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Abstract

In the age of large language models (LLMs)001
and the widespread adoption of AI-driven con-002
tent creation, the landscape of information003
dissemination has witnessed a paradigm shift.004
With the proliferation of both human-written005
and machine-generated real and fake news, ro-006
bustly and effectively discerning the veracity007
of news articles has become an intricate chal-008
lenge. While substantial research has been ded-009
icated to fake news detection, this either as-010
sumes that all news articles are human-written011
or abruptly assumes that all machine-generated012
news is fake. Thus, a significant gap exists in013
understanding the interplay between machine-014
paraphrased real news, machine-generated fake015
news, human-written fake news, and human-016
written real news. In this paper, we study this017
gap by conducting a comprehensive evaluation018
of fake news detectors trained in various sce-019
narios. Our primary objectives revolve around020
the following pivotal question: How can we021
adapt fake news detectors to the era of LLMs?022
Our experiments reveal an interesting pattern023
that detectors trained exclusively on human-024
written articles can indeed perform well at de-025
tecting machine-generated fake news, but not026
vice versa. Moreover, due to the bias of detec-027
tors against machine-generated texts (Su et al.,028
2023a), they should be trained on datasets with029
a lower machine-generated news ratio than the030
test set. Building on our findings, we provide a031
practical strategy for the development of robust032
fake news detectors. 1033

1 Introduction034

Since Brexit and the 2016 US Presidential cam-035

paign, the proliferation of fake news has become a036

major societal concern (Martino et al., 2020). On037

the one hand, false information is easier to generate038

but harder to detect (Kumar and Shah, 2018). On039

the other hand, humans are often attracted to sen-040

sational information and spread it six times faster041

1Code and data would be released upon acceptance.

than truthful news (Vosoughi et al., 2018), which is 042

a threat to both individuals and society as a whole. 043

Until recently, most online disinformation was 044

human-written (Vargo et al., 2018), but recently 045

a lot of it is AI-generated. With the continuing 046

progress of natural language generation (Radford 047

et al., 2019; Brown et al., 2020; Chowdhery et al., 048

2022), AI-generated content has become indistin- 049

guishable from human-written one, and it is also of- 050

ten perceived as more credible (Kreps et al., 2022) 051

and trustworthy (Zellers et al., 2019; Spitale et al., 052

2023) than human-generated propaganda. This 053

raises pressing concerns about the unprecedented 054

scale of disinformation that AI models have en- 055

abled (Bommasani et al., 2021; Kreps et al., 2022; 056

Buchanan et al., 2021; Goldstein et al., 2023). 057

While efforts to combat machine-generated fake 058

news date back to as early as 2019 (Zellers et al., 059

2019), the majority of research in this field has 060

primarily focused on detecting machine-generated 061

text, rather than evaluating the factual accuracy of 062

machine-generated news articles. In these studies, 063

machine-generated text is considered to be always 064

fake news, regardless of its content. 065

Previously, when generative AI was less preva- 066

lent, it was arguably reasonable to assume that most 067

automatically generated news articles would be 068

primarily used by malicious actors to craft fake 069

news. However, with the remarkable advancement 070

of generative AI in the last two years, and their in- 071

tegration in various aspects of our lives, these tools 072

are now broadly adopted for legitimate purposes 073

such as assisting journalists in content creation. 074

Reputable news agencies, for instance, use AI to 075

draft or to enhance their articles (Hanley and Du- 076

rumeric, 2023). Nevertheless, the age-old problem 077

of human-written fake news continues. This di- 078

verse blend of machine-generated genuine news, 079

machine-generated fake articles, human-written 080

fabrications, and human-written factual articles has 081

shifted the way of news generation and the intricate 082
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intermingling of content sources is likely to endure083

