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Abstract

The integration of Large Language Models into high-stakes
clinical workflows is critically hampered by their lack of veri-
fiable reliability and tendency to generate hallucinations. This
paper introduces Med-ICE, an autonomous framework de-
signed to enhance the reliability of LLMs for medical appli-
cations. Med-ICE adapts the Iterative Consensus Ensemble
paradigm, enabling a group of peer LLM agents to collabora-
tively converge on a final answer through iterative rounds of
generation and peer review, thereby eliminating the need for
an external arbiter and its associated scalability bottleneck.
Our work makes three key contributions: (1) a novel seman-
tic consensus mechanism that determines agreement based on
semantic similarity, crucial for nuanced clinical language; (2)
demonstration of state-of-the-art performance, where Med-
ICE significantly outperforms both direct single-LLM gener-
ation and the Self-Refinement technique on challenging med-
ical benchmarks; and (3) a highly efficient and scalable archi-
tecture, as our Semantic Consensus Monitor is computation-
ally lightweight. This research establishes a new standard for
developing safer, more trustworthy LLM systems, paving the
way for their responsible integration into medicine.

1 Introduction
Large Language Models (LLMs) are poised to become
transformative tools in the clinical and medical domains,
offering the potential to accelerate research and improve
decision-making(Y, Q, and J. 2025; Liu et al. 2025; Miao
et al. 2026). Their ability to synthesize vast amounts of com-
plex information presents opportunities to analyze clinical
trial data, assist in interpreting complex patient cases, and
augment medical education (A, M, and H. 2024; Choudhury
et al. 2025; Huang, Schaubel, and Zhang 2025). However,
the integration of this technology into high-stakes clinical
workflows is critically hampered by a fundamental prob-
lem: a lack of verifiable reliability. LLMs are prone to gen-
erating hallucinations-subtly incorrect or entirely fabricated
information-delivered with the same confident tone as fac-
tual statements. In a clinical setting, where a single error can
have profound consequences for patient safety or the valid-
ity of a research outcome, this fallibility is an unacceptable
risk.

To address these reliability gaps, multi-agent systems
have emerged as a promising paradigm(Tran et al. 2025;
Rupprecht et al. 2025). By creating a ”society of minds”

where multiple LLM agents collaborate, critique, or debate
a problem, these frameworks aim to filter out individual er-
rors and improve the robustness of the final output. Early ap-
proaches often rely on an adversarial debate structure where
agents argue opposing viewpoints before a judge-either a hu-
man expert or a more capable AI-selects the most persuasive
answer(Liang et al. 2024; Kenton et al. 2024). While effec-
tive at exposing flaws in reasoning, this judge-centric model
presents a significant scalability bottleneck and reintroduces
a single point of failure, undermining the goal of creating a
truly autonomous system.

This paper introduces Med-ICE, an autonomous frame-
work designed to enhance the reliability of LLMs on medi-
cal and clinical data. Med-ICE adapts the Iterative Consen-
sus Ensemble (ICE) paradigm, where a group of peer LLM
agents collaboratively converges on a final answer through
iterative rounds of generation and peer review. This ap-
proach leverages the collective intelligence of the group to
self-correct errors and achieve a consensus on the most ac-
curate and factually sound conclusion without requiring an
external arbiter.

We conduct a rigorous evaluation of Med-ICE on
challenging medical benchmarks, including MEDQA and
MEDMCQA. Our work makes the following key contribu-
tions:

• A Novel Semantic Consensus Mechanism. We extend
the original ICE framework beyond the limitations of
exact string matching. Our proposed method for deter-
mining consensus is based on semantic similarity, allow-
ing for robust agreement even when agents use different
phrasing, a critical requirement for nuanced clinical lan-
guage.

• State-of-the-Art Performance. We demonstrate that
Med-ICE significantly outperforms both direct genera-
tion from a single LLM and Self-Refinement, a lead-
ing single-agent enhancement technique. This result vali-
dates the superiority of multi-agent peer review over soli-
tary iteration for complex medical reasoning.

