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Abstract

This paper introduces TURNABOUTLLM , a001
novel framework and dataset for evaluating002
the deductive reasoning abilities of Large Lan-003
guage Models (LLMs) by leveraging the inter-004
active gameplay of detective games Ace Attor-005
ney and Danganronpa. The framework tasks006
LLMs with identifying contradictions between007
testimonies and evidences within long narrative008
contexts, a challenging task due to the large009
answer space and diverse reasoning types pre-010
sented by its questions. We evaluate twelve011
state-of-the-art LLMs on the dataset, hinting at012
limitations of popular strategies for enhancing013
deductive reasoning such as extensive thinking014
and Chain-of-Thought prompting. The results015
also suggest varying effects of context size, the016
number of reasoning step and answer space017
size on model performance. Overall, TURN-018
ABOUTLLM presents a substantial challenge019
for LLMs’ deductive reasoning abilities in com-020
plex, narrative-rich environments.1021

1 Introduction022

Detective stories contain some of the most difficult023

reasoning problems, meticulously crafted to be in-024

triguing and illusive for even the most intelligent025

readers. To perform said deduction requires various026

abilities. Some include information retrieval from027

long passages of narrative with attention to partic-028

ular details. Others include piecing together facts029

with knowledge of physical laws, social norms,030

timeline of events, and so on. As large language031

models (LLMs) are increasingly coveted for their032

reasoning ability, evaluating them on detective sto-033

ries brings about unique challenges.034

Unfortunately, evaluating LLMs’ deductive rea-035

soning via detective stories is often infeasible. For036

example, Sherlock Holmes involves rich reasoning037

but does not contain explicit questions to pose to038

models. As a result, existing work that leveraged039

1Our resources are attached with the submission.

Con
trad

ictio
n!

E3

Testimonies

Evidences

Contradiction!
Sahwit claimed he saw the woman 
dead at 1PM, but the autopsy 

says she died between 4 and 5PM.

T1 T2 T3 T4

E1 E2

Reasoning

Figure 1: An illustration of a problem from Ace Attor-
ney, a detective game where players are instructed to
pinpoint a contradiction between a piece of evidence
and a testimony. Adapted to a task in TURNABOUT-
LLM, the input is a list of testimonies and a list of
evidences with their corresponding textual descriptions.
The output is the pair of testimony (T4) and evidence
(E2) that contradict each other. The example shown is
from the introductory episode and is likely the easiest.

detective stories for evaluation either only consid- 040

ered simple snippets as the context (Del and Fishel, 041

2023a) or character relationship prediction as the 042

task (Zhao et al., 2024). Some also focus on tex- 043

tual understandings that require simple reasoning 044

abilities (Xu et al., 2025). To overcome this limita- 045

tion, we take advantage of a unique asset, detective 046

games, as their interactive gameplay provides a 047

natural interface for evaluating LLMs. 048

We propose TURNABOUTLLM2, a framework 049

and textual dataset to evaluate LLMs’ deductive 050

reasoning ability in a long narrative context. TURN- 051

ABOUTLLM is constructed using two critically 052

2The name “Turnabout” is a wordplay from Ace Attorney
as a nod to the playable character’s knack for completely
changing the direction of a trial, against all odds.
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Dataset Sym. SLC LAS Nat. MH Het.

BIG-Bench Hard ✗ ✗ ✗ ✓ ✓ ✗

LogicQA ✗ ✗ ✗ ✓ ✓ ✗

ReClor ✗ ✗ ✗ ✓ ✓ ✗

ZebraLogic ✗ ✗ ✓ ✓ ✓ ✗

ProofWriter ✓ ✗ ✗ ✗ ✓ ✗

FOLIO ✓ ✗ ✗ ✓ ✓ ✗

ProntoQA ✓ ✗ ✗ ✗ ✗ ✗

LogicBench ✓ ✗ ✗ ✗ ✗ ✗

TurnaboutLLM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Qualitative comparison of TURNABOUTLLM
against other deductive reasoning benchmarks. There
are no previous benchmarks that satisfy all six desiderata
simultaneously. Our proposed TURNABOUTLLM is the
first benchmark to include symbolic logical annotations
(Sym.) for reasoning tasks situated in natural scenarios
(Nat.) with super-long contexts (SLC), large answer
spaces (LAS), multi-hop (MH) reasoning steps, and
heterogeneous (Het.) reasoning types.

