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Abstract

In recent developments within the research
community, the integration of Large Language
Models (LLMs) in creating fully autonomous
agents has garnered significant interest. De-
spite this, LLM-based agents frequently demon-
strate notable shortcomings in adjusting to dy-
namic environments and fully grasping hu-
man needs. In this work, we introduce the
problem of LLM-based human-agent collab-
oration for complex task-solving, exploring
their synergistic potential. In addition, we pro-
pose a Reinforcement Learning-based Human-
Agent Collaboration method, ReHAC. This
approach includes a policy model designed to
determine the most opportune stages for hu-
man intervention within the task-solving pro-
cess. We construct a human-agent collabo-
ration dataset to train this policy model in
an offline reinforcement learning environment.
Our validation tests confirm the model’s ef-
fectiveness. The results demonstrate that the
synergistic efforts of humans and LLM-based
agents significantly improve performance in
complex tasks, primarily through well-planned,
limited human intervention. Datasets and code
are available at: https://anonymous.
4open.science/r/ReHAC.

1 Introduction

In today’s increasingly complex world, humans are
confronted with multifaceted tasks stemming from
technical, social, and economic domains. Solv-
ing these complex tasks necessitates not only hu-
man interaction with the environment but also in-
tricate decision-making processes. To alleviate
human workload and enhance the automation of
tasks in both professional and personal spheres, re-
searchers have been actively developing advanced
tools for human assistance (Zawacki-Richter et al.,
2019; Amershi et al., 2019). Recently, the emer-
gence of Large Language Models (LLMs) such
as LLaMA (Touvron et al., 2023), Gemini (Team
et al., 2023) and GPT (Brown et al., 2020; Achiam
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Figure 1: Different Levels of Automation. (a) No au-
tomation: Tasks are entirely performed by humans. (b)
Full automation: Tasks are completely executed by
agents without human intervention. (¢) Conditional
automation: Humans are required only for specific sub-
tasks, without continuous monitoring.

et al., 2023) has marked a significant milestone.
LLMs’ remarkable abilities in task understanding,
planning, and reasoning (Zhao et al., 2023b) have
given rise to the development of LLM-based au-
tonomous agents (Wang et al., 2023a; Yao et al.,
2022; Shinn et al., 2023). These agents are de-
signed to leverage the LLMs’ capabilities to assist
humans in solving complex tasks autonomously.
The LLMs’ capabilities enable them to effectively
navigate and address the complexities encountered
in real-world scenarios, thereby offering substan-
tial support in human decision-making processes
of task-solving.

Despite the remarkable progress of LLM-based
agents, there remains a notable gap in their intelli-
gence level to handle complex and dynamic real-
world tasks with human-like proficiency. This limi-
tation poses a significant challenge to their practi-
cality in real-world applications, especially in sce-
narios where high accuracy is crucial, such as the
legal or financial domains. Addressing this chal-
lenge extends beyond just enhancing the agents’
capabilities. Incorporating human intuition and
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wisdom is equally vital for the effective manage-
ment of these intricate and evolving tasks, offering
a complementary approach to the limitations of
current agent technologies.

In this work, we introduce the problem of LLM-
based human-agent collaboration for complex
task solving, aiming to augment the capabilities of
LLM-based agents by integrating human intuition
and wisdom. The idea is analogous to the evolu-
tion in autonomous driving technology, which has
been categorized into varying levels of autonomy,
ranging from no automation, conditional automa-
tion to full automation (Khan et al., 2022; SAE
International, 2021). Referring to this framework,
we define the different levels of human-agent col-
laboration, as illustrated in Figure 1. Applying
this conditional automation mode to LLM-based
agents offers a practical path for their deployment
in real-world scenarios, acknowledging the current
limitations in their cognitive capabilities. Instead
of aiming for full automation, human-agent col-
laboration under the paradigm of conditional au-
tomation enables humans to intervene the complex
task-solving when necessary, while agents handle
most of the sub-tasks. This takes advantage of both
human and machine intelligence.