in the foreseeable future.084

In order to adapt to the era of LLMs, the085

next generation of fake news detectors should be086

able to handle the mixed-content landscape of087

human/machine-generated real/fake news. While088

there exists a substantial body of research on fake089

news detection, it typically focuses exclusively on090

human-written fake news (Khattar et al., 2019;091

Kim et al., 2018; Paschalides et al., 2019; Horne092

and Adali, 2017; Pérez-Rosas et al., 2018) or on093

machine-generated fake news (Zellers et al., 2019;094

Goldstein et al., 2023; Zhou et al., 2023), essen-095

tially framing the problem as detection of machine-096

generated text. However, robust fake news de-097

tectors should primarily assess the authenticity of098

the news articles, rather than relying on other con-099

founding factors, such as whether the article was100

machine-generated. Thus, there is a pressing need101

to understand fake news detectors on machine-102

paraphrased real news (MR), machine-generated103

fake news (MF), human-written fake news (HF),104

and human-written real news (HR).105

Here, we bridge this gap by evaluating fake106

news detectors trained with varying proportions of107

machine-generated and human-written fake news.108

Our experiments yield the following key insights:109

(1) Fake news detectors, when trained exclu-110

sively on human-written news articles (i.e., HF,111

HR), have the ability to detect machine-generated112

fake news. However, the reverse is not true. This113

observation suggests that, when the proportion of114

testing data is uncertain, it is advisable to train de-115

tectors solely on human-written real and fake news116

articles. Such detectors are still able to generalize117

effectively for detecting machine-generated news.118

(2) Although the overall performance is mainly119

decided by the distribution of machine-generated120

and human-written fake news in the test dataset,121

the class-wise accuracy for our experiments sug-122

gests that, in order to achieve a balanced perfor-123

mance for all subclasses, we should train the detec-124

tor on a dataset with a lower proportion of machine-125

generated news compared to the test set.126

(3) Our experiments also reveal that fake news127

detectors are generally better at detecting machine-128

generated fake news (MF) than at identify human-129

written fake news (HF), even when exclusively130

trained on human-generated data (without seeing131

MF during the training). This underscores the in-132

herent bias within fake news detectors (Su et al.,133

2023a). It is recommended to take these biases into 134

consinderation when training fake news detectors. 135

Our contributions can be summarized as follows: 136

• We are the first to conduct comprehensive 137

evaluation of fake news detectors across di- 138

verse scenarios where news articles exhibit a 139

wide range of diversity, including both human- 140

written and machine-generated real and fake 141

content. 142

• Drawing from our experimental results, we 143

offer valuable insights and practical guide- 144

lines for deploying fake news detectors in real- 145

world contexts, ensuring that they remain ef- 146

fective amid the ever-evolving landscape of 147

news generation. 148

• Our work lays the groundwork for understand- 149

ing the data distribution shifts in fake news 150

caused by LLMs, moving beyond simple fake 151

news detection. We aim to heighten the re- 152

search community’s awareness of this evolv- 153

ing dynamic in human language and their 154

larger impact. 155

2 Related Work 156

Fake news detection is the task of detecting poten- 157

tially harmful news articles that make some false 158

claims (Oshikawa et al., 2020). The conventional 159

solution for detecting fake news is to ask profes- 160

sionals such as journalists to perform manual fact- 161

checking (Shao et al., 2016), which is expensive 162

and time-consuming. To reduce the time and the 163

efforts for detecting fake news, researchers formu- 164

late this problem as a classification problem and 165

seek solutions for automatic fake news detection 166

from a machine learning perspective. 167

In general, there are two branches of the task for- 168

mulation: one branch only consider human-written 169

real vs. fake news, and the other one formulates this 170

as detecting machine-generated text, thus automati- 171

cally categorizing any machine-generated news as 172

fake news. 173

2.1 Detecting Human-Written Real/Fake 174

News 175

Before 2018, fake news were predominantly manu- 176

ally written (Vargo et al., 2018), which motivated 177

early research on distinguishing human-written 178

fake news from machine-generated ones. Various 179

methods have been designed such as linguistic ap- 180

proaches (Chen et al., 2015; Rubin et al., 2016; 181
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Pérez-Rosas et al., 2018), such as analysis of the182

writing style (Castelo et al., 2019) and of the con-183

tent (Jin et al., 2016; VV and Zafarani, 2020);184

fact-checking approaches, which rely on the au-185

tomatic verification of the claims made in news186

articles (Graves and Cherubini, 2016) or apply-187

ing deep learning methods such as CNNs (Huang188

et al., 2017; He et al., 2016), LSTMs (Graves and189

Graves, 2012), or transformers (Devlin et al., 2019;190

Vaswani et al., 2017).191

2.2 Distinguishing Machine-Generated from192

Human-Written News193

With recent progress of natural language text gen-194

eration (Radford et al., 2018, 2019; Zhao et al.,195

2023), there have also been rising concerns that196

malicious actors might generate fake news automat-197

ically using controlled generation (Mitchell et al.,198

2023; Zellers et al., 2019). To understand and to199

respond to neural fake news, (Zellers et al., 2019)200

studied the potential risk of neural disinformation201

and presented a model for neural fake news gen-202

eration called GROVER, which allows for con-203

trolled generation of an entire news article. They204

generated fake news articles using GROVER, and205

experimented with distinguishing them from real206

news articles. They consider an unpaired setting,207

where the goal if to detect whether a news arti-208

cle was generated by a human or by a machine,209

and a paired setting, where the model is given210

two news articles with the same meta data, one211

real and one machine-generated, and the detec-212

tor has to assign the machine-generated article a213

higher machine probability. Thus, they essen-214

tially addressed the problem of detecting machine-215

generated vs. human-written news articles, even216

though they talked about detecting neural fake217

news. Later work (Pagnoni et al., 2022) discussed218

different threat scenarios from neural fake news219

generated by state-of-the-art language models and220

assessed the performance of generated-text detec-221

tion systems under these threat scenarios. Other222

work proposed more advanced fake news genera-223

tors that incorporated the use of propaganda tech-224

niques as part of the process (Huang et al., 2023).225

With the recent popularity of LLMs, many worry226

about malicious actors using more powerful mod-227

els such as ChatGPT, GPT3 and GPT3.5 as poten-228

tial sources of machine-generated fake news and229

mis/dis-information(Zhou et al., 2023; Hanley and230

Durumeric, 2023; Su et al., 2023b).231

Figure 1: Our three experimental phases: (Human
Legacy, Transitional Coexists, and Machine Domi-
nance) based on real news generation sources.

3 Methodology 232

As the dynamics between human-written and 233

machine-generated content shift, it is crucial to 234

gauge their impact on a model’s proficiency in dif- 235

ferentiating between real and fake news. Here, we 236

consider three distinct experimental setups, each 237

representing different phases for news article gen- 238

eration due to the evolution of LLMs, as elucidated 239

in Figure 1. 240

The initial Human Legacy stage, is emblematic 241

of a time when the news was predominantly crafted 242

by human authors. In this experimental setting, we 243

used solely human-written real news articles for the 244

training data in the real news category. Meanwhile, 245

to see how the proportion of machine-generated 246

fake news in the training data affects the perfor- 247

mance of the detector, we incrementally introduce 248

machine-generated articles into the fake news cat- 249

egory, ranging from 0% to 100%. This setting 250

mirrors a past era, where humans were the primary 251

producers of real news, with machines playing a 252

negligible role for fake news article generation. 253

Transitioning to the Transitional Coexistence 254

stage, we reflect the current situation where lan- 255

guage models collaboratively contribute to real 256

news article generation. To simplify this setting, 257

our training data in real news class contain a human- 258

written and a machine-generated parts. This setting 259

reflects the ongoing transformation in the news 260

landscape, marked by the growing influence of 261

LLMs. 262

Finally, in the Machine Dominance stage,+ 263

4 Experiments 264

In this section, we introduce the dataset, the base- 265

lines, the experimental details, and the evaluation 266

measure we use. 267
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4.1 Datasets268

We use GossipCop++ and PolitiFact++,269

which were introduced in (Su et al., 2023a). Table 3270

shows statistics about them. The human-written271

fake news (HF) and human-written real news (HR)272

parts of the dataset are originally from the Fak-273

eNewsNet (Shu et al., 2020), and they were fil-274

tered to keep only the subset that contains a title275

and a description. The machine-paraphrased real276

news (MR) and the machine-generated fake news277

(MF) parts are generated by ChatGPT using Struc-278

tured Mimicry Prompting (SMP) (Su et al., 2023a)279

to reduce the identifiable structure of machine-280

generated news articles, so that the detector can281

focus on the truthfulness of the content rather than282

on the source. More analysis and description of the283

dataset can be found in Appendix C.284

4.2 Baselines285

In our experiments, we use transformer-based meth-286

ods, as they have demonstrated significantly supe-287

rior performance compared to other deep learning288

classifiers and have gained widespread acceptance289

and adoption in the field of fake news detection290

(Kula et al., 2021a; Kong et al., 2020; Kula et al.,291

2021b; Kozik et al., 2023; Gundapu and Mamidi,292

2021). In particular, we experimented with both293

large and base models of BERT (Devlin et al.,294

2019), RoBERTa (Liu et al., 2019), ELECTRA295

(Clark et al., 2020), ALBERT (Lan et al., 2020),296

and DeBERTa (He et al., 2021).297

4.3 Experimental Details298

We split the dataset GossipCop++ into299

0.6:0.2:0.2, for training, validation, and testing, re-300

spectively. For fair evaluation and to better observe301

the trends, we didn’t use the full dataset, but made302

the training/validation/testing data fully balanced303

by first sampling 4084 data for fake news class304

and 4084 data in real news class and then make305

the 0.6:0.2:0.2 split on them. For out-of-domain306

testing on PolitiFact++ dataset, we sample307

97 data for each subclass for testing (i.e., 194 for308

real and fake news, respectively). The number of309

samples used in our experiments are summarized310

in Table 1. All models are trained on an A100 40G311

GPU with a batch size of 25 with a learning rate of312

1e-6 for 10 epochs.313

Train Val Test
Dataset Fake Real Fake Real Fake Real
GossipCop++ 2450 2450 817 817 817 817
PolitiFact++ - - - - 194 194

Table 1: Number of news articles used in our experi-
ments.

