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Abstract

Personalised federated learning (FL) approaches assume that raw data of all clients are
defined in a common space i.e. all clients store their data according to the same schema. For
real-world applications, this assumption is restrictive as clients, having their own systems to
collect and then store data, may use heterogeneous data representations. To bridge the gap
between the assumption of a shared subspace and the more realistic situation of client-specific
spaces, we propose a general framework coined FLIC that maps client’s data onto a common
feature space via local embedding functions, in a federated manner. Preservation of class
information in the latent space is ensured by a distribution alignment with respect to a learned
reference distribution. We provide the algorithmic details of FLIC as well as theoretical
insights supporting the relevance of our methodology. We compare its performances against
FL benchmarks involving heterogeneous input features spaces. Notably, we are the first to
present a successful application of FL to Brain-Computer Interface signals acquired on a
different number of sensors.

1 Introduction

Federated learning (FL) is a machine learning paradigm where models are trained from multiple isolated
data sets owned by individual agents/clients, where raw data need not be transferred to a central server, nor
even shared in any way (Kairouz et al., 2021a). FL ensures data ownership, and structurally incorporates
the principle of data exchange minimization by only transmitting the required updates of the models being
learned. Recently, FL works have focused on personalised FL to tackle statistical data heterogeneity and used
local models to fit client-specific data (Tan et al., 2022; Jiang et al., 2019; Khodak et al., 2019; Hanzely &
Richtárik, 2020). However, most existing personalised FL works assume that the raw data on all clients share
the same structure and are defined on a common feature space. Yet, in practice, data collected by clients
may use differing structures: they may not capture the same information, some features may be missing or
not stored, or some might have been transformed (e.g. via normalization, scaling, or linear combinations).
An illustrative example of this, related to Brain-Computer Interfaces (Yger et al., 2016; Lv et al., 2021)
and tackled in this paper, is the scenario where electroencephalography signals are recorded from different
subjects, with varying numbers of electrodes and a diverse range of semantic information (e.g. motor imagery
tasks and resting state). To tackle the challenge of making FL possible in situations where clients have
heterogeneous feature spaces – such as disparate dimensionalities or differing semantics of vector coordinates
– we present the first personalised FL framework specifically designed to address this learning scenario.

Proposed Approach. The key idea of our proposal is driven by two objectives: (i) clients’ data have to
be embedded in a common latent space, and (ii) data related to the same semantic information (e.g. label)
have to be embedded in the same region of this latent space. The first objective is a prior necessary step
before FL since it allows to define a relevant aggregation scheme on the central server for model parameters
(e.g. via weighted averaging). The second one is essential for a proper federated learning of the model
parameters as FL approaches are known to struggle when data across clients follow different probability
distributions (Kairouz et al., 2021b). As shown later, this second objective is not guaranteed by performing
client-independent learning of embedding functions, such as via low-dimensional embeddings or autoencoders.
To cope with this issue, we align clients’ embedded feature distributions with a latent anchor distribution that
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is shared across clients. The learning of the anchor distribution happens in a federated way, which means it
is updated locally on each client and then combined on a central server through barycenter computation
(Veldhuis, 2002; Banerjee et al., 2005). Then, we seamlessly integrate this distribution alignment mechanism,
utilizing local embedding functions and anchor distribution, into a personalised federated learning framework
that is similar to the approach proposed by Collins et al. (2021), without any loss of generality.

Contributions. To help the reader better grasp the differences of our approach with respect to the existing
literature, we here spell out our contributions:

1. We are the first to formalize the problem of personalised FL on heterogeneous client’s feature spaces.
In contrast to existing approaches, the proposed general framework, referred to as FLIC, allows each
client to leverage other clients’ data even though they do not have the same raw representation.

2. We introduce a distribution alignment framework and an algorithm that learns the feature embedding
functions along with the latent anchor distribution in a local and global federated manner, respectively.
We also show how those essential algorithmic components are integrated into a personalised FL
algorithm, easing adoption by practitioners.

3. We provide algorithmic and theoretical support to the proposed methodology. In particular, we show
that for a simpler but insightful learning scenario, FLIC is able to recover the true latent subspace
underlying the FL problem.

4. Beyond competitive experimental analyses on toy and real-world problems, we stand out as a pioneer
in Brain-Computer Interfaces (BCI) by being the first to learn from heterogeneous BCI datasets
using federated learning. The proposed methodology can handle data with different sensor counts
and class numbers, a feat not achieved by any other methodology to our knowledge, and can have a
strong impact on other medical domains with similar data heterogeneity.

Conventions and Notations. The Euclidean norm on Rd is ∥ · ∥. |S| denotes the cardinality of the set S
and N∗ = N \ {0}. For n ∈ N∗, we refer to {1, . . . , n} with [n]. N(m, Σ) is the Gaussian distribution with
mean vector m and covariance matrix Σ and X ∼ ν means that the random variable X is drawn from the
probability distribution ν. The Wasserstein distance of order 2 between any probability measures µ, ν on
Rd with finite 2-moment is W2(µ, ν) = (infζ∈T (µ,ν)

∫
Rd×Rd ∥θ − θ′∥2dζ(θ, θ′))1/2, where T (µ, ν) is the set of

transference plans of µ and ν.

2 Related works

As far as our knowledge goes, the proposed methodology is the first one to tackle the problem of FL from
heterogeneous feature spaces. However, some related ideas have been proposed in the literature. The idea of
using distribution alignement has been considered in the FL literature but only for addressing distribution shifts
on clients (Zhang et al., 2021b; Ye et al., 2022). Other methodological works on autoencoders (Xu et al., 2020),
word embeddings (Alvarez-Melis & Jaakkola, 2018; Alvarez-Melis et al., 2019) or FL under high statistical
heterogeneity (Makhija et al., 2022; Luo et al., 2021; Zhou et al., 2022) use similar ideas of distribution
alignment for calibrating feature extractors and classifiers. Comparing distributions from different spaces
has also been considered in a (non-FL) centralised manner using approaches like the Gromov-Wasserstein
distance or related distances (Mémoli, 2011; Bunne et al., 2019; Alaya et al., 2022).

Several other works can also be broadly related to the proposed methodology. Loosely speaking, we can
divide these related approaches into three categories namely (i) heterogeneous-architecture personalised FL,
(ii) vertical FL and (iii) federated transfer learning.

Compared to traditional horizontal personalised FL (PFL) approaches, so-called heterogeneous-architecture
ones are mostly motivated by local heterogeneity regarding resource capabilities of clients e.g. computation a
nd storage (Zhang et al., 2021a; Diao et al., 2021; Collins et al., 2021; Shamsian et al., 2021; Hong et al.,
2022; Makhija et al., 2022). Nevertheless, they never consider features defined on heterogeneous subspaces,
which is our main motivation. In vertical federated learning (VFL), clients hold disjoint subsets of features.
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Table 1: Related works. PFL refers to horizontal personalised FL, VFL to vertical FL and FTL to federated
transfer learning.

method type ̸= feature spaces multi-party no shared ID no shared feature

(Zhang et al., 2021a) PFL ✗ ✓ ✓ ✗

(Diao et al., 2021) PFL ✗ ✓ ✓ ✗

(Collins et al., 2021) PFL ✗ ✓ ✓ ✗

(Shamsian et al., 2021) PFL ✗ ✓ ✓ ✗

(Hong et al., 2022) PFL ✗ ✓ ✓ ✗

(Makhija et al., 2022) PFL ✗ ✓ ✓ ✓

FLIC (this paper) PFL ✓ ✓ ✓ ✓

(Hardy et al., 2017) VFL ✓ ✗ ✗ ✓

(Yang et al., 2019) VFL ✓ ✗ ✗ ✓

(Gao et al., 2019) FTL ✓ ✓ ✓ ✗

(Sharma et al., 2019) FTL ✗ ✗ ✓ ✗

(Liu et al., 2020) FTL ✓ ✗ ✗ ✓

(Mori et al., 2022) FTL ✓ ✓ ✗ ✗

However, a restrictive assumption is that a large number of users are common across the clients (Yang et al.,
2019; Hardy et al., 2017; Angelou et al., 2020; Romanini et al., 2021). In addition, up to our knowledge,
no vertical personalised FL approach has been proposed so far, which is restrictive if clients have different
business objectives and/or tasks. Finally, some works have focused on adapting standard transfer learning
approaches with heterogeneous feature domains under the FL paradigm. These federated transfer learning
(FTL) approaches (Gao et al., 2019; Mori et al., 2022; Liu et al., 2020; Sharma et al., 2019) stand for FL
variants of heterogeneous-feature transfer learning where there are b source clients and 1 target client with a
target domain. However, these methods do not consider the same setting as ours and assume that clients
share a common subset of features. We compare the most relevant approaches among the previous ones in
Table 1.

3 Proposed Methodology

Problem Formulation. We consider the problem where b ∈ N∗ clients want to solve a learning task
within the centralised personalised FL paradigm (Yang et al., 2019; Kairouz et al., 2021a), where a central
entity orchestrates the collaborative solving of a common machine learning problem by the b clients, without
requiring raw data exchanges. The clients are assumed to possess local data sets {Di}i∈[b] such that, for any
i ∈ [b], Di = {(x(j)

i , y
(j)
i )}j∈[ni] where x

(j)
i stands for a feature vector, y

(j)
i is a label and ni = |Di|. In contrast

to existing FL approaches, we assume that the raw input features {x(j)
i }j∈[ni] of clients live in heterogeneous

spaces i.e. for any i ∈ [b], x
(j)
i ∈ Xi where Xi is a client-specific measurable space. More precisely, for any

i ∈ [b] and j ∈ [ni], we assume that x
(j)
i ∈ Xi ⊆ Rki such that {Xi}i∈[b] are not part of a common ground

metric. This setting is challenging since standard FL approaches (McMahan et al., 2017a; Li et al., 2020)
and even personalised FL ones (Collins et al., 2021; Hanzely et al., 2021) cannot be directly applied. For
simplicity, we assume that all clients want to solve a multi-class classification task with C ∈ N∗ classes. We
discuss later how regression tasks can be encompassed in the proposed framework.

Methodology. The goal of the proposed methodology, coined FLIC, is to learn a personalised model for each
client while leveraging the information stored by other clients’ data sets despite the heterogeneity issue. To
address this feature space heterogeneity, we propose to map client’s features into a fixed-dimension common
subspace Φ ⊆ Rk by resorting to learnt local embedding functions {ϕi : Xi → Φ}i∈[b]. In order to preserve
semantical information (such as the class associated to a feature vector) from the original data distribution,
we seek at learning the functions {ϕi}i∈[b] such that they are aligned with (i.e. minimise their distance to)
some learnable latent anchor distributions that are shared across all clients. These anchor distributions act
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Figure 1: Illustration of part of the proposed methodology for b = 3 clients with heterogeneous digit images
coming from three different data sets namely MNIST (Deng, 2012), USPS (Hull, 1994) and SVHN (Netzer
et al., 2011). The circles with digits inside stand for a group of samples, of a given class, owned by a client
and the size of the circles indicates their probability mass. In the subspace Φ, {µi}i∈[b] (and their level
sets) refer to some learnable reference measures to which we seek to align the transformed version νϕi

of νi.
Personalised FL then occurs in the space Φ and aims at learning local models {θi = (α, βi)}i∈[b] for each
client as well as {ϕi, µi}i∈[b]. Non-personalised FL could also be considered and naturally embedded in the
proposed distribution alignement framework.

as universal “calibrators” for clients, preventing similar semantic information from different clients from
scattering across the subspace Φ. This scattering would otherwise impede proper subsequent federated
learning of the classification model. As depicted in Figure 1, local embedding functions are learnt by aligning
the mapped probability distributions, denoted as ν

(c)
ϕi

, conditioned on the class c ∈ [C], with C learnable
anchor measures {µc}c∈[C]. This alignment is achieved by minimising their distance.

