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ABSTRACT

Prediction of a varying number of ordered clusters from sets of any cardinality
is a challenging task for neural networks, combining elements of set representa-
tion, clustering and learning to order. This task arises in many diverse areas,
ranging from medical triage, through multi-channel signal analysis for petroleum
exploration to product catalog structure prediction. This paper focuses on the
latter, which exemplifies a number of challenges inherent to adaptive ordered
clustering, referred to further as the eponymous Catalog Problem. These include
learning variable cluster constraints, exhibiting relational reasoning and managing
combinatorial complexity. Despite progress in both neural clustering and set-to-
sequence methods, no joint, fully differentiable model exists to-date. We develop
such a modular architecture, referred to further as Neural Ordered Clusters
(NOC), enhance it with a specific mechanism for learning cluster-level cardinality
constraints, and provide a robust comparison of its performance in relation to
alternative models. We test our method on three datasets, including synthetic
catalog structures and PROCAT, a dataset of real-world catalogs consisting of
over 1.5 M products, achieving state-of-the-art results on a new, more challenging
formulation of the underlying problem, which has not been addressed before.
Additionally, we examine the network’s ability to learn higher-order interactions
and investigate its capacity to learn both compositional and structural rulesets.

1 INTRODUCTION

The ability to group members of a set and order these groups is key to many important real-world
decision-making processes. It finds applications ranging from supply chain management (Wenzel
et al., 2019) to prioritization in medical triage (Miles et al., 2020). Other application domains include
petroleum exploration (Rabiller et al., 2010), business process analytics (Le et al., 2014), and also
product catalog structuring (Jurewicz & Derczynski, 2022), where the goal is to take a set of products
and work out how to group them together and order these groups to form a coherent product catalog.
We term this problem of simultaneously grouping and ordering a set of items the Catalog Problem.

This paper defines the Catalog Problem and presents an investigation into neural network approaches
to it. To this end we introduce a fully-differentiable, deep learning (DL) model architecture that
addresses the Catalog Problem. In it, sets of items are clustered into groups, and an ordering between
groups is established. All of this is achieved in a supervised manner. While clustering methods are
often unsupervised (Aljalbout et al., 2018; Ronen et al., 2022), the meaningful ordering of clusters
often requires more knowledge than is available from the instance representation alone.

Similarly, learning to order is often framed as a supervised learning task (Vinyals et al., 2015; Yin
et al., 2020; Shi, 2022). Referred to further as set-to-sequence (S2S), this area and its corresponding
methods inspire the cluster-ordering aspect of our proposed Neural Ordered Clusters (NOC) model.
Both neural clustering and set-to-sequence models have limitations. Element-wise neural clustering
methods require O(n) passes over the input set of cardinality n.1 Cluster-wise and attention-based
models are more computationally efficient, but exhibit a limited ability to learn cluster cardinality
constraints (Pakman et al., 2020), integral to both the prototypical Catalog Problem and its practical

1O(n) can be prohibitive with large input sets (n >= 1000), which is often the case in many interesting
set-input problems such as 3D point cloud tasks (Qi et al., 2017; Ge et al., 2018; Zhao et al., 2021).
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Figure 1: The Catalog Problem. From left to right: a set of input elements (X); a clustering of those
elements (C); and a target ordering over those clustered elements (y), left to right. The model has
to perform all these tasks using information about inter-element relations and intra-cluster relations
in order to characterise a cluster, and inter-cluster relations to generate the final, ordered clustering.

instantiations. Set-to-sequence methods, on the other hand, are effective at learning constraints (Zhu
et al., 2021) and generalizing to unseen distributions (Wen, 2022). However, they are limited by
their inability to predict an adaptive number k of clusters without major adjustments (Fernández-
González, 2022), two of which are proposed in Section 5.1. Nonetheless, these S2S variants suffer
from noisy in-cluster order and cascading first-choice costs (Gan et al., 2020; Vial et al., 2022).

To address these challenges, we implement a unified clustering and cluster ordering method. NOC
is capable of predicting ordered, partitional cluster assignments for elements of sets of varying car-
dinality. It infers a flexible, input-dependent number of diverse clusters, maintains O(k) complexity
and utilizes a jointly learned representation of set elements to find the target cluster order. Unlike ex-
isting neural clustering methods, it exhibits the ability to learn cluster cardinality constraints through
supervision. To our knowledge, no other neural-based method exists to address such challenges in
an end-to-end, jointly trainable way, instead performing clustering and ordering as two separate
tasks, sometimes with the separate addition of a representation learning step (Aljalbout et al., 2018).
All code, hyper-parameters and datasets required for reproducing our results are made available and
detailed via the appendix. To summarize, our contributions are as follows:

• Firstly, we introduce the Catalog Problem, a novel joint clustering and cluster ordering
problem over sets of elements, which is a challenging variant of the set-to-sequence domain
with multiple aspects that are not handled by existing neural methods. We exemplify and
tackle this problem on three datasets, including a real-world dataset of over 1.5 M products
grouped and ordered into product catalogs by human experts.

• Secondly, we propose a novel, fully differentiable, joint neural clustering and cluster or-
dering model, Neural Ordered Clusters (NOC), capable of predicting an adaptive, input-
dependent number of ordered, partitional clusters from sets of varying cardinality.

• Thirdly, we provide a robust comparison of existing and proposed neural methods on the
Catalog Problem using synthetic & real-world datasets, providing insights into the models’
capacity to learn higher-order relational rules of cluster composition and ordered structure.

