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Abstract
Natural images captured by mobile devices often suffer from multiple types of
degradation, such as noise, blur, and low light. Traditional image restoration
methods require manual selection of specific tasks, algorithms, and execution
sequences, which is time-consuming and may yield suboptimal results. All-in-one
models, though capable of handling multiple tasks, typically support only a limited
range and often produce overly smooth, low-fidelity outcomes due to their broad
data distribution fitting. To address these challenges, we first define a new pipeline
for restoring images with multiple degradations, and then introduce RestoreAgent,
an intelligent image restoration system leveraging multimodal large language
models. RestoreAgent autonomously assesses the type and extent of degradation
in input images and performs restoration through (1) determining the appropriate
restoration tasks, (2) optimizing the task sequence, (3) selecting the most suitable
models, and (4) executing the restoration. Experimental results demonstrate the
superior performance of RestoreAgent in handling complex degradation, surpassing
human experts. Furthermore, the system’s modular design facilitates the fast
integration of new tasks and models.

1 Introduction
Image restoration, a classical research area in computer vision, focuses on recovering high-quality
images from degraded observations. Traditional methods are usually tailored to specific tasks
like denoising [55, 61, 49, 29, 30, 12, 3], super-resolution [56, 34, 53, 4, 45, 47, 48], and deblur-
ring [28, 22, 51, 32, 44, 17]. However, real-world images often suffer from multiple simultaneous
degradations. For example, a low-quality image may exhibit noise, blur, and rain concurrently. There
may exist complex interactions and dependencies among different degradation phenomena, and each
degradation may require distinct handling methods. The combination and sequence of these methods
are crucial for the final restoration outcome. Recent advancements in the field have been driven by
leveraging expert knowledge and developing all-in-one models. To provide a thorough understanding
of this field and clarify our motivation, we present a detailed analysis below.

1.1 All-in-One Models
All-in-one models [38, 31, 24, 40, 33, 14, 27, 37, 1, 25] seek to use a single framework to handle
multiple degradations simultaneously. By training on multi-task datasets, these models learn to
manage various restoration tasks. However, several limitations continue to impede the practicality of
these models in complex real-world scenarios:

Restricted task scope. All-in-one models often struggle to process degradations outside of their
training data. Even for the same type of degradation, as shown in Figure 2 a1, these models may have
difficulty effectively processing data if the degradation distribution varies between the training and
testing sets. Given that existing models only cover a limited number of tasks, employing specialized
single-task restoration models is often more flexible and effective.
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Figure 1: Limitations of all-in-one models. (a) Models trained on different noise levels excel in
specific areas, so choosing models on demand leads to better results. (b) Models trained on a wider
range of blur degradations offer improved generalization but compromised performance, showing a
trade-off. (c) Multi-task models underperform on individual tasks compared to single-task models,
illustrating that all-in-one models trade performance for generalization.

Compromised performance. All-in-one models often face trade-offs between generalization and
restoration accuracy, as shown in Figure 1. While these models offer improved generalization across
a broader range of degradation levels, their performance at specific levels may be compromised.
Additionally, because they must handle multiple tasks with largely disparate degradation patterns, the
performance for individual tasks may fall short, resulting in overly smoothed outputs. As illustrated
in Figure 2 a2, single-task models typically outperform all-in-one models in most scenarios.

All-in-one models can, in fact, be integrated into an agent system comprising multiple models,
thereby going beyond a single solution. Often, using task-specific models customized for particular
degradations and then integrating them with an all-in-one model yields improved performance, as
shown by the two examples in Figure 2 a3. This hybrid approach maintains the adaptability of
all-in-one models while leveraging the strengths of specialized models.

1.2 Task-Specific Models
An alternative approach to using all-in-one models, which struggle to effectively address various
types of degradation, is to combine several specialized task-specific models, each focusing on a
specific degradation type. This modular strategy allows for a more targeted and efficient handling of
the different degradations present in the input images. Superior results can be achieved because these
specialized models excel in their respective areas.

1.2.1 Fixed or Random Execution Order
Current methods [50, 24, 14] typically detect the types of degradation in an image and apply the
appropriate restoration models in a predetermined order, or manually selected by experts, or chosen
at random. Nevertheless, there is a significant drawback to this approach: the processing order has a
major impact on the final performance. A predetermined order, even if established by human experts,
is not ideal and might fail to successfully restore the image, as demonstrated in Figure 2 b. Two
primary causes can be identified for this.

First, applying one restoration method can alter other degradation patterns, rendering the
following restoration models ineffective. For example, in an image with haze and rain, if haze is
performed first (Figure 2 b), the dehazing model may address the blur but alter the rain distribution,
thereby reducing the effectiveness of the deraining model.

Second, removing some degradations can be challenging if other degradations have not been
addressed first. A common example is the enhancement of low-light images, which often requires
denoising as a pre-processing step. Without prior denoising, the results of low-light enhancement are
likely to be subpar. In Figure 2 b, we can observe that without prior denoising and deraining, the
performance of the dehazing model is significantly compromised.
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Figure 2: Limitation illustration of all-in-one models, fixed task execution order, and fixed model.
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.
In light of these findings, accurate identification of degradation patterns or careful testing of various
task execution sequences is necessary for high-quality restoration. However, the search space grows
significantly with the number of tasks. For example, there are 24 possible execution orders for 4
degradation types. Moreover, the number of permutations increases drastically when multiple models
are available for a given task, leading to a significant rise in computational complexity.

1.2.2 Fixed or Random Model for a Single Task
In some scenarios, the system may opt to use a single model for a specific task or randomly select
a model from a pool of available options [50]. However, this approach has significant drawbacks.
Image restoration is a rapidly evolving field with various models tailored for a specific task, each
with unique capabilities and areas of expertise for managing specific scenarios. Using a fixed model
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or randomly selecting from a pool of models to process complex degradations can lead to suboptimal
results. As illustrated in Figure 2 c and Figure 1 a, different denoising models excel at different noise
levels. Choosing the right model is crucial for achieving the best result.

