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Abstract

Optical Character Recognition (OCR) tech-001
nology has revolutionized the digitization of002
printed text, enabling efficient data extraction003
and analysis across various domains. Just like004
Machine Translation systems, OCR systems005
are prone to errors, stemming from factors such006
as poor image quality, diverse fonts, and lan-007
guage variations. In this work, we address008
the challenge of data generation and post-OCR009
error correction, specifically for low-resource010
languages. We propose a novel approach011
for synthetic data generation for Devanagari012
languages, RoundTripOCR, that tackles the013
scarcity of the OCR Error Correction dataset.014
In this work, we release a post-OCR text correc-015
tion dataset for Hindi, Marathi, Bodo, Nepali,016
Konkani and Sanskrit. We also present a novel017
approach for OCR error correction by leverag-018
ing techniques from machine translation. Our019
method involves translating the erroneous OCR020
output into a corrected form by treating the021
OCR errors as mistranslations in a parallel022
text corpus. We employ a state-of-the-art pre-023
trained transformer model, mBART, to learn024
the mapping from erroneous to correct text025
pairs, effectively correcting OCR errors. The026
sample dataset can be accessed using the link1.027

1 Introduction028

Devanagari script is the most widely used script in029

India and other Asian countries. There is a rich col-030

lection of ancient Devanagari manuscripts, which is031

a wealth of knowledge. To make these manuscripts032

available to people, efforts are being made to dig-033

itize these documents. Optical Character Recog-034

nition (OCR) technology has revolutionized the035

digitization and processing of written or printed036

text by enabling machines to automatically convert037

scanned documents into editable and searchable038

text formats. With the proliferation of document039

1https://drive.google.com/drive/folders/
1EmXGHRHo2-hRqxTN8OwXJK-zdcX-ilYE?usp=sharing

digitization efforts across various domains such 040

as finance, healthcare, education, and government, 041

OCR plays a crucial role in enhancing document 042

accessibility, information retrieval, and automation 043

of document-intensive workflows. However, de- 044

spite significant advancements in OCR technology 045

over the years, the accurate recognition of text from 046

scanned documents remains a challenging task due 047

to inherent complexities in document layouts, font 048

variations, noise, and other distortions. 049

Traditional OCR systems typically follow a 050

pipeline approach comprising image preprocess- 051

ing, feature extraction, character segmentation, 052

and recognition stages. While these systems have 053

achieved remarkable success in many applications, 054

they are susceptible to errors, especially when deal- 055

ing with degraded or low-quality document images. 056

OCR errors can manifest in various forms, includ- 057

ing misrecognitions, substitutions, omissions, and 058

insertions, leading to inaccuracies in the recognized 059

text output. These errors not only impede the re- 060

liability of OCR systems but also pose significant 061

challenges for downstream tasks such as informa- 062

tion extraction, text mining, and content analysis. 063

Addressing OCR errors requires robust error detec- 064

tion and correction mechanisms that can effectively 065

handle a wide range of error patterns and variations. 066

Our contributions are as follows: 067

1. RoundTripOCR, a novel approach to gener- 068

ate a Post-OCR error correction dataset artifi- 069

cially for Devanagari languages. 070

2. Post-OCR text correction dataset containing 071

around 13.1 million sentences in Hindi, 1.58 072

million sentences in Marathi, 2.54 million 073

sentences in Bodo, 2.97 million sentences in 074

Nepali, 1.95 million sentences in Konkani and 075

8.93 million sentences in Sanskrit. 076

3. Benchmarks for the Post-OCR error correc- 077

tion task based on the pre-trained Seq2Seq 078
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language model for all six languages.079