2 THE CATALOG PROBLEM

Many problems require predicting an adaptive, input-dependent number of partitional clusters from
sets of varying cardinality and consequently ordering these clusters according to a target preference.
We refer to this as the Catalog Problem. In the Catalog Problem, the input is an unordered set of
unique elements. The output is a clustering of these elements, with suitable cluster cardinalities, and
an ordering over the clusters (Figure 1). The input may be of any cardinality. Candidate approaches
to the problem have to determine how many clusters to create, choose which items to assign to which
clusters and also order the clusters. This is a general problem that, as is shown by experiments later
in this paper, is non-trivial.
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Although the Catalog Problem is so named because it models the task of creating a catalog of items,
e.g. products, no specific application is prescribed; the problem only defines input and output types
and a relation between these two. The difficulty lies in learning the relationships between both
input elements and groups thereof. This difficulty can be compounded by the uniqueness of input
elements, making learning representations difficult, due to the scarcity of distributional information.

2.1 RELATED WORK

There have been many machine learning (ML) approaches to clustering with some notion of order,
albeit often aimed at preventing the impact of this order on the clusters (Fisher et al., 1992). In the
more common, unsupervised setting these range from hierarchical clustering (Johnson, 1967; Chu,
1974), through ordinal clustering (Janowitz, 1978) and incremental conceptual clustering (Fisher,
1987) to Markov clustering (Van Dongen, 2000) and other, more recent methods (Ankerst et al.,
1999; Turowski et al., 2020). Certain unsupervised clustering methods without the ordering element,
like affinity propagation (Frey & Dueck, 2007; Vlasblom & Wodak, 2009), are also capable of
outputting an adaptive, input-dependent number of partitional clusters.

Closer to the supervised setting of interest, there have been attempts to leverage instance labels to
augment k-means (Ergun et al., 2022), improve the interpretability thereof (Peng et al., 2022) and
to cluster labelled data to facilitate permutation learning (Lee & Kim, 2020). Similarly, contrastive
clustering utilizes soft labels to maximize the similarities of positive pairs while minimizing those of
negative ones (Li et al., 2021), in an approach reminiscent of the pairwise order prediction modules
that resulted in increased performance on strictly set-to-sequence tasks (Yin et al., 2020). However,
these supervised clustering methods do not yield an ordering of clusters.

3 BACKGROUND

We identify three classes of neural approaches to solving aspects of the Catalog Problem: set rep-
resentation; neural clustering; and ordering through pointer attention. Firstly, learning permutation
invariant set representations that can encode higher-order interactions is vital, due to the complex
relational factors among set elements that determine the target output. Deep learning advances in
set representation focus primarily on being able to effectively learn such relations, starting with
Deep Sets (Zaheer et al., 2017), through the Set Transformer (Lee et al., 2019) to modifications
thereof (Girgis et al., 2021; Jurewicz & Derczynski, 2022). These methods can be used for both
encoding elements and representing clusters. In the Set Transformer, given an unordered set (X), we
obtain the representations of set elements (Eπ) and subsequently the entire input set (s) via:

Eπ = MAB(X,X) = LN(H + ϕ(H)), where H = LN(X + MHA(Xq,Xk,Xv)), (1)

s = PMA(Eπ) = MAB(r,Eπ). (2)

Here, multihead, intra-set attention (denoted MHA) is performed by casting the input set X to
query, key, and value matrices Xq,Xk,Xv according to an arbitrary permutation π, and adding a
residual connection as defined by Vaswani et al. (2017), without positional encoding. This operation
is incorporated into a multihead self-attention block (MAB) by the inclusion of a row-wise
feed-forward neural network (NN) ϕ, with layer normalization (LN) after each block (Ba et al.,
2016), resulting in a permutation equivariant2 matrix of per-element representations (Eπ). These
are then aggregated into a permutation invariant representation of the entire set (s) by performing
pooling by multihead attention (PMA) between the per-element representations and a learned seed
vector r. These operations are used extensively in our method for encoding both the initial input set
and the predicted clusters.

Secondly, supervised neural clustering obtains per-element cluster assignments (ĉi) through a num-
ber of modular functions parameterized by NNs. These networks leverage set representation meth-
ods to encode the set of currently available, unassigned elements (Uj), each previously completed
cluster (gj) and consequently all clustered elements jointly (Gj), at each step j. This is paired

2For a formal proof, see Section 3.1 and supplementary material of Lee et al. (2019).
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with an algorithm for selecting the next j-th cluster (if clusterwise) or element (if pointwise) to be
considered until nothing remains to be assigned.

In the O(k) clusterwise formulation each cluster assignment is the output of another NN (ρ), in
the form of a binary choice (ĉi) per encoded element (xi), conditioned on these representations
and trained in a teacher-forced manner, with loss calculated only for the elements belonging to
the current cluster. In the attention-based, clusterwise framework of the Attentive Clustering Pro-
cess (Pakman et al., 2020) a random anchor element (xa) is selected at each step j, along with a
latent variable (zj) sampled from a Normal distribution via learned mean and standard deviation, on
which the final, per-element predictions are conditioned for the current j-th cluster:

p(zj | Xj) = N (zj | xa,Uj ,Gj), (3)

pθ,i(ĉi = 1 | Xj) = sigmoid(ρ(xi,xa, zj ,Uj ,Gj)). (4)

Thirdly, pointer attention can be used to select a single element from a set of any cardinality n,
common in set-to-sequence NNs. At each step m ∈ {1, . . . , k} it outputs an attention vector (am)
over all obtained clusters C. As the clusters are selected sequentially, this represents their predicted
order, with highest attention value pointing to the index of the m-th cluster in that order:

am = softmax(v⊤ tanh(W1C+W2h
d
m)), (5)

where v, W1 and W2 are model parameters, tanh is the hyperbolic tangent nonlinearity, and hd
m

is customarily the hidden state of the pointer network at current selection step m. The first hidden
state hd

0 can be initialized from the permutation invariant set representation s. In our context, this in
principle enables us to sequentially select predicted clusters according to their learned target order.