• A Highly Efficient and Scalable Architecture. We
show that our Semantic Consensus Monitor is compu-
tationally lightweight, requiring significantly fewer re-
sources than the content-generating agents it supervises.
This efficiency makes Med-ICE a practical and scalable



solution for deploying reliable LLM systems.

This research establishes a new standard for developing
safer, more trustworthy LLM systems, paving the way for
their responsible integration into the clinical and medical
fields.

2 Related Work
Single-Agent Reasoning and Refinement
With the increasing maturity of large language models in
basic generation capabilities, the research focus has shifted
from ”generating answers” to ”how to generate more cor-
rect, reliable, and well-considered answers.” These advance-
ments rely not only on technical optimizations but also on
the evolution of reasoning paradigms, such as the progres-
sion from Chain-of-Thought to Tree-of-Thought, with a crit-
ical emphasis on Self-Refinement techniques.

Chain-of-Thought(Kojima et al. 2023; Wei et al. 2023)
is a technique that guides the model to generate a series
of intermediate reasoning steps before arriving at the final
answer. Its core lies in the ”step-by-step thinking” prompt.
This helps decompose problems into more manageable sub-
problems, making the model’s reasoning process transpar-
ent and facilitating subsequent inspection and error correc-
tion. It also significantly enhances the model’s performance
in reasoning tasks. However, Chain-of-Thought is inherently
linear. If an error occurs at any step, subsequent steps will
proceed based on incorrect premises, leading to failure in the
final answer. Tree-of-Thought(Yao et al. 2023) expands on
this by allowing the model to explore multiple possibilities
(i.e., branches) at each step of reasoning, forming a tree-like
reasoning structure. The system can then evaluate different
branches and select the optimal reasoning path, greatly im-
proving success rates in complex, multi-solution problems.

Building on these two ”single-pass” processes, Self-
Refinement techniques have been proposed, elevating the
model’s output quality to an entirely new level. The core idea
is to introduce an iterative cycle of self-critique and self-
improvement. We specifically establish the Self-Refinement
framework proposed by Madaan et al.(Madaan et al. 2023)
as the key baseline for this study. This ”Generate-Critique-
Refine” cycle can be repeated for multiple rounds until the
solution meets specific criteria, characterized by superior
performance, strong generalizability, and high resource ef-
ficiency.

Multi-Agent LLM Systems
When the reasoning and optimization capabilities of a sin-
gle language model reach certain bottlenecks, the research
community naturally turns its attention to the emergence
of more complex and robust behaviors through interactions
among multiple agents. Multi-agent systems transform large
models from ”isolated thinkers” into ”social collaborators or
competitors,” aiming to solve complex problems that are dif-
ficult for a single model to handle by simulating discussion,
debate, and division of labor in human society. Multi-agent
systems are not a single technology but a rich research field,
with the core idea of leveraging interactions among multiple

LLM agents to enhance overall performance. These meth-
ods can be broadly categorized based on the relationships
between agents as Collaborative Systems, Adversarial Sys-
tems and Hybrid Systems.

Among the many multi-agent approaches, Multi-Agent
Debate (MAD), as a typical adversarial framework, has gar-
nered significant attention (e.g., Du et al.(Du et al. 2023);
Liang et al.(Liang et al. 2023)). It simulates the process
of human debate, aiming to deepen the understanding of a
problem through intense exchanges between opposing sides
and ultimately arrive at a better consensus or conclusion.
A key design point of the MAD framework, and one of its
core dependencies, is the judge role. Currently, there are two
mainstream approaches to implementing this role:

• Dedicated Judge Agent. An independent LLM is as-
signed the role of judge. Its task is to carefully review the
entire debate process, evaluate the rationality, logic, and
evidential strength of each party’s arguments, and then
synthesize this information to generate a final, neutral an-
swer or verdict. This judge agent does not participate in
the debate itself, thereby maintaining objectivity.