Remark 1. We want to stress the significance of aligning the class-conditional probability distributions ν
(c)
ϕ

with respect to the anchor distributions µc. Local and independent learning of embedding functions ϕi by each
client does not guarantee alignment of resulting probability distributions in the common subspace Φ. As in
unsupervised multilingual embeddings (Grave et al., 2019), alignments are crucial for preserving semantic
similarity of class information. Misalignment occurs when projecting class-conditionals in a lower-dimensional
space using an algorithm, like t-sne, that seeks at preserving only local similarities. Indeed, data from
different clients are projected in a subspace in which different class-conditionals may overlap. This is also the
case when using a neural network with random weights as a projector or an auto-encoder. Examples of such
phenomena are illustrated in Figure 3 Notably, the figure shows that the alignment with respect to the anchor
distribution is crucial to ensure that the class-conditional distributions are aligned in the common subspace Φ.

Once data from the heterogeneous spaces are embedded in the same latent subspace Φ, we can deploy a
federated learning methodology for training from this novel representation space. While any standard FL
approach e.g. FedAvg (McMahan et al., 2017a) can be used, we consider a personalised FL where each client
has a local model tailored to its specific data distribution as statistical heterogeneities that are still present in
Φ (Tan et al., 2022). Hence, given the aforementioned local embedding functions {ϕi}, the model parameters
{θi ∈ Rdi} and some non-negative weights associated to each client {ωi}i∈[b] such that

∑b
i=1 ωi = 1, we

consider the following empirical risk minimisation problem:

min
θ1:b,ϕ1:b

f(θ1:b, ϕ1:b) =
b∑

i=1
ωifi(θi, ϕi) , (1)

and for any i ∈ [b],

fi(θi, ϕi) = 1
ni

ni∑
j=1

ℓ
(

y
(j)
i , g

(i)
θi

[
ϕi

(
x

(j)
i

)])
. (2)
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where ℓ(·, ·) stands for a classification loss function between the true label y
(j)
i and the predicted one

g
(i)
θi

[ϕi(x(j)
i )] where g

(i)
θi

is the local model that admits a personalised architecture parameterised by θi and
taking as input an embedded feature vector ϕi(x(j)

i ) ∈ Φ.

Objective Function. At this stage, we are able to integrate the FL paradigm and the local embedding
function learning into a global objective function we want to optimise, see (1). Remember that we want
to learn the parameters {θi}i∈[b] of personalised FL models, in conjuction with some local embedding
functions {ϕi}i∈[b] and shared anchor distributions {µc}. In particular, the latter have to be aligned with
class-conditional distributions {ν(c)

ϕi
}. We enforce this alignment via a Wasserstein regularisation term leading

us to a regularised version of the empirical risk minimisation problem defined in (1), namely

θ⋆
1:b, ϕ⋆

1:b, µ⋆
1:C = arg min

θ1:b,ϕ1:b,µ1:C

b∑
i=1

Fi(θi, ϕi, µ1:C) ,

and for any i ∈ [b],

Fi(θi, ϕi, µ1:C) = ωifi(θi, ϕi) + λ1ωi

∑
c∈Yi

W2
2

(
µc, ν

(c)
ϕi

)
+ λ2ωi

∑
c∈Yi

1
J

J∑
j=1

ℓ
(

c, g
(i)
θi

[
Z(j)

c

])
, (3)

where {Z(j)
c ; j ∈ [J ]}c∈[C] stand for samples drawn from {µc}c∈[C], and λ1, λ2 > 0 are regularisation

parameters. The second term in (3) aims at aligning the conditional probability distributions of the
transformed features to the anchors. The third one is an optional term aspiring to calibrate the reference
measures with the classifier in cases where two or more classes are still ambiguous after mapping onto the
common feature space; it has also some benefits to tackle covariate shift in standard FL (Luo et al., 2021).

Design Choices and Justifications. In the sequel, we consider the Gaussian anchor measures µc = N(vc, Σc)
where vc ∈ Rk and c ∈ [C]. One of the key advantages of this Gaussian assumption is that, under mild
assumptions, it guarantees the existence of a transport map T (i) such that T

(i)
# (νi) = µ, owing to Brenier’s

theorem (Santambrogio, 2015) since a mixture of Gaussians admits a density with respect to the Lebesgue
measure. Hence, in our case, learning the local embedding functions boils down to approximating this
transport map T

(i)
# by ϕi. We also approximate the conditional probability measures {ν(c)

ϕi
; c ∈ Yi}i∈[b] by

using Gaussian measures {ν̂(c)
ϕi

= N(m̂(c)
i , Σ̂(c)

i ); c ∈ Yi}i∈[b] such that for any i ∈ [b] and c ∈ [C], m̂
(c)
i and

Σ̂(c)
i stand for empirical mean vector and covariance matrix. The relevance of this approximation is detailed

in Appendix S1.2.

These two Gaussian choices (for the anchor distribution and the class-conditional distributions) allow us to
have a closed-form expression for the Wasserstein distance of order 2 which appears in (3), see e.g. Gelbrich
(1990); Dowson & Landau (1982). More precisely, we have for any i ∈ [b] and c ∈ [C],

W2
2

(
µc, ν

(c)
ϕi

)
=
∥∥∥vc −m

(c)
i

∥∥∥2
+ B2

(
Σc, Σ(c)

i

)
,

where B(·, ·) denotes the Bures distance between two positive definite matrices (Bhatia et al., 2019).
Remark 2. Instead of Gaussian distribution approximations, we can consider more complex probability
distributions. For instance, we can use a Gaussian mixture model (GMM) and still be able to compute cheaply
the Wasserstein distance (Chen et al., 2018). We can even make no hypothesis on the data distribution and
compute the distance for alignment using the linear programming based OT-formulation or use any other
IPM such as the maximum mean discrepancy (MMD) (Gretton et al., 2012). However, in practice, we found
that the closed-form Wasserstein distance achieves slightly better performance than MMD.

Reference Distribution for Regression. For a regression problem, except the change in the loss function,
we need also to define properly the reference distribution. Since our goal is to map all samples for all clients
into a common latent subspace, in which some structural information about regression problem is preserved.
As such, in order to reproduce the idea of using a Gaussian mixture model as a anchor distribution, we propose
to use an infinite number of Gaussian mixtures in which the distribution of x associated to a response y is
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Table 2: Current personalised FL techniques that can be embedded in the proposed framework. The
parameters α, βi stand for model weights while ω ∈ [0, 1].

Algorithm Local model Local weights

FedAvg-FT g
(i)
θi

= gθi θi

L2GD g
(i)
θi

= gθi θi = ωα + (1− ω)βi

FedRep g
(i)
θi

= g
(i)
βi
◦ gα θi = [α, βi]

going to be mapped on a unit-variance Gaussian distribution whose mean depends uniquely on y. Formally,
we define the anchor distribution as

µy = N(m(y), I)

where m(y) is a vector of dimension d that is uniquely defined. In practice, we consider as m(y) = ya + (1−y)b
where a and b are two distinct vectors in Rd.

When training FLIC, this means that for a client i, we can compute W2
2

(
µy, ν

(y)
ϕi

)
based on the set of training

samples {x, y}. In practice, if for a given batch of samples we have a single sample of value x, then the
Wasserstein distance boils to ∥ϕi(x)−m(y)∥2

2, which means that we are going to map x to its corresponding
vector on the segment [a, b].

4 Algorithm

As detailed in (3), we perform personalisation under the FL paradigm by considering local model architectures
{g(i)

θi
}i∈[b] and local weights θ1:b. As an example, we could resort to federated averaging with fine-tuning (e.g.

FedAvg-FT (Collins et al., 2022)), model interpolation (e.g. L2GD (Hanzely & Richtárik, 2020; Hanzely et al.,
2020)) or partially local models (e.g. FedRep (Collins et al., 2021) or the works of Oh et al. (2022); Singhal
et al. (2021)). Table 2 details how these methods can be embedded into the proposed methodology.

In Algorithm 1, we detail the pseudo-code associated to a specific instance of the proposed methodology when
FedRep is resorted to learn model parameters {θi = [α, βi]}i∈[b] under the FL paradigm. In this setting, α
stand for the shared weights associated to the shared layers of a neural network architecture and βi for local
ones aiming at performing personalised classification. Besides these two learnable parameters, the algorithm
also learns the local embedding functions ϕ1:b and the anchor distributions µ1:C . In practice, at a given epoch
t of the algorithm, a subset At+1 ⊆ [b] of clients are selected to participate to the training process.

Those clients receive the current latent anchor distribution µ
(t)
1:C and the current shared representation

α(t). Then, each client locally updates ϕi, βi and her local versions of α(t) and µ
(t)
1:C . Afterwards, clients

send back to the server an updated version of α(t) and µ
(t)
1:C . Updated global parameters α(t+1) and µ

(t+1)
1:C

are then obtained by weighted averaging of client updates on appropriate manifolds. The use of the
Wasserstein loss in (3) naturally leads to perform averaging of the local anchor distributions via a Wasserstein
barycenter; algorithmic details are provided in the next paragraph. In Algorithm 1, we use for the sake of
simplicity the notation DescStep(F (t,m)

i , ·) to denote a (stochastic) gradient descent step on the function
F

(t,m)
i = Fi(β(t,m)

i , ϕ
(t,m)
i , α(t), µ

(t)
1:C) with respect to a subset of parameters in (θi, ϕi, µ1:C). This subset is

specified in the second argument of DescStep. A fully detailed version of Algorithm 1 is provided in the
supplementary material, see Algorithm S2.

Note that we take into account key inherent challenges to federated learning namely partial participation and
communication bottleneck. Indeed, we cope with the client/server upload communication issue by allowing
each client to perform multiple steps (here M ∈ N∗) so that communication is only required every M local
steps. This allows us to consider updating global parameters, locally, via only one stochastic gradient descent
step and hence avoiding the client drift phenomenon (Karimireddy et al., 2020).

6



Under review as submission to TMLR

Algorithm 1 FLIC

Require: initialisation α(0), µ
(0)
1:C , ϕ

(0,0)
1:b , β

(0,0)
1:b .

1: for t = 0 to T − 1 do
2: Sample a set of At+1 of active clients.
3: for i ∈ At+1 do
4: The central server sends α(t) and µ

(t)
1:C to At+1.

5: // Update local parameters
6: for m = 0 to M − 1 do
7: ϕ

(t,m+1)
i ← DescStep

(
F

(t,m)
i , ϕ

(t,m)
i

)
.

8: β
(t,m+1)
i ← DescStep

(
F

(t,m)
i , β

(t,m)
i

)
.

9: ϕ
(t+1,0)
i = ϕ

(t,M)
i .

10: β
(t+1,0)
i = β

(t,M)
i .

11: // Update global parameters
12: α

(t+1)
i ← DescStep

(
F

(t,M)
i , α(t)

)
.

13: µ
(t+1)
i,1:C ← DescStep

(
F

(t,M)
i , µ

(t)
1:C

)
.

14: // Communication with the server
15: Send α

(t+1)
i and µ

(t+1)
i,1:C to central server.

16: // Averaging global parameters
17: α(t+1) = b

|At+1|
∑

i∈At+1
wiα

(t+1)
i

18: µ
(t+1)
1:C ← WassersteinBarycenter({µ(t+1)

i,1:C })
Ensure: parameters α(T ), µ

(T )
1:C , ϕ

(T,0)
1:b , β

(T,0)
1:b .