2 Background080

Addressing OCR errors is crucial for improving081

the overall quality and usability of digitized docu-082

ments.083

2.1 Types of OCR Errors084

As mentioned by Volk et al. (2011) and Jatowt et al.085

(2019), OCR systems are prone to various types086

of errors that can occur during the process of text087

recognition from scanned documents. Understand-088

ing these errors is essential for developing effective089

error correction techniques and improving the over-090

all accuracy of OCR systems. The most common091

types of OCR errors include:092

• Substitution Errors: Substitution errors oc-093

cur when the OCR system incorrectly rec-094

ognizes a character and substitutes it with a095

different character. These errors often result096

from similarities between characters in terms097

of shape or visual appearance, making it chal-098

lenging for the OCR system to distinguish099

between them accurately. For example, "o"100

might be substituted for "0" or "l" for "1" in101

the alphanumeric character set.102

• Omission Errors: Omission errors occur103

when the OCR system fails to detect and rec-104

ognize certain characters or words in the input105

image. This can happen due to factors such106

as poor image quality, low resolution, or in-107

distinct boundaries between characters. Omis-108

sion errors can significantly affect the read-109

ability and integrity of the recognized text,110

especially in documents with dense text or111

complex layouts.112

• Insertion Errors: Insertion errors occur when113

the OCR system mistakenly inserts additional114

characters or words that are not present in115

the original image. These errors often arise116

from misinterpretations of noise or artifacts117

in the scanned document, leading to spurious118

insertions in the recognized text. Insertion er-119

rors can distort the meaning of the text and120

introduce inconsistencies in downstream pro-121

cessing tasks.122

• Deletion Errors: Deletion errors occur when123

the OCR system erroneously removes or124

deletes characters or words from the input im- 125

age. These errors can occur due to segmenta- 126

tion errors, where the OCR system incorrectly 127

identifies boundaries between characters or 128

words, leading to the omission of valid text 129

fragments. Deletion errors can result in loss 130

of information and inaccuracies in the recog- 131

nized text output. 132

Over the years, researchers have explored var- 133

ious approaches to mitigate OCR errors, includ- 134

ing rule-based post-processing techniques (Khos- 135

robeigi et al., 2020), statistical language models 136

(Mei et al., 2018), and machine learning-based 137

methods (Virk et al., 2021). While these ap- 138

proaches have shown promise in certain scenarios, 139

they often rely on handcrafted rules or linguistic 140

resources, limiting their generalization to diverse 141

document types and languages. 142

In recent years, there has been growing interest in 143

applying advanced machine learning and natural 144

language processing techniques to address OCR er- 145

rors effectively. One promising direction is to lever- 146

age techniques from machine translation, which 147

aims to automatically translate text from one lan- 148

guage to another. By treating OCR errors as mis- 149

translations and modelling the correction process as 150

an automatic post-editing (APE) task, it is possible 151

to harness the power of neural machine translation 152

models to learn the mapping from erroneous to cor- 153

rect OCR text output. This paradigm shift not only 154

enables end-to-end error correction but also facili- 155

tates the integration of contextual information and 156

linguistic knowledge into the correction process, 157

leading to more accurate and robust OCR systems. 158

In the upcoming sections of the paper, we will look 159

at what are the different types of errors that exist 160

in the OCR output and how we will generate the 161

OCR error correction data and use it to mitigate the 162

OCR errors. 163

2.2 Machine Translation 164

Machine translation (MT) describes the automatic 165

process of translating text or speech from one lan- 166

guage to another utilizing algorithmic methods and 167

technology without the need for human translators. 168

As mentioned by Bhattacharyya (2015) MT’s objec- 169

tive is to facilitate communication and understand- 170

ing amongst multilingual individuals by translating 171

written or spoken text automatically. MT systems 172

typically analyze the input text or speech using nat- 173

ural language processing (NLP) techniques, break- 174
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ing it down into smaller linguistic units such as175