4.4 Evaluation Measure 314

Since we have a balanced training and testing 315

dataset in all the experiments, we use subclass-wise 316

accuracy as our primary evaluation measure. Other 317

measures such as F1, precision, recall and overall 318

accuracy can be directly derived from the subclass- 319

wise accuracy due to the balanced (sub)class set- 320

ting. For our purposes, subclass-wise accuracy 321

offers a more direct and insightful perspective, al- 322

lowing us to assess the results from the standpoint 323

of each individual subclass while considering more 324

measures such as the internal bias of the detector. 325

5 Experimental Results 326

In this section, we undertake exhaustive experi- 327

ments and exploration of the three stages men- 328

tioned in Section 3. Specifically, we evaluate 329

five transformer-based models in two distinct sizes 330

across the three stages. Coupled with the five dif- 331

ferent proportions of machine-generated fake news, 332

this resulted in a total of 50 unique model configu- 333

rations. We tested each of these configurations on 334

two datasets: an in-domain dataset GossipCop++ 335

and an out-of-domain dataset PolitiFact++. 336

(As we analyzed in Appendix C, given the signif- 337

icant statistical differences from GossipCop++, 338

PolitiFact++ can serve as a valuable out-of- 339

domain dataset for assessing the robustness of the 340

detector.) 341

5.1 Main Results 342

Given the sheer volume of the experiments, to 343

maintain clarity and to avoid overwhelming the 344

readers, we relegate the complete results to Ap- 345

pendix B, while focusing our analysis and dis- 346

cussion primarily on Figure 2, which shows the 347

performance measures obtained from training a 348

large-sized RoBERTa model and testing on the 349

GossipCop++ dataset. 350

To provide a thorough understanding, we first 351

delve into each stage independently, and then we 352

perform a more holistic analysis of the observing 353

patterns across these stages. 354
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Figure 2: Class-wise detection accuracy from the Human Legacy stage (left), to the Transitional Coexistence stage
(middle), to the Machine Dominance stage (right), with different fraction of machine generated fake news in the fake
news training data illustrated in the y axis. (The blue and the red shaded area are recommended training strategies
based on our experiments. We discuss this in detail in Section 6.)

Human Legacy Setting. In this setting, the train-355

ing data in the real news is all human-written.356

When paired with human-written fake news as the357

whole training set, it can achieve a relatively bal-358

anced and high detection accuracy for each sub-359

class. When the MF portion increases to 33%,360

the detection accuracy for MF increases to around361

99%, and further increases in the portion for the362

MF subclass in the training data almost has no more363

contribution to the test detection accuracy for the364

MF subclass. Moreover, we find an abrupt drop of365

detection accuracy for the MR subclass. This might366

be because, when we add MF to the training data,367

since we do not have MR data during training, the368

detector might use a short cut such as features that369

are unique to machine-generated text as features370

for “fake news,” and thus could classify most of371

the MR examples as fake news. Similarly, when372

the fraction of MF examples increases from 67%373

to 100%, (i.e., we only use machine-generated fake374

news paired with only human-written real news as375

training data), we observe an abrupt drop in HF ac-376

curacy: the detectors trained in this way categorize377

most of the human-written fake news as real, since378

it checks whether the text is machine-generated as379

a key feature for detecting fake news. Note that,380

even with high MF portion, the accuracy for the381

MR subclass is still greater than the 1− Acc(MF),382

which suggests that the detector can still learn some383

features to identify the truthfulness of the machine384

generated texts rather than solely using machine-385

generated texts features. Otherwise, we would have386

Acc(MR) ≈ 1− Acc(MF).387

One key observation from this stage is, when the388

proportion of MF is 0%, which corresponds to a389

setting where we train a detector on human-written 390

real and fake news articles and we then deploy it to 391

detect machine-generated real and fake news. Inter- 392

estingly, the resulting detector can generalize well 393

to distinguishing between real and fake machine- 394

generated news, with a detection accuracy almost 395

comparable to detecting human-written ones. This 396

suggests that maybe it is not essential to train on 397

machine-generated real and fake news to be able to 398

detect them. It would certainly be helpful for the 399

overall detection accuracy if our training data distri- 400

bution aligned well with the testing data; however, 401

in real world deployment, due to the distribution 402

shift or due to our ignorance about the distribution 403

of new data in a real-world scenario (for example, 404

we do not know, how many of the news articles 405

are machine-generated, and more importantly, this 406

distribution might change over time due to model 407

updates and other factors (Omar et al., 2022)), the 408

most effective way to train the detector is to train 409

on human-written real and fake news articles. 410

Transitional Coexistence Setting. In this setting, 411

the training data for the real news class is composed 412

equally of machine-generated and human-written 413

articles. Notably, we observe that when the fake 414

news training data is exclusively human-written, 415

the subclass-wise accuracy for the MF subclass 416

is relatively low, with just 20.44% while the HF 417

class is accurately detected with 79.93% detection 418

accuracy. Conversely, when the fake news class 419

is entirely MF, the accuracy for the HF subclass 420

diminishes to a mere 26.19% while the MF accu- 421

racy is high. Echoing our prior analysis from the 422

Human Legacy stage, this may be attributed to the 423

detectors leveraging features that are indicative of 424
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an article’s source (machine or human) rather than425