While advancements in LLMs significantly en-
hance the capacity for mutual understanding in
human-agent collaboration, several crucial chal-
lenges persist. These challenges include defining
the division of labor between humans and agents,
determining the granularity of tool execution, man-
aging proactive interruption, and implementing
multi-level intervention. However, our research
specifically focuses on scenarios where humans
directly replace agents in action. The key chal-
lenge we aim to address in human-agent collab-
oration lies in determining the optimal stages for
human intervention in task-solving and minimiz-
ing such intervention to enhance efficiency. Some
researchers have made preliminary attempts, by de-
signing heuristic rules or specialized prompts to
determine the stages at which agents should seek
human assistance (Cai et al., 2023; Wu et al., 2022a;
Mehta et al., 2023; Wang et al., 2023b). However,
these rule-based or prompt-driven approaches are
heavily reliant on specific application contexts and
lack universality. They often demand a deep under-
standing of the domain and substantial experience
from the designers, otherwise, suboptimal design
choices can lead to reduced performance. Apart

from that, a standardized formal framework and
universally accepted paradigm for leveraging large
language models (LLMs) in human-agent collabo-
ration is still lacking.

To overcome the aforementioned challenges, we
propose a Reinforcement Learning-based Human-
Agent Collaboration method, ReHAC, aimed at
effectively combining human intervention with the
automation capabilities of LLM-based agents. Our
method, leveraging reinforcement learning, trains
a policy model to dynamically identify the most
advantageous moments for human input during the
task-solving process. ReHAC is a learnable gen-
eral framework that can be applied to various sce-
narios and does not require additional prior knowl-
edge to design rules and prompts. For training
this policy model, we collect a dataset compris-
ing tasks collaboratively completed by humans and
LLM-based agents, utilized for the offline training
of the policy model. We conducted extensive ex-
periments on three multi-step reasoning datasets:
HotpotQA, StrategyQA, and InterCode, using two
popular LLM-based agent frameworks, ReAct and
"Try-again". The experimental results indicate that
with a policy model learned from limited data, Re-
HAC can effectively allocate human intervention
in human-agent collaboration scenarios, thereby
achieving a balance between effectiveness and effi-
ciency.

2 Approach

In this section, we first formulate the problem
of human-agent collaboration for complex task
solving, and then introduce our proposed ReHAC
method in detail.

2.1 Preliminary and Problem Formulation

Complex task-solving, inherently necessitating
multi-step planning and reasoning, is convention-
ally formalized as a multi-step decision-making
problem. Historically, complex task-solving was
predominantly achieved through human-driven
methods. These methods leveraged human cogni-
tive capabilities to determine the suitable action in
each step. Formally, considering a complex task
q, it is traditionally solved via a sequence of ac-
tions (a1, ag, - - - a,), with each action determined
by human decision-making, expressed as:

a; = Human(q, s¢), ey

where s; = (a1,01,--+ ,at-1,0;—1) denotes the
history information of task state at step ¢ and o is



the observation after a;_; is proceeded.

The advent of LLLMs has brought a paradigm
shift in this arena. Their impressive understand-
ing and reasoning abilities have prompted research
into LLM-based agents for complex task-solving,
thereby enhancing the level of automation in task-
solving. These agent-driven methods (e.g., Re-
Act (Yao et al., 2022)), leverage LLM-based agents
to supplant human decision-making. This shift is
represented as:

a; = Agent(q, s¢). 2)

This evolution of such Al-driven techniques pro-
vides a way to the automation of complex task-
solving.

However, limited by the current intelligence
level of LLMs, full automation based on agent-
driven methods is not yet feasible in practical sce-
narios (Kiseleva et al., 2022; Mehta et al., 2023).
Inspired by autonomous driving (Cui et al., 2024;
Fu et al., 2024; Bastola et al., 2024), we propose
the problem of LLM-based human-agent collab-
oration for complex task solving and explore the
dynamics and efficacy of the human-agent collab-
orative methods for complex task solving. We
first explore a specific form of human-agent col-
laboration: humans intervene in the complex task-
solving process when necessary. Formally, we need
to determine whether a human or an agent makes
decisions based on the actions’ complexity and
contextual changes, i.e.,

a; = Human(q, s;) or Agent(q,s), (3)

It is generally perceived that direct human in-
tervention in decision-making, particularly in real-
world scenarios, incurs higher costs and diminishes
the system’s automation level (Cai et al., 2023;
Wang et al., 2023b). On the other hand, human
intervention plays an important role in enhancing
task performance and flexibility. Therefore, the
objective of human-agent collaboration is to en-
hance the effectiveness of complex task-solving
with minimal reliance on human decision-making.
One key challenge is to determine the stages in
the task-solving process where human interven-
tion is most beneficial and effective, aligning
with the goal of minimizing human involvement
while maximizing task performance.