4 THE NEURAL ORDERED CLUSTERS MODEL

Existing methods do not, to the best of our knowledge, directly address the catalog problem of joint
clustering and cluster ordering. To this end, we investigate a set of novel and adapted methods to
apply to this problem. This section introduces the proposed Neural Ordered Clusters (NOC) model.
NOC consists of three modular parts, each with a corresponding loss factor. These components take
the form of partitional neural clustering, per-cluster cardinality prediction, and cluster ordering via
pointer attention. The learned representations of elements and the set in its entirety are transformed
by each of these modules and continuously adjusted during training in a fully differentiable way.
For an overview of the NOC architecture, we refer the reader to Figure 2.

The first step is to obtain a partitional clustering (NOC1). We propose to achieve this through an
adjusted neural clustering module, building on the process described in equations 3 and 4. First, we
utilize the Set Interdependence Transformer, or SIT (Jurewicz & Derczynski, 2022), to obtain both
the representations of the individual elements (Eπ) and the permutation-invariant representation of
the entire set (s). SIT consists of a stack of MAB layers described in equations 1 and 2, except that
the second layer’s input takes the form of an augmented matrix, in which the vector representation
of the set is concatenated to Eπ as if it was an additional set element ei. This is intended to enable
learning of higher-order interactions in fewer layers. At each cluster prediction step j the representa-
tions of unassigned elements (Uj) and each previously completed cluster (g1:j) are adjusted through
a stack of SIT transformations and used to make cluster assignments ĉi per unassigned element i:

NOC1(ei,Xj) = pθ,i(ĉi = 1 | Xj) = σ(ϕ1(ei, e
j
a, zj ,SIT(Uj),SIT(g1:j))). (6)

The second step (NOC2) is to adjust the cluster assignments via the predicted cardinality tj of
the j-th cluster. At each step a function, parameterized by a fully-connected neural network ϕ2, is
used to predict the cardinality of the current cluster as a regression task. The obtained cardinality,
conditioned on the available elements and previously predicted clusters, is used as a threshold for
the maximum number of elements to assign to current cluster. If the number of elements assigned
by NOC1 exceeds this threshold, the elements with lower values of ĉi are excluded from cluster Cj .
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Figure 2: NOC. Starting at the top of the leftmost panel, at clustering step j the representations
of unassigned elements (Uj), previously created clusters (Gj) and a random anchor element (eja)
are used to make initial cluster assignments (ĉ1−6). In the middle panel the current cardinality
(tj) is predicted and used to adjust the jth cluster, which is then transformed via SITc(Cj) into
its embedded representation gj , which becomes part of the Gj+1 matrix and is used during the
remaining clustering steps. In the rightmost panel, after k iterations of the NOC1 and NOC2 steps,
the predicted clusters are ordered via NOC3’s Enhanced Pointer attention (A.2).

tj = NOC2(Cj ,Xj) = ϕ2(PMA(eja,SIT(Uj),SIT(g1:j))), (7)

Cj =

{
Cj , if |Cj | ≤ tj
Cj

1:tj
, otherwise

. (8)

Steps one and two are repeated until we have obtained k partitional clusters (C1, . . .Ck) with indi-
vidual cardinalities. Set-to-sequence methods expect fixed-length vector representations, therefore
we use SIT and PMA to obtain them (Cπ = [c1, . . . , ck] where cj = PMA(SIT(Cj))). In the
third and final stage of NOC3 an Enhanced Pointer Network (Yin et al., 2020) is used to output an
attention vector am at each step m ∈ {1, . . . , k}. The highest attention value points to the cluster to
be placed at m-th position in the output sequence of ordered clusters:

am = softmax(v⊤tanh(W1Mm +W2h
d
m)) ; hd

m = LSTM(hd
m−1, cm−1). (9)

This largely resembles the process outlined in Equation 5, with the exception of matrix Mm, spe-
cific to the Enhanced Pointer Network, explained in more detail in appendix A.2. Together, these
three elements of NOC allow for the prediction of an adaptive number k of partitional clusters with
varying, learned cardinalities. This learning is achieved through a weighted sum of the loss factors
from each of the three stages of NOC, with teacher-forcing (Williams & Zipser, 1989). The full
algorithm is provided in Appendix A.1.
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Table 1: Clustering and permutation results on all three datasets

2D Gaussians Procedural Catalogs PROCAT

Method V-Measure Kendall’s τ V-Measure Kendall’s τ V-Measure Kendall’s τ

NCP + S2S 91.52 ± 3.30 75.31 ± 4.5 63.12 ± 4.12 74.82 ± 5.1 25.42 ± 5.14 21.94 ± 4.3
CCP + S2S 93.94 ± 2.13 83.88 ± 4.2 79.41 ± 3.76 81.10 ± 3.9 37.41 ± 3.10 25.24 ± 4.0
ACP + S2S 96.63 ± 1.82 90.13 ± 3.7 87.66 ± 3.91 85.73 ± 3.2 41.38 ± 3.88 31.73 ± 3.1

S2S-B 89.37 ± 4.21 95.89 ± 2.3 78.39 ± 1.64 92.13 ± 2.0 39.01 ± 3.35 44.39 ± 3.7
S2S-C 92.45 ± 2.01 93.41 ± 2.1 75.83 ± 4.91 91.55 ± 3.3 36.71 ± 4.26 40.22 ± 4.2

NOC 97.81 ± 0.92 98.40 ± 0.5 96.13 ± 1.28 95.84 ± 0.9 52.84 ± 3.15 56.67 ± 2.8

5 EXPERIMENTS

The Catalog Problem presents an interesting type signature, where while the input — as in S2S — is
an unordered set, the output is a more complex structure that is the result of clustering and ordering.
In this section we examine multiple approaches to the Catalog Problem, including baseline methods
adapted to this output structure as well the NOC model, evaluating over both synthetic and real-
world datasets. All datasets, hyperparameters and code are freely available and described in detail
in Appendix A.4. The provided code includes all data pre-processing and generation steps.