of its veracity. In the absence of HF in the training426

data, the detector may use a short cut and assume427

that all fake news are machine-generated, which428

results in reduced accuracy for the HF subclass. A429

similar situation arises when no MF data is present430

during training, potentially leading the detector to431

misclassify MF articles as real news at test time.432

Moreover, even with a balanced fake news class433

containing half MF and half HF, the detection ac-434

curacy for the MF subclass consistently surpasses435

other subclasses while the accuracy for HR is the436

lowest. This detection accuracy is not as balanced437

as training on only HF and HR (see the result for438

Human Legacy Stage when the MF portion is 0%,439

the blue shaded area). This highlights a key insight:440

striving for perfect balance within each subclass441

during training might not yield results as good as442

training solely on human-generated real and fake443

news. However, since training with the other three444

subclasses (HR, HF, MF) yields better result than445

training with purely human-written real and fake446

news, the overall performance might be better (de-447

pends on the subclass distribution in the test set).448

Machine Dominance Setting In this setting, the449

entire training data for the real news class com-450

prises MR, with no exposure to HR examples dur-451

ing training. When the fake news class has only HF452

as training examples (i.e., 0% MF portion), the de-453

tector excels in discerning HF and MR, seemingly454

by identifying the origin (machine or human) of the455

article rather than modeling its factuality. Given456

that modeling factuality is inherently more chal-457

lenging than pinpointing the article’s source, this458

approach compromises the detection accuracy for459

the MF and the HR subclasses. Remarkably, intro-460

ducing a modest 33% of MF articles to the training461

data triggers a dramatic surge in MF detection ac-462

curacy, catapulting it from a mere 4.41% to an im-463

pressive 98.04%. This swift adaptation suggests, in464

this training set, that the detector has the capability465

to discern genuine from counterfeit content with-466

out being misled by superficial features classifying467

MF and MR categories. Such behavior hints at the468

possibility that the veracity of machine-generated469

articles (MF and MR) is more discernible than that470

of human-generated articles (HF and HR). This471

hypothesis can be further illuminated by compar-472

ing between the Machine Dominance setting (with473

100% MF) and the Human Legacy setting (with474

0% MF), where the experiments show that, detec-475

tors trained exclusively on human-written articles 476

exhibit commendable accuracy even with machine- 477

generated content, while, in contrast, those trained 478

entirely on machine-generated articles often mis- 479

takenly classify the HF subclass as real. 480

5.2 Class-wise Accuracy as a Function of the 481

Proportion of MF Examples 482

In this section, we delve into the subclass-wise ac- 483

curacy for each category. Our primary focus is 484

on understanding how accuracy trends evolve with 485

as the proportion of MF examples increases and 486

discerning the variations in these trends across the 487

different stages. This analysis is visually repre- 488

sented in Figure 3. 489

The Impact of Increasing the Proportion of MF 490

Examples We can observe in Figure 3 some con- 491

sistent trends across all three stages: as the MF 492

portion increases, the accuracy for MF and HR sub- 493

classes increases, whereas the accuracy for the HF 494

and the MR subclasses decreases. The improve- 495

ment for MF and the decrease for HF are to be 496

expected given that the detectors are exposed to 497

a larger number of MF examples and fewer HF 498

examples during training. The intriguing aspect 499

is the dip in MR detection accuracy and the boost 500

in HR accuracy as the MF portion grows. Our 501

hypothesis is that, when exposed with more MF 502

training examples, the model increasingly relies 503

on source-related features. Since MR shares con- 504

founding features with MF (because they are both 505

machine-generated), their representations are more 506

alike. This similarity might cause the MR examples 507

to be misclassified more frequently as the propor- 508

tion of MF examples increases. Conversely, the HR 509

subclass, which has the least resemblance to the 510

MF subclass, might experience improved accuracy 511

due to the increased presence of MF examples in 512

the training data. 513

Class-Wise Accuracy Across Stages. When ex- 514

amining subclass-wise detection rates across stages, 515

the Transitional Coexistence setting consistently 516

occupies a median position between the other two 517

stages. Specifically, the Machine Dominance set- 518

ting excels in detecting the HF and the MR sub- 519

classes, yet it struggles with the HR and the MF 520

subclasses. In contrast, the Human Legacy setting 521

demonstrates the prowess in accurately identifying 522

the HR and the MF subclasses, but exhibits dimin- 523

ished accuracy for the HF and the MR subclasses. 524
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Since the Machine Dominance setting predomi-525

nantly sees machine-generated real news articles526

during training, it might become biased towards527

identifying such patterns, leading to a higher detec-528

tion rate for HF and MR but lower for HR and MF.529

Also, if machine-generated articles have certain530

consistent patterns, the detector trained predom-531

inantly on MR data might rely heavily on these532

patterns for classification, which affects its per-533

formance on HR, which might lack these specific534

patterns. A similar analysis holds for the Human535

Legacy setting.536
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Figure 3: Illustration of the subclass-wise detection
accuracy as a function of the proportion of MF examples
(during training) in the three chronological settings.

5.3 Analysis of Different Detectors537

Below, we compare different detectors.538

Different Model Architecture. In Figure 4, we539

compare five detectors: fine-tuned on RoBERTa,540

BERT, ELECTRA, ALBERT, and DeBERTa (all541

large-sized models) in the Human Legacy setting.542

We can observe that no model can achieve high543

detection accuracy for all four subclasses. In-544

stead, there is a trade off: a detector fine-tuned545

on RoBERTa achieves the highest detection accu-546

racy in HF and MF, but the lowest accuracy for547

HR and MR. Meanwhile, a detector fine-tuned on548

ALBERT achieves the lowest detection accuracy549

for HF and MF, but the highest accuracy on HR550

and MR. Similar observations can be made about551

the Transitional Coexists and the Machine Domi-552

nance settings (see Appendix 11). This might be553

due to internal model biases: adetector fine-tuned554

on RoBERTa is more likely to classify an articles555

as fake, while such fine-tuned on ALBERT is more 556

likely to classify it as real. 557
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Figure 4: Comparing different detectors (RoBERTa,
BERT, ELECTRA, ALBERT, DeBERTa) in the Human
Legacy setting.

Impact of Model Size To assess how the model 558

size affects detection outcomes, we tested both the 559

large-sized and the base-sized versions of ALBERT 560

and RoBERTa, as shown in Figure 5. Interestingly, 561

a larger model does not always outperform the 562

smaller one. In some cases, the smaller model 563

might even mitigate the biases present in the larger 564

variant, yielding better detection results for cer- 565

tain subclasses. For example, detectors trained 566

on the large-sized ALBERT version show dimin- 567

ished accuracy for the HF subclass compared to the 568

base-sized version. This disparity is even more 569

evident for RoBERTa. Although its larger ver- 570

sion adeptly detects HF and MF subclasses, it fal- 571

ters with HR and MR. Conversely, the base-sized 572

RoBERTa model overcomes some of these biases, 573

improving the results for HR and MR, but sacrific- 574

ing the performance for HF and MF. Similar trends 575

can also be seen in Figure 12 in the Appendix for 576

the other stages. In summary, no single model 577

size is universally superior. While a larger model 578

might enhance the accuracy for certain subclasses, 579

it might do so at the expense of other subclasses. 580

5.4 Out-of-Domain Detection 581

In this section, we evaluate the fake news detector 582

on out-of-domain data. As shown in Figure 6, the 583

detection accuracy has largely declined for almost 584

all subclasses except for MR, where better or equal 585

detection accuracy is achieved when testing on the 586
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model.

