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ABSTRACT
An Integrated Practice Unit (IPU) is a new approach to outpatient care in which a co-located multi-
disciplinary team of clinicians, technicians, and staff provide treatment in a single patient visit.
This article presents a new integer programming model for an extended open shop problem with
application to clinic appointment scheduling for IPUs. The advantages of the new model are dis-
cussed and several valid inequalities are introduced to tighten the linear programming relaxation.
The objective of the problem is to minimize a combination of makespan and total job processing
time, or in terms of an IPU, to minimize a combination of closing time and total patient waiting
time. Feasible solutions are obtained with a two-step heuristic, which also provides a lower bound
that is used to judge solution quality. Next, a two-stage stochastic optimization model is pre-
sented for a joint pain IPU. The expected value solution is used to generate two different patient
arrival templates. Extensive computations are performed to evaluate the solutions obtained with
these templates and several others found in the literature. Comparisons with the expected value
solution and the wait-and-see solution are also included. For the templates derived from the
expected value solution, the results show that the average gap between the feasible solution and
lower bound provided by the two-step heuristic is 2% for 14 patients. They also show that either
of the two templates derived from the expected value solution is a good candidate for assigning
appointment times when either the clinic closing time or the patient waiting time is the more
important consideration. Sensitivity analysis confirmed that the optimality gap and clinic statistics
are stable for marginal changes in key resources.
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1. Introduction

The United States spent nearly 18% of its gross domestic
product on healthcare in 2015 according to the Centers for
Medicare & Medicaid Services (CMS). In 2016, U.S. health-
care spending reached a new peak at $10,348 per person,
more than twice the average of other developed countries.
Today, it is most common for patients who need multiple
consults to travel from one clinic to another to see different
providers. Such a provider-centered approach inevitably bur-
dens the patient in the following ways: (i) travel between
facilities introduces inconvenience, additional logistics costs
and unnecessary administrative costs; (ii) repeated requests
for the same information can increase stress and anxiety;
(iii) information transfer across clinics often results in
inaccurate or incomplete health records downstream; (iv)
lack of communication among providers may occasion
unnecessary or duplicate tests, and undermine long-term
care planning; and (v) the separation of providers reinforces
a piecemeal approach that rarely addresses the patient’s con-
dition as a whole. To better deliver healthcare services, cur-
rent healthcare reform is moving towards value-based
patient-centered care, seeking better coordination among

providers. Many researchers have shown that this approach
can improve clinical outcomes while decreasing diagnostic
tests and the need for referrals (Stewart et al., 2000;
Hanna, 2010).

1.1. Integrated practice units

To put the focus on the needs of the patient, several clini-
cians and policy analysts have suggested the use of
Integrated Practice Units (IPUs) to treat chronic medical
conditions such as diabetes, pain, multiple sclerosis, and car-
diomyopathy (Porter 2010; Keswani et al. 2016). This
approach fosters realtime communication among specialists
and provides treatment options for the patient across the
entire continuum of care for a chronic condition. An added
benefit inherent to this model is the continuous learning
and improvement of multiple disciplines working together
and communicating about each patient. The team learns
from every patient, so their expertise improves over time.
After a patient enters the IPU and is roomed, the appropri-
ate providers sequentially address the patient’s conditions.
In some cases, it is appropriate for the patient to see
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different providers in a specific order. For example, in the
case of a lower extremity joint pain IPU, the motivating
clinic for this article, the patient is first seen by a nurse
practitioner who determines whether additional treatment is
required. If it is decided that the patient needs to see both a
surgeon and a physical therapist, the surgeon comes first. If
it is determined that the patient must see a physical therap-
ist and a nutritionist, the order is immaterial.

What is relatively unique about an IPU is that the patient
remains in the same room for the duration of his/her visit,
and hence is the center of pathways traversed by a variety of
providers. This model of care delivery enables the providers
to work more closely together in treating their patients, and
to focus on using the skills for which they have been
trained. The expectation is better outcomes, higher levels of
patient satisfaction, and lower patient costs in the long run.
What has yet to be determined, though, is whether the effi-
ciency of an IPU will outweigh the higher provider costs
that are likely to result from lower provider utilization. To
be effective, all providers must be available in the IPU, but
not all patients need to see all providers.

While IPUs bring continuity of care and integrated treat-
ment to patients – important factors in patient satisfaction –
they also present an operational challenge to the schedulers
who must coordinate activities among all providers. In the
current system, healthcare delivery is fragmented; patients
see their providers at different times and often at different
locations. In an IPU, the patients have seamless access to
service from different providers in a timely manner; how-
ever, this requires better coordination among providers to
prevent delays and congestion. Moreover, in the fragmented
delivery system, different clinics operate independently and
each has its own scheduling system. In an IPU, the sched-
ules of the different providers interact with each other, as
the patient needs to see one provider followed by another.
As a consequence, clinic scheduling becomes central to the
efficiency of the multidisciplinary team, as patient demand
and provider capacity have to be strategically matched to
ensure timely operations.

One of the most critical issues in managing an IPU is
deriving the appointment schedule or template. Ill-conceived
templates result in excessive patient waiting time, unaccept-
ably low provider utilization, and costly overtime. The chal-
lenge then is to design schedules that jointly balance clinic
closing time and total patient waiting time while also taking
into account system capacity and system randomness. For a
given number of patients, if these two metrics are mini-
mized, then provider and staff idle time should also be
minimized. The system randomness derives from two sour-
ces. The first is each patient’s provider set. These sets are
unknown at the time when the appointment is made and
are only determined after the patient is seen by the nurse
practitioner who conducts an initial examination. The
second is the amount of time each patient spends with
each provider.

In practice, the coordination of providers in IPUs has
many elements of an extended open shop scheduling prob-
lem in which each workstation may consist of multiple

(identical) machines and some jobs have partially fixed
routes. The pure open shop problem has been studied exten-
sively in the combinatorial optimization literature, and is
known to be strongly NP-hard (see Pinedo 2016). Its aim is
to assign a set of jobs to available machines to minimize
one of several objective functions such as makespan, total
processing time, or number of late jobs. As the IPU appoint-
ment scheduling problem has many similar characteristics as
the open shop problem, the models for either are quite simi-
lar. In the case of an IPU, the patients can be viewed as jobs
and the providers as machines. Clinic performance is meas-
ured by patient delay (total processing time) and closing
time (makespan). These measures are in conflict so a stra-
tegic balance must be struck.

1.2. Research contributions

The purpose of this article is to first present a generic model
of the IPU scheduling problem and then to develop a solu-
tion methodology for realistic size instances. We focus on
two decisions: the number of patients to schedule in each
time period and appointment rules. The first decision is
intended to fix the appointment template, which specifies
how many patients should be scheduled to arrive at the
beginning of each time slot. Appointment rules determine
which types of patients (new or follow-up) to assign to each
time slot. We begin with a deterministic model based on an
open shop that takes into account the unique characteristics
of an IPU including different types of providers, multiple
providers of the same type, fixed and variable patient paths,
and patient waiting time limits. An additional consideration
is the number of available rooms. Once a patient checks
into the clinic, he/she is assigned to a room and remains
there until the visit is concluded. This type of resource con-
straint is not often modeled in open shop scheduling prob-
lems where the common restrictions center on labor and
machines. It is rare for auxiliary resources, such as rooms,
transportation vehicles, and other tooling and equipment to
be taken into account. We propose three approaches to
modeling such resource constraints. To capture the random-
ness of provider service times and patient-specific treat-
ments, we show how our generic model can be extended to
include these stochastic elements. The approach is demon-
strated using data provided by The University of Texas Dell
Medical School in Austin.

This research differs from earlier studies in the following
ways. To the best of our knowledge, this is the first article
to present a generic (stochastic) model for determining
appointment templates for a multi-stage, multi-server,
resource-constrained clinic where patients remain stationary
throughout their visit. Another unique feature of our prob-
lem is the order of provider–patient engagement. Existing
studies usually assume that the patient sees the providers in
a fixed sequence if there is more than one, whereas in our
case, the order is only fixed for some providers while
remaining flexible for the others. Thus, the IPU scheduling
problem is really a combination of a flexible flow shop and
an open shop with auxiliary resource constraints (see Pinedo
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2016). The two-step method proposed to find solutions is
sufficiently general to be used to help solve similar coordi-
nated appointment scheduling problems arising from other
applications.

The remainder of this article is structured as follows. In
Section 2, we provide a literature review of the most relevant
work on open shop scheduling and healthcare appointment
scheduling. In Section 3, we present our new model for the
extended open shop scheduling problem, analyze its features,
and introduce several valid inequalities that were seen to
speed convergence. We also describe our two-step solution
method. The random components of the problem are intro-
duced in Section 4, where we present a two-stage stochastic
optimization model and define what we mean by the
expected value solution and the wait-and-see solution. In
Section 5, we examine the relative performance of two tem-
plates derived from the expected value solution and two
found in the literature. Extensive testing is done to compare
IPU metrics across all templates and to evaluate the quality
of the lower bound obtained from the two-step method. The
results indicate that the average gap for the two-step method
is always less than 5% for the wait-and-see problem, and
less than 2% for the four appointment templates that we
investigated.

We also observed that the two templates derived from the
expected value solution are good candidates for setting
appointments. One template emphasizes the clinic closing time
objective by scheduling patients to arrive relatively earlier in
the day. The second template emphasizes the patient waiting
time objective by scheduling patients to arrive later in the day.
Lastly, the results show that our appointment rules are helpful
when scheduling the different types of patients. For example,
we found that it is best to schedule follow-up patients, who
generally have shorter service times, to arrive when there is
high patient flow. This helps to relieve or avoid congestion
when the number of patients is fixed over the day. We con-
clude with some managerial insights and some suggestions for
future research in Section 6.

2. Literature review

Variations of job shop problems have been studied extensively
and have a wide range of applications. One common example
is the open shop problem in which a set of jobs is to be proc-
essed through multiple stations in an arbitrary order, as is par-
tially the case in an IPU. Bhat et al. (2000) modeled the
communication scheduling problem as an open job shop
whereas Liaw (2000) proposed a hybrid genetic algorithm that
incorporated tabu search as part of the solution methodology.
Noori-Darvish et al. (2012) developed a bi-objective mixed-
integer linear programming (MILP) model for an open shop
scheduling problem with sequence-dependent setup times, and
applied an interactive fuzzy programming approach to find
solutions. Our clinic scheduling problem can be modeled as an
extended open shop, where “extended” means multiple, parallel
machines, fixed and arbitrary job processing paths, and auxil-
iary resource constraints.

Scheduling problems in healthcare often have special fea-
tures that distinguish them from problems arising in other
industries. Their unique nature brings additional challenges.
For example, Gupta and Denton (2008) noted that in
healthcare applications there exists less flexibility because
patients may have a preference for a specific provider or
appointment time. Moreover, urgent patient needs must be
accommodated immediately, and in some cases, price cannot
be used to modulate patient demand. With respect to out-
patient scheduling, a wide variety of approaches have been
investigated, but few have been implemented in practice. In
the remainder of this section, we provide a literature review
of healthcare scheduling problems with different system
structures. We also provide a review of the different solution
methods with an emphasis on stochastic program-
ming approaches.

2.1. Healthcare systems with different
pathway structures

There have been numerous studies on scheduling in health-
care over last several decades, as highlighted by Cayirli and
Veral (2003) and Gupta and Denton (2008). Most of the
early work focused on single-station appointment schedul-
ing. More recently, the scope has expanded to include
multi-stage, multi-server applications as discussed by
Ahmadi-Javid et al. (2017) and Leeftink et al. (2018). Based
on the features of our problem, the most relevant studies
can be grouped into two categories: multi-stage models and
multi-server models. Each is reviewed below.

In multi-stage clinic scheduling, different provider types
are involved. This makes the problem complicated because a
patient can be referred from one provider to another for dif-
ferent treatment, which leads to uncertainty in the patient
flow. Azadeh et al. (2015) formulated a semi-online patient
scheduling problem as a MILP, and developed a genetic
algorithm to find solutions. In their problem, the patients
require different types of tests and the use of a variety of
laboratory equipment. Castro and Petrovic (2012) studied a
scheduling problem in which patients need to go through an
ordered sequence of examinations. They formulated the
problem as a three-objective mathematical program, and
solved it with a dispatching rule. P�erez et al. (2013) investi-
gated a stochastic online scheduling problem for nuclear
medicine clinics where the patients need to go through mul-
tiple steps. In the study, the sequence of the steps is fixed,
and multiple resources are required at each step. Kazemian
et al. (2017) developed a simulation model to coordinate
clinic and surgery appointments with the objective of reduc-
ing the indirect waiting time of patients and limiting operat-
ing room overtime. Their strategy was to choose
appointment days for patients rather than setting daily
arrival times. Different from our work, these studies are
either limited to a single server at each stage or they do not
include room constraints.