The models’ exact layer dimensions are given in Appendix A.4, with the number of learnable pa-
rameters of each model varying by less than 5% per task. The AdamW (Loshchilov & Hutter, 2017)
optimizer was used with weight decay coefficient 1e-3, learning rate (α) 1e-4, dropout rate of 0.05
and batch size 64, for 50–100 epochs. Experiments were performed on cloud-based GPU instances,
with NVIDIA Quadro P6000 graphics cards (24 GB) and 8 CPU cores. To represent natural lan-
guage entities in Section 5.4 we use the concatenated and averaged output of the last 4 layers of
the cased, large version of BERT (Devlin et al., 2019), frozen during training to isolate the effect of
compared clustering and permutation methods on the final performance.

The best performance is reported in bold and second best is underlined. Reported results are aver-
aged over three full training runs, standard deviation is reported after the ± sign. We use V-Measure
(Rosenberg & Hirschberg, 2007) and Kendall’s Rank Correlation Coefficient (τ ) as the primary clus-
tering and permutation metrics respectively, scaled by a factor of a hundred for readability, following
convention (Wang & Wan, 2019; Pandey & Chowdary, 2020).

5.1 BASELINES

We present two groups of baselines for addressing the Catalog Problem. i) Neural clustering meth-
ods with an added set-to-sequence module: the module takes the predicted clusters and outputs
their order via attention-based pointing. These methods include the pointwise Neural Clustering
Process (NCP), the Clusterwise Clustering Process (CCP) and the Attentive Clustering Process
(ACP) developed by Pakman et al. (2020) and Wang et al. (2021). ii) Proposed variants of the
set-to-sequence architecture: these S2S variants enhance the pointer mechanism with the notion
of predicting ordered clusters, as opposed to ordered elements. The first variant, called S2S-B (for
“break”), adds a secondary decision of whether or not to start a new cluster in parallel to the selec-
tion of the set element to be placed next in the predicted sequence. The second variant, called S2S-C
(for “clusterwise”), uses a threshold mechanism to select multiple elements forming a single cluster
at each step. For details, see Appendix A.3.

5.2 ORDERED MIXTURES OF GAUSSIANS

This dataset consists of 2D coordinates for a number of points, generated from a mixture of a fi-
nite number of Gaussian distributions. The points should be clustered and the clusters ordered by
distance from origin. Following convention from probabilistic models for clustering (McLachlan &
Basford, 1988), we introduce a random variable ci signifying the cluster to which each data point
xi is assigned. The generation process creates a random number of clusters k, each with their

6



Under review as a conference paper at ICLR 2023

Figure 3: Example of predicted ordered clusters. Target (supervision) shows clusters and their order
through colour, red being closest to the origin point (marked with a gray ×), dark blue and violet
being furthest. Heat map (leftmost) indicates distance for individual points. The ACP prediction
exhibits good clustering, but errs in the ordering (mistaken red and orange clusters). S2S-B exhibits
good ordering, but incorrect clustering in the bottom-left quarter. NOC (ours) is closest to the target.

own parameter vector µj controlling the distribution of the j-th cluster. For comparison with prior
work (Pakman et al., 2020), we use a Chinese Restaurant Process with a single modification — the
addition of a target order of the clusters, based on the Euclidean distance of their centroids from the
origin point. An example of the joint prediction of per-element cluster assignments and predicted
cluster order can be seen in Figure 3. The predicted order is denoted through colour gradient, with
a bright red to deep blue and violet scale. In the figure, three separate predictions are displayed, one
from the ACP model, one from a modification of set-to-sequence methods in the form of S2S-B and
finally one from the proposed NOC model.

As shown in the rightmost column of Table 1, NOC outperforms other methods on both the cluster-
ing task, according to V-Measure, and the cluster ordering task, measured with Kendall’s τ . Specif-
ically it improves by +1.18 points over the second-best clustering method (ACP) and +2.51 over the
second-best set-to-sequence method (S2S-B). Its performance appears relatively consistent, showing
a smaller standard deviation over three full training runs.

5.3 PROCEDURALLY GENERATED CATALOGS

The second experiment uses synthetic catalogs. These catalogs consist of varying-length sequences
of clusters of elements, with repetition. Elements are colour-coded. These catalogs form the super-
vised training targets yi, with the unordered set of available atomic elements forming the inputs Xi.
The correct composition of individual sections and the structure of the overall catalog, in the form
of the order of its sections, depends on n-th order interactions between the input elements.

For procedural generation, these interactions are formalized as compositional (intra-cluster) and
structural (inter-cluster) rules. A simplified example of a compositional rule would be: “if the input
set contains only red, blue and yellow elements, a section containing red and yellow elements in 1:1
ratio is a valid section”. An example of a structural rule could specify that (given the same input)
the catalog has to begin with an all-red section or end on an all-blue one (top row of Figure 4).
Compositional rules also include upper cardinality constraints for valid sections. We use the tool
provided by Jurewicz & Derczynski (2022) to generate catalogs.

As shown in Table 2, neural clustering methods appear to be better at composing valid catalog sec-
tions but struggle with ordering sections into valid catalogs. This is indicated through two metrics –
a compositional score, which is the percentage of predicted sections that were valid in accordance
with the applicable n-th order ruleset, and a structural score, which is the percentage of valid pre-
dicted catalog structures (i.e. section ordering). By contrast, the adapted S2S models outperform
neural clustering methods at correctly ordering sections, as measured via the structural score. NOC
outperforms both methods on each of the two scores. This improvement is also reflected on the same
test set in the more general but related V-Measure and Kendall’s τ , shown in Table 1, where NOC
surpasses the next-best models by +8.47 and +3.71 percentage points.