out-of-domain PolitiFact++ dataset. Also, we587

notice that increasing the proportion of MF exam-588

ples can help mitigate the gap of out-of-domain589

detection accuracy at the expense of the detection590

accuracy for HF and MR.591
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6 Discussion592

The above experiments provide us with several593

valuable insights, which will be discussed and sum-594

marized in this section. Here, we offer some sug-595

gestions about the training data, i.e., how we should596

balance the machine-generated training data (MF,597

Subgroup Training Data RoBERTa BERT ELECTRA ALBERT DeBERTa

MR All human -5.7 -1.51 -3.31 -3.88 -1.84
Mixed -3.28 -1.09 0.58 -2.89 2.9

MF All human -7.08 -8.21 -13.25 8.23 -21.51
Mixed 0.73 0.21 1.35 1.33 -0.1

HR All human -52.27 -39.77 -7.23 -4.67 -30.24
Mixed -44.46 -39.17 -18.43 -0.04 -33.68

HF All human -15.99 -18.43 -22.47 -6.66 -16.6
Mixed -5.62 -11.33 -11.85 -23.51 -4.75

Table 2: Performance degradation in out-of-domain
compared to in-domain detection when training on
all human data and on mixed data in proportion of
HF:MF:HR:MR=1:1:1:1.

MR) and the human training data (HF, HR) when 598

training the detector. 599

6.1 In-Domain Detection 600

First, we found that training with either all human 601

written data (see the left most subfigure of Fig- 602

ure 2 where we highlighted with blue shades) or 603

with a mixture of all four subclasses (see the mid- 604

dle subfigure in Figure 2, which are highlighted 605

with red shades) can achieves a relatively satisfy- 606

ing detection result on all the subclasses. However, 607

detectors trained with all human written data (the 608

blue shaded part) seem to be a better option since it 609

is more balanced on each subclass while detectors 610

trained on some mixtures of all four subclasses (the 611

red shaded area) scarifies HR accuracy for higher 612

MF detection accuracy). Thus, we recommend 613

using only human real and fake new articles for 614

training in domain detector. 615

6.2 Out-of-Domain Detection 616

As indicated in Figure 6, when increasing MF 617

portion, the distance of in-domain detection accu- 618

racy and out-of-domain accuracy becomes smaller. 619

To verify this quantitatively, we calculated the 620

gap of in-domain detection accuracy and out-of- 621

domain accuracy (namely, the class-wise accuracy 622

of PolitiFact++ minus the class-wise accu- 623

racy of GossipCop++), when trained with only 624

human written news articles as well as trained with 625

mixed sources (HF:MF:HR:MR=1:1:1:1). The re- 626

sults are illustrated in Table 2, where we found that, 627

using mixed training data sources leads to a smaller 628

gap of in-domain and out-of-domain detection ac- 629

curacy. Thus, it is suggested to train a detector by 630

adding some portion of machine generated real and 631

fake news data to improve the detectors’ general- 632

ization ability on different domains. 633
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7 Limitations634

One limitation of our study is that we studied a635

coarse-grained proportion of machine-generated636

articles in the training data. Our primary objective637

was to offer insights and to highlight potential adap-638

tations in the training strategies during the LLM639

era, thus raising awareness of responsible use of640

LLMs, and the three stages we outlined. Note that641

it is easy to extend our framework to a more fine-642

grained study.643

The limitation in our paper as well as the ob-644

servation from the experiments evoke several in-645

teresting future directions to address. From the646

perspective of fake news detection and misinfor-647

mation research, there is a need for more nuanced648

evaluation and for combining different detectors to649

improve the detection accuracy for better fake news650

detection. Moreover, our experiments inspire us to651

generalize the study of real/fake news distribution652

drift trends to macro contexts, particularly in light653

of how LLMs influence data distribution shifts. We654

elaborate more on this below.655

More Fine-Grained Evaluation Setting. Our656

experiments revealed that while training exclu-657

sively on human-generated data yields balanced658

and high accuracy for each subclass relative to the659

mixed training approach, its robustness is limited660

for out-of-domain detection. Incorporating some661

machine-generated data appears to enhance this ro-662

bustness without significant performance trade-offs.663

Our current study focused only on the MR propor-664

tions of 0%, 50%, and 100%. Further, nuanced665

experiments are required to pinpoint the optimal666

balance between class-specific detection accuracy667

and robustness. It is particularly pertinent to ex-668

plore MR proportions under 50% to assess perfor-669

mance and robustness.670

Combining Different Detectors. As detailed in671

Subsection 5.3, different detectors exhibit different672

level of biases towards the individual subclasses.673

Leveraging ensembling to amalgamate these detec-674

tors could offset some inherent biases, potentially675

leading to enhanced accuracy across the classes.676

Data Distribution Shift and its Consequences.677

Our paper delineates three temporal settings: Hu-678

man Legacy, Transitional Coexistence, and Ma-679

chine Dominance. These stages offer a simpli-680

fied view of potential LLM-induced distribution681

changes, when observed in a longer time span. One682

angle to approach this data distribution shift is via 683

performative prediction (Perdomo et al., 2020), sug- 684

gesting that model outputs reciprocally influence 685

data distribution. While there is still a discernible 686

gap remains between human-written and machine- 687

generated text distributions, the pervasive use of 688

LLMs and their outputs might influence the human 689

text distribution, and over time, the relative propor- 690

tion of machine-generated and human-written texts 691

would get closer to each other and might converge 692

to a static landscape. For example, in Figure 9, we 693

can observe a distinctive discrepancy with MR and 694

MF, while HF and HR are quite similar. We con- 695

jecture that the distribution of the four subclasses 696

might evolve to convergence given a sufficient time 697

horizon. Thus, it woudl be interesting to analyze 698

fake news detection within this evolving frame- 699

work. 700

8 Ethics and Broader Impact 701

Our research delves into fake news detectors and 702

the dynamics of mis/disinformation, positing three 703

hypothetical scenarios. While these settings are 704

grounded in reason, they primarily serve to gauge 705

detector performance and behavior. They should 706

not be construed as predictions of the future land- 707

scape of fake and real news generation. Our aim is 708

to raise awareness of the potential risks that LLMs 709

can induce, which goes beyond mis/disinformation 710

and fake news detection, but to more subtle ways 711

of influence related to the proportion of human- 712

written texts online. We advocate for a responsible 713

use of LLMs. 714
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Sebastian Kula, Michał Choraś, and Rafał Kozik. 2021a.856
Application of the bert-based architecture in fake857
news detection. In 13th International Conference858
on Computational Intelligence in Security for Infor-859
mation Systems (CISIS 2020) 12, pages 239–249.860
Springer.861

Sebastian Kula, Rafał Kozik, Michał Choraś, and862
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A Original Dataset statistics 1002

Dataset HF MF HR MR
GossipCop++ 4,084 4,084 8,168 4,169
PolitiFact++ 97 97 194 132

Table 3: Number of news articles from each subclass in the GossipCop++ and PolitiFact++ datasets.