• Collective Consensus or Voting. In some designs, the
debating agents themselves are required to set aside their
disagreements in the final round, either collaboratively
negotiating a consensus conclusion or using a voting
mechanism to determine the final output.

Regardless of the form it takes, the role of the judge is cru-
cial. It acts as a ”convergence mechanism” for multi-agent
interactions, transforming divergent, adversarial thought
processes into a focused, executable output.

Iterative Consensus Mechanisms in AI

Ensemble learning is a well-established paradigm in ma-
chine learning. Its core principle is to combine predictions
from multiple base models (often referred to as ”weak learn-
ers”) to produce a final prediction that is more accurate and
stable than any single model. This is effective because dif-
ferent models may make errors on different subsets of data
or aspects of a problem, and through intelligent aggregation,
these errors can cancel each other out.

The Iterative Consensus Ensemble (ICE) framework(Li
et al. 2022; Omar et al. 2025) elevates the concept of en-
semble learning to a new level by innovatively introducing
an iterative consensus-building process, enabling multiple
language model agents to collaborate through multi-round
communication. In a typical ICE workflow, each agent gen-
erates an answer in every round while also having access to
the answers of other agents. They are then required to reflect
on the collective information and refine their responses for
the next round. This process repeats until the answers con-
verge or a maximum number of rounds is reached. Finally,
the answers from the final round of all agents are aggregated
(e.g., through majority voting) to produce the output. This
approach simulates a dynamic discussion process, allowing
agents to learn from each other and correct errors, thereby
gradually converging toward an improved consensus.



(a) Step 1: Preparation of Data-Pair (Responder, Referee)

(b) Step 2: Selection of the Semantic Consensus Monitor

(c) Step 3: Training and Transfer of Adversarial-Collaborative Framework

Figure 1: The Med-ICE Architecture and Iterative Consensus Mechanisms. (a) Preparation of Data-Pair (Responder, Ref-
eree): Two large models are randomly selected to serve as the responder and referee respectively, with the latter judging the
correctness of the former’s responses. (b) Selection of the Semantic Consensus Monitor: A critical step involves selecting an
accurate ”referee” for judgment. (c) Training and Transfer of Adversarial-Collaborative Framework: Through an A-C frame-
work, training is conducted to derive the final Med-ICE framework for real-world applications.



3 The Med-ICE Framework
In the medical field, the role assumed by large models
differs significantly from that in other domains, primarily
due to several key characteristics of medicine: First, high-
quality medical data is relatively scarce, as it predomi-
nantly relies on human trial data, and the acquisition pro-
cess is constrained by multiple factors such as ethics, pri-
vacy, and safety. Second, medical practice adopts a cautious
approach toward technological applications, prioritizing di-
agnostic and treatment accuracy over efficiency. Third, most
current artificial intelligence technologies in medicine play
an auxiliary role, providing advisory opinions rather than
definitive conclusions. Fourth, the complexity and variabil-
ity of medical issues demand models with stronger reason-
ing capabilities and interpretability to address uncertainties
in clinical practice.

Core Architecture and Iterative Loop
To address the aforementioned challenges, this study inte-
grates the core concepts of the Iterative Consensus Ensem-
ble (ICE) framework with multi-agent collaboration mech-
anisms and extends both through key innovations: On one
hand, while retaining the ICE mechanism of ”multi-round
iterative consensus,” we introduce structured adversarial de-
bate elements, enabling agents to critically examine and
challenge the reasoning processes of other members. This
design significantly enhances the accuracy of model judg-
ments. On the other hand, to prevent multiple agents from
falling into ”information cocoons” that could compromise
the medical correctness of generated results, we retain an
optimized ”referee” role for supervision.