words, phrases, or sentences. These units are then176

processed and translated into the target language177

based on predefined rules, statistical models, or178

more advanced methods such as neural networks.179

2.3 Automatic Post-editing and OCR Error180

Correction181

Automatic Post-Editing (APE) is a methodology182

that utilizes various techniques to improve the qual-183

ity of Machine Translation output automatically,184

including rule-based, statistical, and neural-based185

techniques (Vu and Haffari, 2018). APE systems186

are trained on human-edited translations, allowing187

them to identify and correct errors in grammar, flu-188

ency, and terminology. While MT systems have189

advanced significantly, they often produce transla-190

tions that contain errors or lack fluency, especially191

with complex or domain-specific content. Output192

generated by a machine translation system is not193

always perfect and hence requires further editing194

(Parton et al., 2012). The task of editing a machine-195

translated text is referred to as post-editing (PE),196

which is time-consuming and costly. Hence, an197

efficient and automated system is required for post-198

editing. APE addresses these limitations by re-199

fining MT output, thereby enhancing the overall200

quality and usability of translations. APE can be201

easily integrated into existing machine translation202

workflows, making it a natural extension of the MT203

process.204

While OCR systems play a crucial role in digi-205

tizing text, inherent limitations lead to errors in the206

extracted text. This necessitates post-processing207

techniques to refine the OCR output and achieve208

higher accuracy (Nguyen et al., 2021). Viewing this209

process through the lens of APE offers a valuable210

framework for developing effective error correc-211

tion methods. Post-OCR error correction can be212

considered an Automatic Post Editing task. Similar213

to a machine translation system generating a trans-214

lated sentence from a source language, the OCR215

system produces a "translated" text from the visual216

information in an image. This "translation" process217

is prone to errors due to limitations in both OCR218

systems, image quality, and stylistic variation. Just219

like an APE system refines a machine-translated220

sentence to improve fluency and accuracy, the post-221

OCR correction system aims to refine the text gen-222

erated by the OCR system to remove errors and223

achieve a more accurate representation of the origi-224

nal document. Both MT and OCR error correction225

face common challenges like handling ambiguity, 226

dealing with rare words, and adapting to stylistic 227

variations. 228

2.4 Round-trip translation 229

Information that is intentionally manufactured 230

rather than derived from actual events is referred 231

to as synthetic data. Synthetic data generation tech- 232

niques are generally employed to generate artificial 233

data for training machine learning models and neu- 234

ral networks. 235

Due to insufficient post-editing data available for 236

the WMT APE 2016 shared task (Bojar et al., 2016) 237

to train neural models, Junczys-Dowmunt and 238

Grundkiewicz (2016), created two phrase-based 239

translation models: English-German and German- 240

English, using provided parallel training data to 241

conduct round-trip translation. Using them in the 242

Round-trip Translation approach resulted in the 243

generation of artificial post-editing triplets <src, 244

mt, pe>. This artificial data creation method as- 245

sisted in resolving the problem of insufficient train- 246

ing data, which frequently arises in NMT-based 247

systems. Inspired by the Round-trip Translation 248

approach, we propose a novel synthetic data gener- 249

ation technique, RoundTripOCR, which we discuss 250

in detail in the following section. 251

3 RoundTripOCR: Data Generation 252

Technique 253

The creation of artificial OCR data involves a sys- 254

tematic process aimed at simulating real-world sce- 255

narios keeping in consideration the common OCR 256

error types and generating diverse datasets for train- 257

ing and evaluation purposes. 258

We use monolingual corpora taken from Technol- 259

ogy Development for Indian Languages (TDIL)2 260

and Maheshwari et al. (2022) to generate sentences 261

of different lengths for generating artificial OCR 262

data. To introduce variability and diversity into 263

the dataset, 50 different Devanagari font combina- 264

tions were selected from Google Fonts3. Each font 265

style offered unique characteristics, such as varying 266

stroke thickness, serif styles, and overall aesthet- 267

ics as shown in Figure 1. Utilizing the selected 268

Devanagari font combinations, 50 images could po- 269

tentially be generated from a single sentence. PIL 270

provides a comprehensive set of image processing 271

functionalities, enabling the programmatic creation 272

2https://www.tdil-dc.in
3https://fonts.google.com/?subset=devanagari
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Figure 1: Examples of images generated with different fonts during RoundTripOCR data generation process.