Averaging Anchor Distributions. In this paragraph, we provide algorithmic details regarding steps
14 and 20 in Algorithm 1. For any c ∈ [C], the anchor distribution µc involves two learnable parameters
namely the mean vector vc and the covariance matrix Σc. Regarding the former, step 14 stands for a
(stochastic) gradient descent step aiming to obtain a local version of vc denoted by v

(t+1)
i,c and step 20 boils

down to compute v
(t+1)
c = (b/|At+1|)

∑
i∈At+1

ωiv
(t+1)
i,c . To enforce the positive semi-definite constraint of the

covariance matrix, we rewrite it as Σc = LcL⊤
c where Lc ∈ Rk×k and optimise in step 14 with respect to the

factor Lc instead of Σc. We can handle the gradient computation of the Bures distance in step 14 using the
work of Muzellec & Cuturi (2018); and obtain a local factor L

(t+1)
i,c at iteration t. In step 20, we compute

L
(t+1)
c = (b/|At+1|)

∑
i∈At+1

ωiL
(t+1)
i,c and set Σ(t+1)

c = L
(t+1)
c [L(t+1)

c ]⊤. When λ2 = 0 in (3), these mean vector
and covariance matrix updates exactly boil down to perform one stochastic (because of partial participation)
gradient descent step to solve the Wasserstein barycenter problem arg minµc

∑b
i=1 ωiW2

2(µc, ν
(c)
ϕi

).

Pre-training ϕ1:C . Owing to the introduction of a reference distribution which carries semantical information,
each local feature transformation function can be pretrained by optimising the loss

∑
c∈Yi

W2
2

(
µc, ν

(c)
ϕi

)
.

While in theory, pre-training may not be necessary, we believe that it helps reaching a better solution of the
federated learning problem as parameters α and βi are optimised starting from a better latent representation
of νϕi . This is a phenomenon that has been observed in the context of fine-tuning (Kumar et al., 2022) or
domain generalisation (Rame et al., 2022).

Remark 3. Regarding privacy, FL ensures that raw data never leaves the client device. In our case, the
only information that is sent to the server is the local anchor distribution µ

(t+1)
i,1:C and the local version global

parameters α
(t+1)
i . So we believe that the risk of privacy leakage of FLIC is similar to the one of FedAvg

(McMahan et al., 2017b).

7



Under review as submission to TMLR

Figure 2: Red dashed line indicates that the two embedded features ϕ⋆
i (x(j)

i ) and ϕ̂i(x(j)
i ) come from the

same initial raw feature x
(j)
i . On test data, mean prediction errors for both FedRep operating on ϕ⋆

i (x(j)
i )

and Algorithm S3 (referred to as FLIC-FedRep) are similar (≈ 4.98× 10−5).

5 Non-Asymptotic Convergence Guarantees in a Simplified Setting

Deriving non-asymptotic convergence bounds for Algorithm 1 in the general case is challenging since the
considered C-class classification problem leads to jointly solving personalised FL and federated Wasserstein
barycenter problems. Regarding the latter, obtaining non-asymptotic convergence results is still an active
research area in the centralised learning framework (Altschuler et al., 2021). As such, we propose to analyse
a simpler regression framework where the anchor distribution is known beforehand and not learnt under the
FL paradigm. While we acknowledge that this theoretical analysis is based on a simplified setting of our
approach, it still offers insightful perspective and we leave the general case for future work.

More precisely, we assume that x
(j)
i ∼ N(mi, Σi) with mi ∈ Rki and Σi ∈ Rki×ki for i ∈ [b], j ∈ [ni].

In addition, we consider that the continuous scalar labels are generated via the oracle model y
(j)
i =

(A⋆β⋆
i )⊤ϕ⋆

i (x(j)
i ) where A⋆ ∈ Rk×d, β⋆

i ∈ Rd and ϕ⋆
i (·) are ground-truth parameters and feature transformation

function, respectively. We make the following assumptions on the ground truth, which are inherited from
those of FedRed.
H1. (i) For any i ∈ [b], j ∈ [ni], embedded features ϕ⋆

i (x(j)
i ) are distributed according to N(0k, Ik).

(ii) Ground-truth model parameters satisfy ∥β⋆
i ∥2 =

√
d for i ∈ [b] and A⋆ has orthonormal columns.

(iii) For any t ∈ {0, . . . , T − 1}, |At+1| = b′ with 1 ≤ b′ ≤ b, and if we select b′ clients, their ground-truth
head parameters {β⋆

i }i∈At+1 span Rd.
(iv) In (2), ℓ(·, ·) is the ℓ2 norm, ωi = 1/b, θi = [A, βi] and g

(i)
θi

(x) = (Aβi)⊤x for x ∈ Rk.

Under H1-(i), (Delon et al., 2022, Theorem 4.1) show that ϕ⋆
i can be expressed as a non-unique affine map

with closed-form expression. To align with the true latent anchor distribution µ = N(0k, Ik), we propose to
estimate ϕ̂i by leveraging this closed-form mapping between N(mi, Σi) and µ. Because of the non-unicity of
ϕ⋆

i , we show in Theorem 1 that we can only recover it up to a matrix multiplication. Interestingly, Theorem 1
also proves that the global representation A(T ) learnt via FedRep (see Algorithm S3 in Appendix) is able to
correct this feature mapping indetermination. Associated convergence behavior is illustrated in Figure 2 on a
toy example whose details are postponed to Appendix S2.
Theorem 1. Assume H1. Then, for any xi ∈ Rki , we have ϕ̂i(xi) = Qϕ⋆

i (xi) where Q ∈ Rk×k is of the form
diagk(±1). Under additional technical assumptions detailed in Appendix S2, we have for any t ∈ {0, . . . , T−1}
and with high probability,

dist(A(t+1), QA⋆) ≤ (1− κ)(t+1)/2dist(A(0), QA⋆) ,

where κ ∈ (0, 1) is detailed explicitly in Theorem S3 and dist denotes the principal angle distance.
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6 Numerical Experiments

For numerically validating the benefits associated to the proposed methodology FLIC, we consider toy
problems with different characteristics of heterogeneity; as well as experiments on real data, namely (i) a
digit classification problem from images of different sizes, (ii) an object classification problem from either
images or text captioning on clients, and (iii) a Brain-Computer Interfaces problem.

Baselines. Since the problem we are addressing is novel, no FL competitor in the literature can serve as a
baseline beyond local learning. However, we propose to modify the methodology proposed by Makhija et al.
(2022) and Collins et al. (2022) to make them applicable to clients with heterogeneous feature spaces. The
method proposed by Makhija et al. (2022) handles local representation models with different architectures.
Since their key idea is to align the latent representations of fixed-dimensionality inputs shared by the server
to all clients, we propose an alternative approach called FedHeNN, that works for clients with different feature
spaces, where we build a Representation Alignment Dataset (RAD) based on the largest feature space and
then prune it to obtain a lower-dimensional RAD for each client. We can also adapt the FedRep approach
(Collins et al., 2022) to our setting by considering a local feature transformation followed by a shared global
representation model and a local classification head. This approach, denoted as HetFedRep, maps the input
data to fixed dimensionality before the shared global representation model. We can understand this approach
as a special case of FLiC where the local feature transformation are not enforced to align with the anchor
distributions. We adapted our network architecture to match the baselines by considering two variants.
Following Makhija et al. (2022), we treated all layers except the last as the representation learning module for
a fair comparison. Therefore, in our approach, the alignment applies to the penultimate layer, and the last
layer is the classifier layer. We call this model FLIC-Class. Additionally, we introduced another model, called
FLIC-HL, similar to FedRep, but with an extra trainable global hidden layer with α and βi as parameters for
respectively the shared representation and classification layers.

Data Sets. We consider four different classification problems to assess the performances of our approach.
For all simulations, we assume prior probability shift e.g each client will have access to data of only specific
classes. The first problem is a toy problem with 20 classes and Gaussian class-conditional distributions, where
we conduct two sub-experiments: adding random spurious features and applying a random linear mapping,
both of random dimensionality on each client. Section S3.1 in the supplementary material provides more
details. The second problem involves digit classification using MNIST and USPS datasets, with dimensions
of 28× 28 and 16× 16, respectively. Each client hosts a subset of either MNIST or USPS dataset. The third
experiment addresses a multimodal problem using a subset of the TextCaps dataset (Sidorov et al., 2020),
an image captioning dataset. We converted it into a 4-class classification problem with 12, 000 and 3, 000
examples for training and testing, respectively, based on caption text or image. We used pre-trained models
(Bert and ResNet) to embed the caption and image into 768-dimensional and 512-dimensional vectors. To
create heterogeneity, we randomly pruned 10% of features on each client. Each client hosts either image or
text embeddings. Finally, the fourth problem is a real medical problem denoted as Brain-Computer Interface
(BCI) which consists in classifying mental imagery EEG datasets into five classes. The datasets we have
considered is based on six datasets from the mental imagery MOABB data repository (Jayaram & Barachant,
2018) (details are given in Section S3.1 in the supplement). Each of those EEG datasets have been acquired
on different subjects, have different number of channels and classes. We used a vectorized channel-dependent
covariance matrices representations of each EEG signals as a feature (Yger et al., 2016; Barachant et al., 2022).
Hence, the dimensionality of the feature space is different for each dataset. We have considered each subject
in all the experiments as a client owning his own dataset. In practice, the number of training examples on
client ranges from 30 to 600 while the dimensionality of the features goes from 6 to 1,830.

Illustrating the need for a reference distribution. The main bottleneck for applying FL algorithms to
heterogeneous feature spaces is the lack of a common space. However, one can argue that this common space
can be created by projecting the data onto a joint common space. As we have claimed, we illustrated here
that this is not sufficient. To do so, we have considered 10 different classification problems with Gaussian
class-conditionals of random dimensionality ranging from 3 to 10. We have projected those class-conditionals
onto a common space using different projection algorithms, namely t-sne (Van der Maaten & Hinton, 2008)
and multi-dimensional scaling (MDS) (Kruskal, 1964). The results are shown in Figure 3. We can note that
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Figure 3: Projecting Gaussian class-conditionals of 10 different classification problems, with random di-
mensionality ranging from 3 to 10. (left) t-sne projection. (right) Multi Dimensional Scaling projection.
Different tones of a color represent the same class-conditionals of a given problem. From this figure, we
remark the overlapping of classes regardless of the algorithm used for projection (t-sne uses a random
initialization and while MDS uses a deterministic ones).This emphasizes the need for a proper alignement of
the class-conditionals during projection.

jsut projecting into a common subspace without taking into account the semantic of the class-conditionals
leads to overlapping of classes. This emphasizes the need for a proper alignment of the class-conditionals
during projection, based on reference distribution as we propose in FLIC.

Experimental Setting. For the experimental analysis, we use the codebase of Collins et al. (2021) with
some modifications to meet our setting. For all experiments, we consider T = 50 communication rounds
for all algorithms; and at each round, a client participation rate of r = 0.1. The number of local epochs
for training has been set to M = 10. As optimisers, we have used an Adam optimiser with a learning rate
of 0.001 for all problems and approaches. Further details are given in Section S3.3 in the supplement. For
each component of the latent anchor distribution, we consider a Gaussian with learnable mean vectors and
fixed Identity covariance matrix. As such, the Wasserstein barycenter computation boils down to simply
average the mean of client updates and for computing the third term in (3), we just sample from the Gaussian
distribution. Accuracies are computed as the average accuracy over all clients after the last epoch in which
all local models are trained.