2.2 ReHAC

In this work, we propose a Reinforcement learning-
based Human-Agent Collaboration method, Re-

HAC. It formulates the human-agent collabo-
ration problem as a Markov Decision Process
(MDP) framework, represented by the tuple
(S, A, P,R,~), where S is the set of states, A is
the set of actions, P : S x A x S is the state transi-
tion probabilities, R serves as the reward function,
and ~ the discount factor.

For each action a; € A, we define it as a tuple
(agollab_gtask) where af°!e® indicates the subtask
is allocated to an agent or a human, and ai“s’“ is the
task action determined by agent or human:

agollab ~ follab ‘ St)

collab
g (a

if agollab — O;

task ( ,task
aiask N{ W@ZS (atas ‘St)a

Wf—ﬁﬁﬁan (agask ’ St) , otherwise,
“
where ﬂgfllab is the collaboration policy model,

Wg‘;Sk is the agent-based task policy model, and
miask js the human task policy.

To balance the maximization of task perfor-
mance and the cost of human intervention, we de-

fine the reward function as:
R(57 CL) = T(Sa a) - )‘0(57 CL), (5)

where T'(s, a) is the measure of expected task re-
wards received after taking action a in state s,
C'(s,a) is the number of human interventions in
the trajectory after taking action a, A is a hyper-
parameter that serves as a penalty coefficient of the
number of human interventions. We utilize Monte-
Carlo estimation to compute this reward function.

Optimization: Following the REINFORCE algo-
rithm (Williams, 1992), we optimize the expected
reward:

j(ﬂ'g) = Eﬂ'a [R(S7 a)]v (6)

which aims to find an optimal policy 7y that ensures
the maximization of task rewards while minimizing
the human intervention costs, and 6 = [0y, 62].
We utilize the advantage function to enhance the
stability of optimization and important sampling
for offline learning:

A(s,a) = R(s,a) — ‘;‘ Z R(s,d)
a’eA

VoJ (mg) = Z Z w(s,a)Voglogmg(als)A(s,a),

w(h, a) = Clip (”"(”)> : )

Theh(S, @)



where A(s,a) is the advantage function, the clip
function limits the importance sampling term to the
interval 1 — eto 1 + ¢, and the behavior policy Tpen
represents the policy under of the offline training.
Moreover, we have incorporated an entropy regu-
larization term. This term encourages the policy
to explore a variety of actions, thereby preventing
the policy from becoming too deterministic and
overfitting to the training data. Finally, the gradient
of objective function is as follows:

Vo (m9) = Vo T (mg) + aVeH (my(-|s)). (8)

3 Experiments

3.1 Experimental Setup

Datasets Following Yao et al. (2022); Shinn et al.
(2023); Liu et al. (2023b); Xu et al. (2023), we eval-
uate the efficacy of our method on question answer-
ing and coding datasets: (1) HotpotQA (Yang et al.,
2018) is a Wikipedia-based question answering
benchmark which needs model to perform multi-
hop reasoning over complex questions. (2) Strate-
gyQA (Geva et al., 2021) is a question answering
benchmark with questions that need implicit rea-
soning. (3) InterCode (Yang et al., 2023) is an
interactive coding dataset that enables agents to
receive feedback from the code interpreter. In this
work, we use InterCode-SQL part, which requires
models to write SQL statements to fulfil the query.

Implementation details We use LLaMA-2 (Tou-
vron et al., 2023) as the collaboration policy model
ﬂgf”“b and use Low-Rank Adaptation (LoRA, Hu
et al. (2021)) methods to train the policy model.
In all experiments, we utilized ChatGPT (gpt-3.5-
turbo-0613) to simulate the agent policy wé‘;‘*k.
More model implementation and data collection
details can be found in Appendix A.1.