acclaimed detective games Ace Attorney3 and053

Danganronpa4. The core gameplay mechanism,054

adapted as our task format, is to read through a055

story, examine existing evidences, examine witness056

testimonies, deduce likely conclusions, and find057

a contradiction between an evidence and a testi-058

mony in each turn of gameplay, all in text. One059

example from the 306 turns can be seen in Fig-060

ure 1. TURNABOUTLLM is superior to existing061

reasoning benchmarks in that:062

1. it includes natural contexts written by human063

authors that sometimes exceeds 100K words;064

2. it presents a large answer space that can con-065

tain 300 candidate answers;066

3. it consists of rigorous yet heterogeneous ques-067

tions that demands temporal, spatial, behavior,068

object state, causal, and numerical understand-069

ing,070

4. all of the examples contain expert annotations071

of evidence spans, context summary, reason-072

ing type, and the complete reasoning steps.073

We conducted 26 experiments on 12 state-of-the-art074

LLMs using TURNABOUTLLM, revealing several075

intriguing insights detailed in Section 5. The re-076

sults establish TURNABOUTLLM as a substantial077

challenge for current LLMs outside their training078

corpus, as the top-performing DeepSeek-R1 only079

obtains an accuracy score of 45.72%. We observe080

3https://en.wikipedia.org/wiki/Ace_Attorney
4https://en.wikipedia.org/wiki/Danganronpa

the generation of extensive reasoning tokens does 081

not directly help with model performance but is 082

negatively correlated with accuracy. The tradition- 083

ally effective Chain-of-Thought prompting method 084

also presents minimal benefits on complex deduc- 085

tive tasks. When presented with excessive con- 086

textual information, only large models, not small 087

and medium-sized ones, can leverage needle-in-a- 088

haystack retrieval to improve reasoning outcomes. 089

We find that performance declines as the number 090

of reasoning steps increases but is unaffected by 091

the size of the answer space, and conversely perfor- 092

mance improves with larger parameter counts. 093

2 Related Work 094

General Reasoning Benchmarks To broadly as- 095

sess models’ reasoning capacities, multiple general- 096

purpose benchmarks have been widely studies. 097

They include MMLU (Hendrycks et al., 2021), Su- 098

perGLUE (Wang et al., 2020), BIG-Bench (Srivas- 099

tava et al., 2023), and BIG-Bench Hard (Suzgun 100

et al., 2022). While these benchmarks provide a 101

useful overview, they are not exclusively focused 102

on reasoning tasks, resulting in a limited reflection 103

of models’ actual reasoning skills. 104

In contrast, several benchmarks explicitly tar- 105

get deductive reasoning capacities. LogiGLUE 106

(Luo et al., 2024) integrates 24 reasoning-focused 107

datasets into a unified benchmark. LogiQA (Liu 108

et al., 2020) and ReClor (Yu et al., 2020) draw 109

logical reasoning questions from standardized ex- 110

ams like the LSAT in multi-choice formats. Ze- 111

braLogic (Lin et al., 2025) constructs constraint- 112

satisfaction problems that feature expansive answer 113

spaces. However, these benchmarks lack symbolic 114

annotations of logical structures, limiting insights 115

into underlying reasoning processes. 116

Synthetic Datasets for LLM Reasoning Syn- 117

thetic datasets fulfill the need for symbolic annota- 118

tions by using LLMs to generate examples based on 119

logical rules. PrOntoQA (Saparov and He, 2023) 120

and LogicBench (Parmar et al., 2024) synthesize 121

questions from logical rules applied to ontologi- 122

cal entities, while JustLogic (Chen et al., 2025) 123

uses randomly sampled real-world sentences as 124

premises for reasoning chains. Nonetheless, they 125

typically focus on single inference rules rather 126

than multi-hop reasoning. To address this gap, 127

Multi-LogiEval (Patel et al., 2024) and ProofWriter 128

(Tafjord et al., 2021), an improvement to RuleTaker 129

(Clark et al., 2020), require models to validate syn- 130
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Figure 2: An example data point from TURNABOUTLLM, where testimonies, marked as T1 to T3, are shown
horizontally in green and evidences E1, E2 and more are shown vertically in orange. In addition to labeling which
testimony-evidence pairs are contradictory, we provide a per-contradiction explanation and a ground-truth reasoning
chain used to derive the contradiction. Each reasoning chain forms a tree structure: leaf nodes represent observed
facts, while internal (non-leaf) nodes correspond to intermediate atomic propositions that perform derivations.