Manually selecting the best model is impractical due to the numerous combinations of task execution
orders and available models. For example, with 3 degradation types and 3 models per type, there are
162 possible combinations. Evaluating these permutations is time-consuming and labor-intensive.
Consequently, we often rely on one or two experienced-based solutions, which may not achieve the
desired restoration effect.

1.3 RestoreAgent
In response to the aforementioned challenges, we propose RestoreAgent, an autonomous and intelli-
gent image restoration system based on a multimodal large language model (MLLM). The MLLM’s
exposure to vast and diverse data endows it with superior generalization capabilities and has show-
cased remarkable performance in visual understanding and logical reasoning [46, 35, 18, 39, 43, 6, 62].
Furthermore, its flexibility facilitates the quick addition of new tasks, the definition of desired output
formats, and easier human interaction.
Our framework offers the following functionalities:
(1) Degradation Type Identification. RestoreAgent automatically identifies the types of degradation
present in an input image and determines the corresponding restoration tasks required.
(2) Adaptive Restoration Sequence. RestoreAgent goes beyond the constraints of predefined,
human-specified model execution orders by dynamically evaluating the individual properties of each
input image to decide the best sequence for utilizing the restoration models, thereby enhancing the
overall efficiency of the image restoration procedure.
(3) Optimal Model Selection. Based on the specific degradation patterns in the input image,
RestoreAgent dynamically selects the most appropriate model from the available pool for each
restoration task, ensuring optimal performance.
(4) Automated Execution. Once the restoration sequence and model selection are determined,
RestoreAgent autonomously executes the entire restoration pipeline without the need for manual
intervention.
To this end, we start by defining the multi-degradation task and constructing a training dataset. This
dataset includes paired degraded images (with one or more degradation types) and their ground
truth (only for evaluation), along with the optimal task execution sequence and best model choice
based on user-preferred goals. We then fine-tune MLLM to enable RestoreAgent to autonomously
make task decisions and determine the optimal processing sequence and models. Experiments show
that RestoreAgent’s decision-making capabilities significantly outperform existing methods and
human experts, achieving superior performance in recovering multi-degradation images. Notably, our
method can quickly adapt to unseen tasks and models.

2 Related Work
2.1 Single-Task Image Restoration
In the field of single-task image restoration, numerous methods have focused on addressing specific
types of image degradation. In denoising, models like DnCNN [59] and RNAN [63] have demon-
strated significant effectiveness, among others. In deblurring, algorithms like DeblurGAN [28] and
MIMO-UNet [13] and others stand out. For reducing JPEG artifacts, methods such as DCSC [19] and
FBCNN [23] are particularly well-suited. Additionally, there are specialized methods for restoration
under adverse weather conditions, including dehazing [52, 41], deraining [11, 7], and desnow-
ing [8, 9, 5]. Each task often requires a specialized approach, leading to highly optimized algorithms
that achieve sota performance for their specific targets compared to universal approaches.
2.2 All-in-One Image Restoration
Recent research has explored the development of All-in-One models that attempt to handle multiple
degradation types simultaneously within a single framework. This kind of methods are trained to
recognize and correct various forms of degradation concurrently. AirNet [31] featuring the contrastive-
based degraded encoder and degradation-guided all-in-one restoration network. ADMS [38] uses
adaptive filters to efficiently restore images with unknown degradations. TAPE [36] embeds a task-
agnostic prior into a transformer, utilizing a two-stage process of pre-training and fine-tuning to
enhance image restoration. PromptIR [40] and PIP [33] both utilize uniquely designed prompts to
guide their networks. MiOIR [27] employs sequential and prompt learning strategies, which guide the
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network to incrementally learn individual IR tasks in a sequential manner. MPerceiver [1] employs
a multimodal prompt learning approach, utilizing Stable Diffusion priors to achieve high-fidelity
all-in-one image restoration.

2.3 Agent in Image Restoration
Another research direction focuses on more intelligent image restoration systems. One class of such
methods employs a toolbox approach to address image degradation separately. RL-Restore [57]
prepares a toolbox consisting of small-scale convolutional networks, each specialized in different tasks.
The system then learns a policy to select appropriate tools from the toolbox to progressively restore
the quality of a corrupted image. However, RL-Restore supports only three types of degradation:
blur, noise, and JPEG compression, which constrains its application scenarios and prevents it
from utilizing new state-of-the-art models. Clarity ChatGPT [50] combines the conversational
intelligence of ChatGPT with multiple image restoration methods. It automatically detects types of
image degradation and selects appropriate methods to restore images. Conversely, Clarity ChatGPT
identifies the presence of degradation but lacks research and design on the execution order of tasks
and the optimal model selection for specific degradations in the input image.

Another class involves all-in-one approaches with degradation-aware guidance. InstructIR [14]
pioneers a novel approach by utilizing human-written instructions to guide the recovery from various
types of degradation. AutoDIR [24] automatically detect and restore images with multiple unknown
degradations. LLMRA [25] generates text descriptions and encodes them as context embeddings
with degradation information, and integrates these context embeddings into the restoration network.
DA-CLIP [37] presents a degradation-aware vision-language model that guides the model to learn
high-fidelity image reconstruction. For these all-in-one restoration assistant methods, inherent
limitations exist in the practical applications of all-in-one models.

How to overcome these limitations, fully leverage the wide array of state-of-the-art models for
different tasks available on the market, and determine the optimal execution sequence of image
restoration tasks and the most suitable model for specific degradation pattern remain unexplored. This
gap presents a significant opportunity for future research in intelligent image restoration systems.

3 RestoreAgent
In this section, we introduce RestoreAgent, an advanced image restoration agent designed to find
the optimal model and execution sequence from a model pool to process images containing multiple
degradations. RestoreAgent is built upon a state-of-the-art multimodal large language model, which
possesses remarkable reasoning, generalization, and cross-modal understanding capabilities. By
leveraging the model’s ability to draw insights from vast amounts of multimodal data, establish
connections between visual and textual information, and apply that knowledge to new contexts,
RestoreAgent can effectively analyze complex image degradation scenarios, infer the most suit-
able restoration techniques, and generate optimal pipelines that combine the strengths of various
specialized models. As a result, RestoreAgent consistently produces high-quality results.