In this study, we set humans and agents to solve
tasks under the ReAct framework (Yao et al., 2022)
for question-answering datasets. The action space
of atesk is {Search[entity], Lookup[keyword], and
Finish[answer]}. All actions are supported by a
Wikipedia web API, following the original Re-
Act implementation. For the InterCode dataset,
we solve tasks under the “Try Again” framework
(Yang et al., 2023). Here, agents and humans in-
teract with the code interpreter through the action
a; and receive execution outputs from the code
interpreter as observations o;. The task-solving
process ends if any one of the following conditions

is satisfied: 1) the Finish[answer] action is exe-
cuted actively by wg‘f’“ for the question answering
dataset. 2) the task reward 7'(s,a) = 1 for Inter-
Code dataset. 3) the number of actions ¢t exceeds a
pre-defined step threshold.

Reward Calculation For all datasets, the final
reward is computed as equation (5). For question
answering datasets, we choose the F1 score as the
task reward T'(s,a). For the InterCode dataset,
following Yang et al. (2023), we use Intersection
over Union as the task reward 7'(s, a).

Baselines We compare our method ReHAC with
the following baselines: 1) Agent-only which car-
ries out all actions by agents. 2) Human-only,
which conducts all actions by humans. 3) Ran-
dom, which selects an agent or human randomly
at a probability of 50% to perform each action. 4)
Prompt, which prompts the agent to actively decide
whether the action is executed by itself or a human.
5) Imitation Learning (IL), which trains the pol-
icy model to decide whether the action should be
finished by an agent or human by the IL. method.
More details about baselines can be found in the
Appendix A.2.

3.2 Overall Results

In this section, we verify the effectiveness of our
proposed ReHAC method for human-agent collab-
oration on the HotpotQA dataset.

Human-Agent Experiments Figure 2(a) shows
the evaluation results of human-agent collabora-
tion on the HotpotQA dataset. From the figure,
we can observe that all human-agent collabora-
tion methods outperform Human-only and Agent-
only methods. This underscores the importance
of collaborating human and agent in complex
task-solving for getting higher reward. In addi-
tion, ReHACyyman achieves the best performance
compared with prompt-based and random-based
method in achieving higher rewards. Specifically,
when A = 0.06, ReHAC achieves a higher reward
with approximately 30% more human interventions
compared with the prompt-based baseline; when
A = 0.1, it also achieves a reward improvement
with about 20% less human interventions. This
indicates that our ReHAC method can dynamically
introduce human intervention in real human-agent
collaboration scenarios, thereby achieving a bal-
ance between effectiveness and efficiency.
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Figure 2: (a) Human-agent collaboration evaluation. (b) GPT-4-agent collaboration evaluation. The bars above
the 0-axis represent the reward R, the bars below the 0-axis represent the human intervention cost AC', and the
entire columns, composed of the bars above and below the 0-axis, represent the task reward 7'. Numbers within
the bars means the human intervention rate (%). ReHACgpr4 and ReHACyyman represent the policy model trained
on GPT-4-agent and human-agent collaboration datasets, respectively. ReHAC outperforms other baselines in

human-agent collaboration scenarios.

Focusing on ReHACHyman, We observe that as
X increases, the human intervention rate! (HIR)
of ReHACHyman gradually decreases. This trend
suggests that a higher human penalty coefficient el-
evates our policy model’s “threshold” for assigning
actions to humans. Simultaneously, the decrease of
the HIR correspondingly results in a deterioration
of human-agent interaction performance.

Human Simulation Due to the high cost of hir-
ing annotators to label real human-agent collabora-
tion data, it is costly for us to collect human-agent
collaboration data on more datasets and, as a result,
validate the efficacy of our method in broader sce-
narios. We instead use GPT-4 (gpt-4-0613) to build
a simulation environment and make it collaborate
with agents to solve tasks. This setup enables us to
collect more “human-agent” collaboration data at a
reasonable cost.