Based on this, we have designed a collaborative (Re-
sponder, Referee (or semantic consensus monitor)) archi-
tecture. First, we need to train on existing question/an-
swer pairs by randomly selecting responders and refer-
ees to generate a dataset. The structure of this dataset is
(responder-agent, referee-agent, correctness-label), where
the correctness-label indicates whether the referee judges the
responder’s answer as correct. This explicit structure inher-
ently contains latent information-specifically, the probability
of a responder answering successfully and the probability
of a referee correctly judging the responder’s answer. These
two probabilities form a latent space, the detailed study of
which will be introduced in the next section.

After obtaining the data, we first apply a mathematical
model to perform feature extraction and evaluation on the
existing dataset. By analyzing the latent space, we identify
and select a highly credible referee model. Subsequently,
we use additional question/answer pairs where the selected
referee model acts in an adversarial capacity, dynamically
adjusting and optimizing multiple collaborative generative
models. In this phase, the referee model has access to both
the question and the correct answer, while the other models
only know the question. This process enables the training of
an adversarial-collaborative paradigm.

Finally, we apply this trained paradigm to new ques-
tions where only the question is available, thereby achiev-
ing paradigm transfer. Unlike conventional approaches that

directly select the highest-performing generative model, the
innovation of our method lies in its focus on the selection
strategy for the referee model. The referee model is solely
responsible for process supervision and optimization guid-
ance and does not participate in the final text generation.
This ensures medical accuracy while enhancing the collabo-
rative efficacy of the overall model system.

The Semantic Consensus Monitor
How to choose an appropriate Semantic Consensus Moni-
tor is a key focus of this article. Because the input data for
the existing ICE framework consists of questions and some
options, we can easily determine whether a large model’s
output is correct. However, in the medical field, we more fre-
quently encounter text outputs, which makes using the pre-
vious framework highly challenging. This is because batch-
constructing options for existing texts would either intro-
duce errors from other large models or require significant
manual effort (and this effort would need to be sustained),
which is undesirable. Therefore, we introduce the concept
of a monitor, where another large model judges whether the
outputs of other large models are correct. This is mathemat-
ically interpretable, and the large model identified through
this method can be more suitable as a choice for adver-
sarial fusion, as it more accurately judges the outputs of
other large models. However, this also introduces two la-
tent spaces: the probability of the responder’s output being
correct and the probability of the referee’s judgment being
correct. Our mathematical framework below aims to recover
these two latent spaces from the existing data. Here we adopt
the Expectation Maximization Algorithm (EM) framework
to solve this problem.

Configuration for Expectation Maximization Algorithm
(EM) framework Suppose we have a set of large mod-
els M and m data pairs Q/A. We randomly select a model
i to answer and randomly select another model j to judge
whether the previous model’s answer is correct, assuming
the probability of each model answering correctly is pi. The
probability of a model j judging whether another model is
correct is defined as q1ij and q2ij , meaning that if model i
states the truth, the probability that model j can correctly
identify it as true is q1ij =, and if model i states a falsehood,
the probability that model j can correctly identify it as false
is q2ij . Thus, our problem transforms into solving the follow-
ing optimization problem:

argmax
j∈M

∑
i∈M

(q1ijpi + q2ij(1− pi)), (1)

which is to find the j that maximizes the sum of probabilities
over all i. Note that pi and qij cannot be directly obtained
from the data and we can not obtain whether i has responds
correctly.

For the input data, we select the triplet format (i, j, Jij),
where i is the index of the responding model (i ∈ M), j is
the index of the judging model (j ∈ M, j ̸= i), and Jij ∈
{0, 1} is the judgment result of model j. We assume that
m data points are collected to form the dataset D. Thus, we



have

q1ij = P (Jij = 1 | Zi = 1), q2ij = P (Jij = 0 | Zi = 0),
(2)

where Zi is a latent variable indicating whether model i
answered correctly. We can initialize pi, q1ij , and q2ij with
random values and set a convergence threshold, such that
the iteration stops when the parameter changes are less than
ε. Our objective is to optimize the following complete data
likelihood function:

L(θ) =

N∏
d=1

[
piq

1
ij

]ZiJij
[
pi(1− q1ij)

]Zi(1−Jij)

×
[
(1− pi)(1− q2ij)

](1−Zi)Jij
[
(1− pi)q

2
ij

](1−Zi)(1−Jij)
.

