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ABSTRACT

Estimating treatment effects from observational data is subject to a problem of
covariate shift caused by selection bias. Recent studies have attempted to mitigate
this problem by group distance minimization, that is, balancing the distribution
of representations between the treated and controlled groups. The rationale be-
hind this is that learning balanced representations while preserving the predictive
power of factual outcomes is expected to generalize to counterfactual inference.
Inspired by this, we propose a new approach to better capture the patterns that
contribute to representation balancing and outcome prediction. Specifically, we
derive a theoretical bound that naturally ties the notion of propensity confusion
to representation balancing, and further transform the balancing Patterns into De-
compositions of Individual propensity confusion and Group distance minimiza-
tion (PDIG). Moreover, we propose to decompose proxy features into Patterns of
Pre-balancing and Balancing Representations (PPBR), as it is insufficient if only
balanced representations are considered in outcome prediction. Extensive experi-
ments on simulation and benchmark data confirm not only PDIG leads to mutual
reinforcement between individual propensity confusion and group distance mini-
mization, but also PPBR brings improvement to outcome prediction, especially to
counterfactual inference. We believe these findings are heuristics for further in-
vestigation of what affects the generalizability of representation balancing models
in counterfactual estimation.

1 INTRODUCTION

In the context of the ubiquity of personalized decision-making, causal inference has sparked a surge
of research exploring causal machine learning in many disciplines, including economics and statis-
tics (Wager & Athey, 2018; Athey & Wager, 2019; Farrell, 2015; Chernozhukov et al., 2018; Huang
et al., 2021), healthcare (Qian et al., 2021; Bica et al., 2021a;b), and commercial applications (Guo
et al., 2020b;c; Chu et al., 2021). The main problem of causal inference is the treatment effect es-
timation, which is tied to a fundamental hypothetical question: What would be the outcome if one
received an alternative treatment? Answering this question requires the knowledge of counterfactual
outcomes, but they can only be inferred from observational data, not directly obtained.

Selection bias presents a major challenge for estimating counterfactual outcomes (Guo et al., 2020a;
Zhang et al., 2020; Yao et al., 2021). This problem is caused by the non-random treatment assign-
ment, that is, treatment (e.g., vaccination) is usually determined by covariates (e.g., age) that also
affect the outcome (e.g., infection rate) (Huang et al., 2022b). The probability of a person receiving
treatment is well known as the propensity score, and the difference between each person’s propen-
sity score can inherently lead to a covariate shift problem, i.e., the distribution of covariates in the
treated units is substantially different from that in the controlled ones. The covariate shift issue
makes it more difficult to infer counterfactual outcomes from observational data (Yao et al., 2018;
Hassanpour & Greiner, 2019a).

Recently, a line of representation balancing works has sought to alleviate the covariate shift problem
by balancing the distribution between the treated group and the controlled group in the representa-
tion space (Shalit et al., 2017; Johansson et al., 2022). The rational insight behind these works is that
the counterfactual estimation should rest on the accuracy of factual estimation while enforcing min-
imization of distributional discrepancy measured by the Integral Probability Metric (IPM) between
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the treated and controlled units. However, there are two issues that remain to be resolved. First,
Wasserstein distance (Cuturi & Doucet, 2014) is the most widely-adopted metric for group distance
minimization (Shalit et al., 2017; Huang et al., 2022a; Zhou et al., 2022), whereas H-divergence
has still received little attention in causal representation learning though it is an important distance
metric in other fields (Ben-David et al., 2006; 2010). Second, enforcing models to learn outcome
predictors with only balanced representations may inadvertently weaken the predictive power of the
outcome function (Zhang et al., 2020; Assaad et al., 2021; Huang et al., 2022a). We provide intuitive
examples to illustrate the second issue in Section A.4.

The aforementioned issues motivate us to explore approaches to (i) improving factual outcome pre-
diction without affecting learning balancing patterns or (ii) learning more effective balancing pat-
terns without affecting factual outcome prediction. In this paper, we propose a new method, DIGNet,
with learning decomposed patterns to achieve these two goals. The contributions are threefold: (1)
We interpret representation balancing as a concept of propensity confusion and derive correspond-
ing theoretical results based on H-divergence to ensure its rationality; (2) DIGNet transforms the
balancing Patterns into Decompositions of Individual propensity confusion and Group distance min-
imization (PDIG) to capture patterns beneficial to representation balancing, and we empirically find
that the PDIG structure enables individual propensity confusion and group distance minimization to
reinforce each other without affecting factual outcome prediction; (3) DIGNet decomposes repre-
sentative features into Patterns of Pre-balancing and Balancing Representations (PPBR) to preserve
patterns contributing to outcome modeling, and we experimentally confirm that the PPBR approach
brings improvement to outcome prediction without affecting learning balancing patterns.

1.1 RELATED WORK

The presence of a covariate shift problem stimulates the line of representation balancing works
(Johansson et al., 2016; Shalit et al., 2017; Johansson et al., 2022). These works aim to balance
the distributions of representations between treated and controlled groups and simultaneously try to
maintain representations predictive of factual outcomes. This idea is closely connected with domain
adaptation. In particular, the individual treatment effect (ITE) error bound based on Wasserstein
distance is similar to the generalization bound in Ben-David et al. (2010); Long et al. (2014); Shen
et al. (2018). In addition to Wasserstein distance-based model, this paper derives a new ITE error
bound based on H-divergence (Ben-David et al., 2006; 2010; Ganin et al., 2016). Note that our
theoretical results (Section 3.2) and experimental implementations (Section 4.1) differ greatly from
Shalit et al. (2017) due to distinct definitions between Wasserstein distance and H-divergence.

Another recent line of work investigates efficient neural network structures for treatment effect es-
timation. Kuang et al. (2017); Hassanpour & Greiner (2019b) extract the original covariates into
treatment-specific factors, outcome-specific factors, and confounding factors; X-learner (Künzel
et al., 2019) and R-learner (Nie & Wager, 2021) are developed beyond the classic S-learner and
T-learner; Curth & van der Schaar (2021) leverage structures for end-to-end learners to counteract
the inductive bias towards treatment effect estimation, as motivated by Makar et al. (2020).

The proposed DIGNet model is built on the PDIG structure and the PPBR approach. The PDIG
structure is motivated by multi-task learning, where we design a framework incorporating two spe-
cific balancing patterns that share the same pre-balancing patterns. The PPBR approach is inspired
by Zhang et al. (2020); Assaad et al. (2021); Huang et al. (2022a), where the authors argue that im-
properly balanced representations can be detrimental predictors for outcome modeling, since such
representations can lose the original information that contributes to outcome prediction. Other rep-
resentation learning methods relevant to treatment effect estimation include Louizos et al. (2017);
Yao et al. (2018); Yoon et al. (2018); Shi et al. (2019); Du et al. (2021).

2 PRELIMINARIES

Notations. Suppose there are the N i.i.d. random variable samples D = {(Xi, Ti, Yi)}Ni=1 with
observed realizations {(xi, ti, yi)}Ni=1, where there are N1 treated units and N0 controlled units. For
each unit i, Xi ∈ X ⊂ Rd denotes d-dimensional covariates and Ti ∈ {0, 1} denotes the binary
treatment, with e(xi) := p(Ti = 1 | Xi = xi) defined as the propensity score (Rosenbaum & Rubin,
1983). Potential outcome framework (Rubin, 2005) defines the potential outcomes Y 1, Y 0 ∈ Y ⊂ R
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for treatment T = 1 and T = 0, respectively. We let the observed outcome (factual outcome) be
Y = T ·Y 1+(1−T ) ·Y 0. For t ∈ {0, 1}, let τ t(x) := E [Y t | X = x] be a function of Y t w.r.t. X,
then our goal is to estimate the individual treatment effect (ITE) τ(x) := E

[
Y 1 − Y 0 | X = x

]
=

τ1(x)− τ0(x), and the average treatment effect (ATE) τATE := E
[
Y 1 − Y 0

]
=
∫
X τ(x)p(x)dx.

2.1 PROBLEM SETUP

In causal representation balancing works, we denote representation space by R ⊂ Rd, and Φ :
X → R is assumed to be a twice-differentiable, one-to-one and invertible function with its inverse
Ψ : R → X such that Ψ(Φ(x)) = x. The densities of the treated and controlled covariates are
denoted by pT=1

x = pT=1(x) := p(x | T = 1) and pT=0
x = pT=0(x) := p(x | T = 0), respectively.