Results on Toy Data Sets. Figure 4 depicts the performance, averaged over 5 runs, of the different
algorithms with respect to the number of clients and when only 3 classes are present in each client. For
both data sets, we can note that for the noisy feature setting, FLIC improves on FedHeNN of about 3% of
accuracy across the setting, performs better than local learning and is comparable to HetFedRep. For the
linear mapping setting, while HetFedRep fails, FLIC achieves better than other approaches with a gain of
performance of about 4% while the gap tends to decrease as the number of clients increases. Interestingly,
FLIC-HL performs slightly better than FLIC-Class showing the benefit of using a shared representation
layer α. Figure 5 also illustrates how samples embedded with ϕi evolve during training towards the anchor
distribution µ1:C . At start, they are clustered client-wise and then converge towards the relevant classwise
anchor distribution.

Results on Digits and TextCaps Data Sets. Performance, averaged over 3 runs, of all algorithms on
the real-word problems are reported in Table 3. For the Digits data set problem, we first remark that in all
situations, FL algorithms performs a bit better than local learning. In addition, both variants of FLIC achieve
better accuracy than competitors. Difference in performance in favor our FLIC reaches 3% for the most
difficult problem. For the TextCaps data set, gains in performance of FLIC-HL reach about 4% across settings.
While FedHeNN and FLIC algorithms follow the same underlying principle (alignment of representation in a
latent space), our framework benefits from the use of the latent anchor distributions, avoiding the need of
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Figure 4: Performance of FLIC and competitors on the toy data sets with respect to the number of clients.
(left) Gaussian classes in dimension k = 5 with added noisy feature. (right) Gaussian classes in dimension
k = 30, transformed by a random linear mapping. Only 3 classes are present on each client among the 20
possible ones.

Figure 5: . 2D t-sne projection of 5 classes partially shared by 3 clients for the toy linear mapping dataset
after learning the local transformation functions for (left) 10 epochs, (middle) 50 epochs, (right) 100 epochs.
The three different markers represent the different clients while classes are represented by different color tones.
The ⋆ marker represents the class-conditional mean of the reference distribution. We note that training set
converges towards those means.

sampling from the original space. Instead, FedHeNN may fail as the sampling strategy of their RAD approach
suffers from the curse of dimensionality and does not properly lead to a successful feature alignment.

Results on Brain-Computer interfaces. For the BCI problem, performances are in Table 3. In this case,
the Local model performance corresponds also to the usual BCI performance measure as models are usually
subject-specific. We can note that FLIC-HL achieves better performance than all competitors with a gain of
about 3% of accuracy compared to BCI baseline. In addition, we pave the way to learning BCI models with
heterogeneous datasets.

Preprocessing datasets to same dimensionality. Some preprocessing can be applied to the above
datasets so that standard "same dimensionality" FL methods can be considered. We can apply a simple
resizing of an image. For the TextCaps classification problem we can extract features from multimodal
embedder such as CLIP Radford et al. (2021b) in which embeddings between text and images are aligned
and of dimension 512. For the BCI problem, we used EEGs acquired from the set of common electrodes. We
have run the same experiments as above but using these preprocessings and also compared to plain FedRep
and report the results in Table 4. FLIC still achieves slightly better performance than competitors on 7 out
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Table 3: Performance over 3 runs of our FLIC model and the competitors on some real-data problems (Digits
and TextCaps data set).

Data sets (setting) Local FedHeNN HetFedRep FLIC-Class FLIC-HL

Digits (b = 100, 3 Classes/client) 97.49 ± 0.4 97.45 ± 0.5 57.85 ± 1.4 97.83 ± 0.3 97.70 ± 0.2
Digits (b = 100, 5 Classes/client) 96.15 ± 0.3 96.15 ± 0.2 54.87 ± 5.0 96.46 ± 0.6 96.54 ± 0.7
Digits (b = 200, 3 Classes/client) 93.33 ± 0.2 93.40 ± 0.4 67.99 ± 2.2 94.50 ± 0.3 94.51 ± 0.3
Digits (b = 200, 5 Classes/client) 87.48 ± 1.5 87.22 ± 1.8 48.88 ± 3.0 91.11 ± 0.6 91.10 ± 0.7

TextCaps (b = 100, 2 Classes/client) 84.19 ± 0.8 83.99 ± 0.7 87.05 ± 0.7 89.14 ± 1.1 89.68 ± 0.7
TextCaps (b = 100, 3 Classes/client) 76.04 ± 0.8 75.39 ± 0.9 77.99 ± 0.6 81.27 ± 0.2 81.50 ± 0.2
TextCaps (b = 200, 2 Classes/client) 83.78 ± 1.8 83.89 ± 1.7 85.48 ± 1.5 87.73 ± 0.8 87.74 ± 1.3
TextCaps (b = 200, 3 Classes/client) 74.95 ± 1.1 74.77 ± 1.0 75.73 ± 0.8 79.08 ± 0.7 78.49 ± 0.7

BCI (b=54) 73.51 ± 0.8 70.84 ± 1.0 75.03 ± 0.6 75.17 ± 0.9 76.27 ± 0.2
BCI (b=40) 73.98 ± 0.2 71.48 ± 0.6 74.23 ± 0.7 75.09 ± 1.0 75.82 ± 0.3

Table 4: Performance over 3 runs of our FLIC model and the competitors on the same real-world problems
when processed so as to have same input sizes.

Data sets (setting) Local FedHeNN HetFedRep FedRep FLIC-Class FLIC-HL
Digits-Resize (b = 100, 3 Classes) 97.70 97.62 92.63 95.76 98.14 98.05
Digits-Resize (b = 100, 5 Classes) 96.36 96.37 94.90 96.07 96.94 96.91
Digits-Resize (b = 200, 3 Classes) 93.62 93.56 69.21 92.93 94.73 94.54
Digits-Resize (b = 200, 5 Classes) 87.74 87.49 69.27 94.57 91.40 91.16
TextCaps-Clip (b = 100, 2 Classes) 96.55 96.44 96.45 82.31 96.59 96.65
TextCaps-Clip (b = 100, 3 Classes) 94.38 94.21 94.13 76.47 94.34 94.21
TextCaps-Clip (b = 200, 2 Classes) 96.27 96.16 96.36 83.33 96.55 96.44
TextCaps-Clip (b = 200, 3 Classes) 93.78 93.55 93.74 73.23 94.04 93.88
BCI-common (b=40) 71.24 70.63 72.09 71.50 72.17 72.12

of 9 settings, but more importantly, one should highlight the gain in performance on BCI problems when
considering all sensors at disposal.

7 Conclusion

We have introduced a novel and general framework, referred to as FLIC, for personalised FL when clients
have heterogeneous feature spaces. Under this framework, we proposed a FL algorithm involving two key
components: (i) a local feature embedding function; and (ii) a latent anchor distribution which allows to
match similar semantical information from each client. Experiments on relevant data sets have shown that
FLIC achieves better performances than competing approaches. Finally, we provided theoretical support to
the proposed methodology, notably via a non-asymptotic convergence result.

Limitations and Broader impacts of FLIC. One main limitation of FLIC is that it requires a common
feature space to be defined with an ad-hoc dimensionality. While this dimensionality can be chosen by the
user, it is not clear how to select it in practice and has to be set to default value (in our case 64). In addition,
the proposed approach has a computational overhead due to the need of learning the local embedding
functions. FLIC has the potential to widen the scope of privacy-aware FL applications by allowing clients
to have heterogeneous feature spaces. This is particularly relevant for medical applications where data are
collected from different sources and may have different formats.
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Appendices
Personalised Federated Learning On Heterogeneous Feature Spaces

Notations and conventions. We denote by B(Rd) the Borel σ-field of Rd, M(Rd) the set of all Borel
measurable functions f on Rd and ∥·∥ the Euclidean norm on Rd. For µ a probability measure on (Rd,B(Rd))
and f ∈ M(Rd) a µ-integrable function, denote by µ(f) the integral of f with respect to (w.r.t.) µ. Let
µ and ν be two sigma-finite measures on (Rd,B(Rd)). Denote by µ ≪ ν if µ is absolutely continuous
w.r.t. ν and dµ/dν the associated density. We say that ζ is a transference plan of µ and ν if it is a
probability measure on (Rd×Rd,B(Rd×Rd)) such that for all measurable set A of Rd, ζ(A×Rd) = µ(A) and
ζ(Rd × A) = ν(A). We denote by T (µ, ν) the set of transference plans of µ and ν. In addition, we say that a
couple of Rd-random variables (X, Y ) is a coupling of µ and ν if there exists ζ ∈ T (µ, ν) such that (X, Y ) are
distributed according to ζ. We denote by P1(Rd) the set of probability measures with finite 1-moment: for all
µ ∈ P1(Rd),

∫
Rd ∥x∥dµ(x) <∞. We denote by P2(Rd) the set of probability measures with finite 2-moment:

for all µ ∈ P2(Rd),
∫
Rd ∥x∥2dµ(x) < ∞. We define the squared Wasserstein distance of order 2 associated

with ∥ · ∥ for any probability measures µ, ν ∈ P2(Rd) by

W2
2(µ, ν) = inf

ζ∈T (µ,ν)

∫
Rd×Rd

∥x− y∥2dζ(x, y) .

By (Villani, 2008, Theorem 4.1), for all µ, ν probability measures on Rd, there exists a transference plan
ζ⋆ ∈ T (µ, ν) such that for any coupling (X, Y ) distributed according to ζ⋆, W2(µ, ν) = E[∥x− y∥2]1/2. This
kind of transference plan (respectively coupling) will be called an optimal transference plan (respectively
optimal coupling) associated with W2. By (Villani, 2008, Theorem 6.16), P2(Rd) equipped with the Wasserstein
distance W2 is a complete separable metric space. For the sake of simplicity, with little abuse, we shall use
the same notations for a probability distribution and its associated probability density function. For n ≥ 1,
we refer to the set of integers between 1 and n with the notation [n]. The d-multidimensional Gaussian
probability distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d is denoted by N(µ, Σ). Given
two matrices M, N ∈ Rk×d, the principal angle distance between the subspaces spanned by the columns of
M and N is given by dist(M, N) = ∥M̂†

⊥N̂∥2 = ∥N̂†
⊥M̂∥2 where M̂, N̂ are orthonormal bases of Span(M)

and Span(N), respectively. Similarly, M̂⊥, N̂⊥ are orthonormal bases of orthogonal complements Span(M)⊥

and Span(N)⊥, respectively. This principal angle distance is upper bounded by 1, see (Jain et al., 2013,
Definition 1).

Outline. This supplementary material aims at providing the interested reader with a further understanding
of the statements pointed out in the main paper. More precisely, in Appendix S1, we support the proposed
methodology FLIC with algorithmic and theoretical details. In Appendix S2, we prove the main results
stated in the main paper. Finally, in Appendix S3, we provide further experimental design choices and show
complementary numerical results.

S1 Algorithmic and Theoretical Insights

In this section, we highlight alternative but limited ways to cope with feature space heterogeneity; and justify
the usage, in the objective function (3) of the main paper, of Wasserstein distances with empirical probability
distributions instead of true ones. In addition, we detail the general steps depicted Algorithm 1.

S1.1 Some Limited but Common Alternatives to Cope with Feature Space Heterogeneity

Depending on the nature of the spaces {Xi}i∈[b], the feature transformation functions {ϕi}i∈[b] can be either
known beforehand or more difficult to find. As an example, if for any i ∈ [b], Xi ⊆ X , then we can set mask
functions as feature transformation functions in order to only consider features that are shared across all
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the clients. Besides, we could consider multimodal embedding models to perform feature transformation
on each client Duquenne et al. (2021). For instance, if clients own either pre-processed images or text of
titles, descriptions and tags, then we can use the Contrastive Language-Image Pre-Training (CLIP) model as
feature transformation function Radford et al. (2021a). These two examples lead to the solving of a classical
(personalised) FL problem which can be performed using existing state-of-the-art approaches. However, when
the feature transformation functions cannot be easily found beforehand, solving the FL problem at stake
becomes more challenging and has never been addressed in the federated learning literature so far, up to the
authors’ knowledge.