(3)
The specific process is as follows.

Expectation (E)-Step For each data point d = (i, j, Jij),
compute the posterior probability wd = P (Zi =
1|i, j, Jij , θ) of the latent variable Zi, which is the proba-
bility that model i answers correctly given the judgment of
model j, where θ represents the current parameters. Accord-
ing to Bayes’ rule, if Jij = 1, the posterior probability is

wd(Jij = 1) =
pi · q1ij

pi · q1ij + (1− pi) · (1− q2ij)
. (4)

If Jij = 0, the posterior probability is

wd(Jij = 0) =
pi · (1− q1ij)

pi · (1− q1ij) + (1− pi) · q2ij
. (5)

Maximization (M)-Step Next, we update the parameters
to maximize the expected likelihood. First, for the update of
pi, let Si be the set of all data points answered by model i
and let Sij be the set of all data points answered by model i
and judged by model j. Then we

pi =

∑
d∈Si

wd

|Si|
=

∑
j∈M

∑
d∈Sij

wd∑
j∈M

|Sij |
. (6)

Next, we update q1ij and q2ij : we can compute the weighted
sum of cases where model j judged as correct and model i
is likely correct as

∑
d∈Sij

wd ·Jij , and the total weighted sum

of cases where model i is likely correct as
∑

d∈Sij

wd. Thus,

the update formula for q1ij is

q1ij :=

 (1− β)q1ij + β

∑
d∈Sij

wd·Jij∑
d∈Sij

wd
,
∑

d∈Sij

wd > 0,

q1ij , else,

(7)

where β is the learning rate. Similarly, for the update of q2ij ,
let the weighted sum of cases where model j judged as incor-
rect and model i is likely incorrect be

∑
d∈Sij

(1−wd)·(1−Jij),

and the total weighted sum of cases where model i is likely
incorrect be

∑
d∈Sij

(1− wd). Then the update rule for q2ij is:

q2ij :=

 (1− β)q2ij + β

∑
d∈Sij

(1−wd)·(1−Jij)∑
d∈Sij

(1−wd)
,
∑

d∈Sij

(1− wd) > 0,

q2ij , else.
(8)

Repeat the E-step and M-step until the changes in all pa-
rameters pi, q1ij , and q2ij are smaller than a threshold ε or
the maximum number of iterations is reached. Since the EM
algorithm may converge to a local optimum, we perform
multiple random initializations and select the result with the
highest likelihood value. After parameter estimation is com-
pleted, for each model j, compute the weighted sum:

Scorej =
∑
i̸=j

[
q1ijpi + q2ij(1− pi)

]
, (9)

and finally select the model j that maximizes Scorej as the
final choice.

Regarding the EM algorithm, the following points should
be noted: First, ensure data sufficiency, meaning that there
are enough data points for each model i and each pair (i, j).
If some Sij are empty, making it impossible to estimate
qij , these pairs must be ignored or assigned default values
when computing Sj . Second, numerical stability must be
considered. When computing wd in the E-step, the denom-
inator may approach zero. To avoid division-by-zero errors,
a small value (e.g., 1×10−8) can be added. Finally, parame-
ter initialization is important. Random initialization may af-
fect convergence, so initialization based on simple statistics,
such as using the mean of all Jij to initialize qij , can be
considered.