Correspondingly, the densities of the treated and controlled covariates in the representation space
are denoted by pT=1

Φ = pT=1
Φ (r) := pΦ(r | T = 1) and pT=0

Φ = pT=0
Φ (r) := pΦ(r | T = 0),

respectively.

Our study is based on the potential outcome framework (Rubin, 2005). Assumption 1 states standard
and necessary assumptions to ensure treatment effects are identifiable. Before proceeding with
theoretical analysis, we also present the necessary terms and definitions in Definition 1.
Assumption 1 (Consistency, Overlap, and Unconfoundedness) Consistency: If the treatment is
t, then the observed outcome equals Y t. Overlap: The propensity score is bounded away from 0 to
1: 0 < e(x) < 1. Unconfoundedness: Y t ⊥⊥ T | X, ∀t ∈ {0, 1}.
Definition 1 Let h : R×{0, 1} → Y be an hypothesis defined over the representation space R such
that h(Φ(x), t) estimates yt, and L : Y ×Y → R+ be a loss function (e.g., L(y, y′) = (y− y′)2). If
we define the expected loss for (x, t) as ℓh,Φ(x, t) =

∫
Y L(yt, h(Φ(x), t))p(yt|x)dyt, we then have

factual and counterfactual losses, as well as them on the treated and controlled:

ϵF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, t)dxdt, ϵCF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, 1− t)dxdt,

ϵT=1
F (h,Φ) =

∫
X
ℓh,Φ(x, 1)p

T=1(x)dx, ϵT=0
F (h,Φ) =

∫
X
ℓh,Φ(x, 0)p

T=0(x)dx,

ϵT=1
CF (h,Φ) =

∫
X
ℓh,Φ(x, 1)p

T=0(x)dx, ϵT=0
CF (h,Φ) =

∫
X
ℓh,Φ(x, 0)p

T=1(x)dx.

If we let f(x, t) be h(Φ(x), t), where f : X × {0, 1} → Y is a prediction function for outcome,
then the estimated ITE over f is defined as τ̂f (x) := f(x, 1) − f(x, 0). Finally, a better treatment
effect estimation can be reformulated as a smaller error in Precision in the expected Estimation of
Heterogeneous Effect (PEHE):

ϵPEHE(f) =

∫
X
L(τ̂f (x), τ(x))p(x)dx. (1)

Here, ϵPEHE(f) can also be denoted by ϵPEHE(h,Φ) if we let f(x, t) be h(Φ(x), t).

3 THEORETICAL RESULTS

In this section, we first prove ϵPEHE is bounded by ϵF and ϵCF in Lemma 1. Next, we revisit the
upper bound (Theorem 1) concerning the group distance minimization guided method in Section 3.1.
Section 3.2 further discusses the theoretical results of the proposed individual propensity confusion
guided method in Theorem 2. Proofs and additional theoretical results are deferred to Appendix.
Lemma 1 Let functions h and Φ be as defined in Definition 1, and L be the squared loss function.
Recall that τ t(x) = E [Y t | X = x]. Defining σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} ∀t ∈
{0, 1}, where σ2

yt(p(x, t)) =
∫
X×{0,1}×Y(y

t − τ t(x))2p(yt|x)p(x, t)dytdxdt, we have

ϵPEHE(h,Φ) ≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
y).

Note that similar results will hold as long as L takes forms that satisfy the triangle inequality, but
is not limited to the squared loss. For instance, we give the result for absolute loss in Lemma 6 in
Appendix. This extends the result shown in Shalit et al. (2017) that L only takes the squared loss.
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3.1 GNET: GROUP DISTANCE MINIMIZATION GUIDED REPRESENTATION BALANCING

Previous group distance minimization guided approaches seek representation balancing by minimiz-
ing the distance measured by the Integral Probability Metric (IPM) defined in Definition 2.
Definition 2 Let G be a function family consisting of functions g : S → R. For a pair of distribu-
tions p1, p2 over S, the Integral Probability Metric is defined as

IPMG(p1, p2) := supg∈G |
∫
S
g(s)(p1(s)− p2(s))ds|.

If G is the family of 1-Lipschitz functions, we can obtain the so-called 1-Wasserstein distance,
denoted by Wass(p1, p2) (Sriperumbudur et al., 2012). Next, we give the bounds for counterfactual
error ϵCF and ITE error ϵPEHE using Wasserstein distance in Theorem 1.
Theorem 1 Let h, Φ, Ψ, pT=1

Φ , and pT=0
Φ be as defined before. Let L be the squared loss, u :=

Pr(T = 1), and G be the family of 1-Lipschitz functions. Assuming that there exists a constant
BΦ ≥ 0 such that gΦ,h(r, t) :=

1
BΦ

· ℓh,Φ(Ψ(r), t) ∈ G for fixed t ∈ {0, 1}, we then have

ϵCF (h,Φ) ≤ (1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ ), (2)

ϵPEHE(h,Φ) ≤ 2(ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ )− 2σ2
y). (3)

Theorem 1 will be identical to Shalit et al. (2017) if L is the squared loss. Note, however, that
similar results for Theorem 1 still hold as long as L takes forms that satisfy the triangle inequality.
For instance, we give the result for absolute loss in Theorem 1 in Appendix. We refer to the model
as GNet (aka CFR-Wass in Shalit et al. (2017)) since it is based on group distance minimization.

3.2 INET: INDIVIDUAL PROPENSITY CONFUSION GUIDED REPRESENTATION BALANCING

The propensity score is recognized central to treatment effect estimation because it characterizes the
probability that one receives treatment (Rosenbaum & Rubin, 1983). Therefore, in addition to group
distance minimization, the propensity score can be naturally used to identify if representations are
adequately balanced, since representation balancing can be intuitively interpreted as propensity con-
fusion, that is, when it is hard to distinguish whether each unit in the representation space is treated
or controlled, the representations are thought adequately balanced. In section 4.1, we will demon-
strate how minimizing H-divergence (Definition 3) is empirically related to propensity confusion.
Below, we first derive an ITE bound in Theorem 2 based on H-divergence.
Definition 3 Given a pair of distributions p1, p2 over S, and a hypothesis binary function class H,
the H-divergence between p1 and p2 is defined as

dH(p1, p2) := 2supη∈H |Prp1
[η(s) = 1]− Prp2

[η(s) = 1]| . (4)

Theorem 2 Let h, Φ, Ψ, pT=1
Φ , and pT=0

Φ be as defined before. Let L be the squared loss, u :=
Pr(T = 1), and H be the family of binary functions. Assuming that there exists a constant K ≥ 0
such that

∫
Y L(y, y′)dy ≤ K ∀y′ ∈ Y , we then have

ϵCF (h,Φ) ≤ (1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ) +
K

2
dH(pT=1

Φ , pT=0
Φ ), (5)

ϵPEHE(h,Φ) ≤ ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +
K

2
dH(pT=1

Φ , pT=0
Φ )− 2σ2

y. (6)

We can apply similar arguments in proving Theorem 2 to obtain the corresponding upper bounds as
long as L takes forms that satisfy the triangle inequality. For instance, the result for absolute loss
and the proof of Theorem 2 are given in Theorem 2 in Appendix. We refer to the model as INet
since it is based on individual propensity confusion.

4 METHOD

In this section, we will demonstrate how Theorem 2 is associated with propensity confusion, and
further suggest a decomposition network DIGNet based on GNet and INet. Section 4.1 presents
the objectives of standard representation balancing models, GNet and INet. Section 4.2 introduces
PDIG and PPBR components for the representation balancing with decomposed patterns scheme,
and gives the final objective of the proposed model DIGNet.
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4.1 REPRESENTATION BALANCING WITHOUT DECOMPOSED PATTERNS

In representation balancing models, given the input data tuples (x, t,y) = {(xi, ti, yi)}Ni=1, the
original covariates x are extracted by some representation function Φ(·), and representations Φ(x)
are then fed into the outcome functions h1(·) := h(·, 1) and h0(·) := h(·, 0) that estimate the
potential outcome y1 and y0, respectively. Finally, the factual outcome can be predicted by ht(·) =
th1(·) + (1− t)h0(·), and the corresponding outcome loss is

Ly(x, t,y; Φ, h
t) =

1

N

N∑
i=1

L(ht(Φ(xi)), yi). (7)

If a model does not have decomposition modes like GNet and INet, both outcome prediction and
representation balancing will rely on the extracted features Φ(x). Below we will introduce the
objectives of GNet and INet.