Among the sections predicted by neural clustering methods (NCP, CCP, ACP), the predominant error
(present in 74% of invalid sections) stemmed from incorrect cardinality, even though the models
correctly predict the composition (15%) and ratio (11%) of elements to include. This error occurs
despite the presence of mechanisms that could, in principle, allow for the learning of max-cardinality
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Figure 4: Procedurally generated catalogs. Relations between elements of the input set define the
compositional and structural rules, which inform the generation of these synthetic datasets. A suc-
cessful model should learn these rules from supervised exposure to the resulting synthetic datasets,
and then be able to order new sets of elements according to the learned rules. One valid example
is given for each input set (wrapped over 2 lines). See the second paragraph of Section 5.3 for a
written description of the compositional and structural ruleset portrayed in the top row.

constraints: NCP constructs clusters element-by-element, further transforming the candidate cluster
at each element’s addition; CCP and ACP obtain a representation of the current candidate cluster
before assigning candidate elements.

NOC overcomes this limitation through the addition of a cluster-level cardinality prediction mecha-
nism and corresponding loss. It outperforms the second best method on the section composition task
by +11.96, +13.01 and +15.65 percentage points with regards to the 3rd, 4th and 5th order relational
ruleset respectively. It also performs better with regards to the structural score, offering a smaller
but consistent improvement over the S2S-C and S2S-B methods by +4.54, +3.59 and +3.61 points,
with respect to increasing n-th order rulesets.

Table 2: Results over procedurally generated catalogs, by n-th order relational ruleset

Compositional score Structural score

Method n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

NCP + S2S 64.13 ± 3.9 55.81 ± 4.6 51.82 ± 5.2 56.49 ± 4.0 51.87 ± 5.1 49.70 ± 6.8
CCP + S2S 75.40 ± 3.2 71.49 ± 4.3 65.11 ± 4.5 70.21 ± 3.5 68.39 ± 4.7 66.55 ± 5.4
ACP + S2S 87.05 ± 1.7 81.33 ± 1.9 76.83 ± 2.2 81.09 ± 2.2 76.34 ± 3.4 73.86 ± 3.8

S2S-B 84.99 ± 0.5 82.90 ± 0.7 74.82 ± 0.6 92.33 ± 1.5 89.83 ± 2.1 87.31 ± 2.0
S2S-C 82.03 ± 1.8 78.74 ± 2.1 72.13 ± 2.4 92.49 ± 1.6 87.41 ± 2.2 85.05 ± 2.3

NOC 99.01 ± 0.3 95.91 ± 0.4 92.48 ± 0.4 97.03 ± 0.9 93.42 ± 1.0 90.92 ± 1.2

5.4 PROCAT

The final experiment was performed on the PROCAT dataset (Jurewicz & Derczynski, 2021), using
its provided training and testing split. All models were trained on approximately 9K product catalogs
and tested on a separate set of 2K catalogs. Unlike the benchmarks provided with the PROCAT
dataset, this formulation of the task mirrors the Catalog Problem exactly, with no information about
the target number of sections (clusters) being available to the models. Individual elements were
transformed into vector representations via a pre-trained, frozen language model as described at the
beginning of Section 5, removing its effect on the variation in performance on the downstream task.
Figure 5 displays a sample catalog predicted by NOC from a PROCAT input set of product offers.
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Figure 5: PROCAT. An example of three sequential sections predicted by the NOC as part of a larger
catalog, from an input set of products from the PROCAT dataset. The prediction groups elements
into complementary sections (the three pages shown above) and orders them into a rendered catalog.

As the two rightmost columns of Table 1 show, the PROCAT structure prediction task is more diffi-
cult than the previous tasks. The best results in terms of both the clustering quality (via V-Measure)
and section order (measured indirectly via Kendall’s τ with regards to element order) are approxi-
mately 40% below the corresponding scores on the procedural task in its default configuration. One
possible explanation stems from the existence of a higher number of reasonable substitutions for
each element in any given section from the entire input set of initially available products. While also
present in the procedural catalogs, this challenge becomes harder to overcome as the cardinality of
the input increases from tens in the procedural case to hundreds in PROCAT.

NOC outperforms both neural clustering methods and the adjusted set-to-sequence models. While
the overall pattern of neural clustering methods outperforming S2S-B and S2S-C in V-Measure
is upheld, it is less pronounced (+2.37 points between ACP and S2S-B on PROCAT compared to
+9.27 and +4.18 on the procedural and 2D Gaussian task respectively). The adjusted set-to-sequence
models continue to outperform NCP, CCP and ACP on the ordering aspect of the task, with a margin
of +12.66 points. NOC yields the best performance in terms of both partitional clustering and
ordering, exceeding the relevant second-best methods by +11.46% and +12.28% respectively.

6 CONCLUSION

The posited Catalog Problem consists of learning to group elements and to order the groups. It
poses a more difficult challenge than its individual components. Our work defined benchmark tasks
representing this problem and presented approaches for them, including both adjusted baselines and
a candidate approach, Neural Ordered Clusters (NOC). Existing neural clustering methods appear
ineffective at learning cluster-level cardinality constraints. Our method offers an improvement in this
area through its cardinality-prediction module. NOC outperforms adjusted S2S methods in terms of
both clustering quality and accuracy of the predicted cluster order, indicating that structuring models
to address adaptive ordered clustering leads to improved performance over standard S2S prediction.