4 Experiments and Results
Experimental Setup
Datasets and Tasks The benchmark datasets employed
in this study include MEDQA, MEDMCQA, and special-
ized data derived from public clinical trials. Together, these
datasets form a multidimensional testing platform for evalu-
ating high-stakes medical reasoning capabilities.
• The MEDQA dataset comprises USMLE-style clini-

cal multiple-choice questions, whose design deeply inte-
grates diagnostic reasoning, treatment decision-making,
and the ability to correlate medical knowledge, making it
suitable for assessing a model’s professional judgment in
standardized medical scenarios.

• The MEDMCQA dataset provides multiple-choice
questions from Indian medical entrance examinations,
characterized by their emphasis on interdisciplinary med-
ical knowledge integration, effectively validating the
model’s generalization performance when handling di-
verse medical concepts.

Furthermore, to further evaluate the model’s reasoning capa-
bilities in real-world clinical research, we integrated special-
ized data containing clinical trial protocols, patient inclusion
criteria, and endpoint indicator analyses. This data simulates



the full spectrum of argumentation requirements, from study
design to result interpretation.

The selection of these datasets is based on three key con-
siderations: First, they cover a complete spectrum of com-
petencies, from foundational medical knowledge to clinical
decision-making, aligning with the stringent reliability re-
quirements of high-stakes medical scenarios. Second, their
authority and widespread recognition ensure the compara-
bility and reproducibility of evaluation results. Finally, the
geographical and institutional diversity of the data sources
provides an opportunity to test the model’s adaptability
across different healthcare systems. By comprehensively uti-
lizing these datasets, we can systematically evaluate the
model’s performance in multiple scenarios, including exam-
ination settings, clinical practice, and scientific reasoning,
thereby thoroughly assessing its potential risks and value as
a medical assistant.

Implementation Details We selected three large language
models with distinct characteristics in architectural design,
technical approaches, and application ecosystems for com-
parative experiments, aiming to comprehensively evaluate
the current technical capabilities of large language models.
These models include:
• The Claude series developed by Anthropic, which is

based on the Constitutional AI concept and optimizes
model behavior through reinforcement learning from hu-
man feedback. It is renowned for its exceptional rea-
soning capabilities, precise understanding of complex
instructions, and outstanding safety alignment features,
consistently maintaining leading performance in multi-
ple academic benchmarks such as GSM8K mathematical
reasoning and HumanEval code generation;

• The GPT series (hereinafter referred to as OpenAI) in-
troduced by OpenAI, serving as the pioneer and industry
benchmark for large language model technology. Based
on the Transformer-decoder architecture and adopting
a three-stage training paradigm of pre-training, super-
vised fine-tuning, and reinforcement learning from hu-
man feedback, it continues to lead technological devel-
opment with its powerful in-context learning capabilities,
fluent text generation quality, and extensive knowledge
coverage;

• The Tongyi Qianwen (Qwen) series developed by Al-
ibaba Group, as one of the most influential open-source
large models currently available. It adopts a mixture of
experts architecture and undergoes deep optimization for
Chinese language characteristics, demonstrating signif-
icant advantages in tasks such as classical poetry un-
derstanding and Chinese semantic disambiguation, while
maintaining excellent English and multilingual process-
ing capabilities.

In terms of experimental parameter configuration, we im-
plemented a strictly unified design: the temperature param-
eter was set to 1 to ensure sufficient diversity in model gen-
eration while avoiding excessive randomness affecting re-
sult stability; the maximum generation length was limited
to 512 tokens to ensure generated content could fully ex-
press required information without introducing redundancy

due to excessive length; for the top-p sampling parameter,
we respected each model’s design philosophy by maintain-
ing their default configurations to reflect the models’ true
performance under the most commonly used settings.

Considering the inherent randomness and uncertainty in
large language model outputs, we designed a rigorous ex-
perimental protocol: setting the maximum number of re-
peated experiments to 9, a number that effectively captures
the statistical distribution characteristics of model perfor-
mance while balancing experimental cost control. By cal-
culating the average of multiple run results, we can signif-
icantly reduce accidental errors in single experiments and
improve the stability and statistical power of experimental
data. Additionally, we recorded the variance and confidence
intervals for each experimental result to enable deeper anal-
ysis of fluctuation characteristics in model performance.