Objective of GNet. GNet learns the balancing patterns over Φ by minimizing the group distance
loss LG(x, t; Φ) = Wass ({Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1). If the original covariates x are extracted
by the feature extractor ΦE(·), then the final objective of GNet is

min
ΦE ,ht

Ly(x, t,y; ΦE , h
t) + α1LG(x, t; ΦE). (8)

For the convenience of the reader, we illustrate the structure of GNet in Figure 1(a).

Objective of INet. Next, we detail how Theorem 2 is related to propensity confusion and give the
objective of INet. Let I(a) be an indicator function that gives 1 if a is true, and H be the family of
binary functions as defined in Theorem 2. The representation balancing seeks to ahieve a smaller
empirical H-divergence d̂H(pT=1

Φ , pT=0
Φ ) such that

d̂H(pT=1
Φ , pT=0

Φ ) = 2

(
1−min

η∈H

[
1

N0

N0∑
i:ti=0

I[η(Φ(xi)) = 0] +
1

N1

N1∑
i:ti=1

I[η(Φ(xi)) = 1]

])
.

(9)
The “min” part in equation 9 indicates that the optimal classifier η∗ ∈ H minimizes the classification
error between the estimated treatment η∗(Φ(xi)) and the observed treatment ti, i.e., discriminating
whether Φ(xi) is controlled (T = 0) or treated (T = 1). As a result, d̂H(pT=1

Φ , pT=0
Φ ) will be large if

η∗ can easily distinguish whether Φ(xi) is treated or controlled, i.e., the optimal classification error
is small. In contrast, d̂H(pT=1

Φ , pT=0
Φ ) will be small if it is hard for η∗ to determine whether Φ(xi)

is treated or controlled, i.e., the optimal classification error is large. Therefore, the prerequisite of
a small H-divergence is to find a map Φ such that any classifier η ∈ H will get confused about the
probability of Φ(xi) being treated or controlled. To achieve this goal, we first define a discriminator
π(r) : R → [0, 1] that estimates the propensity score of r. The classification error for the ith

individual can be empirically approximated by the cross-entropy loss between π(Φ(xi)) and ti:

Lt(ti, π(Φ(xi))) = − [ti log π(Φ(xi)) + (1− ti) log(1− π(Φ(xi)))] . (10)

To minimize the classification error in equation 9, we aim to find an optimal discriminator π∗ such
that π∗ maximizes the probability that treatment is correctly classified of the total population:

max
π∈H

LI(x, t; Φ, π) = max
π∈H

[
− 1

N0

N0∑
i:ti=0

Lt(ti, π(Φ(xi)))−
1

N1

N1∑
i:ti=1

Lt(ti, π(Φ(xi)))

]
. (11)

Given the feature extractor ΦE(·), the objective of INet can be formulated as a min-max game:

min
ΦE ,ht

max
π

Ly(x, t,y; ΦE , h
t) + α2LI(x, t; ΦE , π). (12)

As stated in equation 12, INet achieves the representation balancing through a min-max formula-
tion. In the maximization, the discriminator π is trained to maximize the probability that treatment
is correctly classified. This forces π(ΦE(xi)) closer to the true propensity score e(xi). In the min-
imization, the feature extractor ΦE is trained to fool the discriminator π. This confuses π such
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Φ𝐺𝐺

(a) GNet (CFR-Wass) (b) INet (c) DGNet (d) DINet (e) DIGNet

Φ𝐸𝐸
Φ𝐼𝐼
𝜋𝜋𝜋𝜋𝜋𝜋

Φ𝐸𝐸
Φ𝐼𝐼

Φ𝐸𝐸Φ𝐸𝐸
Φ𝐸𝐸

Φ𝐺𝐺

Figure 1: Illustrations of the network architecture of the five models studied in Section 5.

that π(ΦE(xi)) cannot correctly specify the true propensity score e(xi). Eventually, the represen-
tations are balanced as it is difficult for π to determine the propensity of Φ(xi) being treated or
controlled. For the convenience of the reader, we illustrate the structure of INet in Figure 1(b). Note
that though INet follows the strategy of approximating H-divergence in Ganin et al. (2016), the
theoretical derivations are completely different due to the significant differences (e.g., definitions,
problem settings, and theoretical bounds.) between causal inference and domain adaptation.

4.2 REPRESENTATION BALANCING WITH DECOMPOSED PATTERNS

PDIG. Previous demonstrations have shown that GNet is thriving and widely adopted, while INet
is meaningful and interpretable. Nevertheless, there is no consensus on the absolute best approach,
as each method has its strengths and weaknesses. To this end, we expect to capture more effective
balancing patterns by turning the balancing Patterns into Decompositions of Individual propensity
confusion and Group distance minimization (PDIG). More specifically, the covariates x are extracted
by the feature extractor ΦE(·), and then ΦE(x) are fed into the balancing networks ΦG(·) and
ΦI(·) for group distance minimization and individual propensity confusion, respectively. Finally,
the losses for the two separate balancing patterns are

min
ΦG

LG(x, t; ΦG ◦ ΦE), min
ΦI

max
π

LI(x, t; ΦI ◦ ΦE , π). (13)

Here, ◦ denotes the composition of two functions, indicating that Φ(·) in LG(x, t; Φ) and
LI(x, t; Φ, π) are replaced by ΦG(ΦE(·)) and ΦI(ΦE(·)), respectively.

PPBR. Motivated by the discussion in Section 1, we aim to design a framework that is capa-
ble of capturing Patterns of Pre-balancing and Balancing Representations (PPBR). First, the rep-
resentation balancing patterns ΦG(ΦE(x)) and ΦI(ΦE(x)) are learned over ΦG and ΦI , while
ΦE is remained fixed as pre-balancing patterns. Furthermore, we concatenate the balancing rep-
resentations ΦG(ΦE(x)) and ΦI(ΦE(x)) with the pre-balancing representations ΦE(x) as at-
tributes for outcome prediction. As a result, the proxy features used for outcome predictions are
ΦE(x)⊕ΦG(ΦE(x))⊕ΦI(ΦE(x)), where ⊕ indicates the concatenation by column. For example,
if a = [1, 2] and b = [3, 4], then a⊕ b = [1, 2, 3, 4].

Although we mainly investigate whether PDIG and PPBR are beneficial to treatment effect estima-
tion in this paper, it would also be an interesting direction for future research to find out whether
there exists any interaction or mutual reinforcement between them.

Objective of DIGNet. Combining with PDIG and PPBR, we develop a new model architecture,
DIGNet, as illustrated in Figure 1(e). The objective of DIGNet is separated into four stages:

min
ΦG

α1LG(x, t; ΦG ◦ ΦE), (14)

max
π

α2LI(x, t; ΦI ◦ ΦE , π), (15)

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π), (16)

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t,y; ΦE ⊕ (ΦI ◦ ΦE)⊕ (ΦG ◦ ΦE), h
t). (17)

Within each iteration, DIGNet manages to minimize the group distance via equation 14, and plays
an adversarial game to achieve propensity confusion through equation 15 and equation 16. In equa-
tion 17, DIGNet updates both the pre-balancing and balancing patterns ΦE ,ΦI ,ΦG along with the
outcome function ht to minimize the outcome prediction loss.

6



Under review as a conference paper at ICLR 2023

DGNet and DINet. For further ablation studies, we also propose two models, DGNet and DINet.
The two models can be considered as either DIGNet without PDIG, or GNet and INet with PPBR.
The structures of DGNet and DINet are shown in Figure 1(c) and Figure 1(d), and the objectives of
DGNet and DINet are deferred to Section A.6 in Appendix.

5 EXPERIMENTS

In non-randomized observational data, the ground truth of treatment effects is inaccessible due to the
lack of counterfactuals. Therefore, we use simulated data and semi-synthetic benchmark data to test
the performance of our methods and other baseline models. In this section, we mainly investigate
two questions: Q1. Compared to DGNet and DINet without the PDIG structure, can DIGNet with
the PDIG structure achieve a better representation balancing task? Q2. Are DGNet and DINet that
involve PPBR capable of improving the performance on outcome prediction compared with standard
representation balancing models such as GNet and INet?

