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Abstract

Optical Character Recognition (OCR) tech-
nology has revolutionized the digitization of
printed text, enabling efficient data extraction
and analysis across various domains. Just like
Machine Translation systems, OCR systems
are prone to errors, stemming from factors such
as poor image quality, diverse fonts, and lan-
guage variations. In this work, we address
the challenge of data generation and post-OCR
error correction, specifically for low-resource
languages. We propose a novel approach
for synthetic data generation for Devanagari
languages, RoundTripOCR, that tackles the
scarcity of the OCR Error Correction dataset.
In this work, we release a post-OCR text correc-
tion dataset for Hindi, Marathi, Bodo, Nepali,
Konkani and Sanskrit. We also present a novel
approach for OCR error correction by leverag-
ing techniques from machine translation. Our
method involves translating the erroneous OCR
output into a corrected form by treating the
OCR errors as mistranslations in a parallel
text corpus. We employ a state-of-the-art pre-
trained transformer model, mBART, to learn
the mapping from erroneous to correct text
pairs, effectively correcting OCR errors. The
sample dataset can be accessed using the link'.

1 Introduction

Devanagari script is the most widely used script in
India and other Asian countries. There is a rich col-
lection of ancient Devanagari manuscripts, which is
a wealth of knowledge. To make these manuscripts
available to people, efforts are being made to dig-
itize these documents. Optical Character Recog-
nition (OCR) technology has revolutionized the
digitization and processing of written or printed
text by enabling machines to automatically convert
scanned documents into editable and searchable
text formats. With the proliferation of document
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digitization efforts across various domains such
as finance, healthcare, education, and government,
OCR plays a crucial role in enhancing document
accessibility, information retrieval, and automation
of document-intensive workflows. However, de-
spite significant advancements in OCR technology
over the years, the accurate recognition of text from
scanned documents remains a challenging task due
to inherent complexities in document layouts, font
variations, noise, and other distortions.
Traditional OCR systems typically follow a
pipeline approach comprising image preprocess-
ing, feature extraction, character segmentation,
and recognition stages. While these systems have
achieved remarkable success in many applications,
they are susceptible to errors, especially when deal-
ing with degraded or low-quality document images.
OCR errors can manifest in various forms, includ-
ing misrecognitions, substitutions, omissions, and
insertions, leading to inaccuracies in the recognized
text output. These errors not only impede the re-
liability of OCR systems but also pose significant
challenges for downstream tasks such as informa-
tion extraction, text mining, and content analysis.
Addressing OCR errors requires robust error detec-
tion and correction mechanisms that can effectively
handle a wide range of error patterns and variations.
Our contributions are as follows:

1. RoundTripOCR, a novel approach to gener-
ate a Post-OCR error correction dataset artifi-
cially for Devanagari languages.

2. Post-OCR text correction dataset containing
around 13.1 million sentences in Hindi, 1.58
million sentences in Marathi, 2.54 million
sentences in Bodo, 2.97 million sentences in
Nepali, 1.95 million sentences in Konkani and
8.93 million sentences in Sanskrit.

3. Benchmarks for the Post-OCR error correc-
tion task based on the pre-trained Seq2Seq
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language model for all six languages.

2 Background

Addressing OCR errors is crucial for improving
the overall quality and usability of digitized docu-
ments.

2.1 Types of OCR Errors

As mentioned by Volk et al. (2011) and Jatowt et al.
(2019), OCR systems are prone to various types
of errors that can occur during the process of text
recognition from scanned documents. Understand-
ing these errors is essential for developing effective
error correction techniques and improving the over-
all accuracy of OCR systems. The most common
types of OCR errors include:

* Substitution Errors: Substitution errors oc-
cur when the OCR system incorrectly rec-
ognizes a character and substitutes it with a
different character. These errors often result
from similarities between characters in terms
of shape or visual appearance, making it chal-
lenging for the OCR system to distinguish
between them accurately. For example, "o"
might be substituted for "0" or "1" for "1" in
the alphanumeric character set.