of images with text rendered in specific font styles273

as described in the Appendix B. The generated im-274

ages were subjected to optical character recognition275

(OCR) using the Pytesseract library as described276

in the Appendix C. Pytesseract is not supported277

for Bodo, Nepali, and Konkani languages. Thus,278

we used Pytesseract-Hindi for Bodo and Nepali,279

and Pytesseract-Marathi for Konkani due to sim-280

ilarities in these languages. We used Pytesseract-281

Sanskrit for the Sanskrit language. Pytesseract282

leverages machine-learning algorithms to extract283

text from images and convert them into machine-284

readable formats, including the Devanagari texts.285

The OCR process is aimed at simulating real-world286

OCR scenarios and generating text outputs from287

the rendered images. Since we can get 50 <Text T,288

OCR output T’> datapoints from a single sentence289

<Text T>, this approach can be extended to any290

low-resource language.291

By following this methodology, as shown in Fig-292

ure 2, a comprehensive artificial dataset for OCR293

error detection and correction was generated, en-294

compassing a diverse range of text passages, font295

styles, and linguistic variations. This dataset serves296

as a valuable resource for training and evaluating297

OCR systems, enabling researchers and practition-298

ers to develop robust OCR algorithms and assess299

their performance under various conditions. 300

3.1 Dataset 301

Leveraging the RoundTripOCR technique, we gen- 302

erate datasets containing around 13.1 million sen- 303

tences in Hindi, 1.58 million sentences in Marathi, 304

2.54 million sentences in Bodo, 2.97 million sen- 305

tences in Nepali, 1.95 million sentences in Konkani 306

and 8.93 million sentences in Sanskrit. To assess 307

the quality of the artificial dataset, we provided 100 308

data samples from the Hindi and Marathi datasets 309

to language and OCR experts for evaluation. Their 310

feedback indicated that the dataset contains errors 311

very similar to those found in real OCR outputs. 312

We have observed that the quality of training data 313

obtained either from real-world data or by our 314

RoundTripOCR technique is comparable. Thus, 315

we believe that using our technique is a convenient 316

and appropriate way to generate a synthetic dataset 317

to train OCR error correction systems. 318

Font analysis revealed significant variations in er- 319

ror rates. Specifically, fonts such as Khand-Regular, 320

Rajdhani-Regular, Nirmala, and Biryani exhibited 321

the highest CERs, exceeding 7%. Conversely, fonts 322

like Gargi, Karma-Regular, NotoSans-Regular, and 323

VesperLibre-Regular demonstrated remarkably low 324

CERs, each falling below 1% as shown in Figure 325
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# of Sent. Hindi Marathi Bodo Nepali Konkani Sanskrit
Train dataset 13,129,200 1,581,405 2,541,649 2,970,148 1,950,874 8,935,790
Validation set 10,000 10,000 10,000 10,000 10,000 10,000
Test dataset 10,000 10,000 10,000 10,000 10,000 10,000

Table 1: Dataset distribution for different languages

Figure 2: RoundTripOCR: The process of Artifi-
cial OCR Data Generation. At the end of the
RoundTripOCR process, <OCR output T’> will act as
OCR output, and <Text T> will act as corrected OCR
output text.

3. Our findings suggest that models trained on a326

diverse range of fonts perform more robustly than327

those trained solely on a single font. This observa-328

tion underscores the importance of font diversity329

in enhancing OCR error correction models’ perfor-330

mance and resilience. The sample dataset can be331

accessed using the link4.332

4 Experiments and Results333

4.1 Fine-tuning sequence to sequence model334

using our dataset335

In this experiment, we harnessed a vast dataset con-336

sisting of 13 million data points, curated through337

our RoundTripOCR data generation methodology.338

Leveraging this extensive corpus, we conducted a339

series of experiments employing a sophisticated340

sequence-to-sequence model: mBART.341

4https://drive.google.com/drive/folders/
1EmXGHRHo2-hRqxTN8OwXJK-zdcX-ilYE?usp=sharing

To facilitate effective model training and evalua- 342

tion, we partitioned the dataset into three distinct 343

sets: training, testing, and validation. Specifically, 344

the testing set contained 10,000 pairs, while the 345

validation set comprised 10,000 pairs. This meticu- 346

lous partitioning strategy enabled us to assess the 347

performance of our models accurately and reliably 348

across various metrics. We fine-tuned the model 349

for 4 epochs and 3000 max_steps. 350

mBART (Multilingual BART) represents an ex- 351

tension of the BART architecture tailored specifi- 352

cally for multilingual text processing as explained 353

in the Appendix D. 354

To facilitate an in-depth investigation, we fur- 355

ther curated two distinct datasets. The first dataset 356

encompassed text samples spanning various fonts, 357

providing a rich diversity in font styles. Conversely, 358

the second dataset exclusively features a single font 359

style; particularly we chose the Sumana font as it 360

shows a close to average CER when compared 361

with all the fonts used in the creation of the dataset. 362

This deliberate bifurcation allowed us to explore 363

the potential advantages conferred by employing 364

data with varying font styles, thereby enriching our 365

understanding of the model’s performance under 366

different font conditions. 367

4.2 Results 368

Results on Hindi test dataset
Model CER WER
Tesseract (baseline) 2.247% 5.833%
mBART (single font) 2.105% 5.817%
mBART (all fonts) 1.556% 3.474%