5.1 EXPERIMENTAL SETTINGS

Simulation data. Previous causal inference works assess the model effectiveness by varying the
distribution imbalance of covariates in treated and controlled groups at different levels (Yao et al.,
2018; Yoon et al., 2018; Du et al., 2021). As suggested in Assaad et al. (2021), we draw 1000
observational data points from the following data generating strategy:

Xi ∼ N (0, σ2 · [ρ1p1
′

p(1− ρ)Ip]), Ti | Xi ∼ Bernoulli(1/(1 + exp(−γXi))),

Y 0
i = β′

0Xi + ξi, Y 1
i = β′

1Xi + ξi, ξi ∼ N (0, 1).

Here, 1p denotes the p-dimensional all-ones vector and Ip denotes the identity matrix of size
p. We fix p = 10, ρ = 0.3, σ2 = 2,β′

0 = [0.3, ..., 0.3],β′
1 = [1.3, ..., 1.3] and vary γ ∈

{0.25, 0.5, 0.75, 1, 1.5, 2, 3} to yield different level of selection bias. As seen in Figure 6 in Ap-
pendix, selection bias becomes more severe with γ increasing. For each γ, we repeat the above
data generating process to generate 30 different datasets, with each dataset split by the ratio of
56%/24%/20% as training/validation/test sets.

Semi-synthetic data The IHDP dataset is introduced by Hill (2011). This dataset consists of
747 samples with 25-dimensional covariates collected from real-world randomized experiments.
Selection bias is created by removing some of treated samples. The goal is to estimate the effect of
special visits (treatment) on cognitive scores (outcome). The potential outcomes are generated using
the NPCI package Dorie (2021). We use the same 1000 datasets as used in Shalit et al. (2017), with
each dataset split by the ratio of 63%/27%/10% as training/validation/test sets.

Models and metrics. In simulation experiments, we perform comprehensive comparisons be-
tween INet, GNet, DINet, DGNet, and DIGNet in terms of the mean and standard error for the
following metrics:

√
ϵPEHE ,

√
ϵCF , and

√
ϵF with L defined in Definition 1 being the squared

loss, as well as the empirical approximations of Wass(pT=1
Φ , pT=0

Φ ) and dH(pT=1
Φ , pT=0

Φ ) (denoted
by Wass and d̂H, respectively). Note that as shown in Figure 1, Wass is over ΦE for GNet while
over ΦG for DGNet and DIGNet; d̂H is over ΦE for INet while over ΦI for DINet and DIGNet.
To analyze the source of gain, we fairly compare models by ensuring that each model shares the
same hyperparameters, e.g., learning rate, the number of layers and units for (ΦE ,ΦG,ΦI , f

t), and
(α1, α2). Note that we apply an early stopping rule to all models as Shalit et al. (2017) do. In
IHDP experiment, we use

√
ϵPEHE , as well as an additional metric ϵATE = |τ̂ATE − τATE | to

evaluate performances of various causal models (see them in Table 3). More descriptions of the
implementation are detailed in Section A.5 of Appendix.

5.2 RESULTS AND ANALYSIS

Varying selection bias. We first make a general comparison between the models on datasets when
the degree of covariate imbalance increases, and the relevant results are shown in Figure 2. There
are three main observations: (1) DIGNet attains the lowest

√
ϵPEHE across all datasets, while GNet

7
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Figure 2: Plots of model performances on test set for different metrics as γ varies in
{0.25, 0.5, 0.75, 1, 1.5, 2, 3}. Each graph shows the average of 30 runs with standard errors shaded.

performs worse than other models; (2) DINet and DGNet outperform INet and GNet regarding√
ϵCF and

√
ϵPEHE ; (3) INet, DINet, and DGNet perform similarly to DIGNet on factual outcome

estimations (
√
ϵF ), but cannot compete with DIGNet in terms of counterfactual estimations (

√
ϵCF );

(4) DIGNet achieves smaller d̂H (or Wass) than DINet and INet (or DGNet and GNet), especially
when the covariate shift problem is severe (e.g., when γ > 1).

In conclusion, the finding (2) reveals that (i) the PPBR approach improves the predictive power of
outcomes, especially for counterfactual outcomes; and the findings (3) and (4) reveal that (ii) the
PDIG structure conduces to making group distance minimization and individual propensity confu-
sion complementary and mutually reinforcing.

Source of gain. To further investigate the above findings, we choose the case with high selection
bias (γ = 3) to explore the source of gain for PDIG and PPBR. We report model performances
(mean ± std) averaged over 30 training and test sets in Table 1 and plot specific metrics of 30 runs
on test set in Figure 3 and Figure 4. Below we discuss the source of gain in detail.

Figure 3: Plots of model performances on test set for√
ϵF ,

√
ϵCF , d̂H, and Wass when γ = 3. Each graph

plots the metric for 30 runs. Mean ± std of each metric
averaged across 30 runs are reported on the top.

(1) Ablation study for PDIG: The PDIG
structure is manifest to be effective in cap-
turing balancing patterns. According to
Figure 2, although DIGNet, DINet, and
DGNet have comparable estimates of fac-
tual outcomes (

√
ϵF ), DIGNet can achieve

more balanced representations regardless
of the discrepancy is measured by d̂H
or Wass. In particular, by comparing
DIGNet with DGNet and DINet in Figure
3, we find that the PDIG structure does
not affect the factual outcome estimation
(
√
ϵF ). Nevertheless, DIGNet achieves smaller d̂H with a |1.94/1.96 − 1| = 1.0% reduction (or

Wass with a |0.06/0.10 − 1| = 40% reduction) compared with DINet (or DGNet). This indicates
that PDIG enables group distance minimization and individual propensity confusion to complement
and reinforce each other, thereby learning better balancing patterns. This bring benefits with regard
to counterfactual estimation. In particular, DIGNet reduces

√
ϵCF by |2.89/2.95 − 1| = 2.0% and

|2.89/3.08 − 1| = 6.2% for DINet and DGNet, respectively. Thanks to the efficacy of PDIG in
capturing balancing patterns, DIGNet shows superiority in treatment effect estimation (

√
ϵPEHE

and ϵATE) compared to DGNet and DINet, as seen in Table 1.

(2) Ablation study for PPBR: The PPBR approach plays an essential role in outcome prediction,
especially counterfactual inference. From Figure 4, we gain an important insight that the difference
in learned representation balancing patterns, measured by Wass (or d̂H), between DGNet and GNet
(or DINet and INet), is negligible. This means that PPBR has no impact on the representation
balancing task. However, PPBR can improve the predictive power of factual outcomes, reducing√
ϵF by |1.07/1.12−1| = 4.5% for GNet and |1.07/1.08−1| = 0.9% for INet. Such improvement

is pronounced in counterfactual estimation, where
√
ϵCF is reduced by |3.08/3.55−1| = 13.2% for

GNet and |2.95/3.47− 1| = 15.0% for INet. Benefiting from the advantage of PPBR, the treatment
effect errors (

√
ϵPEHE and ϵATE) attained by DINet and DGNet are significantly smaller than those

attained by INet and GNet, as shown in Table 1.

8
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Figure 4: Plots of model performances on test set for
√
ϵF ,

√
ϵCF , d̂H, and Wass when γ = 3. Left

graphs compare DGNet with GNet, and right graphs compare DINet with INet. Each graph plots
the metric for 30 runs. Mean ± std of each metric averaged across 30 runs are reported on the top.

Table 1: Training- & test- set
√
ϵPEHE & ϵATE

when γ = 3. Mean ± standard error of 30 runs.

Training set Test set√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

GNet 3.30±0.15 2.58±0.14 3.30±0.16 2.59±0.14
INet 3.24±0.11 2.46±0.09 3.22±0.12 2.47±0.10

DGNet 2.86±0.06 2.15±0.03 2.83±0.07 2.15±0.04
DINet 2.70±0.06 2.12±0.04 2.69±0.08 2.13±0.05

DIGNet 2.66±0.07 2.04±0.05 2.63±0.07 2.03±0.04

Table 2: Training- & test- set
√
ϵPEHE & ϵATE

on IHDP. Mean ± standard error of 100 runs.

Training set Test set√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

GNet 0.71±0.15 0.12±0.01 0.77±0.18 0.15±0.02
INet 0.66±0.09 0.13±0.01 0.72±0.11 0.15±0.02

DGNet 0.53±0.07 0.11±0.01 0.60±0.09 0.13±0.01
DINet 0.57±0.12 0.13±0.01 0.60±0.11 0.14±0.01

DIGNet 0.42±0.02 0.11±0.01 0.45±0.04 0.12±0.01

Table 3: Training- & test- set
√
ϵPEHE & ϵATE on

IHDP. Mean ± standard error of 1000 runs.