To verify the feasibility of using GPT-4 to simu-
late humans to collect “human-agent” collaboration
data, we learn ReHAC on the HotpotQA GPT-4-
agent collaboration data, named as ReHACgpr.4
and test its performance in the real human-agent
collaboration environment. From Figure 2(a), we
can see that ReHACgpr.4 exhibits better perfor-
mance compared to ReHACyyman 1n human-agent
collaboration when A = 0.06 and 0.08. We sup-

'The formula for calculating the human intervention rate
is in Appendix A.3.

pose that this is possibly attributed to individual
differences among humans, leading to a distribu-
tion variance in the human-agent collaboration
data, while GPT-4-agent collaboration data exhibits
higher consistency and lower variance. This makes
ReHACgpr.4 learn the collaboration signal more
easily, and thus is more stable and performs better.

To further reduce costs and observe the reward
variation of ReHAC during the training process,
we use GPT-4 to simulate humans in the evalua-
tion phase. Figure 2(b) shows the evaluation re-
sults when using GPT-4 to simulate humans for
collaboration. Comparing the results in Figure 2(a)
and (b), we notice that the relative performance
of various methods is generally consistent in both
human-agent collaboration and GPT-4-agent col-
laboration. For example, the rewards R of ReHAC
consistently surpass those of the Prompt method,
and both ReHAC and the Prompt method outper-
form the Random method. This demonstrates the
viability of using GPT-4 to simulate humans for
evaluation.

Considering feasibility and cost-effectiveness,
we will continue to use GPT-4 as a substitute for
human participants in all subsequent extension ex-
periments.

Learning Curves Figure 3 shows the learning
curves during the training process. The curves are
obtained by assessing the policy model’s rewards
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Figure 3: Reward R variations of different methods during the training process on HotpotQA dataset. Here we set
the human intervention penalty coefficient A to 0.06, 0.08, and 0.1. Curves of ReHAC and IL are averaged over 15

points, with shadows indicating the variance.
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Figure 4: Reward R variations during the training process on three datasets. Curves of ReHAC and IL are averaged

over 15 points, with shadows indicating the variance.

on the trainset and testset every 5 steps. From the
figure, we can observe that (1) the rewards of Re-
HAC gradually increase during the training process,
indicating that ReHAC can progressively identify
suitable points to introduce human interventions.
(2) While the IL method achieves high rewards on
the trainset, it performs poorly on the testset. This
suggests our RL-based learning method learns a
more generalized human-agent collaboration strat-
egy compared to directly learning the optimal strat-
egy with the imitation learning method.

3.3 Performance on Different Dataset

In this part, we train and test ReHAC method on
StrategyQA, and InterCode datasets in the GPT-4
simulation environment. For all experiments, we
fix the parameter A = 0.08. Throughout the train-
ing phase, we evaluate the policy model’s rewards

on the trainset and testset every 5 steps. Experi-
mental results are shown in Figure 4. From the
figure, we observe that: (1) Our proposed ReHAC
method achieves higher reward scores compared
to other baselines on all datasets. This validates
the effectiveness of our approach across a broader
range of datasets. (2) Both ReHAC and IL exhibit
low variance and stability during the training pro-
cess. Although our method and the IL method show
a continuous reward increase during the training
process, ReHAC can ultimately achieve higher re-
wards compared to the IL. method. This indicates
that our reinforcement learning-based method can
provide more valuable guidance to the policy model
ﬂgf”“b, enabling it to determine when to introduce
human interventions and consequently achieving
higher rewards.

In summary, our method demonstrates superior



Dataset  Model HIR (%) Task Reward T' Reward R
LLaMA-7B 5146  46.90 31.38

HotpotQA | 1" MA-13B 47.64 4678 32.22

InterCode LLAMATB 415 62,00 60.08
LLaMA-13B 310  60.00 58.56

Table 1: Experimental results regarding different model
scales. HIR represents the human intervention rate.

Hotpot QA J

Question: Which was fought earlier in our nation's history, the Seven Days
Battles or the Battle of Manila?

Thought 1: | need to search the Seven Days Battles and the Battle of Manila...
Act 1: Search[Seven Days Battles]

Obs 1: The Seven Days Battles were fought from June 25 to July 1, 1862...
Thought 2: The Seven Days Battles were fought from June 25 to July 1, 1862.

I need to search the the Battle of Manila.