Table 2: Results on Hindi test dataset

Results on Marathi test dataset
Model CER WER
Tesseract (baseline) 4.100% 15.372%
mBART (single font) 3.592% 14.472%
mBART (all fonts) 2.464% 9.886%

Table 3: Results on Marathi test dataset

5
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Figure 3: Comparision of different fonts and their CER in the Hindi test dataset

Results on Konkani test dataset
Model CER WER
Tesseract (baseline) 4.222% 16.803%
mBART (single font) 3.279% 13.058%
mBART (all fonts) 2.265% 8.524%

Table 4: Results on Konkani test dataset

Results on Nepali test dataset
Model CER WER
Tesseract (baseline) 5.783% 24.287%
mBART (single font) 3.189% 14.266%
mBART (all fonts) 2.387% 10.651%

Table 5: Results on Nepali test dataset

Results on Bodo test dataset
Model CER WER
Tesseract (baseline) 5.893% 24.027%
mBART (single font) 3.677% 13.016%
mBART (all fonts) 2.359% 6.822%

Table 6: Results on Bodo test dataset

Results on Sanskrit test dataset
Model CER WER
Tesseract (baseline) 8.766% 44.730%
mBART (single font) 6.428% 29.294%
mBART (all fonts) 5.670% 25.501%

Table 7: Results on Sanskrit test dataset

The evaluation of OCR model performance369

across multiple Indian languages reveals notable370

insights. In the Hindi and Marathi test datasets, 371

Tesseract (baseline) exhibits CERs of 2.247% and 372

4.100%, respectively, with corresponding WERs 373

of 5.833% and 15.372%. Contrastingly, mBART 374

(all fonts) achieves significantly lower error rates, 375

recording CERs of 1.556% and 2.464% and WERs 376

of 3.474% and 9.886% for Hindi and Marathi, 377

respectively. Similar trends are observed in the 378

Konkani and Nepali datasets, where mBART (all 379

fonts) maintains a competitive edge with CERs of 380

2.265% and 2.387% and WERs of 8.524% and 381

10.651%. In more challenging languages like 382

Bodo and Sanskrit, mBART (all fonts) continues to 383

demonstrate superiority over the Tesseract baseline, 384

achieving CERs of 2.359% and 5.670% and WERs 385

of 6.822% and 25.501%, respectively. These re- 386

sults underscore the effectiveness of mBART, par- 387

ticularly when trained on diverse font variations, in 388

enhancing OCR accuracy across a range of com- 389

plex languages. 390

5 Conclusion and Future Work 391

In our work, we introduced a novel approach for 392

OCR error correction data generation and created 393

a vast dataset comprising 13.1 million sentences 394

in Hindi, 1.58 million sentences in Marathi, 2.54 395

million sentences in Bodo, 2.97 million sentences 396

in Nepali, 1.95 million sentences in Konkani and 397

8.93 million sentences in Sanskrit. Notably, our 398

proposed methodology is versatile and can be ex- 399

tended to other low-resource languages that fol- 400

low the Devanagari script. By leveraging monolin- 401

gual corpora, our approach enables the generation 402
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of OCR correction datasets, thus addressing the403