thetic conclusions involving multiple logical steps.131

However, along with the expert-curated multi-hop132

FOLIO (Han et al., 2024), these datasets suffer133

from limited context sizes and answer spaces.134

Reasoning Datasets from Detective Stories De-135

tective stories naturally engage readers in multi-hop136

deduction, thus well-suited for deductive reason-137

ing evaluations. MuSR (Sprague et al., 2024) and138

True Detective (Del and Fishel, 2023b) synthesize139

detective stories from predefined facts or online140

detective games, yet they face inherent limitations141

of small context sizes. Benchmarks derived from142

authentic novels or high-quality puzzles, such as143

WhoDunIt (Gupta, 2025), DetectBench (Gu et al.,144

2024), and DetectiveQA (Xu et al., 2025), address145

this context size limitation. However, their answer146

spaces remain relatively constrained. To the best147

of our knowledge, there is no existing benchmark148

that leverages the detective story format to com-149

bine symbolic annotations with reasoning tasks150

characterized by large contexts and answer spaces.151

A comprehensive overview of each benchmark’s152

attributes is presented in Table 1.153

3 Dataset and Task154

Our TURNABOUTLLM dataset is based on 11 ti-155

tles of critically acclaimed Ace Attorney series and156

Danganronpa. In this section, we detail our process157

of creating the TURNABOUTLLM dataset (Sec-158

tion 3.1), the additional annotations (Section 3.2),159

and the overall statistics (Section 3.3).160

3.1 Data Creation 161

Extraction To obtain data, we crawl and parse an 162

Ace Attorney Wiki5 and a Danganronpa archive6. 163

We extract the following data: 1) character in- 164

formation, including name, gender, age, and a 165

description; 2) evidence information7, including 166

name, source, and a description; 3) testimonies 167

in the core gameplay8, including speaker, content, 168

and the correct evidence to present if the testimony 169

can be contradicted; and 4) transcript of the full 170

gameplay9, including dialogues, information, and 171

flavor text, used as the full context. While the 172

games are originally visual novels in nature, we 173

only consider the textual elements, which are suffi- 174

cient for reasoning in most cases. Whenever visuals 175

are indispensable for reasoning, they are manually 176

captioned so that key visual features are provided. 177

Modification Using the data acquired above, we 178

construct each each example, referred to as a turn, 179

as follows. The input to a model is: 180

1. Ci: information of every character 181

2. Ei: information of every evidence 182

3. Ti: an array of testimonies 183

4. X (optional): a context that may provide addi- 184

tional information required for the reasoning 185

The output of a model is a pair of (Ti, Ej) where 186

5aceattorney.fandom.com/wiki
6lparchive.org/Danganronpa-Trigger-Happy-Havoc/
7“Evidence” in Ace Attorney” and “Truth Bullets” in Dan-

ganronpa.
8“Cross examination” in Ace Attorney and “non-stop de-

bate” in Danganronpa.
9Non-core gameplay such as investigation in Ace Attorney

or social activities in Danganronpa is lumped into the context.
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Type Evidence example Testimony example

Spatial Death was caused by a gunshot to the chest. ...fired on the English civilian! And from the back...
Temporal Shots were fired just after midnight on 12/25. When she said “It’s almost Christmas!” shots fired!
Causal ...weapon bears the defendant’s prints... I never touched the murder weapon.
Behavioral Victim’s diary: Meet with Hugh. Important. Huge: I didn’t talk to anyone until the final bell.
Numerical Cause of death: single blunt force trauma. You see? You hit her twice!
Physical The victim was wearing a plain shirt. He was always walking around with a flowery shirt.
Spelling The defendant is Maggey Byrde. The blood writing was the defendant’s name, “Maggie”.

Table 2: Examples (edited for brevity and clarity) of evidences and testimonies of each reasoning type.