Training set Test set√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

CEVAE (Louizos et al., 2017) 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02
TARNet (Shalit et al., 2017) .88 ± .0 .26 ± .01 .95 ± .0 .28 ± .01

SITE (Yao et al., 2018) .69 ± .0 .22 ± .01 .75 ± .0 .24 ± .01
GANITE (Yoon et al., 2018) 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05
Dragonnet (Shi et al., 2019) 1.3 ± .4 .14 ± .01 1.3 ± .5 .20 ± .05

BNN (Johansson et al., 2016) 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03
CFR-Wass (GNet) (Shalit et al., 2017) .73 ± .0 .12 ± .01 .81 ± .0 .15 ± .01

DKLITE (Zhang et al., 2020) .52± .0 − .65± .03 −
CFR-ISW (Hassanpour & Greiner, 2019a) − − .70± .0 .19± .03

BWCFR-OW (Assaad et al., 2021) − − .65± .0 .18± .01
BWCFR-MW (Assaad et al., 2021) − − .63± .0 .19± .01

BWCFR-TruncIPW (Assaad et al., 2021) − − .63± .0 .19± .01
MBRL (Huang et al., 2022a) .52 ± .0 .12 ± .01 .57 ± .0 .13 ± .01

DIGNet (Ours) .42 ± .0 .11 ± .01 .45 ± .0 .12 ± .01

Comparisons on IHDP benchmark.
We first conduct an ablation study for
PDIG and PPBR on 1-100 IHDP datasets
and report the results in Table 2. Further,
we undergo comparisons between DIGNet
and other causal models on 1-1000 IHDP
datasets and report the results in Table 3.
Note that “-” indicates either the result is
not reproducible or the original paper does
not report relevant values. Table 2 shows
that DINet and DGNet are superior to INet
and GNet but inferior to DIGNet concern-
ing treatment effect estimation, suggesting
that each component of PDIG and PPBR is
advantageous for treatment effect estimation. For example, on the test set, DINet reduces

√
ϵPEHE

by |0.60/0.72− 1| = 16.7% for INet, and DIGNet achieves |0.45/0.60− 1| = 25% error reduction
regarding

√
ϵPEHE for DINet. This is consistent with the findings before: PPBR and PDIG are ben-

eficial to treatment effect estimation. Table 3 demonstrates that models that involve either propensity
score or representation balancing (e.g., DKLITE, CFR-X, BWCFR-X, and MBRL) attain

√
ϵPEHE

and ϵATE of 0.57 ∼ 0.70 and 0.13 ∼ 0.19, respectively. Compared to the second-best method,
DIGNet improves performance by |0.45/0.57 − 1| = 21% and |0.12/0.13 − 1| = 7.7% regarding√
ϵPEHE and ϵATE , respectively, revealing the prominent outperformance of the proposed method.

Moreover, it is noticeable that DIGNet achieves the lowest errors overwhelmingly across datasets
and metrics, indicating that the proposed method has the most robust performance.

6 CONCLUSION

In this paper, we derive a theoretical ITE bound based on H-divergence and connect representation
balancing with the concept of propensity confusion. Furthermore, we propose the components of
PDIG and PPBR, on which we construct a decomposition network structure DIGNet for treatment
effect estimation. Comprehensive experiments verify that PDIG and PPBR follow different path-
ways to achieve the same goal of improving treatment effect estimation. In particular, PDIG helps
the model better capture representation balancing patterns without affecting outcome prediction,
while PPBR preserves patterns predictive of outcomes to enhance the outcome prediction without
affecting balancing patterns. We believe that our findings constitute an important step towards the
generalizability of representation balancing models in counterfactual estimation.

Promising directions for future work include discouraging redundancy of shared information of
balancing patterns in the PDIG structure, improving the efficacy of optimizing DIGNet’s objective,
and exploring whether there exists an interaction between PDIG and PPBR.
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A APPENDIX

A.1 PRELIMINARIES

We start by making some assumptions about the distribution we concern, and give some neces-
sary definitions and results. We agree with the strong ignorability assumption, which assume that
there exists a joint distribution p(X, T, Y 0, Y 1) such that conditioning on covariate X, the poten-
tial outcomes Y 0, Y 1 are independent of T , i.e., (Y 0, Y 1) ⊥⊥ T | X, and the propensity score
e(x) := p(T = 1 | X = x) is bounded away from 0 to 1, i.e. 0 < e(x) < 1. Recall that we also as-
sume consistency, i.e., if the treatment is t, the observed outcome equals Y t. These assumptions are
crucial conditions that make individual treatment effect identifiable (Imbens & Wooldridge, 2009).

Definition 1 The individual treatment effect (ITE) for unit x is:

τ(x) = E
[
Y 1 − Y 0 | X = x

]
.

12



Under review as a conference paper at ICLR 2023

Let τ t(x) := E [Y t | X = x], we have τ(x) = τ1(x) − τ0(x). Let f : X × {0, 1} → Y be a
prediction function.
Definition 2 The individual treatment effect estimate can be defined as:

τ̂f (x) := f(x, 1)− f(x, 0).

Definition 3 (Hill, 2011) Let L : Y × Y → R+ be a loss function. The expected Precision in
Estimation of Heterogeneous Effect (PEHE) loss of f is:

ϵPEHE(f) =

∫
X
L(τ̂f (x)− τ(x))p(x)dx.

Definition 4 The covariates’ distributions in the treated and controlled groups can be denoted by
pT=1(x) := p(x | T = 1) and pT=0(x) := p(x | T = 0), respectively.

In our causal representation balancing approach, we assume that the representation function Φ :
X → R is a twice-differentiable, one-to-one function, where R ⊂ Rd is the representation space.
Then, we can denote Ψ : R → X by the inverse of Φ and the induced distribution of r by pΦ.
Definition 5 The covariates’ distributions in the treated and controlled groups over R can be de-
noted by pT=1

Φ (r) := pΦ(r | T = 1) and pT=0
Φ (r) := pΦ(r | T = 0), respectively.

Let h : R × {0, 1} → Y be an hypothesis defined over the representation space R, such that
f(x, t) = h(Φ(x), t).
Definition 6 The expected loss for the unit and treatment pair (x, t) is :

ℓh,Φ(x, t) =

∫
Y
L(yt, h(Φ(x), t))p(yt|x)dyt.

Definition 7 The expected factual loss and counterfactual losses of h and Φ are, respectively:

ϵF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, t)dxdt,

ϵCF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, 1− t)dxdt.

Definition 8 The expected treated and control losses are:

ϵT=1
F (h,Φ) =

∫
X
ℓh,Φ(x, 1)p

T=1(x)dx,

ϵT=0
F (h,Φ) =

∫
X
ℓh,Φ(x, 0)p

T=0(x)dx,

ϵT=1
CF (h,Φ) =

∫
X
ℓh,Φ(x, 1)p

T=0(x)dx,

ϵT=0
CF (h,Φ) =

∫
X
ℓh,Φ(x, 0)p

T=1(x)dx.

Let u := Pr(T = 1) be the proportion of treated in the population. We then have the result:
Lemma 1

ϵF (h,Φ) = u · ϵT=1
F (h,Φ) + (1− u) · ϵT=0

F (h,Φ),

ϵCF (h,Φ) = (1− u) · ϵT=1
CF (h,Φ) + u · ϵT=0

CF (h,Φ).

Noting that p(x, t) = u · pT=1(x) + (1− u) · pT=0(x), the results can be easily obtained from the
Definitions 7 and 8.
Definition 9 Let G be a function family consisting of functions g : S → R. For a pair of distribu-
tions p1, p2 over S, define the Integral Probability Metric:

IPMG(p1, p2) = sup
g∈G

|
∫
S
g(s)(p1(s)− p2(s))ds|.
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Let G be the family of 1-Lipschitz functions, we obtain the so-called 1-Wasserstein distance between
distributions, which we denote Wass(p1, p2) (Sriperumbudur et al., 2012).

Definition 10 Given a pair of distributions p1, p2 over S, and a hypothesis binary function class
H, the H-divergence between p1 and p2 is

dH(p1, p2) = 2supη∈H |Prp1
[η(s) = 1]− Prp2

[η(s) = 1]| .

Lemma 2 Let G in Definition 9 be the family of binary functions, we obtain half of H-divergence.