scarcity of data in such languages.404

The findings from our experimentation under-405

score the efficacy of approaches from Machine406

Translation for the task of OCR output correction,407

specifically state-of-the-art models like mBART,408

trained on diverse datasets to substantially enhance409

OCR accuracy. By improving the accuracy of OCR410

systems, our research contributes to making textual411

content more accessible and usable, thereby facili-412

tating broader access to information and knowledge413

in multilingual societies. Our findings suggest that414

models trained on a diverse range of fonts perform415

more robustly than those trained solely on a single416

font. This observation underscores the importance417

of font diversity in enhancing OCR error correction418

models’ performance and resilience.419

Our findings motivate the exploration of data420

augmentation techniques utilizing synthetically421

generated Devanagari script images. By incorporat-422

ing these images with controlled variations in font423

styles, noise levels, and image degradations, we424

can investigate the impact on model generalization425

and robustness towards real-world document image426

complexities. This research could delve into gener-427

ative adversarial networks (GANs) or other image428

synthesis techniques to create a diverse and realistic429

training dataset for enhanced OCR performance.430

We propose the experimental findings in this431

work as a baseline, based on which future work can432

focus on novel and sophisticated techniques for the433

task of OCR correction, including improvements434

to the architecture.435

6 Limitations436

Our work focuses on improving OCR error cor-437

rection for Devanagari script languages only. Ex-438

tending this approach to achieve true multilingual439

OCR is a complex endeavour. Different languages440

possess unique linguistic characteristics, script vari-441

ations, and language-specific nuances. Developing442

a single model capable of handling this vast diver-443

sity effectively remains a challenge. Future work444

should explore techniques for creating language-445

agnostic or language-adaptive models to address446

these limitations and achieve broader multilingual447

OCR applicability.448

7 Ethical Statement449

This research utilizes datasets that are openly avail-450

able in the public domain. The data employed for451

generating artificial data in this study was sourced 452

from publicly accessible repositories, ensuring that 453

there are no privacy or ethical concerns associated 454

with their use. No user information was present 455

in any of the datasets used in the work, protecting 456

the privacy and identity of users. Also, the syn- 457

thetic data generated as a part of this work will 458

be released under the CC-BY-SA 4.0 license pub- 459

licly for further research. We understand that every 460

dataset is subject to intrinsic bias and that compu- 461

tational models will inevitably learn biased infor- 462

mation from any dataset. 463

References 464

Pushpak Bhattacharyya. 2015. Machine translation. 465
CRC Press. 466
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A Appendix553

The fonts used to generate images are: EkMukta-554

Regular, Arya-Regular, YatraOne-Regular,555

Siddhanta, Sura-Regular, Samanata, Karma-556

Regular, Nirmala, Asar-Regular, VesperLibre-557

Regular, Kurale-Regular, MartelSans-Regular,558

SakalBharati Normal, Biryani-Regular, Sumana- 559

Regular, Sarai, Laila-Regular, Rajdhani-Regular, 560

Nakula, Shobhika-Regular, Baloo-Regular, 561

Lohit-Devanagari, Amiko-Regular, Akshar 562

Unicode, Palanquin-Regular, Eczar-Regular, 563

Glegoo-Regular, Mukta-Regular, Sanskrit2003, 564

PalanquinDark-Regular, Baloo2-Regular, Kalam- 565

Regular, Sanskrit_text, Halant-Regular, Hind- 566

Regular, Cambay-Regular, PragatiNarrow-Regular, 567

Kadwa-Regular, Kokila, Sahadeva, Utsaah, 568

Sahitya-Regular, Khand-Regular, Sarala-Regular, 569

NotoSans-Regular, Jaldi-Regular, RhodiumLibre- 570

Regular, Yantramanav-Regular and Gargi. 571

572

Languages which follow devnagari script 573

are: Apabhramsha, Angika, Awadhi, Bajjika, 574

Bhili, Bhojpuri, Boro, Braj, Chhattisgarhi, Dogri, 575

Garhwali, Haryanvi, Hindi, Kashmiri, Khandeshi, 576

Konkani, Kumaoni, Magahi, Maithili, Marathi, 577

Marwari, Mundari, Nagpuri, Newari, Nepali, 578

Pāli, Pahari, Prakrit, Rajasthani, Sanskrit, Santali, 579

Saraiki, Sherpa, Sindhi, Surjapuri, and many more. 580

We can extend our approach to all these languages. 581

B PIL (Python Image Library) 582

In today’s digital era, the prevalence of digital im- 583

ages is ubiquitous. When working with Python, 584

developers have access to a plethora of image- 585

processing libraries to augment the capabilities of 586

digital images. Among the most widely used li- 587

braries are OpenCV, Python Imaging Library (PIL), 588

Scikit-image, and Pillow. 589

Pillow5, an extension of PIL (Python Image Li- 590

brary), stands out as a crucial module for image 591

processing in Python. While PIL was once piv- 592

otal, it ceased support in 2011 and does not cater to 593

Python 3. In contrast, Pillow offers expanded func- 594

tionalities, runs seamlessly across major operating 595

systems, and fully supports Python 3. It boasts 596

compatibility with a diverse range of image for- 597

mats, including "jpeg", "png", "bmp", "gif", "ppm", 598

and "tiff". With Pillow, developers can perform a 599

multitude of operations on digital images, ranging 600

from basic tasks like point operations to advanced 601

functionalities such as image filtering using built-in 602

convolution kernels and colour space conversions. 603

The Python Imaging Library (Clark et al., 2015), 604

commonly known as PIL, is particularly well- 605

suited for image archival and batch-processing ap- 606

plications. Leveraging the Python Pillow package, 607

5https://pypi.org/project/pillow
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developers can seamlessly perform tasks such as608