In Section 3.1, we first define the problem of identifying the most effective combination and order
of models from a given pool to restore images affected by various types of degradation. Next, in
Section 3.2.2, we describe the process of constructing the training data for the RestoreAgent. The
training data consists of paired samples, each containing a degraded image and its corresponding
optimal restoration pipeline. Finally, we detail the training process of RestoreAgent, which involves
fine-tuning the Llava-Llama3-8b model using the constructed training data in Section 3.2. By learning
from these examples, RestoreAgent acquires the ability to analyze degraded images and generate
optimal restoration pipelines based on the available model pool.

3.1 Problem Definition
We consider a comprehensive set of degradation types, denoted as D = {d1, d2, . . . , dn}, where each
di represents a specific type of image degradation such as noise, JPEG artifacts, blur, rain streaks, fog,
and low light conditions. For each degradation type di, we tailor a model library Mdi , comprising
models {M1

di
,M2

di
, . . .}. Each model M j

di
is specifically trained to mitigate the effects of degradation

di. The problem is formally defined as follows:

Input: A degraded image I subjected to various degradation types D. A model library
{Md1

,Md2
, . . . ,Mdn

} tailored for processing D. The user-provided scoring function S for evalu-
ating the image restoration process.
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Figure 3: Illustration of the data construction workflow and RestoreAgent pipeline.

Objective: Identify the optimal model execution sequence σ = (M b1
a1
,M b2

a2
, . . . ,M bm

am
) that maxi-

mizes the restoration quality S of the degraded image I , where ai denotes the degradation type and
bi represents the corresponding model. It is formulated as:

σ∗ = arg max
σ∈S(D,M)

S(I, σ) ,

where S(D,M) represents the set of all possible sequences of degradation and model pairs.

By tackling this problem, we strive to identify the optimal combination of restoration sequence and
model selections, ultimately enhancing the quality of images affected by multiple degradations in
real-world settings, and thus providing a more effective and efficient solution for complex image
restoration tasks.

3.2 RestoreAgent: An Advanced Image Restoration System
3.2.1 RestoreAgent Pipeline
We introduce an advanced image restoration agent, dubbed RestoreAgent, implemented using the
state-of-the-art multimodal model Llava-Llama3-8b [46]. LoRA [21] is utilized to fine-tune both the
vision and language modules. As shown in Figure 3, given a degraded input image, RestoreAgent
can provide the best decisions, including which image restoration tasks need to be performed, the
order of their execution, and which model is most suitable for each task. The model’s input consists
of a degraded image and the prompt such as User: How to enhance the quality of this
image? [Execution history: ...]. In response, RestoreAgent generates an output sequence
representing the optimal restoration pipeline, comprising a series of tasks, each associated with a
specific model best suited to address particular degradation patterns. In our implementation, the
output template is defined as: Agent:1.<task name><model name>. 2.<task name><model
name>. 3. ..., ensuring interpretability and actionability.

RestoreAgent also supports an iterative step-wise decision-making process, reevaluating the state of
the image after each restoration step. During this reassessment, the execution history is provided,
offering valuable context for decision-making. This allows for real-time strategy adjustments based
on cumulative effects and past actions. The system also features a rollback capability, enabling it to
revert to a previous state if undesirable results are detected. This combination of iterative evaluation
with historical context and rollback allows for finer control over the restoration process, facilitating
mid-course corrections.
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Table 1: Comparison of RestoreAgent with other decision-making strategies for multi-degraded
image restoration. The "balanced" column represents the sum of the four normalized metrics, which
is our score function to train the model. The "ranking" column indicates the ranking of the given
decision among all possible decisions, with the total number of decisions for each test set provided.
The final group presents the Average Result Across All Datasets , providing an overall performance.

Noise + JPEG Low Light + Noise

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /17 PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /10

Random Order & Model 24.52 0.7273 0.2889 0.2212 1.47 6.7 15.57 0.6541 0.4351 0.2588 1.98 3.9
Random Oder + Predict Model 25.24 0.7765 0.2327 0.1960 3.07 4.2 15.62 0.6887 0.3651 0.2283 3.03 3.0
Random Model + Predict Order 24.90 0.7568 0.2597 0.2132 2.03 6.0 17.57 0.7044 0.3685 0.2324 3.75 2.3
Pre-defined Oder and Model 25.29 0.7828 0.2366 0.2037 2.47 5.3 17.75 0.7098 0.3385 0.2260 3.93 2.1
Human Expert 25.06 0.7588 0.2551 0.2121 2.25 5.5 18.05 0.7239 0.3278 0.2220 4.29 1.9
RestoreAgent 25.32 0.7806 0.2308 0.1958 3.17 3.9 ↑1.6 17.80 0.7226 0.3259 0.2138 4.39 1.7 ↑0.2

Motion Blur + Noise + JPEG Rain + Noise + JPEG

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /64 PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /64

Random Order & Model 24.81 0.7816 0.2381 0.1747 2.32 19.5 25.64 0.7970 0.2412 0.2020 2.90 16.1
Random Oder + Predict Model 24.73 0.7787 0.2261 0.1684 2.69 16.1 25.67 0.8008 0.2368 0.1956 3.11 15.0
Random Model + Predict Order 24.95 0.7912 0.2263 0.1647 3.18 13.6 26.14 0.8074 0.2314 0.1996 3.49 13.3
Pre-defined Oder and Model 24.84 0.7895 0.2305 0.1662 2.97 15.0 25.80 0.7981 0.2360 0.2041 2.83 16.7
Human Expert 25.20 0.795 0.2205 0.1646 3.82 9.0 25.99 0.8063 0.2258 0.1992 3.58 12.6
RestoreAgent 25.16 0.7939 0.2042 0.1546 4.35 4.6 ↑4.4 26.38 0.8136 0.2200 0.1891 4.67 6.4 ↑6.2

Haze + Noise + JPEG Haze + Rain + Noise + JPEG

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /64 PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /287