S1.2 Use of Wasserstein Losses Involving Empirical Probability Distributions

Since the true probability distributions {ν(c)
ϕi

; c ∈ Yi}i∈[b] are unknown a priori, we propose in the main paper
to estimate the latter using {ν̂(c)

ϕi
; c ∈ Yi}i∈[b] and to replace W2

2

(
µc, ν

(c)
ϕi

)
by W2

2

(
µc, ν̂

(c)
ϕi

)
in the objective

function (3) in the main paper. As shown in the following result, this assumption is theoretically grounded
when the marginal distributions of the input features are Gaussian.

Theorem S2. For any i ∈ [b] and c ∈ [C], let n
(c)
i = |D(c)

i | where D(c)
i denotes the subset of the local data

set Di only involving observations associated to the label c. Besides, assume that ν
(c)
ϕi

is Gaussian with mean
vector m

(c)
i ∈ Rk and full-rank covariance matrix Σ(c)

i ∈ Rk×k. Then, we have in the limiting case n
(c)
i →∞,

√
n

(c)
i

(
W2

2

(
µc, ν̂

(c)
ϕi

)
−W2

2

(
µc, ν

(c)
ϕi

)) in distribution
−−−−−−−−−−→ Z

(c)
i ,

where Z
(c)
i ∼ N(0, s

(c)
i ) and s

(c)
i = 4(m(c)

i −vc)⊤Σ(c)
i (m(c)

i −vc)+2Tr(Σ(c)
i Σc)−4

∑k
j=1 κ

1/2
j r⊤

j Σ−1/2
c Σ(c)

i Σ1/2
c rj ,

with {κj , rj}j∈[k] standing for (eigenvalue, eigenvector) pairs of the symmetric covariance matrix Σ(c)
i .

Proof. The proof follows from (Rippl et al., 2016, Theorem 2.1) with the specific choices µ1 = ν
(c)
ϕi

, µ2 = µc

and µ̂1 = ν̂
(c)
ϕi

which are defined in Section 3 in the main paper.

S1.3 Detailed Pseudo-Code for Algorithm 1

In Algorithm S2, we provide algorithmic support to Algorithm 1 in the main paper by detailing how to perform
each step. Note that we use the decomposition Σ = LL⊤ to enfore the positive semi-definite constraint for
the covariance matrix Σ.
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Algorithm S2 Detailed version of FLIC when using FedRep

Require: initialisation α(0), µ
(0)
1:C = [Σ(0)

1:C , v
(0)
1:C ] with Σ(0)

c = L
(0)
c [L(0)

c ]⊤, ϕ
(0,0)
1:b , β

(0,0)
1:b and step-size η ≤ η̄ for some η̄ > 0.

1: for t = 0 to T − 1 do
2: Sample a set of At+1 of active clients.
3: for i ∈ At+1 do
4: The central server sends α(t) and µ

(t)
1:C to At+1.

5: // Update local parameters
6: for m = 0 to M − 1 do
7: Sample a fresh batch I(i,m)

t+1 of n′
i samples with n′

i ∈ [ni].
8: Sample Z

(j,t,m)
c ∼ µ

(t)
c for j ∈ I(i,m)

t+1 and c ∈ Yi via Z
(j,t,m)
c = v

(t)
c + L

(t)
c ξ

(t,m)
i where ξ

(t,m)
i ∼ N(0k, Ik).

9: ϕ
(t,m+1)
i = ϕ

(t,m)
i − η

ni

|I(i,m)
t+1 |

∑
j∈I(i,m)

t+1

∇ϕi ℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,m)
i

]

[
ϕ

(t,m)
i

(
x

(j)
i

)])
−

ηλ1
∑
c∈Yi

∇ϕi W2
2

(
µ(t)

c , ν
(c)
ϕ

(t,m)
i

)
.

10: β
(t,m+1)
i ← β

(t,m)
i − η

ni

|I(i,m)
t+1 |

∑
j∈I(i,m)

t+1

Bj

11: with Bj =
{
∇βi ℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,m)
i

]

[
ϕ

(t,m)
i

(
x

(j)
i

)])
− ηλ2

∑
c∈Yi

∇βi ℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,m)
i

]

[
Z

(j,t,m)
c

])}
.

12: ϕ
(t+1,0)
i = ϕ

(t,M)
i .

13: β
(t+1,0)
i = β

(t,M)
i .

14: // Update global parameters
15: α

(t+1)
i ← α(t) − η

ni

|I(i,M)
t+1 |

∑
j∈I(i,M)

t+1

Aj

16: with Aj =
{
∇αℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,M)
i

]

[
ϕ

(t,M)
i

(
x

(j)
i

)])
− ηλ2

∑
c∈Yi

∇αℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,M)
i

]

[
Z

(j,t,M)
c

])}
.

17: for c = 1 to C do
18: Update m̂

(c,t)
i , Σ̂(c,t)

i using ϕ
(t,M)
i .

19: v
(t+1)
i,c = v

(t)
c − ηλ1∇vc

∥∥∥v
(t)
c − m̂

(c,t)
i

∥∥∥2
− ηλ2

∑
c∈Yi

ni

|I(i,m)
t+1 |

∑
j∈I(i,m)

t+1

∇vc ℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,M)
i

]

[
Z(j,t,M)

c

])
.

20: L
(t+1)
i,c = L

(t)
c −ηλ1∇LcB

2
(

L
(t)
c [L(t)

c ]⊤, Σ̂(c,t)
i

)
−ηλ2

∑
c∈Yi

ni

|I(i,m)
t+1 |

∑
j∈I(i,m)

t+1

∇Lc ℓ

(
y

(j)
i , g

(i)
[α(t),β

(t,M)
i

]

[
Z(j,t,M)

c

])
.

21: // Communication with the server
22: Send α

(t+1)
i , v

(t+1)
i,1:C and L

(t+1)
i,1:C to central server.

23: // Averaging global parameters
24: α(t+1) = b

|At+1|
∑

i∈At+1
wiα

(t+1)
i .

25: for c = 1 to C do
26: v

(t+1)
c = (b/|At+1|)

∑
i∈At+1

ωiv
(t+1)
i,c .

27: L
(t+1)
c = (b/|At+1|)

∑
i∈At+1

ωiL
(t+1)
i,c and set Σ(t+1)

c = L
(t+1)
c [L(t+1)

c ]⊤.

Ensure: parameters α(T ), µ
(T )
1:C , ϕ

(T,0)
1:b , β

(T,0)
1:b .

S1.4 Additional Algorithmic Insights

Scalability. When the number of classes C is large, both local computation and communication costs are
increased. In this setting, we propose to partition all the classes into Cmeta ≪ C meta-classes and consider
reference measures {µc}c∈[Cmeta] associated to these meta-classes. As an example, if we are considering a
dataset made of features associated to animals, the meta-class refers to an animal (e.g. a dog) and the class
refers to a specific breed (e.g. golden retriever).

Privacy Consideration. As other standard (personalised) FL algorithms, FLIC satisfies first-order privacy
guarantees by not allowing raw data exchanges but rather exchanges of local Gaussian statistics. Note that
FLIC stands for a post-hoc approach and can be combined with other privacy/confidentiality techniques such
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as differential privacy Dwork & Roth (2014), secure aggregation via secure multi-party computation Chen
et al. (2022) or trusted execution environments Mo et al. (2021).

Inference on New Clients. When a client who has not participated to the training procedure appears,
there is no need to re-launch a potentially costly federated learning procedure. Instead, the server sends
the shared parameters {α(T ), µ

(T )
1:C} to the new client and the latter only needs to learn the local parameters

{ϕi, βi}.

S2 Proof of Theorem 1

This section aims at proving Theorem 1 in the main paper. To this end, we first provide in Appendix S2.1 a
closed-form expression for the estimated embedded features based on the features embedded by the oracle.
Then, in Appendix S2.3, we show technical lemmata that will be used in Appendix S2.2 to show Theorem 1.

To prove our results, we consider the following set of assumptions.

H1. (i) For any i ∈ [b], j ∈ [ni], ground-truth embedded features ϕ⋆
i (x(j)

i ) are distributed according to
N(0k, Ik).
(ii) Ground-truth model parameters satisfy ∥β⋆

i ∥2 =
√

d for i ∈ [b] and A⋆ has orthonormal columns.
(iii) For any t ∈ {0, . . . , T − 1}, |At+1| = ⌊rb⌋ with 1 ≤ ⌊rb⌋ ≤ b, and if we select ⌊rb⌋ clients, their
ground-truth head parameters {β⋆

i }i∈At+1 span Rd.
(iv) In (2) in the main paper, ℓ(·, ·) is the ℓ2 norm, ωi = 1/b, θi = [A, βi] and g

(i)
θi

(x) = (Aβi)⊤x for x ∈ Rk.

S2.1 Estimation of the Feature Transformation Functions

As in Section 4 in the main paper, we assume that x
(j)
i ∼ N(mi, Σi) with mi ∈ Rki and Σi ∈ Rki×ki for

i ∈ [b], j ∈ [ni]. In addition, we consider that the continuous scalar labels are generated via the oracle
model y

(j)
i = (A⋆β⋆

i )⊤ϕ⋆
i (x(j)

i ) where A⋆ ∈ Rk×d, β⋆
i ∈ Rd and ϕ⋆

i (·) are ground-truth parameters and feature
transformation function, respectively. Under H1-(i), the oracle feature transformation functions {ϕ⋆

i }i∈[b]
are assumed to map ki-dimensional Gaussian distributions N(mi, Σi) to a common k-dimension Gaussian
N(0k, Ik). As shown in (Delon et al., 2022, Theorem 4.1), there exist closed-form expressions for {ϕ⋆

i }i∈[b],
which can be shown to stand for solutions of a Gromov-Wasserstein problem restricted to Gaussian transport
plans. More precisely, these oracle feature transformation stand for affine maps and are of the form, for any
i ∈ [b],

ϕ⋆
i

(
x

(j)
i

)
=
[
Ĩ

(i,⋆)
k (D(k)

i )−1/2 0k,ki−k

] (
x

(j)
i −mi

)
,

where Ĩ
(i,⋆)
k = diagk(±1) is a k-dimensional diagonal matrix with diagonal elements in {−1, 1}, Σi = PiDiP

⊤
i

is the diagonalisation of Σi and D
(k)
i stands for the restriction of Di to the first k components. In the

sequel, we assume that all oracle feature transformation functions share the same randomness, that is
Ĩ

(i,⋆)
k = Ĩ⋆

k = diagk(±1).

For the sake of simplicity, we assume that we know the true latent distribution of ϕ⋆
i (x(j)

i ) and as such consider
a pre-fixed reference latent distribution that equals the latter, that is µ = N(0k, Ik). Since we know from
(Delon et al., 2022, Theorem 4.1) that there exist mappings between Gaussian distributions with supports
associated to different metric spaces, we propose an estimate for the ground-truth feature transformation
functions defined by for any i ∈ [b],

ϕ̂i

(
x

(j)
i

)
=
[
Ĩk(D(k)

i )−1/2 0k,ki−k

] (
x

(j)
i −mi

)
,

where Ĩk = diagk(±1). By noting that Ĩk = QĨ⋆
k , where Q ∈ Rk×k is a diagonal matrix of the form diagk(±1),

it follows that
ϕ̂i

(
x

(j)
i

)
= Qϕ⋆

i

(
x

(j)
i

)
. (S1)
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Algorithm S3 FLIC-FedRep for linear regression and Gaussian features
Require: step size η, number of outer iterations T , participation rate r ∈ (0, 1), diagonalizations Σi =

PiDiP
⊤
i sorting eigenvalues in decreasing order.