Act 2: Search[Battle of Manila]

Obs 2: Could not find [Battle of Manila]. Similar: ['Battle of Manila (1945)',
‘Battle of Manila Bay', ‘Battle of Manila', 'Battle of Manila (1898), 'Battle of
Manila (1899).

Thought 3: There are several Battles

of Manila. But they are all later than

1 July 1862, so | think the answer is

Seven Days Battles.

Act 3: Finish[Seven Days Battles]
v

Thought 3: 1 couldn't find the Battle
of Manila...the Battle of Manila is not
specified...

Act 3: Finish[unknown]

X

Figure 5: Case Study. When the agent completes the
task, the third step cannot be answered due to the ambi-
guity of the problem identified; using our method, the
first two simple retrieval tasks are assigned to the agent
to complete, while the third step is assigned to humans.
Humans can complete the correct answer through bold
speculation

performance across all datasets, affirming its ability
to achieve an optimal balance between efficiency
and effectiveness.

3.4 Scaling Analysis of Policy Model

In this section, we analyze the impact of the model
scale on the performance of the policy model. Here,
we set A = 0.08 and conduct experiments on Hot-
potQA and InterCode datasets. As shown in Table
1, the LLaMA-7B model performs competitively
with the LLaMA-13B model. This suggests that
the Llama2-7B model is already proficient in han-
dling the human-agent collaboration task, and the
benefit of increasing the size of the model is slight.
We will explore smaller policy model size in the
future.

3.5 Case Study

In this part, we give a specific case on the Hot-
potQA dataset, as illustrated in Figure 5, to show

how human-agent collaboration helps the complex
task-solving. The task is to determine which his-
torical event, the Seven Days Battles or the Battle
of Manila, occurred first. When given the entire
problem, the agent accurately determines the date
of the Seven Days Battles but encounters multiple
entries for the Battle of Manila, resulting in am-
biguity. Consequently, the agent deems the query
ambiguous and opts to respond with “unknown”.
On the contrary, our ReHAC method requires the
human intervention in this situation. Upon exam-
ining the related entries, the human observes that
all mentioned dates for the Battle of Manila occurs
after to July 1, 1862. Based on this insight, he con-
jectures that the Seven Days Battles occurred first.
Although this conjecture is not absolutely certain,
it represents the most likely decision based on the
available information. Thus, our ReHAC method
returns a correct response “Seven Days Battles”.
This case also highlights an insightful aspect of our
research into LL.M-based agents: Researchers are
committed to eliminating hallucinations in large
language models (LLMs) to create rigorous and
accurate intelligent agents. However, many tasks
require imagination and intuition, making it cru-
cial to integrate human creative thinking through
human-agent collaboration at this juncture.

4 Discussion

In this paper, we conduct a preliminary exploration
of key aspects of human-agent collaboration, aim-
ing to lay the groundwork for further research in
this field. Despite progress, unresolved problems
and potential challenges persist. We propose three
extended research directions to enhance the effec-
tiveness, safety, and intelligence of human-agent
collaboration:

Multi-level Human-Agent Collaboration Our
focus is on modes where humans directly replace
agents in action. However, given the distinct ad-
vantages of both humans and agents, we see a need
to explore more complex collaboration levels. This
includes human involvement in feedback, decision
modification, and planning.

Development Stages of LLM-based Agents In-
spired by the L1 to L5 grading model in au-
tonomous driving, we suggest adapting this frame-
work for LLM-based human-agent collaboration.
It offers a clear structure to assess the current de-
velopment stage of human-agent technologies and



guide future research. While LLM agents have
not reached high or full automation, this frame-
work is crucial for identifying key technologies
and challenges. However, our research indicates
a significant gap before LLM agents achieve full
automation (L5). Effective human-agent collabora-
tion could be a bridge towards this goal.

Safety and Super Alignment Safety is
paramount in human-agent collaboration, partic-
ularly in high-risk scenarios. It’s vital to explore
methods to secure the collaboration process and
mitigate risks. Moreover, with the potential of
LLM-based agents evolving into superintelligence,
effective collaboration becomes increasingly cru-
cial. This collaboration is key, as it not only allows
humans to guide ethical and safety decisions but
also ensures the alignment of LLM-based agents’
objectives with human interests.