Random Order & Model 18.98 0.7156 0.3267 0.2212 1.52 23.4 15.13 0.6300 0.4464 0.2800 1.28 102.5
Random Oder + Predict Model 19.00 0.7235 0.3133 0.2081 2.03 20.4 17.45 0.6897 0.3692 0.2400 2.86 72.8
Random Model + Predict Order 19.67 0.7653 0.2778 0.2010 2.95 15.9 19.79 0.7833 0.2815 0.1991 5.66 16.9
Pre-defined Oder and Model 19.47 0.7803 0.2641 0.1912 3.51 12.4 19.29 0.7785 0.2815 0.1974 5.502 26.1
Human Expert 19.50 0.7753 0.2703 0.1982 3.36 12.7 19.39 0.7802 0.2928 0.2043 5.503 21.3
RestoreAgent 19.55 0.7794 0.25663 0.1863 3.93 8.4 ↑4.3 19.72 0.7816 0.2741 0.1903 5.86 9.7 ↑11.6

Motion Blur + Rain + Noise + JPEG Average Result Across All Datasets

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking /287 PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ balanced ↑ ranking (%)

Random Order & Model 21.96 0.6672 0.3366 0.2239 2.57 85.3 21.31 0.7139 0.3246 0.2241 1.92 34.7
Random Oder + Predict Model 22.11 0.6667 0.3038 0.2122 3.66 58.8 21.74 0.7385 0.2848 0.2045 2.89 26.1
Random Model + Predict Order 22.74 0.6996 0.2794 0.1979 5.39 24.7 22.42 0.7574 0.2750 0.2027 3.44 22.7
Pre-defined Oder and Model 22.35 0.6862 0.2858 0.1997 4.65 35.7 22.38 0.7639 0.2644 0.1986 3.48 22.1
Human Expert 22.96 0.7092 0.2861 0.2031 5.42 21.2 22.51 0.7634 0.2670 0.2014 3.73 19.5
RestoreAgent 22.95 0.7097 0.2615 0.1887 6.35 5.7 ↑15.5 22.61 0.7700 0.2513 0.1890 4.38 12.9 ↑6.6

3.2.2 Data Construction
To fully leverage the potential of multimodal large models, we construct a substantial dataset of
paired training samples. The process begins with applying various types of degradation to an image.
Subsequently, we determine the optimal restoration pipeline using model tools for processing. For
each image undergoing multiple degradations, a comprehensive search is conducted to identify the
best restoration pipeline, as shown in Figure 3. This involves generating all possible permutations of
task execution sequences and model combinations, applying each pipeline to the degraded image,
and assessing the quality of the restored outputs using a scoring function S(I, σ). By comparing the
scores of all permutations, the pipeline with the highest score is selected as the optimal processing
strategy σ for the given image. Users can choose from various image quality assessment methods as
the scoring function, customizing the evaluation process to their specific needs. Additional details
regarding dataset construction are provided in the supplementary materials.

4 Experiment
4.1 Experimental Settings
Scoring function. To construct a comprehensive evaluation system, we integrate multiple diverse
metrics. Specifically, we first standardized each individual metric separately and then summed the
standardized results. This process can be described as follows. Let Xi represent the i-th metric. We
standardize each metric by calculating its z-score: Zi =

Xi−µi

σi
where µi is the mean and σi is the

standard deviation of the i-th metric. After standardizing all metrics, we aggregate the standardized
scores to form the comprehensive evaluation score S: S =

∑n
i=1 Zi where n is the total number of

metrics. This method ensures that each metric contributes equally to the final evaluation, regardless
of its original scale. Follow [26, 20], evaluation metrics primarily include PSNR, SSIM, LPIPS [60],
and DISTS [16]. These metrics are widely recognized for their ability to comprehensively reflect the
outcomes of image restoration. We also provided the results of models trained on individual metrics.
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Figure 4: Illustrations of RestoreAgent’s choices demonstrate that our approach predicts the correct
task sequence. Images with a pink background show inappropriate decisions.

Dataset and model tool setings. To explore the feasibility of automating image restoration using
multimodal models, we selected six distinct image restoration tasks: denoising, motion deblurring,
deJPEG, deraining, dehazing, and low-light image enhancement. Each image in the dataset can
exhibit up to four types of degradation. To validate the decision-making ability of the model when
multiple models are available for a single task, we constructed three specialized models for the
denoising task, and three models have different noise levels: low, medium and high noise. Similarly,
for the deJPEG task, we developed models specifically designed to handle severe and mild JPEG
compression artifacts. For the remaining tasks, each has a corresponding dedicated model. For the
testing datasets, we assemble 200 images, mirroring the degradation types found in the training
datasets, to facilitate evaluation. Detailed information is in the supplementary material.
4.2 Comparisons with Other Strategies
Compared methods. In this study, we conducted a comparative analysis of RestoreAgent against
several alternative approaches:

• Random selection of both the task order and the models, assuming accurate determination
of task types.

• Random task order, but models predicted by RestoreAgent.
• Random model selection, but task orders predicted by RestoreAgent.
• For all images, using the human expert’s predefined order and models, assuming accurate

task type determination.
• Human expert personally crafting a solution for each image, determining the task sequence

and models for each task. This method represents the most common scenario in real-world
applications, where a human decides how to restore an image on a case-by-case basis.

The human expert in this study has more than five years of research experience in low-level vision.
Before crafting solutions, the expert familiarized themselves with each task degradation and the
corresponding model’s actual performance to ensure they could provide the best human-level solution.
Results. Table 1 reports the average metric results of our RestoreAgent and other decision-making
approaches on seven different degradation combination datasets. As shown in Table 1, using a random
order and model selection ranked lowest, achieving only a 34.7% performance rating among all
possible strategies. By setting predefined sequences and models for image processing by human
experts, traditional methods rank in the top 22.1% of all possible strategies. This demonstrates
that experience-based predefined rules often used in practical applications are more effective than
completely random strategies. Human experts making specific decisions for each test image can
further improve upon predefined rules, increasing the ranking from 22.1% to 19.5%. This proves
that using the same predefined rules to process all images is not optimal, while individualized
decision-making for specific images can better enhance the effects. Then, the superior performance
of our RestoreAgent (12.9%) over expert-based customization (19.5%) shows that automated and
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Figure 5: Visual comparisons with All-in-One Methods. To ensure a fair comparison, All-in-One
methods are tested only on the degradation types and datasets they support. The all-in-one approach
still lacks the ability to effectively handle images containing multiple types of degradation.
Table 2: Comparison of RestoreAgent with All-in-One methods for multi-degraded image restoration.
We highlight best and second-best values for each metric.