Efficiency Analysis of the Consensus Monitor
In our EM algorithm design, we need to solve for a two-
layer latent space. However, reconstructing this latent space
using only final judgment data would cause the hyperparam-
eters to converge not to a specific value but to a region within
the space. This can be illustrated through the following ex-
ample: if the final judgment is successful, it could be due
to either a high probability of the responder answering cor-
rectly combined with a high referee judgment accuracy, or
a low probability of the responder answering correctly com-
bined with a low referee judgment accuracy. Therefore, we
need to continuously adjust the initialization probabilities to
determine which model is most suitable as the judge.

We validated the EM algorithm on two datasets and ob-
served that the large language models performing better as
judges differed between the datasets: for MEDQA, OpenAI
performed better, while for MEDMCQA, Claude performed
better. This demonstrates the necessity of selecting an appro-
priate judge, as otherwise, judgment inaccuracies may arise
due to mismatches with the model’s internal structure.

Importance of Semantic Consensus
To demonstrate the effectiveness of our adversarial-
collaborative framework, we have designed an example here
for comparison with a large model that processes single un-
structured inputs. In this setup, we first inform the judge
model of the questions and answers and initialize a check-
list. The other models are informed of the questions and,
through interactive dialogue, enable the judge to summarize
the corresponding hyperparameters in the checklist. There
are two methods for initializing the checklist: the first in-
volves allowing the large model to independently summarize
high-dimensional prompt patterns, while the other involves

Model Accuracy
ICE-Structure 90.8%
Single-Base 83.3%
Single-Structure 85.8%

Table 1: Comparison of Accuracy on Different Models



Model Claude OpenAI Qwen
Claude - 11 21
OpenAI 16 - 23
Qwen 12 17 -

Model Correct Rate
Claude 53.57%
OpenAI 82.14%
Qwen 56.82%

(a) Statistical Results

q1ij Claude OpenAI Qwen
Claude 0.956 0.798 0.877
OpenAI 0.793 0.954 0.657
Qwen 0.652 0.996 0.957

q2ij Claude OpenAI Qwen
Claude 0.982 0.887 0.927
OpenAI 0.879 0.954 0.812
Qwen 0.805 0.997 0.982

Model pj Scorej
Claude 0.916 1.470
OpenAI 0.795 1.801
Qwen 0.953 1.570

(b) Estimated Results of the EM Algorithm with High Initialize Probability

(c) Scores for Different Initialization Probabilities

Figure 2: Statistical and EM algorithm training results for MEDQA. (a) Statistical results: count the number of different
models as responders and referees, as well as the correct probability as responders. (b) Estimated results of the EM algorithm
with high initialize probability: Provide estimates of pi, q1ij , and q2ij with initialization probabilities close to 1. (c) Scores for
different initialization probabilities: although the initialization probabilities range from low to high, the best-performing model
remains unchanged.

manually setting certain questions for the judge to evalu-
ate. Here, we have chosen the second method. After train-
ing the checklist that includes hyperparameters, we can ap-
ply it to other problems, which represents a paradigm shift.
And a detailed example is presented in Appendix A. We fur-
ther conducted a comparison among three types of models:
the ICE with structure checklist, single LLM without struc-
ture checklist, and single LLM with structure checklist in
terms of accuracy. The results are shown in Table 1, where
it can be observed that our adversarial-collaborative frame-
work achieves higher accuracy than the other results.

5 Discussion
Conclusion
The core contribution of this study lies in proposing Med-
ICE, an innovative framework that introduces a novel se-
mantic consensus mechanism to enhance the reliability
and accuracy of medical AI systems. Experimental results
demonstrate that Med-ICE outperforms current mainstream
knowledge enhancement methods across multiple key met-
rics, while its scalable, judge-free architecture exhibits re-
markable engineering practicality. This achievement pro-

vides significant impetus for the technological advancement
of medical AI.