Proof Let I(·) denotes an indicator function.

dH(p1, p2)

=2 sup
η∈H

∣∣∣∣∣
∫
η(s)=1

(p1(s)− p2(s))ds

∣∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S
I(η(s) = 1)(p1(s)− p2(s))ds

∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S
η(s)(p1(s)− p2(s))ds

∣∣∣∣ (18)

The last equation is because an indicator function is also a binary function.

□

A.2 BOUNDS FOR CONTERFACTUAL ERROR ϵCF

We first derive the counterfactual error bounds when using Wasserstein distance. The following
Lemma 3 and corresponding proof is identical to the Lemma 1 in (Shalit et al., 2017).

Lemma 3 Let Φ : X → R be an invertible representation with Ψ being its inverse. Let pT=1
Φ (r),

pT=0
Φ (r) be as defined before. Let h : R × {0, 1} → Y , u := Pr(T = 1) and G be the family of

1-Lipschitz functions. Assume there exists a constant BΦ ≥ 0, such that for t = 0, 1, the function
gΦ,h(r, t) :=

1
BΦ

· ℓh,Φ(Ψ(r), t) ∈ G. Then we have:

ϵCF (h,Φ) ≤ (1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ ).

Proof

ϵCF (h,Φ)− [(1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ)]

=[(1− u) · ϵT=1
CF (h,Φ) + u · ϵT=0

CF (h,Φ)]− [(1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ)]

=(1− u) · [ϵT=1
CF (h,Φ)− ϵT=1

F (h,Φ)] + u · [ϵT=0
CF (h,Φ)− ϵT=0

F (h,Φ)]

=(1− u)

∫
X
ℓh,Φ(x, 1)(p

T=0(x)− pT=1(x))dx+ u

∫
X
ℓh,Φ(x, 0)(p

T=1(x)− pT=0(x))dx

(19)

=(1− u)

∫
R
ℓh,Φ(Ψ(r), 1)(pT=0

Φ (r)− pT=1
Φ (r))dr+ u

∫
R
ℓh,Φ(Ψ(r), 0)(pT=1

Φ (r)− pT=0
Φ (r))dr

(20)

≤BΦ · (1− u)

∫
R

1

BΦ
ℓh,Φ(Ψ(r), 1)(pT=0

Φ (r)− pT=1
Φ (r))dr

+BΦ · u
∫
R

1

BΦ
ℓh,Φ(Ψ(r), 0)(pT=1

Φ (r)− pT=0
Φ (r))dr

≤BΦ · (1− u) sup
g∈G

|
∫
R
g(r)(pT=0

Φ (r)− pT=1
Φ (r))dr|

+BΦ · u · sup
g∈G

|
∫
R
g(r)(pT=1

Φ (r)− pT=0
Φ (r))dr| (21)

=BΦ ·Wass(pT=1
Φ , pT=0

Φ ) (22)
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Equation (19) is by Definition 8; equation (20) is by the change of formula, pT=0
Φ (r) =

pT=0(Ψ(r))JΨ(r), pT=1
Φ (r) = pT=1(Ψ(r))JΨ(r), where JΨ(r) is the absolute of the determinant

of the Jacobian of Ψ(r); inequality (21) is by the premise that 1
BΦ

· ℓh,Φ(Ψ(r), t) ∈ G for t = 0, 1,
and (22) is by Definition 9 of an IPM. □

The crucial condition in Lemma 3 is that gΦ,h(r, t) := 1
BΦ

· ℓh,Φ(Ψ(r), t) ∈ G. Bounds for BΦ

can be given to evaluate this constant when under more assumptions about the loss function L, the
Lipschitz constants of p(yt|x), h, and the condition number of the Jacobian of Φ. These assumptions
and the specific bounds for BΦ can be seen in supplement Section A.3 of (Shalit et al., 2017).

Now we turn to derive the counterfactual error bounds for the H-divergence case.

Assumption 1 There exists a constant K such that for all y2 ∈ Y ,
∫
Y L(y1, y2)dy1 ≤ K.

Lemma 4 Let Φ : X → R be an invertible representation with Ψ being its inverse. Let pT=1
Φ (r),

pT=0
Φ (r) be as defined before. Let h : R × {0, 1} → Y , u := Pr(T = 1) and H be the family of

binary functions. Assume loss function L obeys the Assumption 1. Then we have:

ϵCF (h,Φ) ≤ (1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ) +
K

2
dH(pT=1

Φ , pT=0
Φ ).

Proof

ϵCF (h,Φ)− [(1− u) · ϵT=1
F (h,Φ) + u · ϵT=0

F (h,Φ)]

=(1− u)

∫
R
ℓh,Φ(Ψ(r), 1)(pT=0

Φ (r)− pT=1
Φ (r))dr+ u

∫
R
ℓh,Φ(Ψ(r), 0)(pT=1

Φ (r)− pT=0
Φ (r))dr

(23)

≤(1− u)

∫
pT=0
Φ >pT=1

Φ

ℓh,Φ(Ψ(r), 1)(pT=0
Φ (r)− pT=1

Φ (r))dr

+ u

∫
pT=1
Φ >pT=0

Φ

ℓh,Φ(Ψ(r), 0)(pT=1
Φ (r)− pT=0

Φ (r))dr (24)

≤(1− u)K

∫
pT=0
Φ >pT=1

Φ

(pT=0
Φ (r)− pT=1

Φ (r))dr+ u ·K
∫
pT=1
Φ >pT=0

Φ

(pT=1
Φ (r)− pT=0

Φ (r))dr

(25)

=(1− u)K

∫
R
I(pt=0

Φ > pT=1
Φ )(pT=0

Φ (r)− pT=1
Φ (r))dr

+ u ·K
∫
R
I(pT=1

Φ > pT=0
Φ )(pT=1

Φ (r)− pT=0
Φ (r))dr

≤(1− u)K sup
η∈H

|
∫
R
η(r)(pT=1

Φ (r)− pT=0
Φ (r))dr|

+ u ·K · sup
η∈H

|
∫
R
η(r)(pT=1

Φ (r)− pT=0
Φ (r))dr| (26)

≤K · sup
η∈H

|
∫
R
η(r)((pT=1

Φ (r)− pT=0
Φ (r)))dr|

=
K

2
dH(pT=1

Φ , pT=0
Φ ) (27)

Equation (23) is same to equation (20); equation (24) is by ℓh,Φ ≥ 0 for all r and t; inequality (25)
is by Definition 6 and Assumption 1; inequality (26) is because an indicator function is also a binary
function; equation (27) is by (18) in Lemma 2. □

A.3 BOUNDS FOR THE PEHE LOSS ϵPEHE

We first state two lemmas for ϵPEHE with respect to two different loss functions: the squared loss
and the absolute loss. In fact, similar lemmas hold for loss functions that satisfy the (relaxed) triangle
inequalities.
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Definition 11 The expected variance of yt with regard to p(x, t) is:

σ2
yt(p(x, t)) =

∫
X×{0,1}×Y

(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt,

and define:

σ2
y = min{σ2

yt(p(x, t)), σ2
yt(p(x, 1− t))}.

Lemma 5 Let loss function L be the squared loss, L(y1, y2) = (y1 − y2)
2. For any function

f : X × {0, 1} → Y , and distribution p(x, t) over X × {0, 1}:

ϵPEHE(h,Φ) ≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
y)

Proof We denote ϵPEHE(f) = ϵPEHE(h,Φ), ϵF (f) = ϵF (h,Φ), ϵCF (f) = ϵCF (h,Φ) for
f(x, t) = h(Φ(x), t).

ϵPEHE(f)

=

∫
X
((f(x, 1)− f(x, 0))− (τ1(x)− τ0(x)))2p(x)dx

≤2

∫
X
((f(x, 1)− τ1(x))2 + (f(x, 0)− τ0(x))2)p(x)dx (28)

=2

∫
X
(f(x, 1)− τ1(x))2p(x, T = 1)dx+ 2

∫
X
(f(x, 0)− τ0(x))2p(x, T = 0)dx

+ 2

∫
X
(f(x, 1)− τ1(x))2p(x, T = 0)dx+ 2

∫
X
(f(x, 0)− τ0(x))2p(x, T = 1)dx (29)

=2

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, t)dxdt+ 2

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, 1− t)dxdt.

Inequality (28) is because the relaxed triangle inequality, (x + y)2 ≤ 2(x2 + y2); equation (29) is
because p(x) = p(x, T = 0) + p(x, T = 1).