B Complete Results 1003

The complete results for the three stages evaluated in our paper are shown in the tabels below: for 1004

the Human Legacy setting in Table 4, for the Transitional Coexists setting in Table 5, and for the 1005

Machine dominance setting in Table 6. We show results when using different detectors for in-domain 1006

(GossipCop++) and out-of-domain (PolitiFact++) experiments. 1007

GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 83.71 79.93 77.85 85.43 31.44 74.23 61.86 78.35
BERT 79.98 86.05 73.07 69.03 40.21 84.54 54.64 60.82

ELECTRA 82.49 83.72 69.89 76.13 75.26 80.41 47.42 62.89
ALBERT 84.57 80.17 59.24 68.05 79.90 76.29 52.58 76.29
DeBERTa 88.49 89.47 71.24 78.21 58.25 87.63 54.64 56.70

Base

RoBERTa 86.53 86.90 69.77 77.60 77.84 84.54 37.11 61.86
BERT 86.28 84.33 63.16 78.70 76.80 85.57 30.93 69.07

ELECTRA 86.83 82.86 63.53 80.66 90.72 80.41 40.21 79.38
ALBERT 84.63 87.76 67.20 57.65 65.46 88.66 57.73 56.70
DeBERTa 80.47 81.52 70.13 78.09 70.10 79.38 74.23 78.35

33%

Large

RoBERTa 77.34 21.54 80.42 99.63 39.69 28.87 69.07 100.00
BERT 78.75 54.59 72.34 99.27 44.33 50.52 60.82 97.94

ELECTRA 78.02 33.29 72.83 99.39 72.68 31.96 59.79 98.97
ALBERT 85.73 52.75 57.16 98.53 81.96 51.55 31.96 97.94
DeBERTa 87.39 34.39 72.46 99.51 72.16 42.27 64.95 100.00

Base

RoBERTa 82.98 33.66 71.24 99.51 73.71 25.77 50.52 100.00
BERT 83.71 46.14 65.97 99.39 64.95 47.42 36.08 100.00

ELECTRA 83.28 37.33 63.04 97.92 89.69 35.05 48.45 100.00
ALBERT 82.85 49.82 62.30 96.08 71.13 50.52 40.21 97.94
DeBERTa 87.08 39.29 64.63 98.65 81.96 36.08 62.89 98.97

50%

Large

RoBERTa 80.65 19.46 75.40 99.76 55.67 24.74 62.89 100.00
BERT 81.51 48.10 69.52 99.27 45.88 46.39 51.55 97.94

ELECTRA 80.40 28.76 70.01 99.51 82.99 27.84 52.58 100.00
ALBERT 90.14 55.32 52.75 98.53 91.75 53.61 27.84 98.97
DeBERTa 88.24 30.23 69.77 99.51 64.95 34.02 57.73 100.00

Base

RoBERTa 85.06 27.05 66.83 99.88 83.51 23.71 40.21 100.00
BERT 85.73 44.68 62.67 99.39 70.10 46.39 34.02 100.00

ELECTRA 85.55 33.41 61.32 99.27 91.24 30.93 42.27 100.00
ALBERT 87.26 50.43 56.06 98.41 81.96 51.55 31.96 100.00
DeBERTa 89.83 35.74 59.61 99.27 90.21 32.99 47.42 100.00

67%

Large

RoBERTa 83.53 18.12 68.79 99.76 73.71 21.65 56.70 100.00
BERT 84.63 44.68 64.87 99.39 60.31 39.18 40.21 97.94

ELECTRA 82.85 26.56 67.32 99.76 88.66 26.80 45.36 100.00
ALBERT 94.86 58.63 44.43 98.78 96.91 59.79 20.62 98.97
DeBERTa 91.73 34.76 63.89 99.76 75.26 38.14 47.42 100.00

Base

RoBERTa 89.16 25.21 62.30 99.76 90.21 23.71 29.90 100.00
BERT 87.75 44.31 55.20 99.51 78.35 45.36 26.80 100.00

ELECTRA 88.36 34.27 57.65 99.39 94.85 32.99 30.93 100.00
ALBERT 92.90 52.02 46.27 98.53 92.27 52.58 20.62 100.00
DeBERTa 92.77 29.99 47.37 99.39 97.42 28.87 35.05 100.00

100%

Large

RoBERTa 97.55 19.83 12.12 99.76 99.48 24.74 9.28 100.00
BERT 96.33 36.84 10.16 99.39 87.63 34.02 12.37 100.00

ELECTRA 96.14 19.95 13.71 99.76 99.48 25.77 6.19 100.00
ALBERT 99.20 43.70 0.98 99.14 98.97 49.48 1.03 98.97
DeBERTa 98.96 27.29 3.92 99.88 99.48 34.02 9.28 100.00

Base

RoBERTa 98.22 23.01 12.12 99.76 98.97 25.77 3.09 100.00
BERT 98.16 41.74 6.61 99.76 96.39 43.30 4.12 100.00

ELECTRA 94.67 28.52 18.97 99.76 97.42 28.87 8.25 100.00
ALBERT 99.33 45.78 2.82 99.02 100.00 48.45 4.12 100.00
DeBERTa 98.53 28.03 7.83 99.76 100.00 32.99 8.25 100.00

Table 4: Complete result in the Human Legacy setting.
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GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 75.93 97.18 79.93 20.44 15.98 92.78 71.13 11.34
BERT 78.08 97.43 74.30 14.32 36.60 97.94 60.82 15.46

ELECTRA 81.38 97.31 72.34 27.29 30.93 94.85 68.04 6.19
ALBERT 65.52 92.53 73.68 13.34 51.55 90.72 73.20 15.46
DeBERTa 75.81 96.33 77.23 24.72 39.69 91.75 61.86 4.12

Base

RoBERTa 79.79 97.67 73.19 25.34 68.04 96.91 51.55 13.40
BERT 78.02 96.94 68.67 18.85 65.98 95.88 59.79 7.22

ELECTRA 84.75 98.04 66.10 19.09 84.54 95.88 46.39 1.03
ALBERT 66.69 94.61 74.66 17.01 36.60 93.81 73.20 9.28
DeBERTa 63.99 94.61 79.07 18.36 40.72 89.69 78.35 7.22