1: // Estimation of embedded features
2: For each client i ∈ [b], set ϕ̂i

(
x

(j)
i

)
=
[
Ĩk(D(k)

i )−1/2 0k,ki−k

] (
x

(j)
i −mi

)
.

3: // Initialisation A(0)

4: Each client i ∈ [b] sends Zi = (1/ni)
∑ni

j=1(y(j)
i )2ϕ̂i

(
x

(j)
i

)
[ϕ̂i

(
x

(j)
i

)
]⊤ to the central server.

5: The central server computes UDU⊤ ← rank−d SVD
(

(1/b)
∑b

i=1 Zi

)
.

6: The central server initialises A(0) = U .
7: for t = 0 to T − 1 do
8: Sample a set of At+1 of active clients such that |At+1| = ⌊rb⌋.
9: for i ∈ At+1 do

10: The central server sends A(t)to At+1.
11: // Update local parameters
12: β

(t+1)
i = arg minβi

∑ni

j=1

(
y

(j)
i − β⊤

i [A(t)]⊤ϕ̂i

(
x

(j)
i

))2
.

13: // Update global parameters
14: A

(t+1)
i = A(t) − η∇A

∑ni

j=1

(
y

(j)
i − [β(t+1)

i ]⊤A⊤ϕ̂i

(
x

(j)
i

))2
.

15: // Communication with the server
16: Send A

(t+1)
i to the central server.

17: // Averaging and orthogonalisation of global parameter
18: Ā(t+1) = 1

⌊rb⌋
∑

i∈At+1
A

(t+1)
i .

19: A(t+1), R(t+1) ← QR
(
Ā(t+1)).

Ensure: parameters A(T ), β
(T )
1:b .

In Appendix S2.2, the equation (S1) will allow us to relate the ground-truth labels y
(j)
i = (A⋆β⋆

i )⊤ϕ⋆
i (x(j)

i )
with estimated predictions ŷ

(j)
i = (A(T )β

(T )
i )⊤ϕ̂i(x(j)

i ) via Algorithm S3 starting from the same embedded
features.

S2.2 Proof of Theorem 1

Let B ∈ Rb×d the matrix having local model parameters {βi}i∈[b] as columns and denote by BAt+1 ∈ R⌊rb⌋×d

its restriction to the row set defined by At+1 where |At+1| = ⌊rb⌋ for some r ∈ (0, 1]. For the sake of
simplicity, we assume in the sequel that all clients have the same number of data points that is for any
i ∈ [b], ni = n. For random batches of samples {(x(j)

i , y
(j)
i ), j ∈ [n]}i∈[⌊rb⌋], we define similarly to Collins

et al. (2021); Jain et al. (2013), the random linear operator A : R⌊rb⌋×d → R⌊rb⌋n for any M ∈ R⌊rb⌋×d as
A(M) = [⟨ei(ϕ⋆

i (x(j)
i ))⊤, M⟩]1≤i≤⌊rb⌋,1≤j∈n, where ei stands for the i-th standard vector of R⌊rb⌋. Using

these notations, it follows from Algorithm S3 that for any t ∈ {0, . . . , T − 1}, the model parameters
θ

(t+1)
i = [A(t+1), β

(t+1)
i ] are computed as follows:

B
(t+1)
At+1

= arg min
BAt+1

1
⌊rb⌋n

∥∥∥A(t+1)
(

B⋆
At+1

[A⋆]⊤ −BAt+1 [A(t)]⊤Q
)∥∥∥2

, (S2)

Ā(t+1) = Ā(t) − η

⌊rb⌋n

[
(A(t+1))†A(t+1)

(
B⋆

At+1
[A⋆]⊤ −B

(t+1)
At+1

[A(t)]⊤Q
)]⊤

QB
(t+1)
At+1

,

A(t+1), R(t+1) ← QR
(

Ā(t+1)
)

, (S3)
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where A(t+1) stands for a specific instance of A depending on the random subset of active
clients available at each round and A† is the adjoint operator of A defined by A†(M) =∑

i∈[⌊rb⌋]
∑n

i=1[⟨ei(ϕ⋆
i (x(j)

i ))⊤, M⟩]ei(ϕ⋆
i (x(j)

i )).

The update in (S2) admits a closed-form expression as shown in the following lemma.
Lemma S1. For any t ∈ . . . 0, . . . , T − 1, we have

B
(t+1)
At+1

= B⋆
At+1

[A⋆]⊤QA(t) − F (t) ,

where F (t) is defined in (S12), A(t) is defined in (S3) and B
(t)
At

is defined in (S2).

Proof. The proof follows from the same steps as in (Collins et al., 2021, Proof of Lemma 1) using (S2).

Under H1, we have the following non-asymptotic convergence result.
Theorem S3. Assume H1. Then, for any xi ∈ Rki , we have ϕ̂i(xi) = Qϕ⋆

i (xi) where Q ∈ Rk×k is of the
form diagk(±1). Define E0 = dist(A(0), QA⋆). Assume that n ≥ c(d3 log(⌊rb⌋))/E2

0 + d2k/(E2
0 ⌊rb⌋) for some

absolute constant c > 0. Then, for any t ∈ {0, . . . , T − 1}, η ≤ 1/(4σ̄2
max,⋆) and with high probability at least

1− e−110k − e−110d2 log(⌊rb⌋), we have

dist(A(t+1), QA⋆) ≤ (1− κ)(t+1)/2dist(A(0), QA⋆) ,

where A(t) is computed via Algorithm S3, dist denotes the principal angle distance and κ ∈ (0, 1) is defined as

κ = 1− ηE0σ̄2
min,⋆/2.

Proof. The proof follows first by plugging Lemma S3, Lemma S8 and Lemma S9 into Lemma S2. Then, we
use the same technical arguments and steps as in (Collins et al., 2021, Proof of Lemma 6).

S2.3 Technical Lemmata

In this section, we provide a set of useful technical lemmata to prove our main result in Appendix S2.2.

Notations. We begin by defining some notations that will be used in the sequel. For any t ∈ {0, . . . , T − 1},
we define

Z(t+1) = B
(t+1)
At+1

[A(t)]⊤Q−B⋆
At+1

[A⋆]⊤ . (S4)

In addition, let

G(t) =


G

(t)
11 · · · G

(t)
1d

... . . . ...
G

(t)
d1 · · · G

(t)
dd

 , C(t) =


C

(t)
11 · · · C

(t)
1d

... . . . ...
C

(t)
d1 · · · C

(t)
dd

 , D(t) =


D

(t)
11 · · · D

(t)
1d

... . . . ...
D

(t)
d1 · · · D

(t)
dd

 ,

where for p, q ∈ [d],

G(t)
pq = 1

n

∑
i∈At+1

n∑
j=1

ei

(
ϕ⋆

i (x(j)
i )
)⊤

Qa(t)
p [a(t)

q ]⊤Qϕ⋆
i (x(j)

i )e⊤
i , (S5)

C(t)
pq = 1

n

∑
i∈At+1

n∑
j=1

ei

(
ϕ⋆

i (x(j)
i )
)⊤

Qa(t)
p [a⋆

q ]⊤Qϕ⋆
i (x(j)

i )e⊤
i , (S6)

D(t)
pq = ⟨a(t)

p , a⋆
q⟩I⌊rb⌋ , (S7)
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with a
(t)
p ∈ Rk standing for the p-th column of A(t) ∈ Rk×d; and a⋆

p ∈ Rk standing for the p-th column of
A⋆ ∈ Rk×d. Finally, we define for any i ∈ At+1,

Πi = 1
n

n∑
j=1

ϕ⋆
i (x(j)

i )[ϕ⋆
i (x(j)

i )]⊤ , (S8)

(G(t))i = [A(t)]⊤QΠiQA(t) , (S9)
(C(t))i = [A(t)]⊤QΠiQA⋆ , (S10)
(D(t))i = [A(t)]⊤QA⋆ . (S11)

Using these notations, we also define β̃⋆ = [(β⋆
1)⊤, . . . , (β⋆

d)⊤]⊤ ∈ R⌊rb⌋d and

F (t) = [([G(t)]−1(G(t)D(t) − C(t))β̃⋆)1, . . . , ([G(t)]−1(G(t)D(t) − C(t))β̃⋆)d] . (S12)

Technical results. To prove our main result in Theorem S3, we begin by providing a first upper bound on
the quantity of interest namely dist

(
A(t+1), QA⋆

)
. This is the purpose of the next lemma.

Lemma S2. For any t ∈ {0, . . . , T − 1} and η > 0, we have

dist
(

A(t+1), QA⋆
)
≤ C1 + C2, ,

where

C1 =
∥∥∥∥[A⋆

⊥]⊤QA(t)
(

Id −
η

⌊rb⌋
[B(t+1)

At+1
]⊤B

(t+1)
At+1

)∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

, (S13)

C2 = η

⌊rb⌋

∥∥∥∥∥
(

1
n

[A⋆
⊥]⊤(QA(t+1))†A(t+1)

(
Z(t+1)

)
Q− Z(t+1)

)⊤

B
(t+1)
At+1

∥∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

, (S14)

where A(t) is defined in (S3), B
(t)
At

is defined in (S2), Z(t) is defined in (S4) and R(t) comes from the QR
factorisation of Ā(t), see step 20 in Algorithm S3.

Proof. The proof follows from the same steps as in (Collins et al., 2021, Proof of Lemma 6) and by noting
that dist(A(t), QA⋆) = dist(QA(t), A⋆) for t ∈ {0, . . . , T − 1}.

We now have to control the terms C1 and C2. For the sake of clarity, we split technical results aiming to
upper bound of C1 and C2 in two different paragraphs.

Control of C1.
Lemma S3. Assume H1. Let δd = cd3/2

√
log(⌊rb⌋)/n1/2 for some absolute constant c > 0. Then, for any

t ∈ {0, . . . , T − 1}, with probability at least 1− e−111k2 log(⌊rb⌋), we have for δd ≤ 1/2 and η ≤ 1/(4σ̄2
max,⋆)

C1 ≤
[
≤ 1− η

(
1− dist

(
A(0), QA⋆

))
σ̄2

min,⋆ + 2η
δd

1− δd
σ̄2

max

]
dist

(
A(t), QA⋆

)∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

,

where σ̄2
min, σ̄2

max are defined in (S15)-(S16), C1 is defined in (S13), A(t) is defined in (S3) and R(t) comes
from the QR factorisation of Ā(t), see step 20 in Algorithm S3.

Proof. Using Cauchy-Schwarz inequality, we have

C1 ≤
∥∥∥(A⋆

⊥)⊤QA(t)
∥∥∥

2

∥∥∥∥Id −
η

⌊rb⌋
[B(t+1)

At+1
]⊤B

(t+1)
At+1

∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

= dist
(

A(t), QA⋆
)∥∥∥∥Id −

η

⌊rb⌋
[B(t+1)

At+1
]⊤B

(t+1)
At+1

∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

.
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Define the following minimum and maximum singular values:

σ̄2
min,⋆ = min

A⊆[b],|A|=⌊rb⌋
σmin

(
1√
⌊rb⌋

B⋆
A

)
(S15)

σ̄2
max,⋆ = min

A⊆[b],|A|=⌊rb⌋
σmax

(
1√
⌊rb⌋

B⋆
A

)
. (S16)

Using (Collins et al., 2021, Proof of Lemma 6, equations (67)-(68)), we have for δd ≤ 1/2 where δd is defined
in Lemma S4 and η ≤ 1/(4σ̄2

max,⋆),∥∥∥∥Id −
η

⌊rb⌋
[B(t+1)

At+1
]⊤B

(t+1)
At+1

∥∥∥∥
2
≤ 1− η

(
1− dist

(
A(0), QA⋆

))
σ̄2

min,⋆ + 2η
δd

1− δd
σ̄2

max,⋆ ,

with probability at least 1−e−111k2 log(⌊rb⌋) The proof is concluded by combining the two previous bounds.