Problems get more challenging when there is more than
one provider of each type, giving rise to the multi-server
clinic scheduling problem. Gupta and Wang (2008) modeled
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an appointment booking problem as a Markov decision pro-
cess and proposed heuristics to find solutions. They also
developed lower and upper bounds on the optimal solution,
which were shown to speed convergence. Both single- and
multiple-physician clinics were analyzed, but in either case,
only single-stage scheduling was applicable. Parizi and Ghate
(2016) went a step further and purposed a Markov decision
process for a multi-class, multi-resource clinic scheduling
problem, whereas Qu et al. (2013) developed a weekly
scheduling template for a multiple-provider outpatient clinic.
In their problem, providers in separate sessions have separ-
ate appointment schedules, whereas in our study, all pro-
viders are in the same clinic working with a single
appointment schedule.

2.2. Solution methods for healthcare
scheduling problems

Dynamic programming has been a popular tool for model-
ing the clinic scheduling problem. For example, Truong
(2015) considered the problem in which two types of
patients are adaptively given appointments over several days.
Chakraborty et al. (2010) used a dynamic programming tree
to investigate clinic scheduling with general service time dis-
tributions, where the patients sequentially request appoint-
ments. Simulation is perhaps the most versatile tool, since it
is able to handle most complexities surrounding patient flow
and uncertainty. Wang et al. (2018) solved a two-server
scheduling problem using simulation-based optimization.
Cayirli et al. (2006) developed a simulation model to analyze
appointment scheduling for ambulatory care and investi-
gated patient sequence rules based on patient class.
Similarly, Bard et al. (2016) used discrete event simulation
to investigate the performance of the family health center
associated with the University of Texas Medical School in
San Antonio. Their objective was to obtain a better under-
standing of patient flow and to evaluate changes to current
scheduling rules and operating procedures. As part of the
study, they examined a variety of scenarios related to
appointment scheduling and managing early and
late arrivals.

Robust optimization is a relatively new approach to
scheduling patients and resources in healthcare facilities.
Denton et al. (2010) built a robust optimization model to
study the allocation of operating rooms to surgical special-
ties in the face of insufficient data. Rachuba and Werners
(2014) applied the robust approach to a hospital surgery
scheduling problem in an effort to avoid frequent reschedul-
ing due to random requests and cancellations. Similarly,
Mannino et al. (2012) presented a light robustness proced-
ure to handle random fluctuations in demand when con-
structing cyclic master surgery schedules. In their procedure,
parameter values lie in an uncertainty set, but solutions are
not required to satisfy all possible realizations. Instead, soft
constraints are introduced for each parameter and violations
are penalized in the model’s objective function.

Another common approach to modeling uncertainty is
stochastic programming. Mancilla and Storer (2012)

considered a stochastic appointment scheduling problem
and proposed a new sequencing algorithm based on Benders
decomposition to find solutions. Oh et al. (2013) used a sto-
chastic integer programming model to schedule patient
appointments in primary care facilities and developed sched-
uling guidelines. Integral to their work is (i) an empirically
based classification scheme to distinguish chronic and acute
conditions, (ii) the ability to coordinate patient and provider
interactions, and (iii) the introduction of slack in the sched-
ule to accommodate the effects of service time variability.
Kong et al. (2013) investigated an outpatient clinic appoint-
ment scheduling problem with a single physician and pro-
posed a convex conic programming approach to find
solutions. Berg et al. (2014) considered a profit-maximiza-
tion scheduling problem in the presence of patient no-shows
and random procedure times. They modeled the problem as
a two-stage stochastic mixed-integer program and proposed
several methods to find solutions including two decompos-
ition approaches and a heuristic.

Chen and Robinson (2014) formulated a clinic scheduling
problem with both routine patients and last-minute patients
as a stochastic linear program. They derived optimal sequenc-
ing rules while accounting for random no-shows and call-ins.
Erdogan and Denton (2013) proposed a multi-stage stochastic
linear program in which each stage is defined to coincide with
the time a patient calls to request an appointment. Different
from the formulations in these studies, our two-stage opti-
mization model accounts for resources shared among patients
and co-located providers who see patients in a partially fixed
and partially random order.

3. Deterministic model

As noted in Section 1.1, it is critical to consider uncertainty
when designing appointment templates for IPUs. The foun-
dation of our approach is a stochastic optimization model
whose solution relies heavily on efficiently solving a deter-
ministic version of an Extended Open Shop Scheduling
(EOSS) problem. In Section 3.1, we present our EOSS model
that includes parallel machines at each station. After describ-
ing the formulation, we highlight its unique features in
Section 3.2 and offer some tightening constraints designed
to reduce the computational burden. To make the discussion
concrete, the focus is on clinic scheduling, but with the
understanding that the model is generally applicable to most
open shop problems. Next, in Section 3.3 the formulation
for the room constraints is presented. These constraints can
readily handle similar resources such as vehicles, jigs, tool-
ing, and auxiliary personnel. In Section 3.4 we specialize the
open shop model to an IPU and impose additional restric-
tions that better reflect operational considerations. Finally,
in Section 3.5 we propose a two-step heuristic to obtain
upper and lower bounds on the optimal schedule.

3.1. Extended model for open shop scheduling

We first study the general minimum makespan extended
open shop scheduling problem with a secondary objective of
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minimizing the total time that jobs spend in the system. The
presentation reflects clinic appointment scheduling rather
than job shop scheduling. In the developments, we make
use of the following notation.

Indices and sets
i, j index for patients
k, l index for providers or provider types
m index for position in the sequence of patients who

see a particular provide type
o origin (and destination) index for all patients and

all providers
J set of patients
K set of provider types
J(k) set of patients who see type k provider
K(j) set of provider types that patient j needs to see

Data and parameters
admk time (hours) required for a type k provider to per-

form administrative functions such as entering
data into the electronic medical records system
after seeing each patient

LTk
m lower bound on ðmþ 1Þst patient’s starting time

with a type k provider. (When there is only one pro-
vider of type k, LTk

m equals the sum of them smallest
service times of provider k’s patients. It is also the
lower bound on the time interval between any two
patients who are separated bym – 1 other patients.)

mk total number of patients that type k providers are
to see

nk number of type k providers
skj service time required for a type k provider to treat

patient j (hours)
� ratio of the predetermined waiting time that a

patient can spend in clinic to the patient’s total
service time

Sjð�Þ upper limit on the amount of time that patient j is
allowed to spend in the clinic, or equivalently, the
total service time plus upper limit on waiting time
of patient j; that is ð1þ �Þ �Pk2KðjÞ s

k
j

Tmax upper bound on clinic closing time

Decision variables
tkm start time of the patient in the mth position in the

schedule of type k providers
xkjm 1 if patient j is in the mth position in the sequence

of patients who see a type k provider, 0 otherwise
STk

j time when a type k provider starts seeing patient j

yklj 1 if STk
j þ skj � STl

j , which means that a type k pro-
vider must finish his/her visit with patient j before
a type l provider can start seeing patient j;
0 if STk

j � STl
j þ slj, which means that a type k pro-

vider can start seeing patient j no earlier than a
type l provider finishes his/her visit with patient j

Accounting variables
T clinic closing time
T1
j time when patient j is seen by his/her first provider

T2
j time when patient j finishes being seen by his/her

last provider

For the clinic scheduling problem, we are given a set J of
jJj patients and a set K of jKj provider types. For each k 2 K
there are nk providers. Different providers of the same type
can perform the same tasks. Each patient j 2 J needs to be
seen by a subset of providers, denoted by K(j). The service
time for patient j when treated by a type k provider is skj . As
in the general open shop scheduling model, there is no restric-
tion on the order in which providers can see patients.

Each patient is visited by one provider at a time and can-
not be preempted once service begins. When the provider fin-
ishes treating a patient, she/he documents the episode. This
requires a moderate amount of administrative time, but does
not affect the patient who can be seen immediately by another
provider. The objective is to minimize a weighted combination
of the makespan (clinic closing time) and the patients’ total
time in clinic. The makespan is our primary concern, and in
the implementation, is assigned a much larger weight than the
total time patients spend in the facility.

To simplify the presentation, first consider the case where
nk ¼ 1 for all k 2 K, where the mk patients to be seen by
the type k provider are indexed by m (i.e., m ¼ 1; 2; :::;mk).
The decision variable xkjm is associated with patient j 2 JðkÞ
and takes the value of 1 if patient j is in position m in pro-
vider k’s schedule, and 0 otherwise. The benefit of this
indexing scheme is that if a position has a lower/higher
index, then the starting time associated with this position
should also be lower/higher. Accordingly, the position index
can be used to calculate lower and upper bounds on the
starting time of the corresponding patient.

Now consider the case where nk>1. For any k, a corre-
sponding provider can see at most mk patients. Therefore,
we need at most nk �mk binary x-variables for each j 2 JðkÞ
to determine which of the mk providers treats patient j, as
well as the order in which patients are seen. To help formu-
late the constraints, we put each provider’s patient positions
into different sets. Figure 1 depicts an example with three
providers A, B, and C of the same type. In the model, there
are 3 �mk positions indexed as 1; 2; :::; 3 �mk, where each
position is marked as A, B, or C. The patients who are
assigned the positions marked with an A (B or C), will be
seen by provider A (B or C, respectively). In the example,
provider A’s patients will be in positions 1, 4, 7, … Since
we have mk patients and 3 �mk positions, only mk positions
will be filled by the patients in a solution; the remaining 2 �
mk positions will be empty.

For the general case with nk type k providers and mk

patients, we have mk sets, with each set containing nk posi-
tions. The first patient in each set is seen by the first type k
provider, the second patient is seen by the second type k
provider, and so on. The nth patient in the mth set is the
mth patient seen by the nth type k provider. In a solution,
only mk out of the nk �mk positions will be occupied. For

Figure 1. Patient positions for provider type k with three providers.
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provider type k, the binary variable xkjm specifies which pos-
ition patient j takes, and according to the indexing scheme,
the value of m determines which provider the patient sees.
In a preprocessing step it is possible to eliminate a large
number of the mk variables associated with type k providers
when nk>1. This is a direct consequence of the following
assumption concerning provider-patient assignments.

In the model, we assume without loss of generality that
the number of patients assigned to providers of the same
type is non-increasing. If there are three type k providers,
for example, and 21 (¼ nk) patients, then the first provider
can see up to 21 patients, the second provider can see a
maximum of 10 patients, and the third provider can see a
maximum of seven patients. A second benefit of the position
indexing scheme is that it allows for the implementation of
this ordering rule in a straightforward manner.

The model for the EOSS problem is as follows:

min a1 � T þ a2 �
X
j2J

T2
j � T1

j

� �
(1a)

s:t:
X

1�m�nk�mk

xkjm ¼ 1; 8 j 2 J; k 2 K jð Þ (1b)

X
j2J kð Þ

xkjm � 1;m ¼ 1; :::; nk �mk; 8 k 2 K (1c)

X
j2J kð Þ

xkjm�
X
j2J kð Þ

xkj;m�nk ; m¼nkþ1; :::;nk �mk;8 k2K (1d)

X
j2J kð Þ

xkjm�
X
j2J kð Þ

xkj;mþ1;

m2 1;2; :::;mk �nk
� �

n nk;2 �nk; :::;mk �nk
� �

; 8 k2K (1e)

tkm�tkm�nk �
X
j2J kð Þ

xkj;m�nk � skj þadmk
� �

;

m¼nkþ1; :::;nk �mk;8 k2K (1f)

yklj þylkj ¼1;8 k 6¼ l;k; l2K jð Þ (1g)

STl
j �STk

j þ skj� 1�yklj
� �

�Sj �ð Þ;
8 j2 J;8 k 6¼ l;k; l2K jð Þ

(1h)

STk
j � tkm�nkþnþ 1�xkj;m�nkþn

� �
�Tmax;

m¼0; :::;mk�1;n¼1; :::;nk;8j2 J;k2K jð Þ (1i)

STk
j � tkm�nkþn� 1�xkj;m�nkþn

� �
�Tmax;

m¼0; :::;mk�1;n¼1; :::;nk;8j2 J;k2K jð Þ (1j)

T1
j � STk

j ;8 j2 J;k2K jð Þ (1k)

T2
j � STk

j þ skj ;8 j2 J;k2K jð Þ (1l)

T2
j �T1

j � Sj �ð Þ;8 j2 J (1m)

tknk�mk�nþ
X
j2J kð Þ

xkj;nk�mk�n � skj þadmk
� �

�T;

n¼0;1; :::;nk�1;8 k2K

(1n)

xkjm;y
kl
j 2 0;1f g;T;tkm;STk

j ;T
1
j ;T

2
j �0;8 i; j2 J;

m¼1; :::;nk �mk;k 6¼ l;k; l2K
(1o)

The objective function (1a) minimizes the weighted sum
of the clinic closing time and the total time patients spend
in treatment. The weights a1 and a2 should be chosen to
reflect the relative importance of each term. In the applica-
tion, the first term dominates the second, which means that
the closing time should be made as small before minimizing
the total time in the system. To meet this objective, we
set a1 � a2.