noise + JPEG haze + noise rain + haze + noise rain + haze + noise + JPEG

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓

Real-ESRGAN [48] 23.43 0.7242 0.3022 0.2106 - - - - - - - - - - - -
StableSR [47] 17.61 0.4464 0.3705 0.2124 - - - - - - - - - - - -
AirNet [31] - - - - 17.56 0.5897 0.5569 0.2964 18.22 0.6767 0.4314 0.2336 - - - -
PromptIR [40] - - - - 16.13 0.5428 0.6696 0.3544 17.81 0.7099 0.4506 0.2317 - - - -
MiOIR [27] 23.98 0.6961 0.3266 0.2325 15.79 0.4790 0.7118 0.3628 16.22 0.6388 0.4719 0.2771 13.80 0.6410 0.4875 0.2939
InstructIR [14] - - - - 17.36 0.4288 0.7696 0.3646 19.45 0.6897 0.3994 0.2170 - - - -
DA-CLIP [37] 22.47 0.6128 0.3525 0.2287 16.98 0.7061 0.3901 0.2737 15.44 0.6011 0.4597 0.2754 15.30 0.6863 0.3871 0.2627
AutoDIR [24] - - - - 17.51 0.6942 0.4248 0.2444 19.22 0.7705 0.3043 0.1802 - - - -
RestoreAgent 25.32 0.7806 0.2308 0.1958 20.47 0.8053 0.2193 0.1758 19.53 0.8237 0.2166 0.1638 19.72 0.7816 0.2741 0.1903

data-driven decision-making in our method clearly outperforms traditional and experience-based
human expert judgments. This is because human experts from their own experience can not make
precise judgments about the advantageous scenarios of all models and the order of task execution,
especially when numerous tasks and models are involved.

4.3 Comparisons with All-in-One Methods
To demonstrate the limitations of all-in-one methods in handling multi-degraded images, we compared
our approach with various types of all-in-one models. To ensure a fair comparison, tests were only
conducted on degradation types and datasets that these all-in-one models were trained to support.
Moreover, we repeatedly run the all-in-one model as many times as the number of degradation types
of the test images to fully leverage its capabilities, thus ensuring a fair comparison. The results are
shown in Figure 5 and Table 2. Our RestoreAgent achieved a significant leading advantage across
all tested degradation combinations. For the degradation types commonly encountered in traditional
image super-resolution, such as noise and JPEG compression artifacts, our approach significantly
outperformed established methods like Real-ESRGAN and the sota SR method, StableSR. For a
broader range of degradation types, our method retained a considerable advantage. Among these
all-in-one approaches, InstructIR and AutoDIR face two major issues: manually predetermined or
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PSNR SSIM LPIPS DISTS

Value ranking (%) Value ranking (%) Value ranking (%) Value ranking (%)

Pre-defined Oder and Model 22.38 25.4 0.7639 26.5 0.2644 25.2 0.1986 22.1
Human Expert 22.51 20.5 0.7634 22.6 0.2670 25.1 0.2014 23.8

RestorAgent - balanced 22.61 19.9 0.7700 21.4 0.2513 17.1 0.1890 13.8
RestorAgent - PSNR 22.72 13.9 - - - - - -
RestorAgent - SSIM - - 0.7763 16.5 - - - -
RestorAgent - LPIPS - - - - 0.2477 13.4 - -
RestorAgent - DISTS - - - - - - 0.1875 12.9

Table 3: RestoreAgent
possesses the flexibility
to adapt to various opti-
mization objectives, en-
abling the generation
of decision-making re-
sults tailored to specific
target criteria.

Table 4: Analysis of the effect of training data size. Our
model shows strong performance with smaller datasets
(7k), but increasing the data volume (23k) results in further
enhanced outcomes.

PSNR SSIM LPIPS DISTS balanced ranking (%)

Random 21.31 0.7139 0.3246 0.2241 1.92 34.7
Human Expert 22.51 0.7634 0.2670 0.2014 3.73 19.5

RestoreAgent
- 7k 22.63 0.7669 0.2568 0.1922 4.10 16.2
- 14k 22.57 0.7664 0.2528 0.1902 4.26 13.6
- 23k 22.61 0.7700 0.2513 0.1890 4.38 12.9

Table 5: Fast adaptation to new task
(desnowing) in half an hour.

balanced ranking /64

Random 0.54 27.1
Pre-defined Order and Model 3.82 9.2
Human Expert 3.91 8.5
RestoreAgent 4.23 4.3

Table 6: Step-wise planning.
balanced ranking /64

Human Expert 5.42 21.2
RestoreAgent 6.35 5.7
RestoreAgent + Step-wise 6.38 4.5

randomly decided execution order, and using single model to address all types of degradations. These
limitations often result in incomplete restoration, as depicted in Figure 5. These results underscore
the limitations of all-in-one models, validating our initial hypothesis.

4.4 Adapting to Different Optimization Objectives
As discussed in the method, our proposed method can adapt to various optimization objectives,
enabling the decision-making results tailored to specific target criteria. To verify it, we present the
results of models trained with different individual metrics as the optimization objective in Table 3.
The results indicate that when a model is trained with a single metric, the performance of the
corresponding metric can be significantly improved compared to the balanced model. This showcases
the adaptability and effectiveness of our method in catering to specific optimization goals.

4.5 Extending for New Tasks and Models
The proposed RestoreAgent demonstrates remarkable adaptability and extensibility, allowing for
swift fine-tuning to accommodate new task types and incorporate additional models. To validate this
capability, we introduced a new task, desnowing, along with its corresponding model. Building upon
the RestoreAgent previously trained on six tasks, we performed rapid fine-tuning by integrating the
desnowing task. Within thirty minutes, our model achieved exceptional performance on the new task
type. As shown in Table 5, our approach quickly surpassed human expert-level proficiency on the
new task and model. This validation underscores the practical value of our method, allowing efficient
integration of additional tasks with minimal resource expenditure.

