforehand.

  GPT4o

Not Answerable

To determine if the number of surveyed jurisdictions
with no provisions for pre-meeting question
deadlines for virtual/hybrid AGMs exceeds 5% of the
total number of AGMs held across Africa, the Middle
East, and Australia, I will need to extract relevant
data from the image you uploaded. Let me analyze
the content of the image and calculate the required
figures. From the text extracted from the image, I
found the following key information: The total number
of listed companies distributed across the
regions: North America: 774 meetings. Middle East:
226 meetings. Europe: 1,055 meetings. Australia:
265 meetings. Asia: 505 meetings. Africa: 229
meetings. The survey data focuses on jurisdictions
where LUMI and Broadridge operate, and it is
mentioned that data for these regions are used for
analysis.

However, the text does not directly mention the
number of jurisdictions with no provisions for pre-
meeting question deadlines for virtual/hybrid AGMs.
The data on pre-meeting question deadlines appears
to be in a separate section of the text, but it's not fully
extracted here. To proceed with your request, I need
more specific details on the percentage or number of
jurisdictions without pre-meeting question deadlines
for virtual/hybrid AGMs. So the answer is </answer>
Not Answerable </answer>

Figure 7.1. AGMs format among FTSE 350 companies, 2021-24
Note: The categories physical meetings and physical meetings with live electronic features were
merged into one category. Source: Thomson Reuters: Annual reporting and AGMs 2021; Annual
reporting and AGMs 2023; Annual reporting and AGMs emerging trends from the 2024 season. Lexis
Nexis: market tracker trend report AGM update 2022-23.

Figure 35: Error case 3. In this case, GPT-4o focused only on the chart and overlooked
the accompanying context. The highlighted section in the context implicitly states the total
value, and the model could only answer correctly by integrating information from both the
document context and the chart itself. This highlights how our benchmark better reflects
real-world document understanding scenarios.
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G Additional Experimental Analysis

To provide a comprehensive diagnosis of model capabilities and validate the unique chal-
lenges posed by ChartNexus, we conducted a series of fine-grained ablation studies and
stratified analyses.

G.1 Performance by Chart Type

To address concerns regarding the distribution of chart types and to identify specific model “
failure modes,” we performed a category-wise performance breakdown across all chart types
present in the benchmark. As shown in Table 8, while models perform relatively well on
common 2D charts (e.g., Bar, Line, Pie), we observe a significant performance degradation
on complex spatial visualizations.
Notably, all evaluated models exhibit a “performance cliff” on 3D charts, with the best-
performing model (Qwen2.5-VL-32B) achieving only 36.1% accuracy, compared to 65.4% on
Bar charts. This universal deficit highlights a critical limitation in current Vision-Language
Pretraining regarding spatial projection and depth perception.

Table 8: Fine-grained performance breakdown by chart type. Note the significant per-
formance drop on 3D charts across all models compared to standard types, revealing a
boundary in current spatial reasoning capabilities.

Model Bar Line Pie Table Scatter Tree Radar Area Sunburst Graph Boxplot Sankey Heatmap 3D Candle Funnel Other
GPT-4o 63.7 62.5 74.8 70.2 63.9 69.9 60.0 56.6 70.5 66.7 62.0 100.0 64.4 33.3 63.6 76.9 64.9
Qwen2.5-VL-32B 65.4 62.9 80.2 73.2 56.4 69.1 50.0 64.2 64.7 66.7 62.5 73.6 65.6 36.1 54.5 69.2 64.7
InternVL3-38B 63.1 63.8 65.2 77.2 81.6 66.6 65.0 66.6 64.7 46.7 68.6 100.0 85.0 33.3 63.6 84.6 75.0
GLM-4.1V-9B 66.7 65.7 77.3 79.0 66.5 70.2 50.0 59.5 58.8 66.7 37.5 84.2 55.4 17.2 63.6 61.5 64.6
InternVL3-14B 58.3 58.7 79.1 80.1 36.8 50.6 55.0 63.6 66.7 53.3 23.5 89.4 20.0 20.0 45.4 61.5 40.2
Qwen2.5-VL-7B 46.8 44.5 48.6 60.7 38.4 51.4 45.0 45.2 58.8 33.3 25.0 89.4 44.3 16.8 27.2 53.8 48.9