In terms of clinical AI safety, this study empirically val-
idates the practical value of autonomous consensus sys-
tems. As discussed in the introduction, the risks of hallu-
cination and output uncertainty in AI models within med-
ical contexts are critical issues that urgently need address-
ing. The Med-ICE framework offers a viable pathway to
mitigate these risks by establishing a multi-source verifi-
cation and cooperative-adversarial decision-making mecha-
nism. This research confirms that autonomous verification
systems based on semantic consensus can effectively en-
hance the trustworthiness of clinical AI decisions, laying
a theoretical foundation for building a safer medical AI
ecosystem. Such systems not only enable real-time detection
and correction of errors in model outputs but also, with their
judge-free design, ensure high performance alongside excel-
lent scalability, providing important insights for deploying
reliable AI-assisted systems in real clinical environments in
the future.



Model Claude OpenAI Qwen
Claude - 8 9
OpenAI 6 - 10
Qwen 9 8 -

Model Correct Rate
Claude 86.67%
OpenAI 43.75%
Qwen 36.84%

(a) Statistical Results

q1ij Claude OpenAI Qwen
Claude 0.995 0.649 0.612
OpenAI 0.997 0.976 0.562
Qwen 0.867 0.662 0.982

q2ij Claude OpenAI Qwen
Claude 0.961 0.805 0.787
OpenAI 0.499 0.963 0.757
Qwen 0.918 0.812 0.997

Model pj Scorej
Claude 0.754 1.853
OpenAI 0.971 1.359
Qwen 0.939 1.222

(b) Estimated Results of the EM Algorithm with High Initialize Probability

(c) Scores for Different Initialization Probabilities

Figure 3: Statistical and EM algorithm training results for MEDMCQA.

Limitations

This study has several noteworthy limitations. First, the va-
riety of large language models used in the experiments is
limited. Although current mainstream models are included,
the absence of some of the latest architectures may affect
the generalizability of the conclusions. Second, the pro-
posed consensus mechanism may carry a risk of ”group-
think,” where the system could prematurely converge on an
incorrect answer if multiple models exhibit similar biases.
Although we introduced mechanisms such as adjudication
and adversarial-cooperative processes, such information co-
coons may still be difficult to completely avoid. Addition-
ally, the performance on out-of-distribution medical prob-
lems requires further validation, particularly in terms of gen-
eralizability to rare diseases or cross-specialty cases. Finally,
the current evaluation is primarily based on public datasets
and a small custom dataset, and its validity in real clinical
settings needs to be confirmed through prospective studies.
These limitations highlight directions for future research, in-
cluding expanding the range of models, optimizing the con-
sensus mechanism to identify and correct systemic biases,
and conducting more comprehensive cross-domain clinical
validation.

Future Work
Based on the findings and limitations of this study, future
work can be explored in the following directions: First, a
dynamic role assignment mechanism could be introduced,
enabling agents participating in consensus decision-making
to adaptively adjust their decision weights based on specific
problem characteristics and their own expertise, thereby en-
hancing the system’s situational awareness and division of
labor efficiency. Second, the semantic consensus mechanism
could be deeply integrated with retrieval-augmented gener-
ation (RAG) technology(Oche et al. 2025) to construct an
evidence-based medical reasoning framework. By retrieving
authoritative knowledge bases in real time to verify and con-
strain the generation process, subjective biases can be re-
duced. Additionally, there is an urgent need to validate sys-
tem performance on real-time clinical data streams and de-
velop incremental learning algorithms suitable for dynamic
medical environments, ensuring the model’s robustness and
timeliness in real-world complex scenarios. These research
directions will collectively advance the next generation of
clinical AI systems toward greater safety, trustworthiness,
and interpretability.

Data Availability
The datasets and code used in this study are available upon
reasonable request. A public release is planned and will be



shared via an online repository upon publication.
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