* Omission Errors: Omission errors occur
when the OCR system fails to detect and rec-
ognize certain characters or words in the input
image. This can happen due to factors such
as poor image quality, low resolution, or in-
distinct boundaries between characters. Omis-
sion errors can significantly affect the read-
ability and integrity of the recognized text,
especially in documents with dense text or
complex layouts.

* Insertion Errors: Insertion errors occur when
the OCR system mistakenly inserts additional
characters or words that are not present in
the original image. These errors often arise
from misinterpretations of noise or artifacts
in the scanned document, leading to spurious
insertions in the recognized text. Insertion er-
rors can distort the meaning of the text and
introduce inconsistencies in downstream pro-
cessing tasks.

¢ Deletion Errors: Deletion errors occur when
the OCR system erroneously removes or

deletes characters or words from the input im-
age. These errors can occur due to segmenta-
tion errors, where the OCR system incorrectly
identifies boundaries between characters or
words, leading to the omission of valid text
fragments. Deletion errors can result in loss
of information and inaccuracies in the recog-
nized text output.

Over the years, researchers have explored var-

ious approaches to mitigate OCR errors, includ-
ing rule-based post-processing techniques (Khos-
robeigi et al., 2020), statistical language models
(Mei et al., 2018), and machine learning-based
methods (Virk et al., 2021). While these ap-
proaches have shown promise in certain scenarios,
they often rely on handcrafted rules or linguistic
resources, limiting their generalization to diverse
document types and languages.
In recent years, there has been growing interest in
applying advanced machine learning and natural
language processing techniques to address OCR er-
rors effectively. One promising direction is to lever-
age techniques from machine translation, which
aims to automatically translate text from one lan-
guage to another. By treating OCR errors as mis-
translations and modelling the correction process as
an automatic post-editing (APE) task, it is possible
to harness the power of neural machine translation
models to learn the mapping from erroneous to cor-
rect OCR text output. This paradigm shift not only
enables end-to-end error correction but also facili-
tates the integration of contextual information and
linguistic knowledge into the correction process,
leading to more accurate and robust OCR systems.
In the upcoming sections of the paper, we will look
at what are the different types of errors that exist
in the OCR output and how we will generate the
OCR error correction data and use it to mitigate the
OCR errors.

2.2 Machine Translation

Machine translation (MT) describes the automatic
process of translating text or speech from one lan-
guage to another utilizing algorithmic methods and
technology without the need for human translators.
As mentioned by Bhattacharyya (2015) MT’s objec-
tive is to facilitate communication and understand-
ing amongst multilingual individuals by translating
written or spoken text automatically. MT systems
typically analyze the input text or speech using nat-
ural language processing (NLP) techniques, break-



ing it down into smaller linguistic units such as
words, phrases, or sentences. These units are then
processed and translated into the target language
based on predefined rules, statistical models, or
more advanced methods such as neural networks.

2.3 Automatic Post-editing and OCR Error
Correction

Automatic Post-Editing (APE) is a methodology
that utilizes various techniques to improve the qual-
ity of Machine Translation output automatically,
including rule-based, statistical, and neural-based
techniques (Vu and Haffari, 2018). APE systems
are trained on human-edited translations, allowing
them to identify and correct errors in grammar, flu-
ency, and terminology. While MT systems have
advanced significantly, they often produce transla-
tions that contain errors or lack fluency, especially
with complex or domain-specific content. Output
generated by a machine translation system is not
always perfect and hence requires further editing
(Parton et al., 2012). The task of editing a machine-
translated text is referred to as post-editing (PE),
which is time-consuming and costly. Hence, an
efficient and automated system is required for post-
editing. APE addresses these limitations by re-
fining MT output, thereby enhancing the overall
quality and usability of translations. APE can be
easily integrated into existing machine translation
workflows, making it a natural extension of the MT
process.