ϵF (f)

=

∫
X×{0,1}×Y

(f(x, t)− yt)2p(yt|x)p(x, t)dytdxdt

=

∫
X×{0,1}×Y

(f(x, t)− τ t(x))2p(yt|x)p(x, t)dytdxdt

+

∫
X×{0,1}×Y

(τ t(x)− yt)2p(yt|x)p(x, t)dytdxdt

+ 2

∫
X×{0,1}×Y

(f(x, t)− τ t(x))(τ t(x)− yt)p(yt|x)p(x, t)dytdxdt (30)

=

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, t)dxdt+ σ2
yt(p(x, t)) (31)

Equation (31) is by Definition 11 and last term in equation (30) equals to zero, since τ t(x) =∫
Y ytp(yt|x)dyt. A similar result can be obtained for ϵCF :

ϵCF (f) =

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, 1− t)dxdt+ σ2
yt(p(x, 1− t)).

Combining these results and Definition 11, we have

ϵPEHE(h,Φ) ≤ 2(ϵF (f)− σ2
yt(p(x, t))) + 2(ϵCF (f)− σ2

yt(p(x, 1− t)))

≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
y).

□
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For the absolute loss L(y1, y2) = |y1 − y2| that satisfies triangle inequality, the upper bound in
Lemma 5 will replace the standard deviation σ2

y by mean absolute deviation Ay .

Definition 12 The mean absolute deviation of yt with regard to p(x, t) is:

Ayt(p(x, t)) =

∫
X×{0,1}×Y

|yt − τ t(x)|p(yt|x)p(x, t)dytdxdt,

and define:

Ay = min{Ayt(p(x, t)), Ayt(p(x, 1− t))}.

Lemma 6 Let loss function L be the absolute loss, L(y1, y2) = |y1 − y2|. For any function f :
X × {0, 1} → Y , and distribution p(x, t) over X × {0, 1}:

ϵPEHE(h,Φ) ≤ ϵCF (h,Φ) + ϵF (h,Φ)− 2Ay.

Proof Recall that ϵPEHE(f) = ϵPEHE(h,Φ), ϵF (f) = ϵF (h,Φ), ϵCF (f) = ϵCF (h,Φ) for
f(x, t) = h(Φ(x), t).

ϵPEHE(f)

=

∫
X
|(f(x, 1)− f(x, 0))− (τ1(x)− τ0(x))|p(x)dx

≤
∫
X
(|f(x, 1)− τ1(x)|+ |f(x, 0)− τ0(x)|)p(x)dx (32)

=

∫
X
|f(x, 1)− τ1(x)|p(x, T = 1)dx+

∫
X
|f(x, 0)− τ0(x)|p(x, T = 0)dx

+

∫
X
|f(x, 1)− τ1(x)|p(x, T = 0)dx+

∫
X
|f(x, 0)− τ0(x)|p(x, T = 1)dx (33)

=

∫
X×{0,1}

|f(x, t)− τ t(x)|p(x, t)dxdt+
∫
X×{0,1}

|f(x, t)− τ t(x)|p(x, 1− t)dxdt.

Inequality (32) is because triangle inequality, |x+ y| ≤ |x|+ |y|; equation (33) is because p(x) =
p(x, T = 0) + p(x, T = 1).

ϵF (f)

=

∫
X×{0,1}×Y

|f(x, t)− yt|p(yt|x)p(x, t)dytdxdt

≤
∫
X×{0,1}×Y

|f(x, t)− τ t(x)|p(yt|x)p(x, t)dytdxdt

+

∫
X×{0,1}×Y

|τ t(x)− yt|p(yt|x)p(x, t)dytdxdt (34)

=

∫
X×{0,1}

|f(x, t)− τ t(x)|p(x, t)dxdt+Ayt(p(x, t)). (35)

Inequality (34) is also because |x+y| ≤ |x|+ |y|, equation (35) is by Definition 12. A similar result
can be obtained for ϵCF :

ϵCF (f) =

∫
X×{0,1}

|f(x, t)− τ t(x)|p(x, 1− t)dxdt+Ayt(p(x, 1− t)).

Combining these results and Definition 12, we have

ϵPEHE(h,Φ) ≤ ϵF (f)−Ayt(p(x, t)) + ϵCF (f)−Ayt(p(x, 1− t))

≤ ϵCF (h,Φ) + ϵF (h,Φ)− 2Ay.

□

We summarize the upper bounds of ϵCF and ϵPEHE above, and give the final bounds for these two
distance using the squared and absolute loss, respectively.

17



Under review as a conference paper at ICLR 2023

Theorem 1 Let Φ : X → R be an invertible representation with Ψ being its inverse. Let pT=1
Φ (r),

pT=0
Φ (r) be as defined before. Let h : R × {0, 1} → Y , u := Pr(T = 1) and G be the family of

1-Lipschitz functions. Assume there exists a constant BΦ ≥ 0, such that for t = 0, 1, the function
gΦ,h(r, t) :=

1
BΦ

· ℓh,Φ(Ψ(r), t) ∈ G.

Let loss function L be the squared loss, L(y1, y2) = (y1 − y2)
2.Then we have:

ϵPEHE(h,Φ)

≤2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
y) (36)

≤2(ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ )− 2σ2
y) (37)

Let loss function L be the absolute loss, L(y1, y2) = |y1 − y2|. Then we have:

ϵPEHE(h,Φ)

≤ϵCF (h,Φ) + ϵF (h,Φ)− 2Ay (38)

≤ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ )− 2Ay (39)

Proof Inequality (36) is by Lemma 5, inequality (37) is by Lemma 1 and Lemma 3; Inequality (38)
is by Lemma 6, inequality (39) is by Lemma 1 and Lemma 3; □

Theorem 2 Let Φ : X → R be an invertible representation with Ψ being its inverse. Let pT=1
Φ (r),

pT=0
Φ (r) be as defined before. Let h : R × {0, 1} → Y , u := Pr(T = 1) and H be the family of

binary functions.

Let loss function L be the squared loss such that L(y1, y2) = (y1 − y2)
2. Then we have:

ϵPEHE(h,Φ)

≤2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
y) (40)

≤2(ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +
K

2
dH(pT=1

Φ , pT=0
Φ )− 2σ2

y) (41)

Let loss function L be the absolute loss such that L(y1, y2) = |y1 − y2|. Then we have:

ϵPEHE(h,Φ)

≤ϵCF (h,Φ) + ϵF (h,Φ)− 2Ay (42)

≤ϵT=1
F (h,Φ) + ϵT=0

F (h,Φ) +
K

2
dH(pT=1

Φ , pT=0
Φ )− 2Ay (43)

Proof Inequality (40) is by Lemma 5, inequality (41) is by Lemma 1 and Lemma 4; Inequality (42)
is by Lemma 6, inequality (43) is by Lemma 1 and Lemma 4; □

Obviously, when using Wasserstein distance, there are various versions of bounds for different loss
functions as long as they satisfy the (relaxed) triangle inequality and assumptions about ℓh,Φ in
Theorem 1. Similarly, when using H-divergence, there are also various versions of bounds for loss
functions that satisfy Assumption 1 and the (relaxed) triangle inequality.

For an empirical sample and a family of representations and hypotheses, we can further upper bound
ϵT=0
F and ϵT=1

F by their respective empirical losses and a model complexity term using standard
arguments (Shalev-Shwartz & Ben-David, 2014). Both the Wasserstein distance and H-divergence
can be consistently estimated from finite samples (Sriperumbudur et al., 2012; Ben-David et al.,
2006; 2010).

A.4 ILLUSTRATIVE EXAMPLES

Examples for the motivation for decomposed patterns. To explain the dilemma between repre-
sentation balancing and outcome prediction, we give two intuitive examples below to help readers
better understand the motivation and importance of involving decomposed patterns in representation
balancing models.

18



Under review as a conference paper at ICLR 2023

Adjust 
covariates 

Figure 5: Example for illustrating the importance of decomposed patterns.

Example 1. Suppose there is a vaccine to prevent some kind of disease. Let X denote the covari-
ate (age), T = 1 denote the treatment (getting vaccinated), T = 0 denote the control (not getting
vaccinated), and Y denote the outcome (probability of getting the disease). Suppose that the vac-
cine is assigned according to age, and we have found that the older, the higher the probability of
getting the disease. The left graph in Figure 5 shows the distribution of pre-balancing covariate X
for treated and controlled groups, which indicates that vaccines are more likely to distribute to older
people. Technically, the pre-balancing data preserve the outcome-predictive information: if we want
to estimate Y using the covariate X , we are confident that people in the treatment/control group
(orange/blue) are susceptible/unsusceptible to the disease since they are older/younger. The right
panel of Figure 5 shows the distribution of the adjusted covariate X̃ , over which the distributions
of treated and controlled groups are highly balanced. In this case, however, the distribution of X̃ is
too balanced, making it hard to distinguish the treatment samples from the control samples. Conse-
quently, if we want to estimate Y using X̃ , we may get confused about which group is susceptible
to the disease because the distributions of X̃ are almost identical between the treated and controlled
groups. Therefore, only considering balancing patterns can result in a loss of outcome-predictive
information.