an evidence is presented to contradict a testimony.187

At times, there can be multiple ground-truth pairs.188

Thus, the task is essentially a multiple-choice for-189

mat with an action space of |T | × |E|, on the order190

of hundreds. While our dataset is mostly faithful to191

the original games, we made various types of mod-192

ification (change of wording, removing turns with193

loose contradictions, adding information for logic194

leaps, etc.) to ensure the rigorousness of reasoning.195

3.2 Annotations196

To improve rigorousness of evaluation and enable197

fine-grained insights into TURNABOUTLLM, we198

annotate the following aspects of each turn: meta-199

data, reasoning chains, and reasoning types.200

Metadata First, we annotate a one-sentence sum-201

mary of the current story that provides necessary202

information for identifying the contradiction for203

each turn. We provide the span from the evidence204

and from the testimony that critically constitutes205

the contradiction. We next label whether a turn206

is self-contained, where a contradiction can be de-207

ducted using only information of characters, evi-208

dences, and testimonies, without any other context209

such as the dialogue transcripts. Whenever a turn210

is not self-contained, a model needs to perform a211

needle-in-a-haystack retrieval from the full context212

(all transcript until the current moment) to gather213

necessary information (Figure 8). In this case, we214

manually annotate an expected context span.215

Reasoning Chain Next, we annotate a reasoning216

chain used for deriving the contradiction for each217

turn (Figure 2). A reason chain is a tree structure218

with three components. First, observed facts, repre-219

sented as leaf nodes, are paraphrased directly from220

evidence, testimony, or context. Atomic proposi-221

tions (non-leaf nodes) are handwritten modus po-222

nens rules that operates upon the facts and derive223

new facts. Finally, a contradiction (root node) is224

implied based on two obviously contradiction facts.225

As the reasoning in TURNABOUTLLM is based226

on natural narrative texts, subjectivity in the rea- 227

soning chain is unavoidable. Therefore, when an- 228

notating the propositions, we uphold the desiderata 229

of only considering general rules in the real world 230

(neglecting what-ifs and extremities) and making 231

them as reasonably atomic as possible. 232

Reasoning Types Lastly, we annotate a fine- 233

grained type of deductive reasoning for each turn. 234

We define 7 reasoning types, including spatial, tem- 235

poral, causal, behavioral, numerical, physical, and 236

spelling with examples shown in Table 2. We as- 237

sign one or more types to a turn based on the type 238

of reasoning that underlies the propositions in the 239

annotated reasoning chain (Figure 2). Each rea- 240

soning category contains a non-trivial number of 241

turns (Figure 3b), demonstrating that our dataset 242

demands heterogeneous reasoning capabilities. 243

On average, annotation for each turn takes 20 244

minutes for a trained annotator, resulting in a total 245

labor of approximately 100 hours. 246

3.3 Statistics 247

Table 3 summarizes the statistics of TURNABOUT- 248

LLM. In total, there are 306 turns in TURNABOUT- 249

LLM, with an average of 12 game characters, 38 250

evidences, 11 testimonies, and 25K text characters. 251

Figure 3a demonstrates a large answer-space 252

in TURNABOUTLLM, with an average of 200 253

evidence-testimony pairs to choose from. Figure 3b 254

shows the distribution of different types of reason- 255

ing ability required. Combined, these statistics are 256

evidence that TURNABOUTLLM is a challenging 257

and complex benchmark for LLM capabilities. 258

4 Evaluation Protocol 259

To evaluate a model on the dataset, we extract spe- 260

cific fields from each data point in the game to 261

form a single prompt, and we prompt the model 262

one-time for a single turn. The model is asked to 263

give the indices of the contradicting evidence and 264

testimony. As there may be multiple contradicting 265
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Statistics AA123 AA456 GAA12 AAI12 DGRP1 Overall

# Data points 85 72 43 69 37 306
Avg. context length (# chars) 19K 29K 36K 34K 2.2K 25K
Avg. # characters 10.6 13.6 13.2 12.6 17 12.3
Avg./Max. # testimonies 5.9 / 10 5.6 / 8 5.7 / 7 5.1 / 8 6.7 / 11 5.7 / 11
Avg./Max. # evidences 20.2 / 32 21.1 / 33 18.6 / 30 25.3 / 38 18.0 / 21 21.1 / 38
Avg./Max. length of reasoning chain 3.5 / 9 3.8 / 10 3.6 / 6 3.5 / 8 3.3 / 5 3.6 / 10

Table 3: Overall statistics of TURNABOUTLLM, categorized by the incorporated detective game titles. AA123
stands for Phoenix Wright: Ace Attorney Trilogy. AA456 stands for Apollo Justice Ace Attorney Trilogy. GAA12
stands for The Great Ace Attorney Chronicles. AAI12 stands for Ace Attorney Investigations Collection. DGRP1
stands for Danganronpa: Trigger Happy Havoc.
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(a) An illustration of the number of turns in TURNABOUTLLM
(size of each circle) with respect to the number of available evi-
dences (horizontal) and testimonies (vertical) to choose from.
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(b) The number of TURNABOUTLLM turns with respect to the
reasoning capabilities required (e.g., Spatial, Temporal, etc.) to
find the contradiction, classified by the incorporated title.

Figure 3: Illustrations of further statistics of our TURNABOUTLLM dataset.

pairs in each turn, we regard the output as correct266

if the proposed pair is included in the list of ground267

truth contradicting pairs.268

Evaluation Metrics We compute the overall ac-269

curacy of the model as the percentage of correct270

answers across all turns, and we compute the ev-271

idence accuracy and testimony accuracy respec-272

tively as the percentage of correct evidence and273

testimony presented across all turns.274

Data Splits We do not endorse any particular275

train-develop-test split of TURNABOUTLLM and276

leave that decision to future users. In this work,277

we treat the entirety of the Ace Attorney dataset278

as the evaluation set, since we do not attempt any279

hyperparameter tuning or modeling improvement.280

Evaluation Settings To better gauge different as-281

pects of models’ reasoning abilities, we propose 4282

variations of the evaluation prompt templates based283

on available property fields in the data. First, We284

start with a basic zero-shot prompt10 with an av-285

erage of 1,686 words, which sequentially includes286

descriptions of all the characters, evidences, and287

10Our experiments show that few-shot prompting leads to
worse results which are omitted.