While OCR systems play a crucial role in digi-
tizing text, inherent limitations lead to errors in the
extracted text. This necessitates post-processing
techniques to refine the OCR output and achieve
higher accuracy (Nguyen et al., 2021). Viewing this
process through the lens of APE offers a valuable
framework for developing effective error correc-
tion methods. Post-OCR error correction can be
considered an Automatic Post Editing task. Similar
to a machine translation system generating a trans-
lated sentence from a source language, the OCR
system produces a "translated" text from the visual
information in an image. This "translation" process
is prone to errors due to limitations in both OCR
systems, image quality, and stylistic variation. Just
like an APE system refines a machine-translated
sentence to improve fluency and accuracy, the post-
OCR correction system aims to refine the text gen-
erated by the OCR system to remove errors and
achieve a more accurate representation of the origi-
nal document. Both MT and OCR error correction

face common challenges like handling ambiguity,
dealing with rare words, and adapting to stylistic
variations.

2.4 Round-trip translation

Information that is intentionally manufactured
rather than derived from actual events is referred
to as synthetic data. Synthetic data generation tech-
niques are generally employed to generate artificial
data for training machine learning models and neu-
ral networks.

Due to insufficient post-editing data available for
the WMT APE 2016 shared task (Bojar et al., 2016)
to train neural models, Junczys-Dowmunt and
Grundkiewicz (2016), created two phrase-based
translation models: English-German and German-
English, using provided parallel training data to
conduct round-trip translation. Using them in the
Round-trip Translation approach resulted in the
generation of artificial post-editing triplets <src,
mt, pe>. This artificial data creation method as-
sisted in resolving the problem of insufficient train-
ing data, which frequently arises in NMT-based
systems. Inspired by the Round-trip Translation
approach, we propose a novel synthetic data gener-
ation technique, RoundTripOCR, which we discuss
in detail in the following section.

3 RoundTripOCR: Data Generation
Technique

The creation of artificial OCR data involves a sys-
tematic process aimed at simulating real-world sce-
narios keeping in consideration the common OCR
error types and generating diverse datasets for train-
ing and evaluation purposes.

We use monolingual corpora taken from Technol-
ogy Development for Indian Languages (TDIL)?
and Maheshwari et al. (2022) to generate sentences
of different lengths for generating artificial OCR
data. To introduce variability and diversity into
the dataset, 50 different Devanagari font combina-
tions were selected from Google Fonts®. Each font
style offered unique characteristics, such as varying
stroke thickness, serif styles, and overall aesthet-
ics as shown in Figure 1. Utilizing the selected
Devanagari font combinations, 50 images could po-
tentially be generated from a single sentence. PIL
provides a comprehensive set of image processing
functionalities, enabling the programmatic creation
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Hindi Sentence: "gATdl & d1¢ WHR 1 Gag W &R & ARIH F A ST P GQAT"

Transliteration: chunaawo ke baad sarkar ne Mumbai me karoM ke maadhyam se apne

raajaswa ko badhaayaa

Gloss: Elections after government Mumbai in taxes through its revenue increased.
Translation: After the elections, the government increased its revenue through taxes in Mumbai.
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Figure 1: Examples of images generated with different fonts during RoundTripOCR data generation process.

of images with text rendered in specific font styles
as described in the Appendix B. The generated im-
ages were subjected to optical character recognition
(OCR) using the Pytesseract library as described
in the Appendix C. Pytesseract is not supported
for Bodo, Nepali, and Konkani languages. Thus,
we used Pytesseract-Hindi for Bodo and Nepali,
and Pytesseract-Marathi for Konkani due to sim-
ilarities in these languages. We used Pytesseract-
Sanskrit for the Sanskrit language. Pytesseract
leverages machine-learning algorithms to extract
text from images and convert them into machine-
readable formats, including the Devanagari texts.
The OCR process is aimed at simulating real-world
OCR scenarios and generating text outputs from
the rendered images. Since we can get 50 <7ext T,
OCR output T’> datapoints from a single sentence
<Text T>, this approach can be extended to any
low-resource language.

By following this methodology, as shown in Fig-
ure 2, a comprehensive artificial dataset for OCR
error detection and correction was generated, en-
compassing a diverse range of text passages, font
styles, and linguistic variations. This dataset serves
as a valuable resource for training and evaluating
OCR systems, enabling researchers and practition-
ers to develop robust OCR algorithms and assess

their performance under various conditions.