Constraints (1b) ensure that every patient j will be seen
by exactly one provider of each type in his/her provider
set K(j). Note that constraint (1b) is a collection of mutu-
ally disjoint special ordered set constraints. In each con-
straint associated with the (j, k) pair, only one x variable
will be one and all others zero. Exploiting this structure
in the implementation greatly reduced the computa-
tional effort.

Constraints (1c) guarantee that every position in pro-
vider type k’s schedule is assigned to at most one patient.
Constraints (1d) ensure that for each type k provider, posi-
tions are assigned in increasing order, starting with 1 and
going up to nk �mk. When nk ¼ 1, all mk positions will be
filled. When mk>1, each provider has mk available posi-
tions, but not all of them will be assigned. Although it
seems that this could result in multiple optimal solutions,
because the positions are assigned in numerical order this
will never be the case. Constraints (1e) specify that if there
is more than one provider of type k, then the first provider
is always assigned at least as many patients as the second,
the second at least as many as the third, and so on. This
rule also prevents multiple optimal solutions and has the
added benefit of removing symmetry among providers of
the same type.

Constraints (1f) specify that for a provider of type k,
every patient assigned to his/her needs to be separated in
time by at least the service time of the patient in the prior
position plus the administrative time (there are no con-
straints for the first nk positions because they are occupied
by the first patient of the nk providers). This ensures that
providers have enough time between two successive
patients. Constraints (1g) are written only for those
patients who are to be seen by providers k and l, and
enforce the condition that the visits take place in sequence.
Constraints (1h) ensure that a provider can only start a
visit with a patient after the prior provider finishes with
the patient.

6 P. ZHANG ET AL.



Constraints (1i) and (1j) define patient j’s starting time with
each provider type while constraints (1k) ensure that the clinic
visit for patient j begins no later than the time when he sees
any of his providers. Constraints (1l) guarantee that the ending
time of patient j’s visit is no earlier than the time when he
sees any of his/her providers plus the corresponding service
time. Constraints (1m) limit the total time patient j spends in
the clinic (total service time plus total waiting time) to be no
greater than a threshold Sjð�Þ proportional to his/her total ser-
vice time. Although the second term in the objective function
is aimed at minimizing total clinic time, constraints (1m) are
not redundant. Without these constraints, some patients may
spend an excessive amount of time in the clinic – a result that
we wish to avoid.

Constraints (1n) indirectly define the clinic closing time
by restricting it to be no earlier than the ending times of all
providers. Alternatively, we could have defined the closing
time as the time when the last patient leaves, but in the
Linear Programming (LP) relaxation, this value is much
smaller than the providers’ ending times due to the weak-
ness of constraints (1i) and (1j). Using the proposed defin-
ition led to tighter LP relaxations and shorter runtimes.
Finally, all variables are defined in constraints (1o).

3.2. Model analysis and improvement

In this section, we investigate some of the characteristics of
model (1a) - (1o). First, we show how to use the index
information associated with each position to improve the
formulation. Next, we show how the LP relaxation can
be tightened.

3.2.1. Index information and valid inequalities
The index information for two patients seen by the same
provider indicates their relative order. Consider provider
type k with nk ¼ 1 and mk patients. The index of the first
patient position is 1 and all other positions for that provider
have a later starting time. Given that the positions are
ordered, and any two successive positions are separated by
the first patient’s service time plus the provider’s administra-
tive time, we can derive lower and upper bounds on the
starting time of each position using its index. For example,
the lower bound on the starting time of the second patient
is the smallest service time of all patients that are seen by
provider k plus his/her administrative time, which is
denoted by LTk

1 . The upper bound on the starting time of
the last patient position is Tmax minus the smallest service
time of all patients seen by provider k plus his/her adminis-
trative time, denoted by Tmax�LTk

1 . Generally, for provider
k with nk ¼ 1, the lower bound on the starting time of pro-
vider k’s patient in position m is LTk

m�1 and the upper
bound is Tmax�LTk

mk�mþ1.
These bounds allow us to strengthen constraints (1i)

and (1j). In the LP relaxation of model (1), (1i) and (1j)
are weak constraints, due to the need to make Tmax suffi-
ciently large to avoid cutting off any feasible solutions.
As a consequence, the relaxed feasible region is too large

for the branch-and-bound approach to be effective for
instances of realistic size. It will be seen, however, that
replacing constraints (1i) with constraints (2a) and (2b),
and constraints (1j) with constraints (2c) and (2d) pro-
vides a tighter LP relaxation. Note that constraints (2a)
and (2c) are for nk ¼ 1, and constraints (2b) and (2d) are
for nk>1:

STk
j � tkmþn�

X
m0�m�1

LTk
m�m0 �xkj;m0þnþ

X
m0�mþ1

Tmax�LTk
mk�m0þm

� �
�xkj;m0þn;

m¼0;:::;mk�1;n¼nk¼1;8 j2 J;8 k2K jð Þ (2a)

STk
j � tkm�nkþn�

X
m0�m�1

LTk
m�m0 �xkj;m0�nkþnþ 1�

X
m0�m

xkj;m0 �nkþn

� �
� Tmax�LTk

mþ1

� �
;

m¼0;:::;mk�1;n¼1;:::;nk;nk>1;8 j2 J;8 k2K jð Þ (2b)

STk
j � tkmþn�

X
m0�m�1

Tmax�LTk
mk�mþm0

� �
�xkj;m0þnþ

X
m0�mþ1

LTk
m0�m �xkj;m0þn;

m¼0;:::;mk�1;n¼nk¼1;8 j2 J;8 k2K jð Þ (2c)

STk
j �tkm�nkþn� 1�

X
m0�m

xkj;m0�nkþn

� �
� Tmax�LTk

mk�m�1

� �
þ
X

m0�mþ1

LTk
m0�m�xkj;m0�nkþn;

m¼0;:::;mk�1;n¼1;:::;nk;nk>1;8 j2J;8 k2K jð Þ (2d)

Proposition 1. Collectively, constraints (2a) and (2b) [con-
straints (2c) and (2d)] are stronger than their counterparts
constraints (1i) [constraints (1j)].

Proof. See Appendix A.1.

The inequalities in the proof show the tightness of the
improved constraints (2) given their equivalence to the original
two constraints (1i) and (1j). As noted, the index formulation
is a unique feature of our model and is useful in tightening
constraints and breaking symmetry. These advantages are not
available with the more traditional routing formulation, in
which the subscripts on the x variables represent the immedi-
ate sequence of two entities, such as vehicles, jobs or patients.
In our computational testing, we found that the tightened con-
straints greatly reduced runtimes.

3.2.2. LP relaxation
Tight LP relaxations of MILPs are essential for computa-
tional efficiency. In model (1), this is partially achieved with
constraints (1f), which enforce a minimum separation time
between patients who are on the schedule of the same pro-
vider. To see this, we sum constraints (1f) for a single type
k provider. Assume that nk ¼ 1 and denote provider k’s
ending time by tkmkþ1. This leads to

tkmkþ1�tk1 ¼
Xmkþ1

m¼2

tkm�tkm�1 �
Xmkþ1

m¼2

X
j2J kð Þ

xkj;m�1 � skj þ admk
� �

�
X
j2J kð Þ

Xmkþ1

m¼2

xkj;m�1

0
@

1
A � skj þ admk

� �

¼
X
j2J kð Þ

skj þ admk
� �
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which shows that a provider’s ending time and starting time
are separated by at least his/her patient’s total service time
and administrative time. Considering that our primary
objective is to minimize the clinic’s closing time, which is
closely related to providers’ ending times, we found empiric-
ally that constraint (1f) works in conjunction with con-
straints (1a) to reduce the computational effort during the
branch-and-bound procedure. Network and routing models
typically use the Miller-Tucker-Zemlin constraints for the
same purpose as constraints (1f), but those constraints
include a term equivalent to Tmax to ensure redundancy
when necessary (see Miller et al. (1960)). Such formulations
are known to provide weak LP relaxations, and proved to be
ineffective when trying to solve the stochastic version of the
IPU scheduling problem.

3.3. Room constraints

In this section, we present our model for the room con-
straints. Recall that before a patient can be seen by a pro-
vider, he/she is assigned to one of R rooms and remains
there until all provider visits are completed. At that point,
the room is released and available for the next patient to
occupy. When all rooms are in use, arriving patients
must wait.

We proposed and tested three methods that equivalently
limited the use of rooms to the number available without
allowing patients to overlap in the same room. One method
may be better than the others, depending on the specific
problem. For example, when the number of providers is
increased or decreased, the relative performance of the three
methods also changes. The most efficient method for our
IPU scheduling problem is based on network flow and is
presented below. The other two methods are outlined in
Appendix B.

Network method. The key variables in this approach are
T1
j and T2

j , for all j 2 J, which appear in constraints (1k) -
(1m). Now define a new variable zij to be 1 if patients i and
j use the same room in immediate succession, and 0 other-
wise. Let N ¼ J [ fog be a set of nodes in a network that
models patient flow through the clinic, where o is a dummy
source/sink node. Between every two nodes in N, we intro-
duce an undirected edge with lower bound 0 and upper
bound 1. At the source node, we set the outflow and inflow
to be R, and at the patient nodes we set the outflow and
inflow to be 1. The patient nodes that receive inflow from
the source node correspond to the patients who are the first
to use a room. The other flows correspond to the order in
which the patients are assigned to rooms.

Let zij be the flow from node i to node j, for all
i 6¼ j 2 N. The constraints for room requirement are as fol-
lows: X

j6¼i;j2J[ of g
zij ¼ R; i ¼ o

1; i 2 J

�
(3a)

X
i 6¼j;i2J[ of g

zij ¼ R; j ¼ o
1; j 2 J

�
(3b)

T1
j � T2

i � 1�zijð Þ � Tmax; 8 i 6¼ j 2 J (3c)

Xmk

m¼1

m � xkjm �
Xmk

m¼1

m � xkim þ 1� 1�zijð Þ �mk;

8 i 6¼ j 2 J kð Þ; 8 k 2 k : nk ¼ 1f g (3d)

zij 2 0; 1f g; 8 i; j 2 J [ of g (3e)

Constraints (3a) and (3b) specify the outflow and inflow
at the nodes, respectively, and together preserve flow bal-
ance. Constraints (3c) guarantee that a patient’s starting
time is no earlier than his/her immediate predecessor’s end-
ing time. Constraints (3d) are useful cuts, which state that if
patient i leaves his/her room earlier than patient j enters the
room, then patient i’s position index should be smaller than
patient j’s position index for any provider who is the only
provider of his/her type. The difference must be at least one.
Constraints (3e) define the variables.

3.4. Application to joint pain IPU

In this section, we adapt the EOSS model (1) to the joint
pain IPU at the Dell Medical School. Provider types include
nurse practitioners, surgeons, physical therapists, nutrition-
ists and care planners. The clinic currently operates with
two nurse practitioners and one each of the other four pro-
vider types. As shown in Figure 2, after self check-in and
rooming, every patient is first seen by a nurse practitioner.
Depending on the chief complaint, the patient may be seen
by one or more of the next three providers. If the patient
requires a consult with the surgeon, this takes place immedi-
ately after the nurse practitioner. The physical therapist and
nutritionist can be seen in any order. Finally, every patient
must meet with the care planner at the end of the visit.
After a provider finishes with a patient, the next provider
can enter the room immediately but the former provider
must complete a small number of administrative tasks (e.g.,

Figure 2. Patient paths in joint pain IPU.
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writing prescriptions) before moving on to his/her
next patient.

In the joint pain IPU, seven exam rooms are available for
treatment and consultation. Once assigned to a room, the
patient remains there until his/her visit with the care plan-
ner ends and he/she departs.