Nevertheless, the complexity and fluidity of intra- and inter-cluster relations result in the Catalog
Problem remaining significantly more challenging than S2S processing. We considered a predictive
solution to the catalog problem, where we trained the model to yield a single “ground truth” human-
generated catalog given a set of products. Future work could consider a fully generative formulation
of the problem that respects an unlimited number of valid solutions for both clustering and ordering.
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ETHICS STATEMENT

Given the e-commerce context of the third presented dataset, we must highlight the wider problem
of endless scroll user interfaces in product presentation apps and social media (Lupinacci Amaral,
2020). Although the PROCAT dataset is tailored to the prediction of cluster sequences of finite
lengths, we cannot rule out the possibility of extending the proposed adaptive clustering and cluster
ordering models to non-finite sets. It is also in principle possible to retrain the proposed models
with additional inputs such as embedded personal preferences, making the predicted catalogs tai-
lored to specific individuals, which has previously been linked to mental health issues in relation to
smartphone addiction (Noë et al., 2019).

As with many machine learning systems, the results are not perfect, and sub-optimal predictions
from NOC could silently disadvantage an end-user; for example a business may produce catalogs
that don’t make it easier for the reader to discover relevant, cost-saving offers, or an individual may
receive an inaccurate medical analysis (in the case of the hypothesized medical triage use case).

Applying this tool may impact the employment of people performing creative catalog-related tasks,
and further, might not even do the task as well as them. Product catalog design is considered some-
thing of an art among its practitioners, and there may be deep interactions not clearly evinced in
training data that are lost by transiting the ownership of the catalog construction task from human
subject matter experts to a machine learning model. Attempting to completely replace a human at
this task may lead to both unsatisfactory and marginalizing results Birhane (2021).

We do not see any direct way for the presented methods to exacerbate bias against people of a certain
gender, race, sexuality, or who have other protected characteristics. However, bias inherent to the
marketing decisions made by people who have designed the catalogues contained in the PROCAT
dataset, will be propagated by models trained on it. Negative biases in this particular scenario
include as the pink tax (Stevens & Shanahan, 2017). In general, learning from socially-biased data
and making predictions based on it will propagate those biases Buolamwini (2017); Raji (2020).

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility all code and datasets needed for repeated experiments have been
made freely available, as described in detail in Appendix A.4 as part of the provided supplementary
materials. The anonymized code repository includes a comprehensive readme.md file describing the
necessary steps to set up the execution environment, download, generate and preprocess the datasets
and run each of the experiments discussed in Section 5. The exact hyperparameters per experiment
are stated both in the Appendix (A.4.1, A.4.2, A.4.3) and in the provided configuration files in the
linked code repository. Additionally, a detailed description of the NOC algorithm is provided (1) to
ensure that the method can be reimplemented, if necessary.
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A APPENDIX

A.1 NOC ALGORITHM

In this section of the appendix we outline the progression over all three stages of the proposed Neural
Ordered Clusters method. Steps 1-23 jointly describe the processing within NOC1 and NOC2 (steps
12-16 specifically for the latter), as presented in Section 4. The third module, NOC3 is shown in
steps 24-30. We begin with an unordered set X ∈ Rd (of any cardinality), and assume that it has at
least two elements, which can then potentially belong to separate clusters. This set is represented as a
matrix of d-dimensional elements, ordered according to some arbitrary permutation π into Xπ . The
initial, intermediate output comes in the form of individual clusters of elements at each j-th iteration,
which ultimately form the set of all predicted clusters (C = {C1, . . . ,Ck}). Each candidate cluster
goes through a final cardinality prediction step, resulting in the threshold value of tj , through which
some elements may be excluded from their original cluster. Finally, an Enhanced Pointer Network
(EPN) performs k iterations, selecting a single cluster to be placed next in the final output sequence
ŷ by the index of the highest value in the predicted attention vector am.

Algorithm 1 Neural Ordered Clusters

Require: |X| = n ≥ 2 ▷ At least two elements, otherwise single cluster
Ensure: xi ̸= xj ∀ i, j ̸= i ∈ {1, . . . , n} ▷ No repeated elements

1: Eπ ← SIT(Xπ ∼ X), j ← 1
2: r ← n− 1 ▷ Track number of unassigned elements
3: eja ← Eπ ▷ Randomly chosen anchor for initial cluster
4: Uj ← SIT(E \{eja}) ▷ Initialize unassigned representations
5: qj ← ∅ ▷ No previous clusters
6: while r > 1 do
7: zj ∼ N (SIT(eja,Uj , g1:j))
8: for i← 1 . . . r do
9: ĉi ← ϕ1(ei, e

j
a, zj ,SIT(Uj),SIT(g1:j)) ▷ j-th cluster assignments per element

10: end for
11: Cj ← Eπ

i:ĉi=1 ▷ Cluster j from assignments (sorted)
12: tj ← ϕ2(PMA(eja,SIT(Uj),SIT(g1:j))) ▷ Predict cluster cardinality
13: if |Cj | ≤ tj then
14: Cj ← Cj

15: else
16: Cj ← C1:tj ▷ Adjust j-th cluster’s cardinality
17: end if
18: j ← j + 1
19: eja ← Eπ ▷ Randomly chosen anchor for next cluster
20: Uj ← SIT(E \ Cj) ▷ Update unassigned representations
21: qj ← C = {C1, . . . ,Cj} ▷ Update preceding clusters’ representations
22: r ← r − |Cj | − 1 ▷ Adjust number of unassigned elements
23: end while
24: hd