testimonies in the current turn. In case more con- 288

text than mere evidence descriptions are needed for 289

reasoning, we append a short “context span”, an 290

excerpt from the context field that guarantees to 291

fills in the most relevant context information, to the 292

corresponding evidence description. 293

Second, we use a one-shot, Chain-of-Thought 294

(CoT) prompt with an average of 2,280 words, 295

which uses an example to direct the model to think 296

before answering the question. Besides the use of 297

a one-shot example, the prompt adds a “let’s think 298

step by step” instruction at the end of the prompt to 299

enforce the prolonged thinking. We do this for all 300

models except those already trained to do so, such 301

as DeepSeek-R1 or OpenAI’s o-series models. 302

Third, we use a full-context prompt averaging 303

44K words, which includes the complete context 304

of all prior turns within the same court case leading 305

up to the current one. This is a challenging but 306

realistic setting, as all human players experience 307

the game this way. As such, needle-in-a-haystack 308

retrieval of critical information from the context is 309

necessary for turns that are not self-contained by 310

merely characters, evidences, and testimonies. 311

Fourth, to study whether the model is memoriz- 312

ing the game from its training corpus, we provide 313
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Figure 5: Model accuracies plotted against the number of reasoning steps, required reasoning types, and size
of answer space. Due to space constraints, we only show the performance of 6 representative models. A more
comprehensive illustration is shown in the appendix.

an ablation prompt with an average of 537 words314

where all descriptions of the characters and evi-315

dences are removed. The model will have to reason316

based on the names of the characters and evidences317

alone, which is often insufficient. Therefore, we318

would expect a significant drop in its performance319

if it does not memorize key events in the game.320

As is previously discussed, evidences and some-321

times testimonies come with images that are occa-322

sionally crucial for reasoning about the contradic-323

tion. While we have fully captioned them in this324

work, we also provide all the images and clearly la-325

bel whenever they are required so that a multimodal326

evaluation is available for future work.327

Experiments We evaluate 12 LLMs on our 4328

variations of prompts. The LLMs come from 4329

model families: the DeepSeek series which in-330

cludes the 671B DeepSeek-R1 (DS-R1) and V3331

(DS-V3) and the smaller distilled DeepSeek-R1-332

70B (DS-R1-70B), DeepSeek-R1-32B (DS-R1-333

32B), and DeepSeek-R1-8B (DS-R1-8B) models,334

the OpenAI family including GPT-4.1 (G4.1), GPT- 335

4.1-mini (G4.1-M) and the reasoning models o3- 336

mini (O3-M) and o4-mini (O4-M), the Llama-3.1- 337

instruct family including Llama-70B (L3.1-70B) 338

and Llama-8B (L3.1-8B), and the reasoning model 339

QwQ-32B (Q-32B) exceling in reasoning and cod- 340

ing. Except for OpenAI models and the two largest 341

DeepSeek models that are run via their APIs, we 342

run all other models locally on 8 H100 GPUs using 343

HuggingFace and KANI (Zhu et al., 2023) . 344

5 Results and Analysis 345

In this section, we present our primary empirical 346

findings regarding LLMs’ reasoning abilities. We 347

begin by highlighting the overall accuracies of all 348

12 models on TURNABOUTLLM summarized in 349

Figure 4. Subsequently, we provided detailed anal- 350

yses that dissect model performance by factors 351

such as numbers of reasoning steps (Figure 5a), 352

reasoning types (Figure 5b), answer space sizes 353

(Figure 5c), numbers of reasoning tokens (Figure 354

6) and prompting strategies (Figure 4, 7). 355
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The dataset poses a significant challenge in long-356