3.4.1. Discrete-time arrival
If there are no other constraints on arrival times, then
patient j’s appointment time will be T1

j minus the time for
check-in and rooming. In practice, however, clinic appoint-
ment times are assigned at fixed intervals rather than con-
tinuously throughout the day as the solution to model (1)
would indicate since tkm is a continuous variable. For
example, if the clinic opens at 8:00 am and we use a 15-
minute interval, then patients can be scheduled at 8:00, 8:15,
8:30, ::: Assume that each patient spends s0 minutes on
check-in and rooming. Let s be the minimum time between
scheduled appointments and let q be the index for arrival
time points. Also, let xarr1jq ¼ 1 if patient j arrives at the qth
time point (multiple of s) and sees the first nurse practi-
tioner, and 0 otherwise. Let xarr2jq ¼ 1 if patient j arrives at
the qth time point and sees the second nurse practitioner,
and 0 otherwise. We define a new variable narrq to represent
the schedule template such that narrq ¼Pjðxarr1jq þ xarr2jq Þ indi-
cates the total number of patients who arrive at time point
q. The following constraints are needed for the discrete-time
arrival requirement (for convenience, it is assumed that
Tmax is an integral multiple of s):

XTmax=s�1

q¼0

xarr1jq þ xarr2jq

� �
¼ 1; 8 j 2 J (4a)

T1
j � s0 þ

XTmax=s�1

q¼0

xarr1jq þ xarr2jq

� �
� q � s; 8 j 2 J (4b)

narrq ¼
X
j2J

xarr1jq þ xarr2jq

� �
; q ¼ 0; 1; :::;Tmax=s�1 (4c)

xarr1jq ; xarr2jq 2 0; 1f g; narrq 2 0; 1; 2f g; 8 j 2 J;

q ¼ 0; 1; :::;Tmax=s�1 (4d)

Constraints (4a) ensure that each patient arrives at the
clinic at one of the Tmax=s time points. Constraints (4b)
guarantee that each patient j is checked in and roomed
before being seen by his/her first provider. Constraints (4c)
determine the number of patients who arrive at each time
point. Constraints (4d) define the variables, where for prac-
tical purposes the maximum number of patients who are
permitted to arrive at any time point is limited to two.
When this bound is relaxed, we found it rare that more
than two patients are assigned the same appointment time.
As our ultimate goal is to derive appointment templates that
are near-optimal for a large number of scenarios with both

stochastic service times and patient pathways, a handful of
violations will have a negligible effect on the results.

3.4.2. Valid inequalities – lower bounds
The joint pain IPU treats two types or groups of general
patients: new and follow-up. New patients usually require
longer service times with providers than follow-ups. It is
assumed that the ratio of the two patient types is an input
parameter. One decision that the model makes is the order-
ing of the patient types. When a patient calls to schedule a
visit, it is known whether he/she is a new or follow-up
patient. Therefore, the arrival time can be set based on one
of several rules, such as “all follow-ups at the end of the
session.” Other information about the patient, such as which
providers he/she will see and their service times, is not
known when the appointment is made. That is, the patient
routing is determined after the nurse practitioner encounter
during which a diagnosis is made.

Since every patient is assumed to spend the same amount
of time for check-in and rooming, they see the nurse practi-
tioner in a first-come, first-served order. This allows us to cal-
culate a lower bound on each patient’s starting time with the
nurse practitioner. Using similar reasoning, if patient i starts
no later than patient j, and there are other patients who start
no later than patient j but no earlier than patient i, we can
also find a lower bound on the time interval between patient i
and patient j’s starting time with the nurse practitioner.

Specifically, let Aj be the set of patients of the same type
as patient j whose visit with the nurse practitioners starts no
later than patient j’s, excluding j. Let MðAj; nÞ be the sum of
the n largest service times with the nurse practitioner of the
patients who belong to set Aj. This leads to the following
proposition which provides a lower bound on the patients’
starting times with the nurse practitioner.

Proposition 2. (Separation Proposition). If patients j1 and j2
are of the same type, and patient j1’s visit with a nurse prac-
titioner begins no later than patient j2’s, then

ST1
j2�ST1

j1 �
X

i2Aj2nAj1

s1i�M Aj2 n Aj1 ; n
1�1

� � !	
n1 (5a)

where n1 is the number of type 1 providers (nurse
practitioners).

Proof. See Appendix A.2.

Proposition 2 provides a lower bound on the time inter-
val between the starting times of any two patients with a
nurse practitioner. Since the first patient always sees the
nurse practitioner at t ¼ s0, by applying Proposition 2 to the
first patient and any other patient j, we can get a lower
bound on any patient j’s starting time with a nurse practi-
tioner. Adding such constraints to model (1) greatly speeds
up the computations because they eliminate many alterna-
tive sub-optimal sequences while giving a tighter LP relax-
ation. These improvements were confirmed during testing.
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3.5. A two-step method to solve the
deterministic problem

The clinic scheduling problem depicted in Figure 2 is a
combination of an open shop and flexible flow shop prob-
lem that turns out to be extremely difficult to solve with a
commercial code such as CPLEX for more than 10 patients.
To obtain solutions, we developed a two-step method that
provides both lower and upper bounds as well as a feasible
solution to the original problem.

In Step 1, we remove a subset of the original constraints
to create a much easier problem. The relaxed solution pro-
vides a lower bound on the objective function in (1a) but is
rarely, if ever, feasible. In Step 2, we solve a second opti-
mization problem that makes use of the patient sequence
found in Step 1. In choosing the constraints to remove in
Step 1, we were guided by the speed-up observed after tenta-
tively removing a set of constraints as well as the relative
value of the lower bound obtained. For our problem, we
found that the best compromise was to remove the follow-
ing two sets of constraints:

1. Room constraints. There were three reasons for this deci-
sion. First, removing the room constraints led to only a
small decrease in the objective function value. Second,
only minimal violations of the constraints were observed,
and third, the problem became much easier to solve since
many of the binary variables could also be removed.

2. Nurse practitioner constraints. As the number of pro-
viders decreases, the problem gets easier to solve and
still provides a lower bound. The decision to omit the
nurse practitioners was made for two reasons.

i. Given that all patients must see a nurse practitioner
first, this is the only provider whose waiting time
can be taken into account after she/he is removed
from the model. In the original problem, the total
delay of patient j attributable to a type k provider
consists of two parts: (i) service time skj with the pro-
vider, and (ii) waiting time when the provider is
occupied with prior patients. If we remove the type k
provider from the problem without taking into
account one or both of these times, the likelihood of
getting a strong lower bound is not very high. The
advantage of removing the nurse practitioner rather
than any of the other providers is that we are able to
connect the starting time of a patient’s encounter
with the nurse practitioner to the patient’s arrival
time. For example, if patient j arrives at time point q
– 2, and s1j þ adm1�2s>0, then any patient who
sees the same nurse practitioner as j and arrives at
time point q would need to wait for at least s1j þ
adm1�2s minutes before seeing this nurse practi-
tioner. This calculation is myopic and therefore pro-
vides a lower bound of the true waiting time.

Let twaitj denote such a lower bound, and for con-
venience let �m ¼ maxj2Jðs1j þ adm1Þ=s. The con-
straints below are needed to determine twaitj . In each
constraint, patient j’s waiting time should be no less

than the delay caused by prior patients who see the
same nurse practitioner:

twaitj �
X
i2J

xarr1i;q�m � s1i þ adm1

 ��m � s� 1�xarr1j;q

� �
� Tmax;

8 j 2 J;m ¼ 1; :::; �m (6a)

twaitj �
X
i2J

xarr2i;q�m � s1i þ adm1

 ��m � s� 1�xarr2j;q

� �
� Tmax;

8 j 2 J;m ¼ 1; :::; �m (6b)
ii. Because there are two nurse practitioners and every

patient must be seen by one of them, the number
of binary variables and constraints needed to model
this encounter is much greater than for the other
providers. Therefore, removing the nurse practi-
tioners greatly reduces the size of an instance and
was seen to reduce runtimes by almost an order
of magnitude.

Based on the solution from Step 1, we construct a feasible
solution to the original problem in Step 2 by adding back
the room constraints and solving a modified optimization
problem that makes use of patient order. The details follow.

Two-Step Method
Step 1 (a) Preprocessing. Modify model (1) as follows:

remove all the variables that have index k¼ 1; remove the
nurse practitioner constraints, which are those in model (1)
for k¼ 1; add constraints (6) to model (1); subtract twaitj and
skj from the right-hand side of constraints (1k) to account
for the delay associated with waiting for and being treated
by a nurse practitioner after check in.

(b) Solution. Set up and solve the relaxed model which
consists of the modifications made to model (1) in part (a),
constraints (4), and constraints (5a) in Proposition 2.

(c) Output. Each patient’s appointment time at the clinic.
These values can be calculated from xarr1jq
and xarr2jq ; 8 j 2 J; q ¼ 0; 1; :::;Tmax=s�1:

Step 2 (a) Preprocessing. Order the patients based on their
arrival time in the solution found in Step 1. Each patient
has a rank order.

(b) Model modifications. Construct a new model, which
includes model (1), constraints (3), constraints (4), and con-
straints (5a) in Proposition 2. Also add the following con-
straints: if patient j’s rank order is two or more greater than
patient i’s in the solution found in Step 1, thenPTmax=s�1

q¼0 ðxarr1jq þ xarr2jq Þ � q � s �PTmax=s�1
q¼0 ðxarr1iq þ xarr2iq Þ � q � s.

Accordingly, j will arrive no earlier than patient i in the
new solution.

(c) Solution. Set up and solve the model resulting from
the modifications found in part (b).

(d) Output. Each patient’s appointment time and the
schedule template for the clinic.

4. Stochastic model

The deterministic EOSS model formulated in Section 3 can
be used to solve an instance of the daily appointment
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scheduling problem, but it falls short in accounting for the
stochastic elements in the system. Our real goal is to
develop an appointment template that is robust in the face
of probabilistic service times and patient flows. A priori
uncertainty in routing is the norm when patients are to be
seen by multiple providers in a single visit. In fact, it is the
rule rather than the exception in many clinical settings,
since the personalized plan of care is made after the patient
has been initially interviewed and examined to determine
the severity of his/her condition. Therefore, it is not possible
to accurately predict which providers he/she will need to see
during the visit.

Based on our deterministic model, we have developed a
two-stage integer stochastic programming model in which
the patient mix along with service times, provider sets and
pathways are random variables. The objective of the model
is to minimize a weighted combination of expected clinic
closing time and patient waiting time over a wide range of
scenarios. In the accompanying analysis it is assumed that
the no-show rate is zero and that all patients arrive at their
scheduled time.

4.1. Stochastic problem

In our IPU scheduling problem, the likelihood that a patient
sees a particular provider for a specific amount of time is
determined by probability distributions obtained from the
Dell Medical School Department of Surgery. For lower
extremity joint pain, new and follow-up patients are further
divided into six sub-types: (new) mild osteoarthritic, moder-
ate osteoarthritic, severe osteoarthritic, operative, follow-up
non-operative, and follow-up operative. Given their propor-
tional mix and their associated probability distributions for
provider sets and service times, it is possible to generate
scenarios using Monte Carlo sampling. Our original intent
was to generate half-day scenarios (4.5-hour clinical ses-
sions) and then try to solve the corresponding two-stage sto-
chastic program to determine the optimal appointment
template. We found, however, that as the number of scen-
arios grew it was increasingly difficult to find solutions, so
various alternatives to tackling the full problem were investi-
gated. In the simplest case, we find a template and corre-
sponding patient flow for each scenario separately by
solving the corresponding deterministic EOSS model. The
average clinic closing time and patient waiting time are then
calculated over the different scenarios to get a lower bound
on long-run clinic performance. This is called the wait-and-
see (WS) solution.

In the first stage of the two-stage model, a single appoint-
ment template is determined without knowing the patient
mix, provider sets, pathways, and service times. In the
second stage, this information is revealed for each scenario.
To formulate the problem, denote the patients’ provider sets
and service times by ~K and ~s, respectively. Assuming for the
moment that the appointment template is known, we can
then find the optimal arrival times, room occupancy times,
and provider start and end times with their patients for each
scenario. That is, we can find the optimal values of the

second stage variables, which we denote by
x̂ � fx; y; z; xarr; t; ST;T1;T2g. These values specify each
patient’s arrival time and schedule with his/her providers.
Letting narr � ðnarr0 ; narr1 ; :::; narrTmax=s

Þ be the arrivals at time
point q, the two-stage stochastic program, also known as the
recourse problem (RP), is

min
narr

E~s;~K f narr;~s; ~K

 �h i

(7a)

s:t: Constraints 1bð Þ� 1oð Þ; 3að Þ� 3eð Þ and 4að Þ� 4dð Þ
(7b)

where E~s;~K denotes the expectation with respect to the ran-
dom variables ~s and ~K , and f ðnarr;~s; ~KÞ is defined as

f narr;~s; ~K

 �

¼ min
x̂

a1 � T þ a2 �
X
j2J

T2
j � T1

j

� �

The function f ð�Þ represents the second-stage problem.
Conceptually, after the appointment template narr is fixed in
the first stage, all uncertainty is resolved and optimal sched-
ules can be determined in the second stage for each patient
in each scenario. For a fixed template, the individual scen-
ario instances can be solved separately (we solve each scen-
ario using our deterministic model presented in Section 3)
and their objective values averaged to get an approximation
of the objective function value in model (7a). This approach
is based on sample average approximation (e.g., see
Kleywegt et al. 2002).