1 ← SIT(Cπ ∼ C) ▷ First hidden state from all clusters
25: ŷ = (∅1, . . . ,∅j) ▷ Final prediction placeholder
26: for m← 1 . . . k do
27: am,hd

m ← EPN(Cπ,h
d
m) ▷ Enhanced pointer attention over k predicted clusters

28: l← arg max(am)
29: ŷm ← Cl ▷ Next cluster by highest attention index
30: end for

A.2 ENHANCED POINTER NETWORK

In all reported experiments we use the same set-to-sequence module, the Enhanced Pointer Network
Yin et al. (2020), which is a pointer-attention based method inspired by the popular Pointer Network
Vinyals et al. (2015). It offers a performance improvement by leveraging two additional mecha-
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nisms for pairwise ordering predictions towards improved global and local coherence of the output
sequence. Formally, the conditional probability of a predicted order ŷ is calculated as:

pθ(ŷ | C) =
K∏
j=1

pθ(ŷj | ŷ<j ,Cπ, sc) ; sc = PMA(SIT(Cπ)) (10)

pθ(ŷj | ŷ<j ,C) = softmax(v⊤tanh(W1h
d
j +W2Mj)) (11)

hd
j = LSTM(hd

j−1, cj−1) , h
d
0 = sc (12)

where v, W1 and W2 are model parameters, K is the total number of clusters, tanh is the hyperbolic
tangent nonlinearity, cj−1 is the fixed-length embedding of the cluster selected at the preceding step
j − 1 and hd

j is the hidden state of the permutation module at current step i. The first hidden
state hd

0 is initialized from the permutation invariant set representation of all previously predicted
clusters sc, obtained via SIT and PMA. The Mj matrix provides additional context consisting of
2 kinds of information. The first is global orientation relating all remaining unordered clusters to
one another. The second is local coherence between previously selected clusters and remaining
candidates. This contextual information is obtained via history and future sub-modules from the
original matrix of all cluster representations (Cπ ≈ C). These two sub-modules output pairwise
ordering predictions in relation to each candidate cluster, which are then concatenated to form Mi.
For exact implementation details, we refer the reader to Yin et al. (2020).

A.3 SET-TO-SEQUENCE BASELINES

In this subsection, a more detailed description of the proposed S2S variants is given. The S2S-B
variant utilizes pointer attention to select individual remaining set elements at each step, following
the convention of Pointer Networks Vinyals et al. (2015) and their enhancements (Yin et al., 2020).
What distinguishes S2S-B from these models is an added prediction target which requires making
n − 1 binary decisions, where n is the cardinality of the input set. At each step of the predicted
permutation sequence, S2S-B indicates whether the currently selected element should be the last
one of the current, open cluster. If so, this would indicate a ”break” in the sequence, reminiscent of
a page break in a product catalog. Once the last available element is reached, any remaining opened
clusters are closed by default, hence n − 1. All previously pointed-to elements since the last break
are considered members of the current open cluster.

The S2S-B model is thus capable of predicting a clustering where each element is assigned its own
cluster and one where all elements belong to a single cluster. It is guaranteed to assign a cluster to
every single element and can handle varying cardinality input sets, like all pointer networks. The
first difficulty faced due to this particular modification stems from highly skewed class distribution.
Namely, we never complete (or break) a cluster after each element. This is mitigated via a class-
weighted binary cross-entropy loss function:

LBCE-w(θ) = −
1

m

m∑
i=1

(wb × ym × log(ŷm) + (1− ym)× log(1− ŷm) (13)

Where m is the number of training examples, wb is the adjusted weight for the positive class, and
yi and ŷi are the target and prediction respectably. This loss factor is then scaled and added to the
negative loss likelihood loss used to train the pointer selection mechanism. The main disadvantage
of this model is that it predicts meaningless in-cluster order, making the loss signal noisy. The order
of elements within each cluster is meaningless within the confines of the presented Catalog Problem.

To mitigate this disadvantage, a second variant was developed. Referred to as S2S-C (for ”cluster-
wise”), this model predicts the entire next cluster of elements at each step, instead of pointing to a
single next element in the output sequence. Instead of performing n transformation steps in a loop
over the entire input set, it outputs an attention vector over all available elements until there are none
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left. Thus it is also bound between assigning all elements to a single cluster or every element to its
own cluster, much like S2S-B, guaranteeing cluster assignment for each element of the input set.

In order to predict clusters of adaptive, input-dependent cardinality, the formula for obtaining the
pointer-attention vector over available elements had to be adjusted. The softmax operator was
replaced with the sigmoid function (σ) and a threshold (ta) of 0.5 was adopted. At each step
j ∈ {1, 2 . . . , n} every element with a corresponding attention value (aji ) above the threshold is
thus assigned to the next cluster:

ai = σ(v⊤tanh(W2Eπ +W1h
d
i )) (14)

ŷji =

{
0, if aji < ta
1, otherwise

(15)

During training, the S2S-C model was teacher-forced (Williams & Zipser, 1989) to prevent the
cascading impact of incorrect initial cluster assignment on subsequent computation steps, which is a
known challenge in certain areas of machine learning, such as the multi-armed bandit problem (Gan
et al., 2020). This is not a departure from the other tested models (with the exception of S2S-B), as
all neural clustering baselines are also teacher-forced during training, as per author implementations
of the papers that originally introduced them.

A.4 CODE, DATASETS AND PARAMETERS

The code required for all three of the main experiments can be found in a fully anonymized reposi-
tory under the following link:

https://github.com/anonymous-paper-submissions/
neural-ordered-clusters

Follow the instructions provided in the readme.md document to set up the necessary environment
locally, via the requirements.txt file listing all necessary packages and their versions.

In the following sections we describe each dataset in more detail, including how to download or
generate it. All datasets are freely available under publicly accessible links. Additionally, each
section contains the specific hyperparameters used for repeated experiments as well as the exact
number of layers and parameters per tested NOC model.