4.6 Step-wise Re-planning and Rollback
As mentioned in Section 3.2, RestoreAgent supports iterative decision-making with historical context
awareness. It dynamically adjusts strategies during image restoration, reassessing image state after
each step and rolling back if needed. As demonstrated in Table 6, we conducted experiments on a
complex dataset incorporating four distinct types of image degradation: Motion Blur, Rain, Noise,
and JPEG compression. Results show that while the single prediction approach performs well,
iterative step-wise replanning further enhances restoration outcomes, allowing for precise control and
mid-course corrections. The initial decision’s performance is already strong, step-wise replanning
thus offers incremental yet valuable improvements to an already effective process.

5 Conclusion
Our research identifies key factors in processing multi-degraded images, including task execution
order, model selection, and the limitations of the all-in-one approach. Based on these insights, we
present RestoreAgent, an agent model that makes intelligent processing decisions based on image
degradation and user objectives. Experiments show that our pipeline outperforms the all-in-one
method and surpasses human experts in decision-making performance.
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Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8183–8192, 2018.

[29] Samuli Laine, Tero Karras, Jaakko Lehtinen, and Timo Aila. High-quality self-supervised deep image
denoising. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[30] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and Timo
Aila. Noise2noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189, 2018.

[31] Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restoration
for unknown corruption. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17452–17462, 2022.

[32] Ji Li, Weixi Wang, Yuesong Nan, and Hui Ji. Self-supervised blind motion deblurring with deep expectation
maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13986–13996, June 2023.

[33] Zilong Li, Yiming Lei, Chenglong Ma, Junping Zhang, and Hongming Shan. Prompt-in-prompt learning
for universal image restoration. arXiv preprint arXiv:2312.05038, 2023.

[34] Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, and
Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. arXiv preprint
arXiv:2308.15070, 2023.

[35] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

12



[36] Lin Liu, Lingxi Xie, Xiaopeng Zhang, Shanxin Yuan, Xiangyu Chen, Wengang Zhou, Houqiang Li, and
Qi Tian. Tape: Task-agnostic prior embedding for image restoration. In European Conference on Computer
Vision, pages 447–464. Springer, 2022.

[37] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling vision-
language models for universal image restoration. arXiv preprint arXiv:2310.01018, 2023.

[38] Dongwon Park, Byung Hyun Lee, and Se Young Chun. All-in-one image restoration for unknown
degradations using adaptive discriminative filters for specific degradations. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5815–5824. IEEE, 2023.

[39] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2:
Grounding multimodal large language models to the world. arXiv preprint arXiv:2306.14824, 2023.

[40] Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and Fahad Shahbaz Khan. Promptir: Prompting for
all-in-one blind image restoration. arXiv preprint arXiv:2306.13090, 2023.

[41] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion attention
network for single image dehazing. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 11908–11915, 2020.

[42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[43] Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal,
Rao M Anwer, Erix Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel grounding large multimodal
model. arXiv preprint arXiv:2311.03356, 2023.

[44] Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido Gerig, and Peyman Milanfar. Multiscale
structure guided diffusion for image deblurring. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10721–10733, 2023.

[45] Haoze Sun, Wenbo Li, Jianzhuang Liu, Haoyu Chen, Renjing Pei, Xueyi Zou, Youliang Yan, and Yujiu
Yang. Coser: Bridging image and language for cognitive super-resolution. arXiv preprint arXiv:2311.16512,
2023.

[46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[47] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015, 2023.

[48] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-
resolution with pure synthetic data. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1905–1914, 2021.

[49] Zejin Wang, Jiazheng Liu, Guoqing Li, and Hua Han. Blind2unblind: Self-supervised image denoising
with visible blind spots. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2027–2036, June 2022.

[50] Yanyan Wei, Zhao Zhang, Jiahuan Ren, Xiaogang Xu, Richang Hong, Yi Yang, Shuicheng Yan, and
Meng Wang. Clarity chatgpt: An interactive and adaptive processing system for image restoration and
enhancement. arXiv preprint arXiv:2311.11695, 2023.

[51] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, and Peyman
Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16293–16303, June 2022.

[52] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang
Ma. Contrastive learning for compact single image dehazing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10551–10560, 2021.

[53] Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr: Towards
semantics-aware real-world image super-resolution. arXiv preprint arXiv:2311.16518, 2023.

13



[54] Ruiqi Wu, Zhengpeng Duan, Chunle Guo, Zhi Chai, and Chongyi Li. Ridcp: Revitalizing real image
dehazing via high-quality codebook priors. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

[55] Xiaohe Wu, Ming Liu, Yue Cao, Dongwei Ren, and Wangmeng Zuo. Unpaired learning of deep image
denoising. In European conference on computer vision, pages 352–368. Springer, 2020.

[56] Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and
Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the
wild. arXiv preprint arXiv:2401.13627, 2024.

[57] Ke Yu, Chao Dong, Liang Lin, and Chen Change Loy. Crafting a toolchain for image restoration by deep
reinforcement learning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2443–2452, 2018.

[58] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan
Yang. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 5728–5739, 2022.

[59] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):3142–
3155, 2017.

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586–595, 2018.

[61] Yi Zhang, Dasong Li, Ka Lung Law, Xiaogang Wang, Hongwei Qin, and Hongsheng Li. Idr: Self-
supervised image denoising via iterative data refinement. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2098–2107, June 2022.

[62] Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen,
Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for memory-efficient
llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

[63] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks for
image restoration. arXiv preprint arXiv:1903.10082, 2019.

14



A Appendix / supplemental material

A.1 Model Tool Setings

As shown in Table 7, for the tasks of denoising and deJPEG, as well as deraining, we employ
Restormer [58] as our model. For dehazing, we utilize RIDCP [54], while for motion deblurring, we
use DeblurGANv2 [28]. For desnowing, we implement Snowformer [10]. For low-light enhancement,
we use Retinexformer [2]. It is noteworthy that the models we are using are not the latest state-of-the-
art models, indicating that there is significant room for improvement in our models.