4.2. Solving the stochastic model

When the number of scenarios is finite, the two-stage sto-
chastic program is typically approached by creating a deter-
ministic equivalent one-stage, mixed-integer program. In the
reformulation, the second-stage constraints and variables are
indexed by scenario and the expected value in model (7a) is
replaced with the average of the second-stage objective func-
tions (e.g., see Engell et al. 2004; Bard et al. 2007). However,
such an approach does not always work well because the
computational burden increases dramatically as the number
of scenarios increases. This was the situation that we faced
after enumerating only a few scenarios.

The first alternative that we investigated involved replac-
ing the random parameters with their expected values to
obtain a deterministic formulation known at the Expected
Value (EV) problem. For IPUs, however, the likelihood of a
patient seeing a particular provider follows a probability dis-
tribution, so taking the expectation of the patient’s provider
set would lead to fractional visits. To deal with this situation
we conducted a Monte Carlo simulation by sampling each
patient’s provider set to generate different scenarios. In each
scenario, we used the expected service times and expected
number of patients of each of the six types (rounded to the
nearest integer). The optimization problem for each scenario
is solved using our deterministic model in Section 3. After
finding the solution for each scenario, we average the num-
bers of patients who arrive at each time point in all scen-
arios to get the expected value solution. The EV problem
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can be stated as follows:

EV ¼ min
narr

E~K f narr; x̂;E ~s½ �; ~K

 �h i

(8a)

where the optimal objective function value is denoted by EV
and the value of the template variables is denoted by narrEV .
We are also interested in the solution of the following three
problems which are used to evaluate the quality of the EV
solution and to calculate upper and lower bounds on the
optimal solution:

RP ¼ min
narr

E~s;~K f narr; x̂;~s; ~K

 �h i

(9a)

EEV ¼ E~s;~K f narrEV ; x̂;~s; ~K

 �� 


(9b)

WS ¼ E~s;~K min
narr

f narr; x̂;~s; ~K

 �h i

(9c)

RP represents the two-stage stochastic program given by
model (7), and as mentioned, is not solvable; hence the
need for bounds. To measure the quality of the EV solution,
we fix the template in RP to narrEV and solve the resulting
second-stage problems separately. Averaging their objective
function values gives what is called the expected cost of the
EV solution, which is denoted by EEV. The EEV value is an
upper bound on RP and WS is a lower bound (see Birge
and Louveaux (2011)). Thus we have the following relation-
ships:

WS � RP � EEV

The optimality gap associated with EV is the gap between
EEV and RP, which derives from the loss of stochasticity in
the EV problem. The gap between WS and RP results from
the loss of perfect information. Neither of these gaps are
possible to obtain in our case, though, because we are not
able to compute RP for realistic instances. Therefore, we
turn to the gap between WS and EEV to evaluate the quality
of the EV solution. Since the WS and EEV problems are
solved using the two-step method, we use the gap between
the step-1 value obtained from the WS problem, and the
step-2 value obtained from the EEV problem to evaluate
performance.

5. Computational results

All models were implemented in Cþþ using IBM’s Concert
Technology library and solved with CPLEX 12.7. The experi-
ments were performed on a Linux workstation with 4
Intel(R) Core(TM) i7-4790 CPU, 8 3.60GHz processors and
16GB memory running Ubuntu 16.04. All problem instan-
ces discussed in this section were solved optimally using
CPLEX’s default setting. In constraints (1h) and (1m), the
value of � was set to 1.2.

5.1. Data and scenarios

In the analysis, we consider half-day sessions consisting of a
fixed number of patients. Arrivals are scheduled by the

models at multiples of 15-minute intervals beginning at 8:00
a.m. The total time allocated for check-in and rooming is
fixed at 8.3minutes per patient. The IPU operates with two
nurse practitioners and one each of the other provider types.
The total number of rooms is seven. Table 1 gives the
patient mix and the probability that a particular patient type
will be seen by each of the providers. The first encounter
for all patients is with a nurse practitioner and the last is
with the care planner, both with probability 1, so these pro-
viders are omitted from the table. As mentioned, the new
patients are divided into four groups and the follow-ups
into two groups. The ratio between the new and follow-up
patients is 3:1.

We model the probabilities for a certain type of patient
seeing each of the different providers as independent. This
reflects the fact that we do not know a given patient’s path
a priori. Whether a patient sees a certain provider is deter-
mined after the patient arrives at the clinic and is examined
by the nurse practitioner. Under such circumstances, it is
common to take a population-level view and use independ-
ently sampled probabilities (White et al. 2011; Lahiri and
Seidmann 2012; Dobson et al. 2013; Saghafian et al. 2014).
Service time distributions are enumerated in Table 2.

The implied pathways and probability distributions in
Tables 1 and 2 are based on estimates provided by the dir-
ector of the lower extremity joint pain IPU in the musculo-
skeletal area at the Dell Medical School (DMS) (fourth
author on this paper) and other providers from the DMS
Department of Surgery who had experience with the same
patient population at other clinics prior to the formation of
the joint pain IPU. The six patient types (pathways) identi-
fied in the two tables represent a common characterization
of patients seeking treatment for joint pain. This level of
detail allowed the clinical team to estimate the probabilities
associated with the resources required to provide care to
each type of patient. At the highest level, patients are gener-
ally classified as new or follow-up. Clinically speaking, there
are only two types of follow-up patients. Those that follow
up after surgery and have a certain type of pathway resulting
in a fairly short and predictable visit, versus a non-operative
follow-up visit, which is similar across disease severity and
somewhat longer than a postoperative visit. In rare cases,
some patients may benefit from supplementary services such
as psychiatry, social work and behavioral health. However,
having dedicated providers to cover these services could not
be justified financially so they were not included in the
design of the IPU.

In the absence of historical data, anecdotal evidence sug-
gests that the time to undergo medical procedures in an out-
patient setting can be modeled using minimum, maximum

Table 1. Patient probabilities for visits with providers.

Patient type
Patient
mix Surgeon

Physical
therapist Nutritionist

New mild osteoarthritis 0.330 0.25 0.5 0.4
New moderate osteoarthritis 0.3225 0.5 0.5 0.4
New severe osteoarthritis 0.056 25 0.9 0.7 0.4
New operative path 0.041 25 1 0.9 0.4
Follow-up non-operative path 0.1875 0.3925 0.4875 0.378
Follow-up operative path 0.0625 1 0.5 0
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and modal times (e.g., see Swisher et al. 2001). These three
parameters, solicited from the aforementioned providers,
lead directly to a triangular distribution, which we use for
service times. As an aside, when the clinic opened in the fall
of 2017, the staff was able to collect data on provider service
times and patient mix. This led to a few adjustments in the
probabilistic data in Tables 1 and 2, but for the most part,
the original estimates turned out to be highly accurate.

In our evaluation of the two-step method in Section 5.2,
parameter values and provider sets for each patient are gen-
erated independently. First, we determine which type of
patient is being considered by sampling from the patient
mix distribution in Table 1. Although the total number of
patients is fixed in each scenario, the ratio of new to follow-
ups changes from one realization to the next. After each
patient’s group is determined, we generate his/her provider
set based on the probabilities in Table 1, and service times
from the triangular distributions in Table 2. The same gen-
erated data sets are used for the EEV and WS problems.

When deriving the EV template defined in Section 5.3.1,
rather than sampling from the patient mix distribution, the
numbers of new and follow-up patients were set to their
approximate expected values. For each patient type, the pro-
vider set was generated based on the probabilities in Table 1,
while the expected service time with each provider was taken
as the weighted sum (the weight is the patient mix fraction) of
the mean service time. For example, the expected service time
of a follow-up patient with the surgeon is the weighted sum of
the mean of the bottom two triangle distributions under the
column “Surgeon” in Table 2. Lastly, our models reflect
whether a patient is new or making a follow-up appointment
at the time of booking. In practice, this is all the information
that is available to the scheduling clerk.

5.2. Two-step method

In the first set of experiments, our goal was to evaluate the
quality of the solutions obtained with the two-step method

presented in Section 3.5 for solving the deterministic model.
We began by randomly generating 200 instances (scenarios)
with 10 patients each and then applying the algorithm. The
number of patients in each instance was determined by sam-
pling from a multinomial distribution with probabilities
{0.3, 0.2, 0.1, 0.1, 0.2, 0.1}, which approximates the patient
mix in Table 1. Similarly, the provider set for each type of
patient was sampled using the probabilities in Table 1 while
the service times were sampled from the triangular distribu-
tions in Table 2. Recall that Step 1 provides a lower bound
and Step 2 provides an upper bound on the objective func-
tion in (1a). Performance was measured by the percentage
deviation from the optimum obtained by solving model (1)
as modified to represent the joint pain IPU. We only con-
sidered instances with 10 patients in this part of the analysis,
as it was not possible to reliably solve larger instances with
CPLEX. Note that after 200 instances, the output statistics
discussed below were unchanged to two decimal places,
indicating that there was no further need for additional sam-
pling. In all, 16 096 seconds were required to find the exact
optima for the 200 instances compared with 1935 seconds
when using the two-step method to find the bounds.

For each scenario, we calculated the gap between the Step
2 objective function value and the Step 1 value (GAP 2-1),
the gap between the Step 2 value and optimal value (GAP
2), and the gap between the optimal value and the Step 1
value (GAP 1). The differences were then converted to per-
centages and averaged over the 200 scenarios. The results
are summarized in Table 3.

From the table we see that the average gap between the
bounds found in Steps 1 and 2 is 3.69%, an indication of the
strength of the heuristic. Additional evidence of its strength
can be seen by examining the percent difference between the
upper bound and the optimal solution (GAP 2), which is only
0.97% on average. Moreover, the optimal solution is much
closer to the Step 2 solution than the Step 1 solutions because
GAP 2 is a third the size of GAP 1. Taken together, these
results support the use of the two-step method to derive
appointment schedules under more realistic scenarios.

To check the sensitivity of the performance of the two-
step method, we repeated the above process for cases with
seven, eight and nine patients. The results are reported in
Table 4. The optimality gap decreased slightly as the number
of patients decreased but remained stable. In our testing
with 14 patients in the remaining sections, the gap was
always less than 5%.

5.3. Finding robust templates

Our primary goal is to derive a single appointment template
whose implementation will ensure clinic durations of less

Table 2. Service time probability distributions (minutes).

Patient type Nurse practitioner Surgeon Physical therapist Nutritionist Care planner

New mild osteoarthritis Tri(15,20,30) Tri(7,10,20) Tri(10,15,25) Tri(10,15,25) Tri (5,10,20)
New moderate osteoarthritis Tri(15,20,30) Tri(7,10,20) Tri(10,15,25) Tri(10,15,25) Tri (5,10,20)
New severe osteoarthritis Tri(15,20,30) Tri(7,10,20) Tri(10,15,25) Tri(10,15,25) Tri (5,10,20)
New operative path Tri(15,20,30) Tri(7,10,20) Tri(10,15,25) Tri(10,15,25) Tri (5,10,20)
Follow-up non-operative path Tri(7,12,17) Tri(4.3,5.4,10.8) Tri(10.8,16.2,21.6) Tri(6,8,12) Tri (5,10,20)
Follow-up operative path Tri(7,12,17) Tri(3.024,4.32,8.64) Tri(6.48,8.64,12.96) 0 Tri (5,10,20)

Table 3. Optimality gap (%) for the two-step method with 10 patients.

Statistics GAP 1 GAP 2 GAP 2-1

Mean 2.73 0.97 3.69
HW1 0.39 0.21 0.49
1Half width of a 95% confidence interval.

Table 4. GAP 2-1 (%) for the two-step method with different numbers
of patients.

Number of patients 7 8 9 10

Mean 2.38 3.14 3.61 3.69
HW1 0.39 0.45 0.44 0.49
1Half width of a 95% confidence interval.
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than 4.5 hours and patient visit times not exceeding
1.5 hours, on average. The recourse problem was designed to
achieve this goal, but the computational difficulties we
encountered when trying to solve it led to our reliance on
the two-step method. The best we can do with this heuristic,
however, is to solve a deterministic version of model (1).
The approach we take to circumvent this limitation is
described below. For the remaining analysis, we work with
14 patients, which is the number that the joint pain IPU
would like to schedule each half-day session.

5.3.1. Generating EV templates
Ordinarily, only a single EV template exists, which would be
derived by replacing all random parameters in the IPU
model with their expected values and then solving problem
(7). This was not possible for our problem because the
expected number of providers who see a patient is a random
variable whose expected value is fractional. As mentioned,
Monte Carlo sampling was used to skirt this issue. The first
step was to generate a representative number of scenarios by
using the data in Table 1 to obtain the provider set for each
patient. As an integral approximation to the patient mix, we
assumed that each scenario consisted of 11 new patients and
three follow-up patients. For the former group, the number
of patients of each type was fixed at four, four, two and one.
For the latter group, the number of patients was fixed at
two and one. We then used the two-step method to find
feasible schedules and their corresponding templates narr,
where narr is a vector that specifies the number of patients
who arrive at each 15-minute time point.