3.1 Dataset

Leveraging the RoundTripOCR technique, we gen-
erate datasets containing around 13.1 million sen-
tences in Hindi, 1.58 million sentences in Marathi,
2.54 million sentences in Bodo, 2.97 million sen-
tences in Nepali, 1.95 million sentences in Konkani
and 8.93 million sentences in Sanskrit. To assess
the quality of the artificial dataset, we provided 100
data samples from the Hindi and Marathi datasets
to language and OCR experts for evaluation. Their
feedback indicated that the dataset contains errors
very similar to those found in real OCR outputs.
We have observed that the quality of training data
obtained either from real-world data or by our
RoundTripOCR technique is comparable. Thus,
we believe that using our technique is a convenient
and appropriate way to generate a synthetic dataset
to train OCR error correction systems.

Font analysis revealed significant variations in er-
ror rates. Specifically, fonts such as Khand-Regular,
Rajdhani-Regular, Nirmala, and Biryani exhibited
the highest CERs, exceeding 7%. Conversely, fonts
like Gargi, Karma-Regular, NotoSans-Regular, and
VesperLibre-Regular demonstrated remarkably low
CERs, each falling below 1% as shown in Figure



# of Sent. Hindi Marathi Bodo Nepali | Konkani Sanskrit
Train dataset | 13,129,200 | 1,581,405 | 2,541,649 | 2,970,148 | 1,950,874 | 8,935,790
Validation set 10,000 10,000 10,000 10,000 10,000 10,000
Test dataset 10,000 10,000 10,000 10,000 10,000 10,000

Table 1: Dataset distribution for different languages

Sentence from
monolingual corpus
<Text T>

Image
generation
using PIL

<Text T, Image I>

J

OCR using
Tesseract

<Text T, Image I, OCR output T'>

Figure 2: RoundTripOCR: The process of Artifi-
cial OCR Data Generation. At the end of the
RoundTripOCR process, <OCR output T’> will act as
OCR output, and <Text T> will act as corrected OCR
output text.

3. Our findings suggest that models trained on a
diverse range of fonts perform more robustly than
those trained solely on a single font. This observa-
tion underscores the importance of font diversity
in enhancing OCR error correction models’ perfor-
mance and resilience. The sample dataset can be
accessed using the link?.

4 Experiments and Results

4.1 Fine-tuning sequence to sequence model
using our dataset

In this experiment, we harnessed a vast dataset con-
sisting of 13 million data points, curated through
our RoundTripOCR data generation methodology.
Leveraging this extensive corpus, we conducted a
series of experiments employing a sophisticated
sequence-to-sequence model: mBART.
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To facilitate effective model training and evalua-
tion, we partitioned the dataset into three distinct
sets: training, testing, and validation. Specifically,
the testing set contained 10,000 pairs, while the
validation set comprised 10,000 pairs. This meticu-
lous partitioning strategy enabled us to assess the
performance of our models accurately and reliably
across various metrics. We fine-tuned the model
for 4 epochs and 3000 max_steps.

mBART (Multilingual BART) represents an ex-
tension of the BART architecture tailored specifi-
cally for multilingual text processing as explained
in the Appendix D.

To facilitate an in-depth investigation, we fur-
ther curated two distinct datasets. The first dataset
encompassed text samples spanning various fonts,
providing a rich diversity in font styles. Conversely,
the second dataset exclusively features a single font
style; particularly we chose the Sumana font as it
shows a close to average CER when compared
with all the fonts used in the creation of the dataset.
This deliberate bifurcation allowed us to explore
the potential advantages conferred by employing
data with varying font styles, thereby enriching our
understanding of the model’s performance under
different font conditions.