creating thumbnails, converting between different609

image formats, and printing images. The Pillow610

library encompasses a comprehensive suite of basic611

image-processing functionalities, including image612

resizing, rotation, and transformation. Additionally,613

the histogram method available in the Pillow mod-614

ule facilitates the extraction of statistical data from615

images, which can then be utilized for statistical616

analysis and automatic contrast enhancement.617

C Tesseract618

Tesseract6 is an open-source OCR Engine designed619

to extract printed or handwritten text from images.620

Originally developed by Hewlett-Packard, its de-621

velopment was later taken over by Google (Smith,622

2007). Tesseract boasts support for language recog-623

nition in over 100 languages straight out of the624

box. The latest iteration, Tesseract 4.0, features625

AI integration through LSTM Neural Networks,626

enhancing its capability to detect and recognize627

inputs of varying sizes with greater accuracy and628

efficiency.629

Tesseract’s versatility lies in its compatibility630

with various programming languages and frame-631

works through wrappers like Pytesseract, com-632

monly known as Python-Tesseract. This tool not633

only serves as an open-source OCR library for634

Python but also acts as a wrapper for Google’s635

Tesseract OCR Engine. Pytesseract offers the con-636

venience of being a standalone script, enabling di-637

rect printing of recognized text without the need638

to convert it into a separate file. It supports a wide639

range of image formats, including JPEG, PNG, GIF,640

BMP, TIFF, and more, making it a popular choice641

for image-to-text OCR tasks in Python.642

Pytesseract played an important role in our work643

of data generation, where it was used for perform-644

ing the OCR of the images that we generated using645

PIL.646

D mBART (Multilingual BART)647

Bidirectional and Auto-Regressive Transformers648

(BART) is a sequence-to-sequence model pro-649

posed by Lewis et al. (2020) that combines the650

strengths of bidirectional and auto-regressive trans-651

formers. Its architecture consists of an encoder-652

decoder transformer model with masked self-653

attention mechanism in the decoder.654

6https://github.com/tesseract-ocr/tesseract

Encoder: The encoder processes the input se- 655

quence bidirectionally using self-attention mecha- 656

nisms to capture contextual information efficiently. 657

It produces contextualized representations of the 658

input tokens. 659

Decoder: The decoder generates the output se- 660

quence autoregressively, conditioning on the en- 661

coder’s contextualized representations and previ- 662

ously generated tokens. It employs causal self- 663

attention mechanisms to ensure that each token is 664

generated based only on previously generated to- 665

kens, as opposed to looking ahead of the current 666

decoding step. 667

BART is pre-trained on large-scale text corpora 668

using denoising autoencoding objectives, where 669

corrupted input sequences are reconstructed to their 670

original forms. This pre-training objective encour- 671

ages the model to learn robust representations of 672

text and enables it to perform well on a wide range 673

of natural language processing tasks. 674

mBART (Multilingual BART) by Liu et al. 675

(2020) extends the BART architecture to support 676

multilingual text processing. It is designed to han- 677

dle input sequences in multiple languages and gen- 678

erate output sequences in the corresponding target 679

languages. 680

Language Embeddings: mBART incorporates 681

language embeddings into its architecture to enable 682

language-specific processing. These embeddings 683

encode information about the source and target lan- 684

guages, allowing the model to adapt its behaviour 685

based on the language of the input and output se- 686

quences. 687

Cross-lingual Pre-training: mBART is pre- 688

trained on multilingual text corpora using cross- 689

lingual objectives, where input sequences from dif- 690

ferent languages are reconstructed to their original 691

forms. This pre-training objective encourages the 692

model to learn language-agnostic representations 693

of text and enables it to perform effectively on mul- 694

tilingual tasks. 695
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