context deductive reasoning for state-of-the-art357

models. All 12 models demonstrate consider-358

able diffuculty in correctly identifying evidence-359

testimony pairs within TURNABOUTLLM (Fig-360

ure 4). Among them, DS-R1 achieves the highest361

accuracy of 45.72% using the basic prompt. All362

models, except G4.1, achieve higher accuracy in363

selecting the correct evidence than in selecting the364

correct testimony. This trend aligns with the fact365

that there are typically fewer candidate evidences366

than testimonies to evaluate. These findings illus-367

trate that TURNABOUTLLM represents a substan-368

tial challenge for even the most advanced LLMs.369

Minimal memorization makes the dataset a reli-370

able independent benchmark for LLMs. The371

dataset is uncontaminated by the models’ training372

corpus, as is suggested by the performances of373

4 models evaluated on the ablation prompt with374

no evidence descriptions. Scoring consistently at375

merely 15% on average, these models’ reasoning376

traces reveal that they are making the most likely377

“bet” based on evidence names alone. Therefore,378

we conclude that major models only have minimum379

memorization and that TURNABOUTLLM estab-380

lishes a novel and fair ground for LLM evaluations.381

Incorrect results consume more reasoning to-382

kens than correct ones, and more output tokens383

do not necessarily yield better results. We de-384

fine “reasoning tokens” as intermediate tokens gen-385

erated by the model before arriving at the final386

answer. Across all models, incorrect responses ex-387

hibit higher median and maximum numbers of rea-388

soning tokens compared to correct ones (Figure 6),389

indicating a negative correlation between model390

accuracy and the number of reasoning tokens. This391

potentially shows that when the model produces392

incorrect answers, outputing additional reasoning393

tokens does not yield more improvements.394

We observe a surplus of reasoning tokens pro- 395

duced by Q-32B and DS-R1 over other models in 396

Figure 6 using a logarithmic scale. However, de- 397

spite using far fewer reasoning tokens than Q-32B, 398

G4.1 achieves approximately equal accuracy, ex- 399

hibiting superior reasoning efficiency under a lim- 400

ited token budget. This could further corroborate 401

with the conjecture that intentional exploration of 402

the answer space is more decisive to model perfor- 403

mance than extensive output of reasoning tokens. 404

Full context benefits large models but hurts 405

smaller ones. Including the complete context 406

in the evaluation prompt has contrasting effects 407

depending on the size of the model (Figure 7). 408

Large models such as G4.1 and DS-R1 exhibit 409

notable accuracy improvements of approximately 410

15% compared to their basic prompt performances. 411

Conversely, small and medium-sized models, such 412

as L3.1-70B and L3.1-8B, suffer performance de- 413

clines. This could suggest that smaller models, lim- 414

ited by their parameter size, not only under-utilize 415

additional contextual information but are also “con- 416

fused” by the influx of supplementary data. 417

Model performance deteriorates with increas- 418

ing reasoning steps, but not with larger answer 419

spaces. There is a negative correlation between 420

average accuracy within a model architecture fam- 421

ily and the number of reasoning steps (Figure 5a). 422

As the number of reasoning steps increases, perfor- 423

mance gradually declines, signaling that questions 424

requiring more logical connections tend to be more 425

difficult. This supports the validity of using anno- 426

tated reasoning chains as an indicator of difficulty. 427

In contrast, the size of the answer space does 428

not appear to impact model accuracy (Figure 5c). 429

By categorizing answer spaces into seven bins with 430

approximately equal numbers of data points, we ob- 431

serve consistent model performance across all bins. 432

Further analysis reveals that reasoning models tend 433
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Rayfa Padma Khura'in E25 (out of 30)
At around 2PM, Shah'do was surprised by a firecracker, 
ran into the courtyard, spooked Nayna and stole her hat.

Ahlbi’s Statement
I had been gazing upon the courtyard since 
about 2, but father was the only one I saw. 

T3 (out of 6)

Contradiction

Witness claims she, while 
gazing, saw only her father

Assumption 1 [T3]

Evidence suggests that Shah’do 
spooked Nayna in the courtyard

Assumption 2 [E25]

Nayna is in the 
courtyard at 2

Deduction 2

Nayna can’t be in the courtyard if 
her father is the only one she saw

Contradiction

Reasoning Chain (Labeled in Turnabout-LLM)

No one other than her father 
is in the courtyard at 2

Deduction 1

Reasoning (DeepSeek-R1) Reasoning (GPT-4.1)

Testimony 3: that she was 
gazing at the courtyard since 
about 2 PM and saw only her 
father. Compare this with the 
Channeling Photo (Evidence 
24), which shows a picture 
taken at around 2 PM of the 
channeling rite. If the 
channeling rite (where Rayfa 
should be present as the 
princess/priestess) was 
taking place at 2 PM, she 
could not have been gazing 
upon the courtyard at that 
precise time. This is a clear 
contradiction…

Correct IncorrectAns: (T3, E25) Ans: (T3, E24)

(...iterate over all evidences...)
Let me check again. The 
answer should be one pair. 
Let me verify: Ahlbi's 
Statement says that around 
2 PM, Shah'do (the dog) 
ran into the courtyard, 
spooked Nayna… But her 
testimony says she only 
saw her father. Therefore, 
Evidence 25 contradicts 
Testimony 3 because 
Ahlbi's account suggests 
Nayna was in the courtyard 
around 2 PM, which Rayfa 
did not report seeing.

Validation
1418 Reasoning Tokens 111 Reasoning Tokens

Figure 8: A qualitative comparison between DeepSeek-R1 and GPT-4.1’s reasoning on answering the 2nd turn of
AA6-5-4. GPT-4.1 failed by jumping straight into conclusion, while DS-R1 carefully examines all evidences and
testimonies, producing over 1.4K reasoning tokens as well as the correct answer.