4.2 Results

Results on Hindi test dataset
Model CER WER
Tesseract (baseline) 2247% | 5.833%
mBART (single font) | 2.105% | 5.817%
mBART (all fonts) 1.556% | 3.474%

Table 2: Results on Hindi test dataset

Results on Marathi test dataset
Model CER WER
Tesseract (baseline) 4.100% | 15.372%
mBART (single font) | 3.592% | 14.472%
mBART (all fonts) 2.464% | 9.886%

Table 3: Results on Marathi test dataset


https://drive.google.com/drive/folders/1EmXGHRHo2-hRqxTN8OwXJK-zdcX-ilYE?usp=sharing
https://drive.google.com/drive/folders/1EmXGHRHo2-hRqxTN8OwXJK-zdcX-ilYE?usp=sharing

NotoSans-Regular
Glegoo-Regular
Samanata
Karma-Regular
Lohit-Devanagari
VesperLibre-Regular
EkMukta-Regular
Cambay-Regular
Siddhanta
Kadwa-Regular
Eczar-Regular
Nakula
Shobhika-Regular
Sarala-Regular
Baloo2-Regular
Sanskrit_text
PalanquinDark-Regular
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Baloo-Regular
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Khand-Regular
Kalam-Regular
Biryani-Regular
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Figure 3: Comparision of different fonts and their CER in the Hindi test dataset

Results on Konkani test dataset
Model CER WER
Tesseract (baseline) 4.222% | 16.803%
mBART (single font) | 3.279% | 13.058%
mBART (all fonts) 2.265% | 8.524%

Table 4: Results on Konkani test dataset

Results on Nepali test dataset
Model CER WER
Tesseract (baseline) 5.783% | 24.287%
mBART (single font) | 3.189% | 14.266%
mBART (all fonts) 2.387% | 10.651%

Table 5: Results on Nepali test dataset

Results on Bodo test dataset
Model CER WER
Tesseract (baseline) 5.893% | 24.027%
mBART (single font) | 3.677% | 13.016%
mBART (all fonts) 2.359% | 6.822%

Table 6: Results on Bodo test dataset

Results on Sanskrit test dataset
Model CER WER
Tesseract (baseline) 8.766% | 44.730%
mBART (single font) | 6.428% | 29.294%
mBART (all fonts) 5.670% | 25.501%

Table 7: Results on Sanskrit test dataset

The evaluation of OCR model performance
across multiple Indian languages reveals notable

insights. In the Hindi and Marathi test datasets,
Tesseract (baseline) exhibits CERs of 2.247% and
4.100%, respectively, with corresponding WERs
of 5.833% and 15.372%. Contrastingly, mBART
(all fonts) achieves significantly lower error rates,
recording CERs of 1.556% and 2.464% and WERs
of 3.474% and 9.886% for Hindi and Marathi,
respectively. Similar trends are observed in the
Konkani and Nepali datasets, where mBART (all
fonts) maintains a competitive edge with CERs of
2.265% and 2.387% and WERs of 8.524% and
10.651%. In more challenging languages like
Bodo and Sanskrit, mBART (all fonts) continues to
demonstrate superiority over the Tesseract baseline,
achieving CERs of 2.359% and 5.670% and WERs
of 6.822% and 25.501%, respectively. These re-
sults underscore the effectiveness of mBART, par-
ticularly when trained on diverse font variations, in
enhancing OCR accuracy across a range of com-
plex languages.

5 Conclusion and Future Work

In our work, we introduced a novel approach for
OCR error correction data generation and created
a vast dataset comprising 13.1 million sentences
in Hindi, 1.58 million sentences in Marathi, 2.54
million sentences in Bodo, 2.97 million sentences
in Nepali, 1.95 million sentences in Konkani and
8.93 million sentences in Sanskrit. Notably, our
proposed methodology is versatile and can be ex-
tended to other low-resource languages that fol-
low the Devanagari script. By leveraging monolin-
gual corpora, our approach enables the generation



of OCR correction datasets, thus addressing the
scarcity of data in such languages.

The findings from our experimentation under-
score the efficacy of approaches from Machine
Translation for the task of OCR output correction,
specifically state-of-the-art models like mBART,
trained on diverse datasets to substantially enhance
OCR accuracy. By improving the accuracy of OCR
systems, our research contributes to making textual
content more accessible and usable, thereby facili-
tating broader access to information and knowledge
in multilingual societies. Our findings suggest that
models trained on a diverse range of fonts perform
more robustly than those trained solely on a single
font. This observation underscores the importance
of font diversity in enhancing OCR error correction
models’ performance and resilience.