A.4.1 ORDERED MIXTURES OF 2D GAUSSIANS

Data. The dataset for predicting ordered clusters of 2D Gaussians (based on their distance from the
origin point) is synthetically generated when running the experiment via the linked run gauss2D.py
file. The full, default configuration is given in the parser arguments (nothing should require ad-
justment to run the equivalent experiment). This includes a default seed, which should help ensure
repeatability. In the provided experiments we generate 30K batches of 64 examples each, for a total
of just under 2 million individual training examples for a full run. Each example is a set of 5 to
100 individual points characterized by their coordinates, generated through the Chinese Restaurant
Process with dispersion parameter α set to 0.7 for all experiments. Unlike the batch generation pro-
cess used by Pakman et al. (2020), we generate batches with diverse number of clusters and cluster
cardinalities in each example.

Hyperparameters. The training regimen includes a learning rate adjustment from 1e-4 to 5e-5 at
the 15K-th batch and 1e-5 at the 20K-th batch. The AdamW (Loshchilov & Hutter, 2017) optimizer
was used with a weight decay coefficient of 1e-3. Additionally, the default weights per loss factor
are provided. The main clustering loss factor λc is equal to 1.0, the cluster ordering loss factor is
set to λo = 4.0 and the cardinality prediction loss factor λk = 3e-3. A 100 inferences samples is
generated by default during validation, final metrics being calculated for the clustering prediction
with the highest probability.

Model parameters. The NOC model with reported performance had over 12mil trainable param-
eters. The element and cluster encoding functions, each consisting of three stacked ISAB layers
had the input and hidden dimensions of 128. The set pooling functions consisted of two stacked
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ISAB layers followed by a PMA layer, also with 128 dimensions. The NOC1 clustering module
consistently uses a Parametric Rectified Linear Unit (PReLU) as the nonlinearity He et al. (2015).

A.4.2 PROCEDURALLY GENERATED CATALOGS

Data. The dataset for predicting the cluster composition (sections of offer tokens) and structure
(order of these sections) of synthetic catalogs is automatically generated when running the linked
run synthetic.py experiment script with default parser arguments. This script loads the provided
configuration file synthetic rulesets.json which specifies all compositional and structural rulesets to
which the generated synthetic catalogs will adhere. In all reported experiments we refer to this
default set of rulesets, but encourage researchers to treat it as an easy-to-edit, flexible configuration
that can be adjusted for other exploratory experiments.

For the experiments, we generate 300K synthetic catalogs for the training set and 75K for the vali-
dation and test sets (split into 15 data-loaders). Each example consists of 35-50 offer tokens, each
batch consists of 64 examples with varied number of clusters and cluster cardinalities in each batch.
The NOC model is trained over 250K batch iterations, the equivalent of 50 epochs.

Hyperparameters. The procedurally generated catalog training regimen includes a learning rate
adjustment from 1e-4 to 5e-5 at the 100K-th batch iteration and 1e-5 at the 200K-th. The
AdamW (Loshchilov & Hutter, 2017) optimizer was used with a weight decay coefficient of 1e-
3. Additionally, the default weights per loss factor are provided. The main clustering loss factor
λc is equal to 1.0, the cluster ordering loss factor is set to λo = 15.0 and the cardinality prediction
loss factor λk = 0.1. A hundred inferences samples is generated by default during validation, final
metrics being calculated for the clustering prediction with the highest probability.

Model parameters. The NOC model with reported performance had over 18mil trainable param-
eters. The element and cluster encoding functions, each consisting of four stacked ISAB layers
had the input and hidden dimensions of 128. The set pooling functions consisted of three stacked
ISAB layers followed by a PMA layer, also with 128 dimensions. The NOC1 clustering module
consistently uses a Parametric Rectified Linear Unit (PReLU) as the nonlinearity He et al. (2015).

A.4.3 PROCAT

Data. The PROCAT dataset is freely available under the following link:

https://figshare.com/articles/dataset/PROCAT_Product_Catalogue_
Dataset_for_Implicit_Clustering_Permutation_Learning_and_
Structure_Prediction/14709507

We follow the provided train - test split of 8K - 2K catalogs and all pre-processing steps from the
original paper (Jurewicz & Derczynski, 2021). The provided section break tokens are removed in
the pre-processing to enable the prediction of input-dependent number of sections. Elements are by
default truncated to 512 dictionary tokens for the language-specific BERT model, available in the
linked hugging face repository and the suggested max-offer threshold of 200 per catalog is followed.
Batches of 64 catalogs are used. The proposed NOC model is trained for 12.5K batch-iterations, the
equivalent of 100 epochs.

Hyperparameters. The PROCAT training regimen includes a learning rate adjustment from 1e-4 to
5e-5 at the 5K-th batch iteration and 1e-5 at the 10K-th. The AdamW (Loshchilov & Hutter, 2017)
optimizer was used with a weight decay coefficient of 1e-3. Additionally, the default weights per
loss factor are provided. The main clustering loss factor λc is equal to 1.0, the cluster ordering loss
factor is set to λo = 10.0 and the cardinality prediction loss factor λk = 0.5. A hundred inferences
samples is generated by default during validation, final metrics being calculated for the clustering
prediction with the highest probability.

Model parameters. The NOC model with reported performance had 23mil trainable parameters
(not including the BERT model, which was frozen during training). The element and cluster encod-
ing functions, each consisting of 5 stacked ISAB layers had the input and hidden dimensions of 128.
The set pooling functions consisted of 4 stacked ISAB layers followed by a PMA layer, also with
128 dimensions. The NOC1 clustering module consistently uses a Parametric Rectified Linear Unit
(PReLU) as the nonlinearity (He et al., 2015).
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