33%

Large

RoBERTa 67.54 91.55 84.94 98.04 24.74 87.63 77.32 98.97
BERT 62.46 86.66 82.99 95.35 18.04 84.54 72.16 95.88

ELECTRA 70.73 91.19 79.19 96.33 40.72 87.63 68.04 97.94
ALBERT 69.38 89.84 68.05 91.06 66.49 84.54 53.61 91.75
DeBERTa 69.63 93.76 80.29 97.06 47.42 92.78 81.44 95.88

Base

RoBERTa 70.12 89.84 79.93 93.15 50.52 89.69 56.70 88.66
BERT 74.59 92.04 74.05 95.47 41.75 91.75 63.92 98.97

ELECTRA 72.99 89.84 72.58 88.37 78.87 87.63 68.04 91.75
ALBERT 72.32 92.53 72.46 89.60 44.33 90.72 72.16 95.88
DeBERTa 74.83 94.12 73.68 91.19 48.97 87.63 80.41 88.66

50%

Large

RoBERTa 66.63 86.78 83.97 99.27 22.16 83.51 78.35 100.00
BERT 71.65 86.66 78.34 96.70 32.47 85.57 67.01 96.91

ELECTRA 71.52 89.11 75.76 98.65 53.09 89.69 63.92 100.00
ALBERT 79.42 91.55 57.53 93.51 79.38 88.66 34.02 94.85
DeBERTa 76.97 94.00 75.89 98.04 43.30 96.91 71.13 97.94

Base

RoBERTa 74.89 88.13 77.23 95.84 55.67 83.51 54.64 92.78
BERT 78.44 90.82 70.50 96.82 54.64 91.75 55.67 98.97

ELECTRA 77.83 87.39 67.32 93.88 85.57 90.72 58.76 94.85
ALBERT 78.81 91.06 64.38 91.92 68.04 88.66 45.36 95.88
DeBERTa 76.67 92.41 70.13 94.74 66.49 85.57 77.32 94.85

67%

Large

RoBERTa 72.14 84.46 77.36 99.51 45.36 83.51 67.01 100.00
BERT 76.06 84.70 72.71 98.65 39.18 83.51 60.82 97.94

ELECTRA 74.65 88.74 71.60 99.39 77.32 89.69 53.61 100.00
ALBERT 87.32 92.41 45.90 95.47 88.66 92.78 17.53 94.85
DeBERTa 84.63 95.10 65.97 99.14 77.32 94.85 58.76 100.00

Base

RoBERTa 76.55 84.82 73.56 98.90 75.26 82.47 40.21 98.97
BERT 84.38 90.21 63.16 97.80 72.68 90.72 37.11 98.97

ELECTRA 81.14 86.78 62.30 96.45 88.14 88.66 46.39 98.97
ALBERT 86.65 92.17 54.10 95.10 80.93 91.75 35.05 94.85
DeBERTa 85.06 89.23 53.12 95.96 92.27 88.66 44.33 97.94

100%

Large

RoBERTa 95.22 79.68 26.19 99.63 98.97 84.54 21.65 100.00
BERT 96.02 83.48 14.81 98.41 84.02 80.41 17.53 98.97

ELECTRA 95.71 86.17 21.54 99.63 96.91 84.54 16.49 100.00
ALBERT 99.27 96.08 1.96 96.57 99.48 97.94 2.06 95.88
DeBERTa 98.53 93.88 9.18 99.39 99.48 93.81 18.56 100.00

Base

RoBERTa 95.41 78.09 24.24 99.63 97.42 76.29 6.19 100.00
BERT 96.39 86.05 9.91 98.41 90.21 85.57 11.34 100.00

ELECTRA 93.75 85.31 25.21 98.29 95.88 85.57 16.49 100.00
ALBERT 98.53 95.72 5.14 96.70 97.42 96.91 3.09 96.91
DeBERTa 97.80 92.41 11.75 98.90 98.45 92.78 12.37 98.97

Table 5: Complete result in the Transitional Coexists setting.
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GossipCop++ PolitiFact++
Accurancy w.r.t. each group Accurancy w.r.t. each group

(Training Data)
MF portion Real Fake Real Fake

Model size Model name HR MR HF MF HR MR HF MF

0%

Large

RoBERTa 29.03 94.74 92.17 4.41 16.49 91.75 84.54 4.12
BERT 38.09 93.76 89.47 3.67 23.20 93.81 82.47 7.22

ELECTRA 39.07 95.10 86.29 10.77 12.89 94.85 81.44 2.06
ALBERT 16.35 87.64 94.86 6.98 17.53 86.60 91.75 6.19
DeBERTa 24.68 96.21 93.27 7.96 13.92 95.88 90.72 3.09

Base

RoBERTa 27.62 92.66 89.11 9.67 13.40 88.66 84.54 3.09
BERT 29.94 91.43 85.68 6.73 25.77 91.75 81.44 6.19

ELECTRA 34.05 93.15 84.94 3.79 22.16 92.78 86.60 1.03
ALBERT 19.41 90.45 93.02 7.96 16.49 89.69 90.72 4.12
DeBERTa 17.33 91.80 94.49 14.20 11.34 87.63 89.69 6.19

33%

Large

RoBERTa 18.06 89.35 95.47 98.04 3.09 90.72 89.69 97.94
BERT 22.11 86.41 94.49 95.72 10.31 79.38 89.69 97.94

ELECTRA 30.25 92.41 91.31 89.35 9.28 91.75 90.72 91.75
ALBERT 15.74 83.72 94.12 91.80 15.46 82.47 90.72 92.78
DeBERTa 18.74 91.55 95.72 96.21 12.89 89.69 96.91 96.91

Base

RoBERTa 26.15 89.60 92.04 92.29 18.56 83.51 82.47 93.81
BERT 25.66 87.27 91.31 93.15 9.28 87.63 88.66 95.88

ELECTRA 23.03 87.76 91.31 87.03 12.89 86.60 92.78 90.72
ALBERT 19.17 86.90 94.74 89.60 7.22 81.44 95.88 91.75
DeBERTa 20.58 88.74 93.27 91.06 11.34 85.57 91.75 92.78

50%

Large

RoBERTa 23.33 89.60 94.00 99.14 5.67 91.75 89.69 100.00
BERT 25.41 85.31 91.55 97.31 10.82 83.51 88.66 100.00

ELECTRA 32.21 91.55 90.21 94.12 13.92 91.75 86.60 95.88
ALBERT 20.70 85.43 90.33 93.64 23.20 83.51 86.60 95.88
DeBERTa 27.86 94.00 92.41 97.67 25.26 92.78 89.69 98.97