5 Related Work

LLM-based Agent Recent advancements in
LLMs have demonstrated their capabilities in rea-
soning (Wei et al., 2022; Kojima et al., 2022; Hao
et al., 2023; Luong et al., 2024; Yue et al., 2023)
and task planning (Yao et al., 2023a; Kong et al.,
2023; Shen et al., 2023; Yao et al., 2023b; Deng
et al., 2023). These capabilities lay the foundation
for the development of LLM-based agents (Shrid-
har et al., 2021; Yang et al., 2023; Liu et al., 2023b;
Song et al., 2023; Wang et al., 2023a). LLM-based
agents, which can interact with the environment
and select subsequent actions based on environ-
ment feedback, have been applied in many do-
mains, including web navigation (Nakano et al.,
2021; Cheng et al., 2024; He et al., 2024), soft-
ware engineering (Qian et al., 2023; Hong et al.,
2023), and robotics (Wang et al., 2024; Mahadevan
et al., 2024). By synergizing the reasoning and
action abilities of LLMs, ReAct (Yao et al., 2022)
incorporates environment feedback into reasoning
traces and determines the next step action dynami-
cally. Subsequent research focuses on integrating
code (Wang et al., 2023b; Roziere et al., 2023; Xu
et al., 2023), memory modules (Rana et al., 2023;
Park et al., 2023), experience reflection (Shinn
et al., 2023; Zhao et al., 2023a), and tools into
LLM-based agents (Liu et al., 2023a; Patil et al.,
2023; Qin et al., 2023), thereby augmenting their
abilities in solving complex problems. However,
current LLM-based agents still perform poorly on
some complex tasks. This work aims to introduce

human interventions and enable humans and agents
to collaboratively address complex tasks, thereby
achieving improved task performance.

Human-Agent Collaboration  In Human-Agent
Collaboration (HAC), traditional research has been
centered on improving the naturalness and effi-
ciency of human interactions with intelligent agents
like robots and Al systems, effectively meeting hu-
man needs (Wang et al., 2021; Wu et al., 2022b).
The rise of large-scale language models (LLM-
based agents) marks a significant shift in the field,
underscoring the role of human feedback and rea-
soning in enhancing agent capabilities. This ap-
proach leverages human insights to refine perfor-
mance and decision-making processes. Recent
studies employ heuristic rules to direct these agents
towards seeking human assistance (Cai et al., 2023;
Wu et al., 2022a; Mehta et al., 2023). Further-
more, there is an increasing emphasis on develop-
ing specialized prompts that motivate LLM-based
agents to proactively seek human input, thus nurtur-
ing a more interactive and collaborative dynamic
in these partnerships (Huang et al., 2022; Wang
et al., 2023b). However, the effectiveness of these
methods relies on designing high-quality rules or
prompts. This is highly dependent on the designer’s
domain knowledge. Poor design may result in a sys-
tem that cannot accurately understand or respond to
complex task requirements. Our research focuses
on designing a generalised and learnable method
that coordinates human to effectively work with
LLM-based agents in the form of direct planning.

6 Conclusion

In this paper, we propose the problem of large
language model-based human-agent collaboration,
delving into the synergy of human intuition and
expertise with the computational prowess of LLM-
based agents, particularly emphasizing their appli-
cation in intricate decision-making tasks. We intro-
duce a reinforcement learning-based approach for
human-agent collaboration, named ReHAC. Cen-
tral to ReHAC is a learnable policy model designed
to pinpoint the most critical junctures for human
intervention within the task-solving trajectory. Our
experimental results show that ReHAC aspects bet-
ter results and is more generalizable than heuristic
rule-based or prompt-based approaches in human-
agent collaboration tasks. We believe that ReHAC
offers a practical pathway for the application of
llm-agents in real-world scenarios.



Ethical Considerations and Limitations

The objective of this work focuses on human-agent
collaboration, which requires humans to interact
with LLM-based agents. We acknowledge that
agents are likely to output some hallucinations and
misleading information, and it is unclear how these
contents impact humans. Additionally, all datasets
used in this work are publicly available, and there-
fore, there are no data privacy concerns. All data
collected will be used for research purposes only

The limitations of this paper can be summarised
in three aspects:

1) The current study is confined to basic LLM-
based agent architectures based on the "ReAct"
and "Try Again" frameworks, while more complex
architectures involving self-reflection and memory
capabilities are still unexplored.