To derive a single appointment template, we began by
averaging the number of patients who arrive at each time
point over all scenarios. Again we found that the output sta-
tistics became stable after 200 scenarios, so we terminated
the generation process at that point. The total time required
to solve the 200 instances was 114minutes. Figure 3 depicts
the results after averaging. The horizontal axis indicates the
time points and the vertical axis identifies the average num-
ber of patients who are scheduled to arrive at the start of
each 15-minute interval.

Rounding strategies. As expected, heights of the bars in the
figure are fractional in the figure are fractional, but to be imple-
mentable the number of patients must be zero, one or two at
each time point, as in the individual solutions. To achieve inte-
grality, a rounding strategy is necessary. The approach we take
is based on the observation that the number of patients who
arrive earlier in the session affect the statistics of patients who
arrive later. Accordingly, the procedure we adopt is to round
fractions (up or down), fix the number of patients at one point
at a time starting at zero, and sequentially moving forward in
15-minute increments until closing time is reached. At each
time point t, the number of patients who have arrived previ-
ously is fixed by rounding. We then round the fractional num-
ber at t and repeat the procedure at tþ 1.

In particular, after fixing the number of patients who
arrive at t, we re-solve the reduced EV problem with the
remaining patients, average the results from the newly
derived 200 templates, and then round the value at tþ 1.

For example, at t¼ 0, we see in Figure 3 that the average
number of patients is very close to two so we fix the num-
ber of patients who are scheduled to arrive at t¼ 0 to two;
that is, we set narr0 ¼ 2. We then re-solve the EV problem
and take the average of the 200 templates just derived. The
corresponding figure is almost identical to Figure 3, so with
narr0 ¼ 2, we fix narr1 to be either one or two, depending on
the rounding strategy (to follow). After fixing narr1 , we re-
solve the EV problem and move on to narr2 , and so on.

The number of possible templates increases exponentially
with the number of time points for arbitrary rounding. We
considered two strategies to generate two templates. In the
first strategy we always round up at t unless the fraction is
zero or within a small range of an integer value. Based on
empirical testing, we chose the cutoff to be 0.2. If the aver-
age number of patients is less than 0.2, we round it to zero;
if it is between 0.2 and 1.2, we round it to one; if it exceeds
1.2 but is less than two, we round it to two. Without a cut-
off we found that the resulting schedules were too aggres-
sive, in that they emphasized earlier appointment times,
which led to significantly longer patient waiting times.

In the second strategy, we always round down at each
time point, unless the fraction is within the cutoff range.
Based on empirical testing, we again chose the cutoff to be
0.2. If the average number of patients is less than 0.8, we
round it to zero; if it is between 0.8 and 1.8, we round it to
one; if it exceeds 1.8 but is less than two, we round it
to two.

The template produced by the first strategy is more
aggressive than the second, but rounding down does not
always avoid long waits and extended clinic hours. Figure 4
shows the less aggressive EV template (Figure 4(a)) and the
more aggressive EV template (Figure 4(b)). Each figure indi-
cates the number of patients scheduled to arrive at each
time point. Note that during construction, the last patient in
the less aggressive template actually arrives at t¼ 3.25. For
practical reasons, though, we modified the template slightly
to avoid a gap at t¼ 3.0 and to conform with what is called
the 2BEG schedule in the literature (Cayirli and Veral 2003).
Testing showed negligible differences between results pro-
duced by the less aggressive template and 2BEG.

Figure 3. Average number of patients scheduled to arrive at each time point.

14 P. ZHANG ET AL.



Comparison of strategies. To visualize the difference
between the more aggressive and less aggressive templates,
we generated the cumulative number of patients who arrive
at the clinic up to each time point t. Of course, the total
number of arrivals for the less aggressive template is no
greater than that for the more aggressive template at any t.
Figure 5 plots the results as a function of time for both tem-
plates. Any other template that is constructed from a com-
bination of the less aggressive and more aggressive strategies
would be bounded by these two curves. Comparing the
cumulative number of patients for the two schedules at any
time t shows that the difference is small. In fact, the two
plots in Figure 5 indicate that the difference at any time t is
either zero or one.

Additional templates. In addition to the two templates
derived above, we also evaluated a third from the literature
and a fourth based on a variation of the more aggressive
template in Figure 4(b). Each of the four templates is for-
mally defined below and consists of the number of patients
who arrive between t¼ 0 and t¼ 3 (i.e., between 8 am and
11 am), followed by its name and description.

1) 2-1-1-1-1-1-1-1-1-1-1-1-1: 2BEG. Assigns two patients
at the beginning of the session and then one at each
point thereafter. It was first proposed and studied in
Bailey (1952), and turns out to be the less aggressive
EV template that we derived.

2) 2-0-2-0-2-0-2-0-2-0-2-0-2: VBFI-1. VBFI stands for
‘variable block/fixed interval,’ which means that a dif-
ferent number of patients can be assigned at each
time point as long as they are separated by the same
fixed interval (see Wijewickrama (2006)). Here, two
patients are scheduled to arrive every half hour. This
is less aggressive than 2BEG, which can be trans-
formed into VBFI-1 by moving one patient at every
other time point to the next time point starting at
t¼ 0.25. In our experience, VBFI-1 is commonly used
in practice.

3) 2-2-0-2-0-2-1-1-1-1-1-1-0: EV-RU. This is the more
aggressive template shown in Figure 4(b), where RU
stands for “round up.”

4) 2-2-0-2-0-2-2-0-2-0-2-0-0: VBFI-2. This template is
based on EV-RU, but is more aggressive. If we move
the patients at t¼ 1.75, 2.25, and 2.75 in the EV-RU
template one interval earlier, we can get VBFI-2.
Including this template in the study will tell us
whether a significant improvement results by making
the EV-RU template more aggressive.

5.3.2. Results for candidate templates
To compare the quality of the solutions resulting from the
use of each of the four templates, we randomly generated
additional scenarios by sampling from the distributions in
Tables 1 and 2 to obtain provider sets and service times,
respectively, for each patient. The output statistics became
stable after 800 scenarios so we stopped at that point. The
number of new and follow-up patients were also sampled,
although the total number was fixed at 14. To gauge per-
formance, we averaged the objective function values and
other metrics over all 800 scenarios for each template. The
results are highlighted in Tables 5 and 6 along with the
results for the WS problem using the same data. The col-
umns in the tables are arranged from the least aggressive to
the most aggressive template. For each template, computa-
tion times for all 800 scenarios ranged from a total of 8
to 19 hours.

Figure 4. Templates derived from the EV solution: (a) less aggressive EV template and (b) more aggressive EV template.

Figure 5. Cumulative number of patient arrivals over a half-day session.
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The first two rows in Table 5 report the Step 1 and Step
2 closing times. The remaining rows give the Step 2 flow
time statistics for all patients, and then for new patients and
follow-ups separately. The last row reports the fraction of
cases in which the closing time exceeded 4.5 hours. Table 6
shows provider and room utilizations. As the model includes
constraints (1m), which restrict the total time a patient can
spend in the clinic to a given maximum, a handful of
instances turned out to be infeasible. For the EV-RU tem-
plate, 6 out of 800 were infeasible and for the VBFI-2 tem-
plate, 10 out of 800 were infeasible.

Theoretically, the Step 2 closing time obtained from
VBFI-2 should be no later than the closing time provided by
EV-RU for two reasons: (i) VBFI-2 is more aggressive than
EV-RU; and (ii) more infeasible cases are discarded when
VBFI-2 is used, which should bring down the average clos-
ing time. This follows because late clinic closing times are a
result of long patient waiting times, which produce infeas-
ible instances. Nevertheless, the two templates have virtually
identical Step 2 closing times, so neither reason was seen to
have a noticeable impact on clinic performance. This sug-
gests that the EV-RU template is sufficiently aggressive and
that moving to the more aggressive VBFI-2 template will
not provide any benefit. This also suggests that there is no
bias in the results after discarding the infeasible cases.

Clinic closing time. The first observation from the statis-
tics in Table 5 is that the difference between the Step 1 and
Step 2 closing times is less than 2% for all four templates.
Although the Step 2 closing time in each case is not neces-
sarily optimal, given that the two-step method was used for
the computations, the size of the gap indicates that it should
be a very good approximation. One way to evaluate the four

sets of results is to compare the mean and half width of a
95% confidence interval of clinic closing time of the Step 2
solution. For example, the Step 2 results imply that the
2BEG 95% confidence interval extends from 4.338 to 4.382,
whereas the range of the average clinic closing time for EV-
RU is from 4.266 to 4.312. As the two confidence intervals
do not overlap, we can conclude that the average closing
time obtained from the EV-RU template is significantly
smaller than the value associated with the 2BEG template.

Another way to compare the closing time for different
templates is to check the Step 1 and Step 2 solutions. For
example, the lower bound on closing time for 2BEG
obtained at Step 1 is 4.343, which is greater than the Step 2
closing time of EV-RU. As such, the true value of closing

Table 5. Results for different appointment templates.

WS VBFI-1 2BEG EV-RU VBFI-2

Metrics Mean1 HW2 Mean HW Mean HW Mean HW Mean HW

Step 1 closing time 4.097 0.028 4.438 0.021 4.343 0.022 4.226 0.023 4.205 0.024
Step 2 closing time 4.295 0.024 4.444 0.020 4.360 0.022 4.289 0.023 4.289 0.023
Feasible rate 800/800 800/800 800/800 794/800 790/800
Waiting time 0.296 0.006 0.281 0.008 0.300 0.009 0.371 0.009 0.414 0.009
Service time 1.080 0.005 1.080 0.005 1.080 0.005 1.079 0.005 1.079 0.005
Time in clinic 1.376 0.010 1.361 0.012 1.381 0.012 1.450 0.013 1.493 0.013
Waiting time (new) 0.310 0.007 0.284 0.009 0.307 0.009 0.381 0.010 0.424 0.010
Service time (new) 1.162 0.005 1.162 0.005 1.162 0.005 1.161 0.006 1.161 0.006
Time in clinic (new) 1.472 0.011 1.446 0.012 1.469 0.013 1.542 0.013 1.585 0.013
Waiting time (follow-up) 0.242 0.010 0.258 0.010 0.268 0.011 0.319 0.012 0.360 0.012
Service time (follow-up) 0.779 0.007 0.779 0.007 0.779 0.007 0.778 0.007 0.779 0.007
Time in clinic (follow-up) 1.020 0.013 1.037 0.013 1.047 0.014 1.097 0.014 1.138 0.014
Fraction above closing time NA NA 0.351 0.033 0.263 0.031 0.217 0.029 0.219 0.029
1All times in hours; the statistics are all Step 2 results except for the Step 1 closing time.
2Half width of a 95% confidence interval.

Table 6. Resource utilization.

WS VBFI-1 2BEG EV-RU VBFI-2

Metrics Mean HW Mean HW Mean HW Mean HW Mean HW

Nurse practitioner 1 0.731 0.004 0.704 0.004 0.724 0.004 0.732 0.004 0.726 0.004
Nurse practitioner 2 0.712 0.004 0.688 0.004 0.696 0.005 0.712 0.004 0.717 0.004
Surgeon 0.485 0.009 0.468 0.008 0.478 0.008 0.486 0.009 0.486 0.009
Physical therapist 0.686 0.010 0.663 0.010 0.676 0.010 0.684 0.010 0.683 0.010
Nutritionist 0.444 0.011 0.429 0.010 0.437 0.011 0.445 0.011 0.445 0.011
Care planner 0.686 0.005 0.662 0.004 0.675 0.004 0.687 0.005 0.687 0.005
Room 0.549 0.003 0.541 0.003 0.548 0.003 0.569 0.003 0.575 0.003

Figure 6. Comparison of four arrival templates.
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time for 2BEG should also be greater than the true value of
closing time for EV-RU. By implication, using the EV-RU
template should yield lower clinic closing times than the
2BEG template. For the WS problem, its optimal clinic clos-
ing time should be no greater than the closing time obtained
from any template. As can be seen in Table 5, however, the
average WS Step 2 closing time is 4.295, which is greater
than 4.289, the average closing time obtained from the EV-
RU and VBFI-2 templates. This result is possible because
the two-step method only provides feasible solutions. As it
turns out, many of the WS solutions are suboptimal.

A second observation about the statistics in Table 5 is
that as the templates get more aggressive, the clinic closing
times decrease; see Figure 6. This follows because patients
generally arrive earlier when the more aggressive templates
are used, and are seen earlier by their providers. Hence,
they are more likely to finish their visit sooner. As the same
800 scenarios were used in all the computations, the service
times are the same across all templates, so the comparative
closing time results should not be affected by those values.
The statistics in Table 5 confirm that the average service
time for a visit is nearly identical for all templates, as well as
for the WS problem.