A crucial consideration in image restoration is the limited generalization capability of many current
models, which often fail to maintain performance when faced with subtle variations in image
degradation. This necessitates the selection of more robust models. For example, in our approach
to denoising, we enhance model generalization by incorporating not only Gaussian noise but also
random blur and other noise types during training. This strategy enables the model to address more
complex degradation scenarios effectively.

Table 7: Model tools for different restoration tasks.

Task Model Tools

Gaussian denosing
Restormer (trained on large noise level)

Restormer (trained on medium noise level)
Restormer (trained on small noise level)

DeJPEG
Restormer (trained on high quality factor)
Restormer (trained on low quality factor)

Dehazing RIDCP [54]

Deraining Restormer [58]

Motion deblurring DeblurGANv2 [28]

Low-light enhancement Retinexformer [2]

Table 8: Testset details.
Degradatio Number of Images

Noise + JPEG 50

Noise + Low light 30

Motion Blur + Noise + JPEG 30

Rain + Noise + JPEG 20

Haze + Noise + JPEG 30

Haze + Rain + Noise + JPEG 20

Motion Blur + Rain + Noise + JPEG 20

Total 200

A.2 Dataset Construction Details

Input Answer

How to enhance the quality of this image?
Execution history: None.

1. Denoising, low noise level, 
2. Dehazing, 
3. DeJPEG, high quality factor

How to enhance the quality of this image?
Execution history: 1. Denoising, low noise level.

1. Denoising, low noise level, 
2. Dehazing, 
3. DeJPEG, high quality factor

How to enhance the quality of this image?
Execution history: 1. Dehazing.

Rollback.

How to enhance the quality of this image?
Execution history: None.
Rollback from Dehazing.

1. Denoising, low noise level, 
2. Dehazing, 
3. DeJPEG, high quality factor

How to enhance the quality of this image?
Execution history: 
1. Denoising, low noise level, 
2. Dehazing, 3. DeJPEG, high quality factor

Stop.

Input

1. Denoising

1. Dehazing

Input

1. Denoising
2. Dehazing
3. DeJPEG

1
(Primary)

2

3

4

5

Initiate full enhancement 
sequences for degraded 
images.

Dynamically adjust 
strategies based on 
intermediate results.

Identify and correct 
suboptimal steps through 
rollback mechanisms.

Avoid repetition of 
ineffective procedures 
post-rollback.

Recognize when image 
quality has reached its 
optimal state.

Function

Figure 6: Five scenarios for dataset construction and their corresponding examples.
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Figure 6 illustrates 5 scenarios incorporated into our dataset, designed to enhance the versatility and
robustness of the RestoreAgent model:

(1) Once we obtain a degraded image along with its corresponding optimal decision results, we can
construct the primary part of our dataset. This part consists of degraded images in their original,
unprocessed state. For these inputs, the RestoreAgent receives a prompt: "How to enhance the quality
of this image? Execution history: None." This scenario trains the model to formulate comprehensive
enhancement strategies from scratch, encompassing multiple restoration steps. This part of the data
exceeds 23k pairs.
(2) To foster dynamic decision-making capabilities, we introduce a second category of training
instances. Here, the input comprises partially processed images (e.g., after denoising) along with
their execution history. This approach enables the RestoreAgent to adapt its predictions based on
intermediate results, promoting a more flexible and context-aware enhancement process.
(3) The third scenario addresses situations where the model identifies suboptimal outcomes from
a particular enhancement step. In such cases, the RestoreAgent is trained to output "Rollback,"
indicating the need to revert to a previous state and recalibrate its strategy. This feature is crucial for
maintaining high-quality outputs and avoiding the propagation of errors through the enhancement
pipeline. We select from erroneous paths (the decisions with the worst metric results) to construct
this portion of the paired data, as the worst paths require a rollback.
(4) Following a rollback event, our fourth data category provides the model with information about
the specific step that triggered the rollback. This guidance is essential in preventing the model from
repeating ineffective procedures, thus streamlining the enhancement process and improving efficiency.

(5) The final scenario in our training regime represents fully processed images that require no further
enhancement. In these instances, the RestoreAgent is trained to recognize optimal image quality and
output "Stop", effectively terminating the enhancement sequence.

By incorporating these diverse scenarios, we aim to develop a highly adaptive and efficient image
restoration system capable of addressing a wide array of real-world image degradation challenges.
For computational efficiency, unless specifically mentioned otherwise, our default experiments are
based on a single planning for the initial image rather than using iterative step-wise replanning.

A.3 Testset details

The specific details of our test set are presented in Table 8, which demonstrates our construction of
various combinations of degradation types. Each image in the set contains a minimum of one and a
maximum of four types of degradation, with the entire set comprising 200 images.

A.4 Training Setups

In this study, we incorporate the CLIP pre-trained Vision Transformer (ViT-L/14) [42] as the image
encoder to convert input images into visual tokens. For the language model, we utilize the Llama3-
7B [46]. Despite their capabilities, pre-trained LLMs fail to provide accurate responses without
dataset-specific fine-tuning. To address this, we adopt LoRA [21], a fine-tuning technique that
efficiently modifies a limited number of parameters within the model. Following [21], we apply
LoRA to adjust the projection layers in all self-attention modules of both the vision encoder and the
LLM, thereby generating our RestoreAgent. We employ the Xtuner framework [15] to facilitate the
training process. For our experimental setup, we configure the LoRA rank to 16. The RestoreAgent
undergoes training across ten epochs on 4 NVIDIA RTX A100 GPUs, with a batch size of 32. We
employ the Adam optimizer and a learning rate of 0.00002. The total duration of the training process
approximates ten hours.