Control of C2. We begin by showing four intermediary results gathered in the next four lemmata.
Lemma S4. Assume H1. Let δd = cd3/2

√
log(⌊rb⌋)/n1/2 for some absolute constant c > 0. Then, for any

t ∈ {0, . . . , T − 1}, with probability at least 1− e−111k3 log(⌊rb⌋), we have∥∥∥[G(t)]−1
∥∥∥

2
≤ 1

1− δd
,

where G(t) is defined in (S5).

Proof. The proof stands as a straightforward extension of (Collins et al., 2021, Proof of Lemma 2) by noting
that the random variable Qϕ⋆

i (x(j)
i ) = ϕ̂i(x(j)

i ) is sub-Gaussian under H1-(i); and as such is omitted.

Lemma S5. Assume H1. Let δd = cd3/2
√

log(⌊rb⌋)/n1/2 for some absolute constant c > 0. Then, for any
t ∈ {0, . . . , T − 1}, with probability at least 1− e−111k2 log(⌊rb⌋), we have∥∥∥(G(t)D(t) − C(t))B⋆

At

∥∥∥
2
≤ δd

∥∥B⋆
At

∥∥
2 dist

(
A(t), QA⋆

)
,

where G(t) is defined in (S5), D(t) is defined in (S7), C(t) is defined in (S6) and A(t) in (S3).

Proof. Without loss of generality and to ease notation, we remove the superscript (t) in the proof and re-index
the indexes of clients in At+1. Let H = GD − C. From (S8), (S9), (S10) and (S11), it follows, for any
i ∈ [⌊rb⌋], that

Hi = GiDi − Ci = A⊤QΠiQ(AA⊤ − Ik)QA⋆ .

Hence, by using the definition of H, we have

∥(GD − C)β⋆∥2
2 =

⌊rb⌋∑
i=1

∥∥Hiβ⋆
i

∥∥2
2 ≤

⌊rb⌋∑
i=1

∥∥Hi
∥∥2

2 ∥β
⋆
i ∥

2 ≤ d

⌊rb⌋
∥B⋆∥2

2

⌊rb⌋∑
i=1

∥∥Hi
∥∥2

2 ,

where the last inequality follows almost surely from H1-(iii). As in (Collins et al., 2021, Proof of Lemma 3),
we then define for any j ∈ [n], the vectors

u
(j)
i = 1√

n
[A⋆]⊤(AA⊤ − Ik)Qϕ⋆

i (x(j)
i ) ,

v
(j)
i = 1√

n
A⊤Qϕ⋆

i (x(j)
i ) .
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Let Sd−1 denotes the d-dimensional unit spheres. Then, by (Vershynin, 2018, Corollary 4.2.13), we can define
Nd, the 1/4-net over Sd−1 such that |Nd| ≤ 9d. Therefore, by using (Vershynin, 2018, Equation (4.13)), we
have

∥∥Hi
∥∥2

2 ≤ 2 max
z,y∈Nd

n∑
j=1
⟨z, u

(j)
i ⟩⟨v

(j)
i , y⟩ .

Since ϕ⋆
i (x(j)

i ) is a standard Gaussian vector, it is sub-Gaussian and therefore ⟨z, u
(j)
i ⟩ and ⟨v(j)

i , y⟩ are
sub-Gaussian with norms ∥ 1√

n
[A⋆]⊤(AA⊤ − Ik)Q∥2 = (1/

√
n)dist(A, QA⋆) and (1/

√
n), respectively. In

addition, we have

E
[
⟨z, u

(j)
i ⟩⟨v

(j)
i , y⟩

]
= 1

n
E
[
z⊤ 1√

n
[A⋆]⊤(AA⊤ − Ik)Qϕ⋆

i (x(j)
i )[ϕ⋆

i (x(j)
i )]⊤QAy

]
= 1

n
z⊤ 1√

n
[A⋆]⊤(AA⊤ − Ik)Ay

= 0,

where we have used the fact that E[ϕ⋆
i (x(j)

i )[ϕ⋆
i (x(j)

i )]⊤] = 1, Q2 = Ik and (AA⊤ − Ik)A = 0. The rest of the
proof is concluded by using the Bernstein inequality by following directly the steps detailed in (Collins et al.,
2021, Proof of Lemma 3, see equations (35) to (39)).

Lemma S6. Assume H1. Let δd = cd3/2
√

log(⌊rb⌋)/n1/2 for some absolute constant c > 0. Then, for any
t ∈ [T ], with probability at least 1− e−111k2 log(⌊rb⌋), we have∥∥∥F (t)

∥∥∥
F
≤ δd

1− δd

∥∥B⋆
At

∥∥
2 dist

(
A(t), QA⋆

)
,

where F (t) is defined in (S12) and A(t) in (S3).

Proof. By the Cauchy-Schwarz inequality, we have
∥∥F (t)

∥∥
F

=
∥∥[G(t)]−1(G(t)D(t) − C(t))B⋆

At

∥∥
2 ≤

δd

∥∥B⋆
At

∥∥
2 ≤

∥∥[G(t)]−1
∥∥

2

∥∥(G(t)D(t) − C(t))B⋆
At

∥∥
2 ≤ δd

∥∥B⋆
At

∥∥
2. The proof is concluded by combining

the upper bounds given in Lemma S4 and Lemma S5.

Lemma S7. Assume H1 and let δ′
d = cd

√
k/
√
⌊rb⌋n for some absolute positive constant c. For any t ∈ [T ]

and whenever δ′
d ≤ d, we have with probability at least 1− e−110k − e−110d2 log(⌊rb⌋)

1
⌊rb⌋

∥∥∥∥∥
(

1
n

Q(A(t))†A(t)
(

Z(t)
)

Q− Z(t)
)⊤

B
(t)
At

∥∥∥∥∥
2

≤ δ′
d dist

(
A(t), QA⋆

)
,

where B
(t)
At

is defined in (S2) and Z(t) is defined in (S4).

Proof. Let t ∈ [T ]. Note that we have(
1
n

Q(A(t))†A(t)
(

Z(t)
)

Q− Z(t)
)⊤

B
(t)
At

= 1
n

∑
i∈At

m∑
j=1
⟨Qϕ⋆

i (x(j)
i ), z

(t)
i ⟩Qϕ⋆

i (x(j)
i )

[
β

(t)
i

]⊤
− z

(t)
i

[
β

(t)
i

]⊤
.

Let Sk−1 and Sd−1 denote the k-dimensional and d-dimensional unit spheres, respectively. Then, by
(Vershynin, 2018, Corollary 4.2.13), we can define Nk and Nd, 1/4-nets over Sk−1 and Sd−1, respectively,
such that |Nk| ≤ 9k and |Nd| ≤ 9d. Therefore, by using (Vershynin, 2018, Equation (4.13)), we have∥∥∥∥∥

(
1
n

Q(A(t))†A(t)
(

Z(t)
)

Q− Z(t)
)⊤

B
(t)
At

∥∥∥∥∥
2

2
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= 2 max
u∈Nd,v∈Nk

u⊤

 1
n

∑
i∈At

m∑
j=1
⟨Qϕ⋆

i (x(j)
i ), z

(t)
i ⟩Qϕ⋆

i (x(j)
i )

[
β

(t)
i

]⊤
− z

(t)
i

[
β

(t)
i

]⊤
 v

= 2 max
u∈Nd,v∈Nk

1
n

∑
i∈At

m∑
j=1
⟨Qϕ⋆

i (x(j)
i ), z

(t)
i ⟩⟨u, Qϕ⋆

i (x(j)
i )⟩⟨β(t)

i , v⟩ − ⟨u, z
(t)
i ⟩⟨β

(t)
i , v⟩ . (S17)

In order to control (S17) using Bernstein inequality as in Lemma S5, we need to characterise, in particular,
the sub-Gaussianity of ⟨u, z

(t)
i ⟩ and ⟨β(t)

i , v⟩ which require a bound on ∥z(t)
i ∥ and ∥β(t)

i ∥, respectively. From
Lemma S1, we have [β(t)

i ]⊤ = (β⋆
i )⊤(A⋆)⊤A(t) − (z(t)

i )⊤ which leads to∥∥∥z
(t)
i

∥∥∥2
=
∥∥∥QA(t)(A(t))⊤QA⋆β⋆

i −QA(t)f
(t)
i −A⋆β⋆

i

∥∥∥2

2

=
∥∥∥(QA(t)(A(t))⊤Q− Id)A⋆β⋆

i −QA(t)f
(t)
i

∥∥∥2

2

≤ 2
∥∥∥(QA(t)(A(t))⊤Q− Id)A⋆

∥∥∥2

2
∥β⋆

i ∥
2 + 2

∥∥∥f
(t)
i

∥∥∥2

≤ 2d dist2(A(t), QA⋆) + 2
∥∥∥f

(t)
i

∥∥∥2
.

Using (S12) and the Cauchy-Schwarz inequality, we have∥∥∥f
(t)
i

∥∥∥2
=
∥∥∥[Gi,(t)]−1(Gi,(t)Di,(t) − Ci,(t))β⋆

i

∥∥∥2

≤
∥∥∥[Gi,(t)]−1

∥∥∥2

2

∥∥∥Gi,(t)Di,(t) − Ci,(t)
∥∥∥2

2
∥β⋆

i ∥
2

≤ d
∥∥∥[Gi,(t)]−1

∥∥∥2

2

∥∥∥Gi,(t)Di,(t) − Ci,(t)
∥∥∥2

2
, (S18)

where the last inequality follows from H1-(ii).

Using Lemma S4 and Lemma S5 and similarly to (Collins et al., 2021, Equation (45)), it follows for any
i ∈ At that ∥∥∥z

(t)
i

∥∥∥2

2
≤ 4d dist(A(t), QA⋆) ,

with probability at least 1− e110d2 log(⌊rb⌋).

Similarly, using Lemma S1 and (S18), we have with probability at least 1− e110d2 log(⌊rb⌋) and for any i ∈ At,
that ∥∥∥β

(t)
i

∥∥∥2
≤ 2

∥∥∥[A(t)]⊤QA⋆β⋆
i

∥∥∥2
+ 2

∥∥∥f
(t)
i

∥∥∥2
≤ 4d .

Besides, note we have

E
[
⟨Qϕ⋆

i (x(j)
i ), z

(t)
i ⟩⟨u, Qϕ⋆

i (x(j)
i )⟩⟨β(t)

i , v⟩
]

= ⟨u, z
(t)
i ⟩⟨β

(t)
i , v⟩ .

The proof is then concluded by applying the Bernstein inequality following the same steps as in the final
steps of (Collins et al., 2021, Proof of Lemma 5).

We are now ready to control C2.
Lemma S8. Assume H1 and let δ′

d = cd
√

k/
√
⌊rb⌋n for some absolute positive constant c. For any

t ∈ {0, . . . , T − 1}, η > 0 and whenever δ′
d ≤ d, we have with probability at least 1− e−110k − e−110d2 log(⌊rb⌋)

C2 ≤ ηδ′
d dist

(
A(t), QA⋆

)∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

,

where C2 is defined in (S14), A(t) is defined in (S3) and R(t) comes from the QR factorisation of Ā(t), see
step 20 in Algorithm S3.