Example 2. Following the example above, allow us to give a special but more intuitive instance.
Imagine two men are entirely identical other than age, of whom one is older (treatment, T) and the
other is younger (control, C). So we can use the covariate age to distinguish between T and C. We
also found that the older one is susceptible to the disease. However, once their ages are mapped
to some representations such that their representations are over-balanced, even identical, then such
representations can be useless to distinguish who is T and who is C. As a result, it will be difficult
for such representations to be used for estimating who is susceptible to the disease. Therefore,
over-balanced representations may lose outcome-predictive information.

In summary, on the one hand, involving representation balancing can benefit treatment effect es-
timation. On the other hand, if pT=1

Φ and pT=0
Φ are too balanced, a model may fail to preserve

pre-balancing information that is useful to outcome predictions. Such a dilemma motivates us to
incorporate PPBR and PDIG such that PPBR improves outcome prediction without harming rep-
resentation balancing, and PDIG helps a model to achieve more balanced representations without
harming outcome prediction.

A.5 ADDITIONAL EXPERIMENTAL DETAILS

Hyperparameters. In simulation studies, we ensure a fair comparison by fixing all the hyperpa-
rameters in all datasets across different models. The relevant details are stated in Table 4. In IHDP
studies, to compare with the baseline model CFR-Wass (GNet), we remain the hyperparameters of
INet, DGNet, DINet and the early stopping rule the same as those used in CFR-Wass Shalit et al.
(2017). Since DIGNet is more complex than other four models, we adjust the hyperparameters of
ΦE , ΦG, ΦI , α1, and α2 for DIGNet as Shalit et al. (2017) do. The relevant details are stated in
Table 5.
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Table 4: Hyperparameters of different models in simulation studies.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
Inet (100, 100, 100, 100) − − (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DIGNet (100, 100, 100, 100) (100, 100) (100, 100) (100, 100, 100) (100, 100) (100, 100) 0.1 0.1 100 300 1e−3 1e−4

Table 5: Hyperparameters of different models in IHDP experiments.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
Inet (100, 100, 100, 100) − − (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DIGNet (100, 100, 100, 100, 100, 100) (100, 100, 100) (100, 100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) 0.1 1 100 600 1e−3 1e−3

Device. All the experiments are run on Dell 7920 with 1x 16-core Intel Xeon Gold 6250 3.90GHz
CPU and 3x NVIDIA Quadro RTX 6000 GPU.

Table 6: Additional comparisons on IHDP dataset.

Training set Test set√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

OLS/LR1 (Johansson et al., 2016) 5.8± .3 .73± .04 5.8± .3 .94± .06
OLS/LR2 (Johansson et al., 2016) 2.4± .1 .14± .01 2.5± .1 .31± .02

k-NN (Crump et al., 2008) 2.1± .1 .14± .01 4.1± .2 .79± .05
BART (Chipman et al., 2010) 2.1± .1 .23± .01 2.3± .1 .34± .02
CF (Wager & Athey, 2018) 3.8± .2 .18± .01 3.8± .2 .40± .03

CEVAE (Louizos et al., 2017) 2.7± .1 .34± .01 2.6± .1 .46± .02
SITE (Yao et al., 2018) .69± .0 .22± .01 .75± .0 .24± .01

GANITE (Yoon et al., 2018) 1.9± .4 .43± .05 2.4± .4 .49± .05
BLR (Johansson et al., 2016) 5.8± .3 .72± .04 5.8± .3 .93± .05
BNN (Johansson et al., 2016) 2.2± .1 .37± .03 2.1± .1 .42± .03
TARNet (Shalit et al., 2017) .88± .0 .26± .01 .95± .0 .28± .01

CFR-Wass (GNet) (Shalit et al., 2017) .73± .0 .12± .01 .81± .0 .15± .01
Dragonnet (Shi et al., 2019) 1.3± .4 .14± .01 1.3± .5 .20± .05

DKLITE (Zhang et al., 2020) .52± .0 − .65± .03 −
CFR-ISW (Hassanpour & Greiner, 2019a) − − .70± .0 .19± .03

BWCFR-OW (Assaad et al., 2021) − − .65± .0 .18± .01
BWCFR-MW (Assaad et al., 2021) − − .63± .0 .19± .01

BWCFR-TruncIPW (Assaad et al., 2021) − − .63± .0 .19± .01
MBRL (Huang et al., 2022a) .52 ± .0 .12 ± .01 .57 ± .0 .13 ± .01

DIGNet (Ours) .42 ± .0 .11 ± .01 .45 ± .0 .12 ± .01

Additional IHDP results. The selection bias of different simulated datasets is illustrated in Figure
6. We compare DIGNet with more baselines in Table 6. Note that − indicates either the result is
not reproducible or the original paper does not report relevant values. We collect baseline methods
that focus on treatment effect estimation, especially methods using deep representation learning
techniques, from recent machine learning conferences (e.g., ICML, NeurIPS, ICLR, AISTATS, and
PRICAI)

Analysis for training time and training stability. We record the time it took for different models
to run through 100 IHDP datasets, and each model is trained within 600 epochs. Following Shalit
et al. (2017), all models adopt the early stopping rule. We also record the average early stopping
epoch on 100 runs and the actual time on 100 runs, where (actual time) = (total time) × (average
early stopping epoch)/600. Not surprisingly, GNet took the least amount of time with 3096 seconds
since the objective of GNet is the simplest. However, it is very interesting that the proposed methods,
DGNet and DINet, are the first two to early stop. As a result, though DGNet and DINet have multi-
objectives, they spent less actual training time but achieved better ITE estimation compared to GNet
and INet. Since GNet and INet are actually DGNet and DINet with PPBR ablated, we find that
PPBR component can help a model achieve better ITE estimates with less time. In addition, we find
that DIGNet spent the longest time to optimize since it has the most complex objective. To further
study the stability of the model training, we also plot the metrics

√
ϵF , Wass, d̂H, and

√
ϵPEHE

for the first 100 epochs of each model on the first IHDP dataset. We find that the training process
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Figure 6: T-SNE visualizations of the covariates as γ varies. Red represents the treatment group and
blue represents the control group. A larger γ indicates a greater imbalance between the two groups.

of DIGNet is stable, even steadier than GNet and INet. From this perspective, we haven’t seen a
difficulty of optimizing DIGNet.

Table 7: Training time records on 100 IHDP datasets.

Model Time for 600 epochs Avg early stopping Actual time
√
ϵPEHE on test set

GNet 3096s 240.61 1241s 0.77±0.18
INet 4042s 254.19 1712 0.72±0.11

DGNet 3775s 169.17 1064s 0.60±0.09
DINet 3212s 157.98 846s 0.60±0.11

DIGNet 4984s 226.76 1884s 0.45±0.04

Figure 7: Training loss plots for the first 100 epochs on the first IHDP dataset.

A.6 OBJECTIVES FOR DIFFERENT MODELS

Objective of GNet.
min
ΦE ,ht

Ly(x, t,y; ΦE , h
t) + α1LG(x, t; ΦE).

Objective of INet.
max
π

α2LI(x, t; ΦE , π),

min
ΦE ,ht

Ly(x, t,y; ΦE , h
t) + α2LI(x, t; ΦE , π).
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Objective of DINet. Note that similar to DIGNet, the pre-balancing patterns are preserved by only
updating ΦI but fixing ΦE in the second step.

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ht

Ly(x, t,y; ΦE ⊕ (ΦI ◦ ΦE), h
t).

Objective of DGNet. Note that similar to DIGNet, the pre-balancing patterns are preserved by
only updating ΦG but fixing ΦE in the first step.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

min
ΦE ,ΦG,ht

Ly(x, t,y; ΦE ⊕ (ΦG ◦ ΦE), h
t).

Objective of DIGNet.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t,y; ΦE ⊕ (ΦI ◦ ΦE)⊕ (ΦG ◦ ΦE), h
t).
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