Our findings motivate the exploration of data
augmentation techniques utilizing synthetically
generated Devanagari script images. By incorporat-
ing these images with controlled variations in font
styles, noise levels, and image degradations, we
can investigate the impact on model generalization
and robustness towards real-world document image
complexities. This research could delve into gener-
ative adversarial networks (GANSs) or other image
synthesis techniques to create a diverse and realistic
training dataset for enhanced OCR performance.

We propose the experimental findings in this
work as a baseline, based on which future work can
focus on novel and sophisticated techniques for the
task of OCR correction, including improvements
to the architecture.

6 Limitations

Our work focuses on improving OCR error cor-
rection for Devanagari script languages only. Ex-
tending this approach to achieve true multilingual
OCR is a complex endeavour. Different languages
possess unique linguistic characteristics, script vari-
ations, and language-specific nuances. Developing
a single model capable of handling this vast diver-
sity effectively remains a challenge. Future work
should explore techniques for creating language-
agnostic or language-adaptive models to address
these limitations and achieve broader multilingual
OCR applicability.

7 Ethical Statement

This research utilizes datasets that are openly avail-
able in the public domain. The data employed for

generating artificial data in this study was sourced
from publicly accessible repositories, ensuring that
there are no privacy or ethical concerns associated
with their use. No user information was present
in any of the datasets used in the work, protecting
the privacy and identity of users. Also, the syn-
thetic data generated as a part of this work will
be released under the CC-BY-SA 4.0 license pub-
licly for further research. We understand that every
dataset is subject to intrinsic bias and that compu-
tational models will inevitably learn biased infor-
mation from any dataset.
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A Appendix

The fonts used to generate images are: EkMukta-
Regular,  Arya-Regular,  YatraOne-Regular,
Siddhanta, Sura-Regular, Samanata, Karma-
Regular, Nirmala, Asar-Regular, VesperLibre-
Regular, Kurale-Regular, MartelSans-Regular,

SakalBharati Normal, Biryani-Regular, Sumana-
Regular, Sarai, Laila-Regular, Rajdhani-Regular,

Nakula, Shobhika-Regular, = Baloo-Regular,
Lohit-Devanagari, = Amiko-Regular, = Akshar
Unicode, Palanquin-Regular, Eczar-Regular,

Glegoo-Regular, Mukta-Regular, Sanskrit2003,
PalanquinDark-Regular, Baloo2-Regular, Kalam-
Regular, Sanskrit_text, Halant-Regular, Hind-
Regular, Cambay-Regular, PragatiNarrow-Regular,
Kadwa-Regular, Kokila, Sahadeva, Utsaah,
Sahitya-Regular, Khand-Regular, Sarala-Regular,
NotoSans-Regular, Jaldi-Regular, RhodiumLibre-
Regular, Yantramanav-Regular and Gargi.

Languages which follow devnagari script
are: Apabhramsha, Angika, Awadhi, Bajjika,
Bhili, Bhojpuri, Boro, Braj, Chhattisgarhi, Dogri,
Garhwali, Haryanvi, Hindi, Kashmiri, Khandeshi,
Konkani, Kumaoni, Magahi, Maithili, Marathi,
Marwari, Mundari, Nagpuri, Newari, Nepali,
Pali, Pahari, Prakrit, Rajasthani, Sanskrit, Santali,
Saraiki, Sherpa, Sindhi, Surjapuri, and many more.
We can extend our approach to all these languages.

B PIL (Python Image Library)

In today’s digital era, the prevalence of digital im-
ages is ubiquitous. When working with Python,
developers have access to a plethora of image-
processing libraries to augment the capabilities of
digital images. Among the most widely used li-
braries are OpenCV, Python Imaging Library (PIL),
Scikit-image, and Pillow.