27



Under review as submission to TMLR

Proof. Let t ∈ {0, . . . , T − 1} and η > 0. Then, whenever δ′
d ≤ d, we have with probability at least

1− e−110k − e−110d2 log(⌊rb⌋), we have

C2 = η

⌊rb⌋

∥∥∥∥∥
(

1
n

[A⋆
⊥]⊤(QA(t+1))†A(t+1)

(
Z(t+1)

)
Q− Z(t+1)

)⊤

B
(t+1)
At+1

∥∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

≤ η

⌊rb⌋

∥∥∥∥∥
(

1
n

(QA(t+1))†A(t+1)
(

Z(t+1)
)

Q− Z(t+1)
)⊤

B
(t+1)
At+1

∥∥∥∥∥
2

∥∥∥∥(R(t+1)
)−1

∥∥∥∥
2

≤ ηδ′
d dist

(
A(t), QA⋆

)∥∥∥∥(R(t+1)
)−1
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where we used the Cauchy-Schwarz inequality in the second inequality and Lemma S7 for the last one.

Control of ∥
(
R(t+1))−1 ∥2. To finalise our proof, it remains to bound ∥

(
R(t+1))−1 ∥2. The associated result

is depicted in the next lemma.
Lemma S9. Define δ̄d = δd + δ′

d where δd and δ′
d are defined in Lemma S4 and Lemma S5, respectively.
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Proof. The proof follows from (Collins et al., 2021, Proof of Lemma 6).

S3 Experimental Details

S3.1 Data Sets

We provide some details about the datasets we used for our numerical experiments

S3.1.1 Toy data sets

The first toy dataset, denoted as noisy features, is a 20-class classification problem in which the features
for a given class is obtained by sampling a Gaussian distribution of dimension 5, with random mean and
Identity covariance matrix. For building the training set, we sample 2000 examples for each class and equally
share those examples among clients who hold that class. Then, in order to generate some class imbalances
on clients, we randomly subsample examples on all clients. For instance, with 100 clients and 2 classes per
clients, this results in a problem with a total of about 16k samples with a minimal number of samples of
38 and a maximal one of 400. In order to get different dimensionality, we randomly append on each client
dataset some Gaussian random noisy features with dimensionality varying from 1 to 10.

The second toy dataset, denoted as linear mapping, is a 20-class classification problem where each class-
conditional distribution is Gaussian distribution of dimension 5, with random mean and random diagonal
covariance matrix. As above, we generate 2000 samples per class, distribute and subsample them across
clients in the similar way, leading to a total number of samples of about 15k. The dimensionality perturbation
is modelled by a random (Gaussian)linear transformation that maps the original samples to a space which
dimension goes up to 50.

S3.1.2 MNIST-USPS

We consider a digit classification problem with the original MNIST and USPS data sets which are respectively
of dimension 28× 28 and 16× 16 and we assume that a client hosts either a subset of MNIST or USPS data
set. We use the natural train/test split of those datasets and randomly share them accross clients.
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Table S1: Summary of the Brain-Computer Interfaces dataset we used. We report the number of subjects
(#Subj), the number of channels (#Chan), the number of classes (#Classes), the number of trials per class
(#Trials class) and the number of features (#features) on the covariance representation has been vectorized.

Name #Subj #Chan #Classes #Trials class # features

AlexMI 8 16 3 20 136
BNCI2014001 9 22 4 144 253
BNCI2014002 14 15 2 80 120
BNCI2014004 9 3 2 360 6
Weibo2014 10 60 7 80 1830
Zhou2016 4 14 3 160 105

S3.1.3 TextCaps data set

The TextCaps data set Sidorov et al. (2020) is an Image captioning dataset for which goal is to develop a
model able to produce a text that captions the image. The dataset is composed of about 21k images and
110k captions and each image also comes with an object class. For our purpose, we have extracted pair of
14977 images and captions from the following four classes Bottle, Car, Food and Book. At each run, those
pairs are separated in 80% train and 20% test sets. Examples from the TextCaps datasets are presented
in Figure S5. Images and captions are represented by vectors by feeding them respectively to a pre-trained
ResNet18 and a pretrained Bert, leading to vectors of size 512 and 768.

Each client holds either the image or the text representation of subset of examples and the associated vectors
are randomly pruned of up to 10% coordinates. As such, all clients hold dataset with different dimensionality.

S3.2 Brain-Computer Interfaces data set

The Brain-Computer Interfaces dataset we used are summarized in Table S1. Each dataset description
can be obtained from the MOABB library Jayaram & Barachant (2018) and at the following URL: http:
//moabb.neurotechx.com/docs/datasets.html. For each subject, we select the predefined train/test splits
or used 75% of the trials for training and the remaining 25% for testing. We used a bandpass prefiltering
between 8 and 30 Hz of the EEG signals and extracted a covariance matrix for each trial using all available
channels. These covariance matrices are vectorized and used as a feature. The classes that we used for the
classification problem are the following ones: [‘left hand’, ‘right hand’, ‘feet’, ‘tongue’,‘rest’] and a subset of
them as available for each dataset.

S3.3 Models and Learning Parameters

For the toy problems, the TextCaps data set and the BCI one, as a local transformation functions we used a
fully connected neural network with one input, one hidden layer and one output layers. The number of units
in hidden layer has been fixed to 64 and the dimension of latent space as been fixed to 64. ReLU activation
has been applied after the input and hidden layers. For the digits dataset, we used a CNN model with 2
convolutional layers followed by a max-pooling layer and a sigmoid activation function. Once flattened, we
have a one fully-connected layer and ReLU activation. The latent dimension is fixed to 64.

For all datasets, as for the local model gθi , in order to be consistent with competitors, we first considered a
single layer linear model implementing the local classifier as well as a model with one input layer (linear units
followed by a LeakyReLU activation funcion) denoting the shared representation layer and an output linear
layer.

For training, all methods use Adam with a default learning rate of 0.001 and a batch size of 100. Other
hyperparameters have been set as follows. Unless specified, the regularization strength λ1 and λ2 have been
fixed to 0.001. Local sample batch size is set to 100 and the participation rate r to 0.1. For all experiments,
we have set the number of communication round T to 50 and the number of local epochs to respectively 10
and 100 for the real-world and toy datasets. For FLIC, as in FedRep those local epochs is followed by one
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Figure S1: Evolution of the local loss curve of three different clients for three different learning situations.
See text for details.

epoch for representation learning. We have trained the local embedding functions for 100 local epochs and
a batch size of 10 for toy datasets and TextCaps and while of 100 for MNIST-USPS and BCI. Reported
accuracies are computed after local training for all clients.

S3.4 Ablating Loss Curves

In order to gain some understanding on the learning mechanism that involves local and global training
respectively due to the local embedding functions, the local classifier and the global representation learning,
we propose to look at local loss curves across different clients.

Here, we have considered the linear mapping toy dataset as used in the toy problem analysis. However, the
learning parameters we have chosen are different from those we have used to produce the results so as to
highlight some specific features. The number of epochs (communication rounds) is set to 100 with a client
activation ration of 0.1. Local epochs are shared for either training the local parameters or the global ones
(note that in our reference Algorithm 1, the global parameter is updated only once for each client) Those
latter are trained starting after the 20-th communication round and in this case, the local epochs are equally
shared between local and global parameter updates. Note that because of the randomness in the client
selection at each epoch, the total number of local epochs is different from client to client. We have evaluated
three learning situations and plotted the loss curves for each client.

• the local embedding functions and the global models are kept fixed, and only the local classifier is
trained. Examples of loss curves for 3 clients are presented in the left plot of Figure S1. For this
learning situation, there is no shared global parameters that are trained locally. Hence, the loss curve
is typical of those obtained by stochastic gradient descent with a smooth transition, at multiple of
100 local epochs, when a given client is retrained after a communication round.
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Figure S2: Impact of epochs used for pretraining ϕi on the model accuracy as well as updating those functions
during the training. Results for three different datasets are reported. Plain and dashed curves are respectively
related to local training with and without updates ϕi.

• the local embedding functions are kept fixed, while the classifier and global parameters are updated
using half of the local epochs each. This situation is interesting and reported in middle plot in
Figure S1. We can see that for some rounds of 100 local epochs, a strong drop in the loss occurs at
starting at the 50th local epoch because the global parameters are being updated. Once the local
update of a client is finished the global parameter is sent back to the server and all updates of global
parameters are averaged by the server. When a client is selected again for local updates, it is served
with a new global parameter (hence a new loss value ) which causes the discontinuity in the loss
curve at the beggining of each local update.

• all the part (local embedding functions, global parameter and the classifier) of the models are trained.
Note at first that the loss value for those curves (bottom plot in Figure S1) is larger than for the two
first most left plots as the Wasserstein distance to the anchor distribution is now taken into account
and tends to dominate the loss. The loss curves are globally decreasing with larger drops in loss at
the beginning of local epochs.

S3.5 On Importance of Alignment Pre-Training and Updates.

We have analyzed the impact of pretraining the local transformation functions and their updates during
learning for fixed reference distribution. We have considered two learning situations : one in which they are
updated during local training (as usual) and another one in they are kept fixed all along the training. We have
chosen the setting with 100 users and have kept the same experimental settings as for the performance figure
and made only varied the number of epochs considered for pretraining from 1 to 200. Results, averaged over
5 runs are shown in Figure S2. We remark that for the three datasets, increasing the number of epochs up to
a certain number tends to increase performance, but overfitting may occur. The latter is mostly reflected in
the toy linear mapping dataset for which 10 to 50 epochs is sufficient for good pretraining. Examples of how
classes evolves during pretraining are illustrated in Figure 5, through t-sne projection. We also illustrate
cases of how pretraining impact on the test set and may lead to overfitting as shown in Figure S4.

S3.6 On the Impact of the Participation Rate

We have analyzed the effect of the participation rate of each client into our federated learning approach.
Figure S3 reports the accuracies, averaged over 3 runs, of our approach for the toy datasets and the TextCaps
problem with respect to the partication rate at each round. We can note that the proposed approach is
rather robust to the participation rate but may rather suffer from overfitting due to overtraining of local
models. On the left plot, performances, measured after the last communication round, for TextCaps is stable
over participation rate while those performances tend to decrease for the toy problems. We associate these
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Figure S3: Evolution of the performance of our FLIC-Class algorithm with respects to the participation
rate of clients, using the same experimental setting as in Figure 4. (left) evaluating performance after last
communication rounds, (right) best performance across communication rounds.

decrease to overfitting since when we report (see right plot) the best performance over communication rounds
(and not the last one), they are stable for all problems. This suggests that number of local epochs may be
dependent to the task on each client and the client participation rate.
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Figure S4: . 2D t-sne projection of 5 classes partially shared by 3 clients for the toy linear mapping
dataset after learning the local embedding functions for (left) 10 epochs, (middle) 50 epochs, (right) 100
epochs. Original dimensions on clients vary from 5 to 50. Top row shows the projection the training set while
bottom row plots show both training and test set. Star ⋆ markers represent the projection of the mean of
each class-conditional. The three different marker styles represent the different clients. Classes are denoted
by colors and similar tones of color distinguish train and test sets. We see that each class from the training
set from each client converges towards the mean of its anchor distribution, represented by the star marker.
Interestingly, we also remark that unless convergence is reached, empirical class-conditional distributions on
each clients are not equal making necessary the learning of a joint representation. From the bottom plots,
we can understand that distribution alignment impacts mostly the training set but this alignment does not
always generalize properly to the test sets.
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Figure S5: Examples of some TextCaps pairs of image/caption from the 4 classes we considered of (top-left)
Food, (top-right) Bottle, (bottom-left) Book (bottom-right) Car. We can see how difficult some examples can
be, especially from the caption point of view since few hint about the class is provided by the text.
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