G.2 Impact of Textual Context

To quantify the role of document context in multi-chart reasoning, we conducted an ablation
study where all textual context (captions and related paragraphs) was removed, leaving only
the chart images.
As shown in Table 9, performance drops significantly in the “No-Context” setting compared
to the full benchmark (e.g., Qwen2.5-VL-7B drops from 46.67% to 15.1% in Open-Ended
Vocabulary tasks). This quantitative “Context Gap” confirms that visual perception alone
is insufficient for ChartNexus tasks, which require the model to use text as a semantic bridge
to interpret and connect visual data.

Table 9: Model performance in the No-Context ablation setting. Comparing these results
with the main table reveals the critical dependency on cross-modal grounding.

Models Bool Approx. Value Multi-Choice Open-Ended (Vocab) Open-Ended (Sent.)
Qwen2.5-VL-32B 52.3 42.7 60.1 30.5 68.1
InternVL3-38B 53.1 54.3 51.5 21.2 57.7
InternVL3-14B 43.0 37.8 53.4 25.2 56.4
GLM-4.1V-9B 41.7 40.6 54.6 27.8 55.5
Qwen2.5-VL-7B 31.7 34.5 44.6 15.1 43.2

G.3 Composite Subplots vs. Discrete Images

We further analyzed whether the difficulty in multi-chart reasoning stems from logical com-
plexity (reasoning across files) or visual density (parsing subplots). We categorized samples
into Single image containing multiple subplots and Multiple discrete image files.
Table 10 shows that models like InternVL3-14B suffer a massive drop on subplot samples
(37.7%) compared to discrete images (61.2%), indicating a bottleneck in visual resolu-
tion or encoder capacity when processing dense composite figures. Larger models (e.g.,
InternVL3-38B) show robustness across both settings.
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Table 10: Performance comparison between composite images (Subplots) and discrete im-
ages. The discrepancy in smaller models highlights visual resolution bottlenecks.

Models Multi-Charts with Subplots Multi-Charts w/o Subplots
InternVL3-38B 64.2 64.1
Qwen2.5-VL-32B 60.3 65.7
GLM-4.1V-9B 61.5 68.2
InternVL3-14B 37.7 61.2
Qwen2.5-VL-7B 46.5 46.3

G.4 Hallucination Analysis: Boolean vs. Multi-Choice

To justify the inclusion of a distinct “Judgment” (Boolean) category, we analyzed the models’
refusal capabilities. We define a Hallucination as the model providing a specific answer
when the ground truth is “Unanswerable” (False Negative). Conversely, a True Positive
(TP) occurs when the model correctly identifies the question as unanswerable.
Table 11 illustrates a strong “Selection Bias” inherent in the Multiple-Choice format. Mod-
els like GLM-4.1V-9B, InternVL3-14B, and Qwen2.5-VL-32B achieved 0 successful refusals
(TP = 0) in the Multi-Choice setting, effectively hallucinating an answer in 100% of unan-
swerable cases. Even GPT-4o showed a significantly higher hallucination rate in Multiple-
Choice compared to Judgment tasks.
This dissociation demonstrates that the “Judgment” format effectively exposes a model’s la-
tent fact-checking capabilities, which are often overridden by the structural bias of multiple-
choice prompts. Therefore, the Boolean category serves as an indispensable diagnostic tool
for evaluating faithfulness and refusal capability.

Table 11: Comparison of Hallucination Rates on Unanswerable Questions. TP (True Posi-
tive) indicates a correct refusal (predicting “Unanswerable”); FN (False Negative) indicates
a hallucination (predicting an option/value). The Judgment format significantly outper-
forms Multi-Choice in eliciting correct refusals.