to use many reasoning tokens to exhaustively enu-434

merate possible testimony-evidence pairs without435

engaging in deeper reasoning.436

CoT prompting does not enhance model per-437

formance. We notice minimal benefits of CoT438

prompting on reasoning performance (see Figure 4).439

For all 5 models except the smallest L3.1-8b, this440

prompting method either results in no improve-441

ment or minor performance decreases. The mod-442

els’ reasoning traces reveal that CoT prompting443

delays the time the model first reaches its final444

conclusion and allows it to “think” more. How-445

ever, the extended thinking often hinges on a single446

evidence-testimony pair, failing to conduct an ex-447

tensive search in the answer space. This appears to448

imply that CoT prompting is ineffective in solving449

deductive reasoning tasks with extensive answer450

spaces and large context sizes.451

Models benefit from longer explorations of the452

answer space. Models can effectively extend ex-453

plorations of the answer space to boost their ac-454

curacy, as is shown by the qualitative example455

in Figure 8. In the example, we observe distinct456

behaviors in G4.1 and DS-R1’s reasoning traces.457

G4.1, generating only 111 tokens, merely considers458

one possible evidence before finalizing on a wrong459

answer. In contrast, DS-R1, generating 1,418 to-460

kens, explores multiple evidences before narrowing461

down to 3 most likely candidates and arriving at462

the correct answer. We conjecture that when in a463

large answer space, successful deductive reasoning464

is grounded in extensive, trial-and-error search and465

does not have a cognitive shortcut.466

Different models excel at different reasoning 467

types and scale with increasing parameter size. 468

Different models have particular strengths and 469

weaknesses depending on the type of reasoning re- 470

quired (Figure 5b). Models generally perform best 471

on numerical tasks involving counting and compar- 472

ison, whereas most exhibit their lowest scores on 473

temporal or causal reasoning. Furthermore, model 474

performance tends to improve as the parameter size 475

increases (Figure 4), with the notable exception of 476

Q-32B, which outperforms all larger models except 477

the 671B DS-R1. The positive correlation between 478

parameter size and model accuracy could imply 479

that larger models may possess inherently stronger 480

deductive reasoning capabilities. 481

6 Conclusion 482

We introduce TURNABOUTLLM , the first bench- 483

mark that embeds symbolic-logic puzzles inside 484

narrative-rich, super-long contexts drawn from de- 485

tective visual novels. By performing an extensive 486

empirical study across twelve contemporary LLMs, 487

we show that TURNABOUTLLM is challenging 488

and poses a fair ground to evaluate LLMs’ reason- 489

ing abilities. We release the dataset, annotation 490

toolkit, and evaluation code to spur research on (i) 491

scalable long-context reasoning, (ii) controllable 492

chain-of-thought generation, and (iii) unified met- 493

rics for symbolic-narrative tasks. We hope TURN- 494

ABOUTLLM will serve as a stepping-stone toward 495

LLMs that can navigate the messy, open-world 496

logic of real human discourse. 497
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7 Limitation498

Despite its breadth, TURNABOUTLLM still faces499

several constraints. First, its detective-courtroom500

focus targets contradiction spotting, leaving other501

deductive settings—such as scientific discovery502

or regulatory compliance—largely untested. Sec-503

ond, because the narratives originate from Japanese504

visual novels, they may encode culture-specific505

norms and idioms that bias evaluation toward mod-506

els already familiar with such text. Third, although507

we supply descriptive captions for in-game images,508

true multimodal reasoning is only approximated,509

not fully exercised. Fourth, the dataset’s manu-510

ally crafted reasoning chains (≈ 100 annotator-511

hours) introduce subjectivity and hamper scal-512

ability, though future releases will report inter-513

annotator agreement and provide semi-automated514

validation tools. Fifth, while the raw scripts are515

publicly available, their copyright status could516

change; We are committed to honoring any take-517

down requests from the rights holders. Finally, eval-518

uation with 100K-token prompts imposes a heavy519

computational footprint, and researchers with lim-520

ited resources may need chunk-wise retrieval strate-521

gies that we have not yet benchmarked. Acknowl-522

edging these limitations helps define the bench-523

mark’s current scope and highlights directions for524

future expansion.525
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A License and Intended Use 789

The data utilized in this research is sourced from 790

fandom.com. As stipulated by fandom.com, their 791

resources are made available under the Creative 792

Commons Attribution-Share Alike License 3.0 (Un- 793

ported) (CC BY-SA). This license permits the shar- 794

ing and adaptation of the material, provided that ap- 795

propriate attribution is given to the original source, 796

a link to the license is provided, and that if the ma- 797

terial is remixed, transformed, or built upon, the 798

contributions are distributed under the same or a 799

compatible license. Our intended use of this data is 800

strictly for academic research and analysis within 801

this paper, fully adhering to the terms and condi- 802

tions set forth by the CC BY-SA license. 803

B Annotator demographics 804

Five annotators contribute to authoring and veri- 805

fying each data point’s reasoning types, reasoning 806

steps, and evidence and context span. All are U.S.- 807

based university students and avid Ace Attorney 808

and Danganropa players, thus ideally suited to ex- 809

amine each case data’s key attributes. 810

C Additional Data Examples and 811

Statistics 812

Figure 9 and 10 present two highly challenging ex- 813

amples from TURNABOUTLLM. Figure 11 shows 814

additional performance breakdown of models that 815

are not included in the main section. 816
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Finally, one 
woman came. 
She stood 
front of me.