Pillow?, an extension of PIL (Python Image Li-
brary), stands out as a crucial module for image
processing in Python. While PIL was once piv-
otal, it ceased support in 2011 and does not cater to
Python 3. In contrast, Pillow offers expanded func-
tionalities, runs seamlessly across major operating
systems, and fully supports Python 3. It boasts
compatibility with a diverse range of image for-
mats, including "jpeg", "png", "bmp", "gif", "ppm",
and "tiff". With Pillow, developers can perform a
multitude of operations on digital images, ranging
from basic tasks like point operations to advanced
functionalities such as image filtering using built-in
convolution kernels and colour space conversions.

The Python Imaging Library (Clark et al., 2015),
commonly known as PIL, is particularly well-
suited for image archival and batch-processing ap-
plications. Leveraging the Python Pillow package,
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developers can seamlessly perform tasks such as
creating thumbnails, converting between different
image formats, and printing images. The Pillow
library encompasses a comprehensive suite of basic
image-processing functionalities, including image
resizing, rotation, and transformation. Additionally,
the histogram method available in the Pillow mod-
ule facilitates the extraction of statistical data from
images, which can then be utilized for statistical
analysis and automatic contrast enhancement.

C Tesseract

Tesseract® is an open-source OCR Engine designed
to extract printed or handwritten text from images.
Originally developed by Hewlett-Packard, its de-
velopment was later taken over by Google (Smith,
2007). Tesseract boasts support for language recog-
nition in over 100 languages straight out of the
box. The latest iteration, Tesseract 4.0, features
Al integration through LSTM Neural Networks,
enhancing its capability to detect and recognize
inputs of varying sizes with greater accuracy and
efficiency.

Tesseract’s versatility lies in its compatibility
with various programming languages and frame-
works through wrappers like Pytesseract, com-
monly known as Python-Tesseract. This tool not
only serves as an open-source OCR library for
Python but also acts as a wrapper for Google’s
Tesseract OCR Engine. Pytesseract offers the con-
venience of being a standalone script, enabling di-
rect printing of recognized text without the need
to convert it into a separate file. It supports a wide
range of image formats, including JPEG, PNG, GIF,
BMP, TIFF, and more, making it a popular choice
for image-to-text OCR tasks in Python.

Pytesseract played an important role in our work
of data generation, where it was used for perform-
ing the OCR of the images that we generated using
PIL.

D mBART (Multilingual BART)

Bidirectional and Auto-Regressive Transformers
(BART) is a sequence-to-sequence model pro-
posed by Lewis et al. (2020) that combines the
strengths of bidirectional and auto-regressive trans-
formers. Its architecture consists of an encoder-
decoder transformer model with masked self-
attention mechanism in the decoder.

Shttps://github.com/tesseract-ocr/tesseract

Encoder: The encoder processes the input se-
quence bidirectionally using self-attention mecha-
nisms to capture contextual information efficiently.
It produces contextualized representations of the
input tokens.

Decoder: The decoder generates the output se-
quence autoregressively, conditioning on the en-
coder’s contextualized representations and previ-
ously generated tokens. It employs causal self-
attention mechanisms to ensure that each token is
generated based only on previously generated to-
kens, as opposed to looking ahead of the current
decoding step.

BART is pre-trained on large-scale text corpora
using denoising autoencoding objectives, where
corrupted input sequences are reconstructed to their
original forms. This pre-training objective encour-
ages the model to learn robust representations of
text and enables it to perform well on a wide range
of natural language processing tasks.

mBART (Multilingual BART) by Liu et al.
(2020) extends the BART architecture to support
multilingual text processing. It is designed to han-
dle input sequences in multiple languages and gen-
erate output sequences in the corresponding target
languages.

Language Embeddings: mBART incorporates
language embeddings into its architecture to enable
language-specific processing. These embeddings
encode information about the source and target lan-
guages, allowing the model to adapt its behaviour
based on the language of the input and output se-
quences.

Cross-lingual Pre-training: mBART is pre-
trained on multilingual text corpora using cross-
lingual objectives, where input sequences from dif-
ferent languages are reconstructed to their original
forms. This pre-training objective encourages the
model to learn language-agnostic representations
of text and enables it to perform effectively on mul-
tilingual tasks.
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