Judgment (Boolean) Multiple-Choice
Model TP FN (Hallucination) F1 Score TP FN (Hallucination) F1 Score
GPT-4o 7 5 0.333 3 13 0.124
Qwen2.5-VL-7B 6 50 0.176 1 15 0.047
GLM-4.1V-9B 3 9 0.188 0 16 0.000
InternVL3-14B 2 10 0.118 0 16 0.000
Qwen2.5-VL-32B 2 10 0.182 0 16 0.000
InternVL3-38B 10 2 0.589 2 14 0.181
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H Reliability and Validity Checks

H.1 Human Performance Baseline

To quantify the gap between current MLLMs and human capabilities, we established an
explicit human performance baseline. Two expert annotators (graduate students) were
recruited to evaluate a stratified sample of 30 instances per question type.
As shown in Table 12, the average human accuracy is approximately 89.1%, which signif-
icantly outperforms current SOTA models. This confirms that while the benchmark tasks
are solvable, they remain challenging even for humans due to the complexity of real-world
data.

Table 12: Human performance baseline across different task categories.

Bool Approx. Value Multi-Choice Open-Ended (Voc) Open-Ended (Sent)
Human 93.3 90.0 83.3 93.3 85.7

H.2 Sensitivity to Evaluation Prompt Language

Given the multilingual nature of the community, we assessed whether the language of the
evaluation prompt (Chinese vs. English) affects the scoring of the SEAT metric. We com-
pared the original Chinese prompts with professionally translated English prompts.
Table 13 shows a minor absolute performance shift (approx. 1.5% - 3.5%) but, crucially,
the relative ranking of models remains identical. This confirms the robustness of our
benchmark’s conclusions regardless of the evaluator’s prompt language.

Table 13: Ablation study on SEAT evaluation prompt language.

Models Chinese Prompt English Prompt
Qwen2.5-VL-32B 72.67 70.28
GLM-4.1V-9B 68.77 65.29
InternVL3-38B 58.96 56.39
InternVL3-14B 56.25 52.98
Qwen2.5-VL-7B 49.49 48.01

H.3 Reliability of Automated Evaluation

Human-Model Alignment Study. To address concerns regarding the reliability of
Qwen3-32B as an automated judge, we conducted a human verification study on a stratified
sample of 250 instances (50 per question type).
As shown in Table 14, the judge achieves near-perfect alignment (98%–100%) for objec-
tive tasks (Boolean, Multi-Choice, Approximate Value). The 6.5% overall misalignment is
concentrated in Open-Ended tasks, primarily due to linguistic ambiguity in SEAT decompo-
sition rather than systematic bias. This confirms Qwen3-32B is a reliable proxy for human
evaluation.

Table 14: Human-Model Agreement Rates by Question Type.

Type Bool Approx. Value Multi-Choice Open (Vocab) Open (Sent)
Agreement (%) 100 98 100 92 86

Robustness of Automated Evaluation Across Judges
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To ensure our rankings are not artifacts of a specific judge model’s bias, we conducted
an extensive comparative study on the “Open-Ended (sentence)” category using the SEAT
method. We employed Deepseek-chat and GPT-4o as independent judges, comparing their
scoring distributions and resulting rankings against our original judge (Qwen3-32B) and
human verification.
For human verification, two experts evaluated a stratified sample of 30 responses per model,
whereas the automated judges evaluated the full benchmark. As shown in Table 15, the
results reveal a high degree of consistency in model rankings across diverse judges. While
absolute scores vary—for instance, GPT-4o tends to be stricter, assigning lower scores across
the board—the relative ordering of the evaluated models remains stable.

Table 15: Comparison of Model Performance Scores in the “Open-Ended (sentence)” Cate-
gory under Different Evaluators. Despite variations in absolute scores, the relative ranking
of models remains consistent.

Judge Model Qwen2.5-VL-7B GLM-4.1V-9B InternVL3-14B Qwen2.5-VL-32B InternVL3-38B
Human (Sampled) 47.2 52.5 50.4 67.2 57.3
Qwen3-32B (Ours) 49.5 68.8 56.3 72.7 60.0
Deepseek-chat 44.8 64.7 59.1 70.9 61.0
GPT-4o 39.3 60.1 56.1 61.9 57.8
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