We talked... 
Then she 
left.

I parked. She 
wasn't 
there... So, 
I waited on 
bridge.

T1 T2 T3

[caption] …the victim is 
standing to the right, facing 
left. The prisoner is 
standing to the left.

Witness’
Photo

E2

From the south, the 
person to the right is 

to the east.

Proposition 1

One person cannot 
come first and second

Contradiction

… … …

Contradiction

Reasoning Chain (Labeled)

Fawles
Escaped 
prisoner 

confronted by 
policewoman

The photo was 
taken to the south 

of the bridge.

Assumption 1 [C1]

Melissa: Umm... When I took the photo, I was 
standing right over... here. [caption] I was 
standing to the south of the bridge.

Victim: east

Derived Fact 1

Victim: first

Derived Fact 4

If a person is at the 
broken end of the bridge, 

they arrived first.

Proposition 2
Spatial, temporal

Prisoner: first
Victim: second

Assumption 6 [T1,T2]

Explanation: The person that came first 
would be the one at the broken end of 
the bridge, which was the victim’s end, 
because…

Melissa

“An innocent 
witness”

C1

Spatial

East end of 
bridge is broken

Assumption 3 [E1]

Bridge’s
Map

E1

Benign Benign Benign

Explanation: N/A

[caption] The bridge is broken 
off on the east end, and 
connected to the parking lot 
on the west end.

E1 E2

Victim: right
Prisoner: left

Assumption 2 [E2]

Figure 9: A highly challenging data point from TURNABOUTLLM involving spatial and temporal reasoning.
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One kind of 
chip is worth 
100 points, 
other kind is 
worth 1,000. 

One who was 
winning was 
the victim!

The game 
began with 
3,500 point 
in chips for 
each man.

T1 T2 T3

Defendant & victim's 
chips when crime took 
place. [caption] On 
the near side, there 
are 4 red, small 
chips and 1 gray, big 
chip. On the far 
side, there are 2 
red, small chips and 
9 gray, big chips. On 
the near side, the 
cards are 7 heart, 7 
diamond, 7 club, Ace 
spade, and Ace 
diamond. On the far 
side, the cards are 
King heart, King 
diamond, King spade, 
Ace club, Ace heart.

Chip 
Photo

E2

Near side: 
4 small + 1 big

Assumption 2 [E2]

The total value is the 
sum of two sides.

Proposition 1

Two people cannot 
both be winning

Contradiction

… … …

Contradiction

Reasoning Chain (Labeled)

Olga Orly
Dard dealer 
at casino, 
place of 
murder

Far side: 
2 small + 9 big

Assumption 1 [E2]
… The hand and chips on near 
side belong to the defendant, 
Mr. Wright. Those on the far 
side belonged to the victim, 
Mr. Smith …

Total: 7,000

Assumption 4 [T1]

Total: 6 small 
+ 10 big

Derived Fact 1

Small: 1,000
Big: 100

Derived Fact 2

Value of each side is 
sum of small and big

Proposition 3

Far: 2,900
Near: 4,100

Derived Fact 3

The person on the 
side with greater 
score is winning

Proposition 4

Defendant is 
winning

Derived Fact 4

If 6*1,000+10* 
1000=7000, small is 
worth more than big

Proposition 2
Numerical

Victim is 
winning

Assumption 6 [T3]

Explanation: N/A

Explanation: 
Victim is actually 
losing, not winning, 
because…

Explanation: N/A

Payne
Prosecutor

C1

Numerical

Numerical

Chips worth 
100 and 1,000

Assumption 3 [T2]

Near side: 
defendant

Far side: victim

Assumption 5 [C1]SpatialDeadly
Bottle

E1
Benign Benign Benign

Figure 10: A highly challenging data point from TURNABOUTLLM involving numerical and spatial reasoning,
even with a touch of abductive reasoning.
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DS-R1-8 DS-R1-32 DS-R1-70
G-4.1-M L-3.1-8 L-3.1-70

(a) Accuracy decreases as the number of
reasoning steps grows. Due to scarcity,
we omit problems that need > 6 steps.

Spa. Tem. Cau. Beh. Num. Phy. Spe.
Reasoning kind

DS-R1-8 DS-R1-32 DS-R1-70

G-4.1-M L-3.1-8 L-3.1-70

(b) Accuracy with respect to the reasoning types.
While performance vary a lot across models, tem-
poral reasoning is usually the weakest.

<60
<85

<105
<126

<150
<180

≥180

Answer space: |T | × |E|

DS-R1-8 DS-R1-32
DS-R1-70 G-4.1-M

L-3.1-8 L-3.1-70

(c) Accuracy with respect to size
of answer space. Results does not
show strong negative correlation.

Figure 11: Model accuracies plotted against the number of reasoning steps, required reasoning types, and size of
answer space. Additional experiments not covered in the main body text are presented here.
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