Waiting times and time in clinic. The average waiting
time and average total time in the clinic increase as the tem-
plate becomes more aggressive. Again, more patients arriv-
ing earlier makes it more likely that they will face longer
queues in front of their providers. This is true for all
patients taken as a whole, for new patients, as well as for
follow-ups. For example, the waiting time increases from
0.281 to 0.3 to 0.371 to 0.414 hours as the template becomes
more aggressive. As might be expected, the average waiting
time for the WS problem is relatively small, even though its
average closing time is also small. This follows because a
separate template is derived for each scenario allowing
patient arrivals to better match provider availability.

As the appointment template becomes more aggressive,
the waiting time and closing time move in opposite direc-
tions, as can be seen in Figure 6. Based on their relative
importance, the clinic director can choose the template that
achieves the best balance. For example, if preference is given
to the closing time, then the EV-RU template may be a

good candidate because its closing time is 4.289, which is
measurably less than the corresponding value of 4.36 for
2BEG and 4.444 for VBFI-1, a 1.6% (4.3minutes) and 3.5%
(9.3minutes) reduction, respectively. Moreover, patient wait-
ing times resulting from the EV-RU template increase by
4.3minutes and 5.4minutes over 2BEG and VBFI-1,
respectively.

The EV-RU template appears to be a good compromise
with respect to the primary metrics. If we make it more
aggressive by transforming it into the VBFI-2 template, the
clinic closing time remains about the same, but the patient
waiting times increase significantly. Nevertheless, if the wait-
ing time is relatively more important than the closing time,
then the 2BEG template may be a good choice, as its average
waiting time of 0.3 hours is somewhat less than the corre-
sponding values of 0.371 for the EV-RU and 0.414 for
VBFI-2 templates. In practice, it is not desirable to choose a
template less aggressive than 2BEG such as VBFI-1. The
reduction in waiting time provided by the latter is only
1.14minutes on average, whereas the average jump in clos-
ing time is 5.04minutes.

Fraction above target closing time. From Table 5 we see
that the fraction of scenarios in which the clinic closing
time exceeds the target of 4.5 hours decreases for the first
three templates as they get more aggressive. For VBFI-1 the
percentage is 35.1, whereas for EV-RU the percentage drops
to 21.7. There is almost no difference between EV-RU and
VBFI-2, which gives further evidence that VBFI-2 does not
improve clinic performance even though it is more aggres-
sive than EV-RU.

Utilization. Table 6 reports the utilization for the six indi-
vidual providers and the seven rooms. Although there are
some statistically significant differences between the tem-
plates for each provider type, they are negligible in practice.
The contrast in room utilization is a bit sharper, but still
negligible. Note that the values in the table are based on the
time the first patient arrives and the last patient leaves. At
first glance, the statistics may be somewhat misleading, as it
takes over an hour for the clinic to fill up and roughly the
same amount of time for it to empty out. While waiting
times average up to 25minutes, for example, room utiliza-
tion is less than 60% on average. This supposed

Figure 7. Two templates for the case with three nurse practitioners: (a) VBFI-3: less aggressive EV template and (b) VBFI-4: more aggressive EV template.
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contradiction, can be explained by the transient effects at
the beginning and end of the session.

5.3.3. Different resource levels
To determine the potential value of increasing or decreasing
resource levels, we investigated two possibilities. In particu-
lar, nurse practitioners and rooms are two resources that
afford some leeway in clinic design. Preliminary testing sug-
gested that decreasing or increasing the number of rooms
by one barely affected system performance, whereas increas-
ing the number of nurse practitioners by one had a notice-
able impact. Consequently, in this section we only present
results for three nurse practitioners.

In the analysis, we followed the same procedure outlined
in Section 5.3.1 using the same data for the patient mix and
service time distributions. The two templates shown in
Figure 7 parallel those in Figure 4. The VBFI-3 template is
the less aggressive of the two and VBFI-4 is the more
aggressive. Our previous results for these templates still
hold. For example, the VBFI-3 template provides better out-
comes if the patient waiting time has more weight than the
clinic closing time, and the VBFI-4 template is better if
clinic closing time is the more important metric.

It is more interesting, though, to compare the system with
two and three nurse practitioners. The statistical results for these
new templates are highlighted in Tables 7 and 8. A comparison
with the statistics in Tables 5 and 7 indicates that adding one
nurse practitioner significantly reduces both the clinic closing
time and the patient waiting time. For the more aggressive tem-
plates, for example, the clinic closing time decreases from 4.289
to 4.005 hours (6.6%), and the patient waiting time decreases
from 0.371 to 0.351hours (5.4%). Nevertheless, whether the
financial investment required to achieve this performance boost
can be justified, is still an open question.

With respect to resource utilization, the nurse practi-
tioners are the bottleneck when two are present because
they have the highest utilization among all providers. When
a third one is added, the bottleneck switches to the physical
therapist and the care planner whose utilizations are now
over 70%. In light of these statistics, adding a fourth nurse
practitioner cannot be justified.

5.3.4. Appointment rules
For the joint pain IPU, follow-up patients represent roughly
25% of the flow. In several recent studies, it has been shown
that ordering the patients in the schedule by type can
improve clinic performance (e.g., see Bosch and Dietz 2000;
White et al. 2011). In this section, we propose several rules
that derive from our observations of arrival patterns associ-
ated with each template for the original case with two nurse
practitioners. Figure 8 contains four graphs that plot the
average number of patients in each of the two groups who
arrive at the beginning of each 15-minute interval. The
graphs were constructed using the same data set that pro-
vided the computational results in Table 5. In this part of
the analysis, our objective is to gain insight into how the

model chooses appointment slots for new compared with
follow-up patients under the various templates.

Since the ratio of follow-up to new patients is 3:11, statis-
tically, the expected number of follow-ups at each time point
is the total number of patients multiplied by 3/14. By com-
paring the average number of follow-ups at each time point
with the expected number, we can find the time slots when
they have a high chance of being scheduled to arrive. For
example, the expected number of follow-up patients at t¼ 0
for EV-RU is 2 � 3=14 ¼ 3=7. In our experiments, we found
that the average number of follow-ups that arrive at t¼ 0
for EV-RU is around 0.6, which is greater than 3/7.
Therefore, we say the follow-up patient has a higher chance
of being scheduled to arrive at t¼ 0 for EV-RU than might
be expected. Similar analysis can be done for the other time
points and templates.

The following patterns appear in the graphs in Figure 8.
Pattern 1: A follow-up patient has a high chance of

arriving at the beginning of the session.
There are explanations for this pattern: (i) follow-up

patients usually have shorter service times than new patients.
Starting with one new patient and one follow-up will gener-
ally result in the latter finishing the nurse practitioner visit
sooner and then moving on to her next provider. Thus, the
next provider will be engaged sooner than if both patients at
t¼ 0 were from the same group. Moreover, when the new
patient finishes his/her visit with the nurse practitioner, if
he/she is required to see the same provider as the follow-up,
then his wait will likely be shorter; (ii) the difference in
expected service times between the first two patients creates

Table 7. Results for different appointment templates.

VBFI-3 VBFI-4

Metrics Mean 1 HW2 Mean HW

Step 1 closing time 4.147 0.023 3.990 0.026
Step 2 closing time 4.149 0.023 4.005 0.025
Feasible rate 800/800 800/800
Waiting time 0.291 0.009 0.351 0.010
Service time 1.080 0.005 1.080 0.005
Time in clinic 1.371 0.013 1.432 0.014
Waiting time (new) 0.307 0.010 0.375 0.011
Service time (new) 1.162 0.005 1.162 0.005
Time in clinic (new) 1.469 0.014 1.536 0.015
Waiting time (follow-up) 0.216 0.012 0.249 0.014
Service time (follow-up) 0.779 0.007 0.779 0.007
Time in clinic (follow-up) 0.995 0.014 1.027 0.016
Fraction above closing time 0.134 0.024 0.086 0.020
1All times in hours; the statistics are all Step 2 results except for the Step 1
closing time.

2Half width of a 95% confidence interval.

Table 8. Resource utilization.

VBFI-3 VBFI-4

Metrics Mean HW Mean HW

Nurse practitioner 1 0.570 0.005 0.582 0.005
Nurse practitioner 2 0.508 0.005 0.528 0.005
Nurse practitioner 3 0.416 0.005 0.440 0.005
Surgeon 0.502 0.009 0.521 0.009
Physical therapist 0.709 0.010 0.734 0.010
Nutritionist 0.460 0.011 0.477 0.012
Care planner 0.710 0.005 0.736 0.005
Room 0.578 0.003 0.620 0.003

18 P. ZHANG ET AL.



a staggered flow with respect to downstream providers. This
tends to reduce congestion as well as the clinic closing time.

Rule 1: Schedule both a follow-up patient and a new
patient at t¼ 0.

Pattern 2: When there are three or more patients sched-
uled at two successive time points, one of them is a follow-
up patient.

At most time points, only a single patient is scheduled
to arrive. At some time points in some templates, though,
the patient flow can be high. In template EV-RU, for
example, the total number of new and follow-up patients
who arrive at successive time points t¼ 1.25 and t¼ 1.5 is
three; for VBFI-2, the total number who arrive at t¼ 1.25
and t¼ 1.5 is four. In such cases, congestion is likely lead-
ing to long queues in front of the providers. By schedul-
ing a follow-up patient to arrive at those time points with
high inflow, the likelihood of congestion will be reduced
because follow-ups typically spend less time
with providers.

The second reason to schedule a follow-up patient to
arrive at time points where the patient inflow is more than
two is that all rooms are likely to be occupied. Again, fol-
low-up patients usually spend less time with providers, and
so will spend less time in the clinic. This will help limit
queuing for rooms.

Rule 2: Embedded in the statement of Pattern 2.

Pattern 3: A follow-up patient has a high chance of
arriving at the end of the session.

Pattern 3 appears in the results for all four templates.
This can be explained as follows. Assume that there are
13 patients in the system and queues exist for all pro-
viders other than the two nurse practitioners. Consider
the extreme case where the 14th arrival is a new patient
who is to be seen by all five providers. In this scenario,
it is likely that the care planner has already finished his/
her consultation with the first 13 patients before the 14th
patient finishes with his/her fourth provider. The idle
time between the 13th and 14th patients has the effect of
delaying the clinic closing time. If a follow-up patient is
the last to arrive, however, it is less likely that the care
planner will have finished consulting with the previous 13
patients, as service times for follow-up patients are less
than for new patients.

Rule 3: The last appointment should be a follow-
up patient.

To check the robustness of the above patterns, an add-
itional set of experiments was conducted to determine
whether they still hold for the case with three nurse practi-
tioners. The results are depicted in Figure 9. Indeed,
Patterns 1 and 3 are still present in Figure 9, but Pattern 2
has disappeared. The absence of Pattern 2 is a consequence
of increased capacity due to the additional nurse

Figure 8. Average number of new and follow-up patients for different templates for the case with two nurse practitioners: (a) 2BEG; (b) EV-RU; (c) VBFI-1; and (d)
VBFI-2.
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practitioner. Therefore, even when three patients are sched-
uled to arrive at two successive time points, there will be lit-
tle if any queueing in front of any of the nurse practitioners.
Hence, there is no need to schedule a follow-up patient at
either time point to improve flow.

Of course, it may not be possible in practice to fully adhere
to these rules due to requests for specific appointment times,
provider availability, or the random nature of the patient mix.
However, they do provide some level of insight and guidance
for improving clinic efficiency. In our experience, outpatient
scheduling is typically done on a first-come, first-served basis
without taking into account patient type.

6. Summary and conclusions

The complexity of patient flow in multi-provider clinics
such as IPUs underscores the need for a considered
approach to appointment scheduling to maximize the use of
available resources while ensuring high levels of customer
satisfaction. In this article, we first proposed a new model
for the extended open shop problem, and then tailored it to
an IPU in which multiple patient and provider types have to
be coordinated over the day. For the deterministic version
of the problem, we developed a two-step method that pro-
vides solutions for 10 patients within 4% of optimality on
average. These results were derived by analyzing a wide-
range of scenarios reflecting operations of the joint pain
IPU at the DMS. A two-stage integer stochastic optimization
model was then presented that more realistically represents
actual patient-provider interactions. The two-step method
was again used to solve the WS problem and several ver-
sions of the EV problem. All instances contained 14
patients. The average optimality gap was less than 5% for
the WS problem and less than 2% for the EV variants. Our
ultimate goal has been to determine an appointment tem-
plate that can be used to schedule new and follow-up
patients over half-day sessions.