A.5 Analysis

Figure 4 and 8 illustrate RestoreAgent’s decision-making process and the importance of model
selection, respectively. Figure 6 further demonstrates why human decision-making often yields
suboptimal results in image restoration tasks. Figure 8a exemplifies the nuanced challenges in
degradation assessment. Despite identical backgrounds and degradation types, subtle variations in
degradation features lead to divergent optimal restoration sequences. For instance, the sequence
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Input
1. DeNosing 2. DeRaining
3. DeJPEG      4. DeHazing

Input
1. DeRaining 2. DeNosing
3. DeJPEG       4. DeHazing+noise+JPEG

rain+haze

a. Same degradation types with di2erent patterns 
   require distinct execution orders

b.  Finding the sole e2ective strategy amidst a myriad of choices 
is exceedingly challenging for human

1. DeNosing  2. DeRaining 
3. DeHazing

1. DeRaining  2. DeNosing  
3. DeHazing

1. DeNosing  2. DeHazing
 3. DeRaining  

1. DeRaining 2. DeNosing    
3. DeHazing

1. DeRaining  2. DeHazing
3. DeNosing 

1. DeNosing  2. DeHazing
 3. DeRaining  

1. DeHazing  2. DeNosing 
 3. DeRaining  

1. DeNosing   2. DeRaining  
3. DeHazing

Figure 7: Challenges in human expert decision-making. This figure illustrates the difficulty faced by
human experts in discerning minute differences between degradation patterns, leading to suboptimal
restoration strategies.
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most suitable model most suitable model

over smooth
Low Light

Enhancement

DeHazing

DeHazing

Input
Input

Zoom-in

Zoom-in

Figure 8: Examples of model decisions made by RestoreAgent. This figure demonstrates how
choosing the appropriate model for a specific restoration task significantly affects the outcome quality.
We present PSNR and LPIPS metrics for each image. Images with a pink background indicate
examples of inappropriate decisions (zoom-in for better view).

"DeNoising → DeRaining → DeJPEG → DeHazing" proves effective for the upper row images
but fails for the lower row. Conversely, the sequence "DeRaining → DeNoising → DeJPEG →
DeHazing" yields optimal results for the lower row but is suboptimal for the upper row. This
dichotomy underscores the difficulty human experts face in discerning minute degradation differences,
thereby compromising effective decision-making.

The complexity of optimal restoration sequencing is further accentuated in Figure 8b. Here, we
demonstrate scenarios where only one specific sequence among numerous permutations yields
satisfactory results. This observation highlights the formidable challenge posed to human decision-
makers in identifying the singular effective restoration pathway amidst a multitude of possibilities.

These findings collectively emphasize the superiority of automated, data-driven approaches in
navigating the intricate landscape of image restoration. The RestoreAgent’s ability to discern and
adapt to subtle degradation variations surpasses human capabilities, particularly in scenarios where the
optimal restoration sequence is non-intuitive and highly specific to individual image characteristics.

A.6 Discussion

Comparison with assistants with all-in-one models. Assistants that employ unified models,
such as LLMRA [25] and AutoDIR [24], attempt to handle diverse tasks, degradation patterns, and
intensities using a single model. As discussed in Section 1.1, these all-in-one models face significant
challenges, including restricted task scope and compromised performance, which greatly limit their
effectiveness in real-world applications. Conversely, our method leverages various model experts to
address specific situations, the upper bound of our pipeline is determined by the latest SOTA models,
allowing us to maximally leverage the latest advancements in the field without being constrained by
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the limitations of an all-in-one model. Furthermore, as detailed in Section 4.4, our RestoreAgent
exhibits high efficiency in incorporating new tasks and models, showcasing greater flexibility.

Comparison with assistants with tool use. Image restoration assistants that utilize tool libraries,
such as Clarity ChatGPT [50] and RL-Restore [57]. Clarity ChatGPT merely identifies the degradation
in images, follows a rigid execution strategy, lacking the ability to make dynamic decisions on task
execution order and select the best model. As discussed in Section 1.2.1 and 1.2.2, an inappropriate
task execution sequence and model selection can leading to lower performance in subsequent
operations. RL-Restore, on the other hand, uses reinforcement learning for sequence decision-making
and model selection. However, its task definition is overly simplistic, limited to three degradation
types (noise, blur, and JPEG) with a narrow degradation range. Also, training reinforcement learning-
based methods is more challenging and may result in lower precision, making it difficult to achieve
high performance in complex and varied scenarios. Conversely, the integration of a comprehensive
task definition with advanced multimodal models allows our method to effectively manage various
degradation types and intensities. This adaptability enhances its efficacy, positioning our approach as
a promising solution for image restoration tasks.

A.7 Alation Study

Training data amount. To investigate the effect of training data volume on our method, we
evaluated the performance of the RestoreAgent model trained on datasets consisting of 7,000, 14,000,
and 23,000 data pairs; see Table 4 The results demonstrate that even with the smallest dataset of
7k pairs, our RestoreAgent achieves superior performance over both random and human expert
benchmarks. More notably, the training data volume increasing from 7k to 14k incurs a substantial
performance improvement with the ranking percentage decreasing from 16.2% to 13.6%. With
23k data pairs, the performance further improves, achieving a ranking percentage of 12.9%. This
indicates that using more training data boosts our RestoreAgent model. These findings emphasize the
robustness of our approach, demonstrating that while larger datasets do enhance performance, our
model already provides significant benefits even with relatively smaller datasets.

A.8 Limitation and Future Work

The primary limitation of our study is the confined scope of models and tasks examined. While
our research offers valuable insights into RestoreAgent’s performance across several degradation
scenarios, it does not encompass the full spectrum of restoration models or image degradation tasks
currently available.

Another limitation pertains to the limited generalization capability of current image restoration
models. These models often exhibit a notable decrease in performance or fail to respond adequately
when faced with even minor variations in image degradation patterns. This limitation greatly narrows
our selection of model tools, requiring us to choose more robust and generalizable model tools. The
challenge underscores a critical need in the field of image restoration: future models must go beyond
simply overfitting training data. Rather, they should exhibit better generalization and increased
efficiency in handling real-world degradation cases.

Our future work will focus on significantly expanding the range of image restoration models incorpo-
rated into our multimodal large language model. This expansion aims to enhance RestoreAgent’s
capabilities across a broader scope of restoration tasks and degradation types. By integrating a
more diverse set of state-of-the-art models, we seek to create a more comprehensive and versatile
restoration framework.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the supplemental material section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, for each theoretical result, we provide the full set of assumptions and a
complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, our method is easy to be reproduced, and we provide all information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use public code and data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we give all the details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, to the NeurIPS Code of Ethics as outlined at the
provided https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper, properly credited
and are the license and terms of use explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: See supplemental materia.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: There are no potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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