Base

RoBERTa 29.58 88.13 90.21 94.74 22.16 81.44 83.51 95.88
BERT 31.72 86.41 89.23 96.08 9.28 86.60 86.60 97.94

ELECTRA 27.80 87.15 90.58 93.51 21.65 86.60 88.66 94.85
ALBERT 23.82 88.37 91.19 94.86 9.79 87.63 92.78 97.94
DeBERTa 22.90 85.07 90.94 89.72 24.23 87.63 90.72 94.85

67%

Large

RoBERTa 24.49 87.39 93.27 99.27 11.86 87.63 88.66 100.00
BERT 34.35 84.70 89.35 97.55 12.89 83.51 81.44 100.00

ELECTRA 39.25 91.55 85.43 97.31 24.74 90.72 80.41 96.91
ALBERT 30.92 85.56 83.11 95.59 39.18 84.54 75.26 95.88
DeBERTa 30.13 94.49 90.70 98.78 26.29 95.88 90.72 100.00

Base

RoBERTa 34.29 88.86 86.78 96.94 38.66 81.44 75.26 97.94
BERT 40.54 88.00 84.82 97.18 22.16 88.66 81.44 98.97

ELECTRA 33.19 86.41 89.11 96.33 39.18 82.47 82.47 95.88
ALBERT 34.97 87.76 85.92 94.61 21.65 86.60 83.51 95.88
DeBERTa 28.23 84.82 88.13 93.39 47.94 87.63 85.57 95.88

100%

Large

RoBERTa 85.36 85.68 43.70 99.51 89.18 88.66 36.08 100.00
BERT 90.39 90.09 26.93 98.16 69.07 89.69 28.87 98.97

ELECTRA 89.28 92.04 31.21 99.39 86.08 89.69 27.84 100.00
ALBERT 98.22 97.31 5.14 95.84 96.39 100.00 3.09 92.78
DeBERTa 91.79 93.76 23.99 99.51 83.51 92.78 39.18 98.97

Base

RoBERTa 83.28 84.33 46.88 99.63 87.11 83.51 19.59 100.00
BERT 91.18 90.94 18.36 97.92 86.08 92.78 21.65 98.97

ELECTRA 84.57 89.23 39.29 97.31 84.54 89.69 34.02 100.00
ALBERT 96.14 96.82 11.14 95.96 94.33 97.94 10.31 94.85
DeBERTa 87.32 88.98 33.17 96.70 93.81 90.72 31.96 100.00

Table 6: Complete results in the Machine dominance setting.
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C Detailed Dataset Analysis1008

In Figure 8, we illustrate the average sentence count and word count for both GossipCop++ and1009

PolitiFact++. We observe that HR generally consists of longer articles compared to other subclasses,1010

while machine-generated news articles tend to be shorter on average, especially MF. Moreover, the graph1011

demonstrates substantial variations in terms of average length across the different datasets. For instance,1012

when comparing GossipCop++ to PolitiFact++, the former has an average of 625 words and 251013

sentences, whereas the latter is significantly longer, with 3,759 words and 191 sentences, i.e., seven times1014

larger. Another distinct difference between these two datasets is that in GossipCop++ the average1015

sentence count and word count for HF (22 sentences and 564 words) and HR are quite close to each1016

other. In contrast, within the PolitiFact++ dataset, HR is roughly 10 times longer than HF, with HR1017

consisting of 17 sentences and 459 words. Although the total number of news articles in PolitiFact++1018

is too small to train a reliable fake news detector, it serves as a valuable out-of-domain dataset for assessing1019

the robustness of the detector, given its significant statistical differences from GossipCop++.1020

In Figure 7, we extract 4,084 articles in each subclass for GossipCop++ and 97 articles in each1021

subclass of PolitiFact++ to visualize the distribution of the number of sentences and the number of1022

words for each subclass. See also Figure 9 and Figure 10 in the appendix. From Figure 7, we find that the1023

distribution of sentence count and the word count for HF and HR are quite close to each other, spanning a1024

wide range of lengths. Meanwhile, the sentence count and the word count for machine-generated articles,1025

especially MF news articles have more pronounced peaks.1026

(a) GossipCop++ (b) PolitiFact++

Figure 7: Sentence count and word count density histogram for GossipCop++ and PolitiFact++.

(a) GossipCop++ (b) PolitiFact++

Figure 8: Average sentence count and average word count density histogram for GossipCop++ and
PolitiFact++.

C.1 Sentence Length and Word Length1027

Figure 9 and Figure 10 compare the pair-wise distribution of the sentence count and the word count, from1028

which we can observe that the distribution of sentence count and word count for HF and HR exhibit1029

remarkable similarity. This observation implies that human-written news articles, regardless of their1030

authenticity, share a significant resemblance in their structural composition. Conversely, there exists a1031

more pronounced disparity in the case of machine-generated news articles (MF and MR), implying that it1032

might be easier to distinguish the veracity of such articles based on their length distribution. Moreover,1033

we observed a notable discrepancy in the distribution of MR and HR, even though MR is paraphrased1034

from real news articles with an approximately the same sentence and word counts.1035

Although the dataset statistics show the distribution discrepancy between human-written and machine-1036

generated real and fake news, which might be a signal for current fake news detection problem, from a1037

16



broader data distribution standpoint, if journalists increasingly adopt LLMs in their writing, over time, the 1038

distribution of real news articles might gradually shift towards the distribution of the machine-generated 1039

articles (MF and MR). Eventually, this shift could lead to a convergence where the distributions of real 1040

and fake news articles once again closely resemble each other. 1041

(a) HF vs. HR (b) MF vs. HF

(c) MF vs. MR (d) MR vs. HR

(e) MF vs. HR (f) HF vs. MR

Figure 9: Comparing the sentence length and teh word length density histograms for different subclasses in
GossipCop++.

(a) HF vs. HR (b) MF vs. HF

(c) MF vs. MR (d) MR vs. HR

(e) MF vs. HR (f) HF vs. MR

Figure 10: Comparing the sentence length and the word length density histogram for different subclasses in
PolitiFact++.
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D Comparing Different Detectors in the Transitional Coexistence and the Machine1042

Dominance Setting.1043

Here, we compare different detectors in the Transitional Coexistence and the Machine Dominance Setting1044

as supplementary experiments for Section 5.3.1045

D.1 Impact of the Detector Structure1046
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Figure 11: Comparing different detectors (RoBERTa, BERT, ELECTRA, ALBERT, DeBERTa) in the Transitional
Coexists and the Machine Dominance settings.

D.2 Inpact of the Detector Size1047
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Figure 12: Comparing ReBERTa and ALBERT detectors in the Transitional Coexists and the Machine Dominance
setting with different sizes: large and base models.
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