The results from our experimental design indicated that
the templates derived from the proposed methodology pro-
vide good performance with respect to minimizing a com-
bination of clinic closing time and patient waiting time. The

relatively less aggressive templates (i) VBFI-1 (variable
block/fixed interval), which allows a different number of
patients to be assigned at each time point as long as they
are separated by the same fixed interval, and (ii) 2BEG,
where two patients are scheduled at the beginning of the
session and then a single patient at fixed intervals thereafter,
are preferable if patient waiting time is the clinic’s primary
metric. The more aggressive template EV-RU (expected
value-rounded up) is more effective when the clinic closing
time is of primary importance. We also observed arrival pat-
terns by patient type for each template, and proposed several
scheduling rules based on the insights gained. For example,
one follow-up and one new patient should be scheduled to
arrive at the beginning of the day, and one follow-up at the
end. In general, similar patterns were observed in two of the
three cases when we increased the number of nurse practi-
tioners from two to three. Collectively, these results have
provided the foundation for designing the DMS joint pain
IPU schedule.

One limitation of our model is that it does not account
for the stochasticity of the arrival process. When patients
depart from their scheduled appointment times by arriv-
ing early or late, the result is more uncertainty, which can
lead to increased system congestion, longer queues and
sojourn times, and later closing times. The greater the
uncertainty, the greater the disruption to the planned
schedule. A second limitation of our work is that we did
not consider patient no shows. Due to the need to coord-
inate multiple providers and patient types in an IPU, any
disruptions in the flow can create measurable inefficien-
cies in clinic operations. When we began our study, we
did not have the necessary data to postulate no-show
probabilities for any of the six patient types, as we were
designing a new clinic. Rather than guessing we decided
to assume that all patients arrive for their appointment on
time. This allowed us to design templates for the ideal
case. Further investigation and data collection are needed
to determine the most effective way of dealing with no
shows. Existing approaches typically resort to overbooking
or shortening appointment slots to reduce the negative
consequences of absent patients. However, there is no

Figure 9. Average number of new and follow-up patients for different templates for three nurse practitioners: (a) VBFI-3 and (b) VBFI-4.
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standard way of implementing either of these ideas that
reliably minimizes the disruption to the system.
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Appendices

A. Proof of Proposition 1 and Proposition 2

A.1. Proof for Proposition 1
We first show the validity of constraints (2a) when n¼ 1. Suppose that
patient j’s position in provider k’s schedule is mj þ 1. Then xkj;mjþ1 ¼ 1
and STk

j ¼ tkmjþ1, and by implication, xkj;mþ1 ¼ 0 for
m ¼ 0; 1; :::;mj�1;mj þ 1; :::;mk�1. Three cases are possible for the
constraints (2a).

(1) m ¼ 0; 1; :::;mj�1. Here, xkj;mþ1 ¼ 0 so the first summation on
the Right-Hand Side (RHS) of constraints (2a) becomes zero and the
second becomes Tmax�LTk

mk�mjþm. As a consequence, constraints (2a)
reduce to

tkmjþ1 ¼ STk
j � tkmþ1 þ Tmax�LTk

mk�mjþm

Note that there are mj�m patient encounters for provider k
between tkmþ1 and tkmjþ1, and that the remaining mk�ðmj�mÞ encoun-
ters start during the time period ðtkmþ1�0Þ þ ðTmax�tkmjþ1Þ. By defin-
ition, LTk

mk�mjþm equals the sum of the mk�mj þm smallest service
times of provider k’s patients, which means that it is a lower bound on
the total time for any combination of mk�ðmj�mÞ encounters.
Accordingly, LTk

mk�mjþm � ðtkmþ1�0Þ þ ðTmax�tkmjþ1Þ, which validates
the above inequality.

(2) m ¼ mj. Here, xkj;mþ1 ¼ 1 so both the first and second summa-
tion on the RHS of constraints (2a) become zero. As a consequence,
constraints (2a) reduces to the following inequality given that
tkmjþ1 ¼ tkmþ1:

tkmjþ1 ¼ STk
j � tkmþ1

(3) m ¼ mj þ 1; :::;mk�1. Here, xkj;mþ1 ¼ 0 so the first summation
on the RHS of constraints (2a) becomes LTk

m�mj
and the second

becomes 0. Thus, constraints (2a) reduce to the following:

tkmjþ1 ¼ STk
j � tkmþ1�LTk

m�mj

For provider k, there are m�mj patient encounters starting between
tkmjþ1 and tkmþ1. Again by definition, LTk

m�mj
equals the sum of the

m�mj smallest service times of provider k’s patients and is a lower
bound on the total time for any m�mj encounters. Therefore, we have
LTk

m�mj
� tkmþ1�tkmjþ1, which validates the above inequality.

Next we prove that constraints (2a) are actually stronger than their
counterparts in constraints (1i). For constraints (2a) and any value of
m between 0 and mk�1, we have:

STk
j � tkmþ1 þ

X
m0�m�1

�LTk
m�m0

� �
� xkj;m0þ1

þ
X

m0�mþ1

Tmax � LTk
mk�m0þm

� �
� xkj;m0þ1 (A1a)

� tkmþ1 þ
X

m0�m�1

Tmax � xkj;m0þ1 þ
X

m0�mþ1

Tmax � xkj;m0þ1 (A1b)

¼ tkm�nkþ1 þ
X
m0 6¼m

xkj;m�nkþ1

� �
� Tmax (A1c)

¼ tkm�nkþ1 þ 1�xkj;m�nkþ1

� �
� Tmax;

m ¼ 0; :::;mk�1; nk ¼ 1; j 2 J; 8 k 2 K jð Þ
(A1d)

The proofs for the remaining inequalities are identical. w
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A.2. Proof of Proposition 2
We only provide a proof for the case in which there are two nurse
practitioners. The arguments for the general case are similar. For the
case with n1 ¼ 2 nurse practitioners, we need to show that if patient j1
starts no later than patient j2, then
ST1

j2�ST1
j1 � ðPi2Aj2 nAj1

s1i�maxi2Aj2 nAj1
s1i Þ=2.

Suppose patients i1, i2, :::; im 2 Aj2 n ðAj1 [ fj1gÞ. All patients whose
visit with a nurse practitioner is no earlier than ST1

j1 and no later than
ST1

j2 are j1; i1; i2; :::; im; j2. Of these patients, there is at most one whose
encounter with a nurse practitioner ends no earlier than ST1

j2 besides
patient j2. In other words, all patients j1; i1; i2;:::; im start no earlier
than STj11

, and at most one them finishes no earlier than ST1
j2 . Suppose

that patient i	, finishes no earlier than ST1
j2 . Then,

2 � ST1
j2�ST1

j1

� �
� s1j1 þ s1i1 þ s1i2 þ :::þ s1im�s1i	

� s1j1 þ s1i1 þ s1i2 þ :::þ s1im�max s1j1 ; s
1
i1 ; s

1
i2 ; :::; s

1
im

n o
or

ST1
j2�ST1

j1 �
X

i2Aj2 nAj1

s1i� max
i2Aj2 nAj1

s1i

 !	
2

w

B. Room constraints

Additional decision variables
gij 1 if T1

i � T1
j , which means patient i is placed in a room no

later than patient j is placed in a room (the rooms for i and j
can be different), 0 otherwise

g0ij 1 if T2
i � T1

j , which means patient i finishes using a room no
later than patient j starts to use a room (the rooms for i and j
can be different), 0 otherwise

fij 1 if patients i and j use the same room, and patient j follows
(not necessarily immediately) patient i, 0 otherwise

drj 1 if patient j uses room r, 0 otherwise

B.1. Entering-checking method
This method ensures that there is a room available for patient j when ser-
vice starts with his/her first provider. For any other patient i who has pre-
viously entered the clinic, we already know his/her starting time T1

i and
ending time T2

i , so we already know the values of gij and g0ij. This infor-
mation allows us to determine the number of occupied rooms when the
patient j sees his first provider. To ensure that a room is available, this
number must be less than the total number of rooms, R.

Proposition B.1. A necessary and sufficient condition that arriving
patient j can be placed in a room is that

X
i6¼j;i2J

gij � g0ij
� �

� R�1; 8j 2 J:

Proof. For any patient j whose visit starts with his first provider at
time T1

j , we need to show that the above inequality is satisfied if a
room is available. That is, we need to determine how many of the R
rooms are occupied. Now, for any other patient i, the three cases
shown in Figure A1 need to be considered:

1. T1
i <T1

j ;T
2
i � T1

j . In this case, we have gij ¼ 1 and g0ij ¼ 1, so the
room used by patient i is available for patient j.

2. T1
i � T1

j ;T
2
i >T1

j . In this case, we have gij ¼ 1 and g0ij ¼ 0, indicat-
ing that patient i is still in his room so it is not available for
patient j.

3. T1
i >T1

j ;T
2
i >T1

j . In this case, we have gij ¼ 0 and g0ij ¼ 0, implying
that patient i has not yet been placed in a room, so whichever
room he/she is eventually assigned is immaterial to a room being
available for patient j. Of course, the time in clinic for patients i
and j may overlap, which implies that they cannot use the same
room. This will be ensured when a check is made for patient i to
determine if a room is available, but it is not a concern when
patient j is being assigned a room.

From these cases, we see that when patient j’s encounter with his/her
first provider begins, if gij�g0ij ¼ 1, then patient i is using a room; if
gij�g0ij ¼ 0, then patient i is not using a room. Accordingly, when patient j
enters the clinic at time T1

j , the total number of rooms that are being used
is
P

i6¼j;i2Jðgij � g0ijÞ. If patient j can be placed in a room, then the total
number of rooms that are being used must be no more than R – 1. In con-
trast, if the total number of rooms that are being used is R, then patient j
cannot be placed in a room. Therefore,

P
i6¼j;i2Jðgij � g0ijÞ � R�1 is a

necessary and sufficient condition that a room is available for patient j. w

Based on Proposition B.1, we have the following constraints for the
room requirement.

T1
i � T1

j �gijTmax; 8 i 6¼ j 2 J (A2a)

T1
j � T1

i � 1�gij

 � � Tmax; 8 i 6¼ j 2 J (A2b)

T2
i � T1

j �g0ijTmax; 8 i 6¼ j 2 J (A2c)

T1
j � T2

i � 1�g0ij
� �

� Tmax; 8 i 6¼ j 2 J (A2d)

X
i6¼j;i2J

gij � g0ij
� �

� R�1; 8 j 2 J (A2e)

gij þ gji � 1; 8 i 6¼ j 2 J (A2f)

gij � g0ij; 8 i 6¼ j 2 J (A2g)

Xmk

m¼1

m � xkjm �
Xmk

m¼1

m � xkim þ 1�mk � 1�g0ij
� �

;8 i; j 2 J kð Þ;

8 k 2 k : nk ¼ 1f g (A2h)

gij; g
0
ij 2 0; 1f g;8 i; j 2 J (A2i)

Constraints (A2a) and (A2b) ensure that gij ¼ 1 when patient i is
placed in a room no later than patient j, and 0 otherwise. Constraints
(A2c) and (A2d) ensure g0ij ¼ 1 if patient i finishes using his/her room
before patient j is placed in a room, and 0 otherwise. Constraints
(A2e) guarantee that the total number of rooms being used when

Figure A1. An example for entering-checking method.
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patient j is placed in a room is no greater than R – 1. Constraints
(A2f) specify that either patient i starts no later than j, or patient j
starts no later than i. This is needed for the case in which patients i
and j are placed in different rooms at the same time. Without (A2f),
gij, g0ij, gji, and g0ji will all be zero when rooming occurs simultaneously
for the two patients.

Constraints (A2g) are useful cuts which impose the restriction that if
patient i finishes earlier than patient j starts, then patient i must also start
earlier than patient j. Constraints (A2h) are also useful cuts, which state
that if patient i finishes earlier than patient j starts, then for any provider
who is the only provider of his/her type, patient i’s position index should
be smaller than patient j’s position index. The difference must be at least
one. Constraints (A2i) define the variables as binary.

B.2. Not-immediate-successor method
We begin by assigning each patient to a room. For any two patients
who are assigned to a same room, we use binary variables to ensure
that they do not overlap in time. That is, if two patients are
assigned to the same room, then the starting time of the successor
(not necessarily immediate successor) can be no earlier than the
ending time of all his predecessors:

XR
r¼1

drj ¼ 1;8 j 2 J (A3a)

fij þ fji � dri þ drj�1; 8 i 6¼ j 2 J; r ¼ 1; :::;R (A3b)

T1
j � T2

i � 1�fij

 � � Tmax;8 i 6¼ j 2 J (A3c)

Xmk

m¼1

m �xkjm�
Xmk

m¼1

m �xkimþ1þ
X

m2J kð Þ;m 6¼i;m6¼j

fimþfmj�1

 �� 1�fij


 � �mk;

8 i 6¼ j2 J kð Þ;8 k2fk2K :nk¼1g (A3d)

fij2 0;1f g;8 i; j2 J (A3e)

Constraints (A3a) ensure that each patient has a room.
Constraints (A3b) specify that two patients who are assigned to the
same room must use the room in sequence. Constraints (A3c)
enforce the requirement that the starting time of patient j cannot be
earlier than the ending time of all his/her predecessors i who are
assigned the same room. Constraints (A3d) and (A3e) parallel (3d)
and (3e).
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