2) Our research primarily focuses on the use of
7B and 13B scale models as policy models for task
allocation. Future work will investigate the feasi-
bility of smaller models in carrying out these tasks,
aiming to maintain performance while reducing
resource consumption.

3) This study is based on the assumption that hu-
man performance supersedes that of agents. How-
ever, as technology advances, agents might surpass
human capabilities. Future research will thus shift
towards exploring human-agent collaboration mod-
els in this new context. Emphasis will be placed
on assessing how human-agent collaboration can
ensure the safety of agent decisions while aligning
with human preferences.
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A Appendix

A.1 Experimental Details

Model Implementation In our most experi-
ments, we use Llama-2-7b-hf> downloaded from
Huggingface as our policy model ng”“b . We also
conduct experiments based on Llama-2-13b-hf>
model (see Section 3.3). We implement LoRA
based on PEFT (Mangrulkar et al. (2022)) and set
TLora = 16 and apo,ra = 16 for all experiments.
Based on Yao et al. (2022) and Yang et al. (2023),
we set the step threshold for HotpotQA, Strate-
gyQA, and InterCode to 7, 5, and 8, respectively.
All experiments are conducted on NVIDIA A100
GPUs with 40GB memory.

Human-Agent Dataset For a real human-agent
collaboration dataset, we employ a uniform sam-
pling method where each action a; has a 50% prob-
ability of being assigned to either a human annota-
tor or the ChatGPT. For each question, we sample
as many interaction trajectories as possible. Specifi-
cally, for each time ¢, we aim to sample trajectories
including a{°"®* = (0 and a{°"®* = 1. Considering
the diversity of responses from different annotators,
we permit repeated sampling of the same trajectory
during uniform sampling, which means all a{°/®®
of two trajectories are the same. To enhance the
quality of annotation, annotators are allowed to ref-
erence GPT-4’s answers. We recruit 14 annotators
through social media, all of whom are graduate
students with strong language and reasoning skills.
They are asked to annotate a total of about 2000
trajectories in four days and they get paid about
$10 an hour. They were explicitly told that the
data would be used to train the model and made
public and that all the labeled data was unrelated
to any individual’s privacy. To facilitate the annota-
tion process, we develop a graphical user interface
(GUI)* and provide one hour of training to annota-
tors. The collected data details are in Table 2.

GPT-4-Agent Dataset For the dataset con-
structed using GPT-4 to simulate human annotation,
we adopt the same sampling method as human-
agent dataset collection. However, due to the uni-
form or near-uniform distribution of GPT-4’s re-
sponses, we skip duplicate paths during uniform
sampling. Collected data details are listed in Table
2.
Zhttps://huggingface.co/meta-llama/Llama-2-7b-hf

3https://huggingface.co/meta-llama/Llama-2-13b-hf
*The GUI is as shown in Figure 6.
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A.2 Baselines Details

Random We randomly choose a human or an
agent to conduct action a; at a probability of 50%.

Prompt We prompt an agent to actively decide
action a; should be finished by itself or a human.
The related prompts are shown in Table 5 and Table
6. Experimental results of Random and Prompt are
averaged over three repeated experiments.

Imitation Learning We select the top 50% of
actions that receive the highest rewards in each
state s; as expert demonstrations. These expert
demonstrations (state-action pairs) are then used to
supervise the fine-tuning of the policy model. This
approach allows the policy model to learn how to
make decisions that get a higher return in a given
state.

Trainset Testset
Dataset
Questions Trajectories Questions
HotpotQA(real) 141 1937 100
HotpotQA(sim) 141 2135 100
StrategyQA (sim) 250 2420 100
InterCode(sim) 100 2071 100

Table 2: Collected dataset details. Questions mean the
number of questions we used for human-agent collabora-
tion task. Trajectories mean the overall trajectory num-
ber we collected. (real) refers to the real human-agent
collaboration dataset, and (sim) refers to the human-
agent collaboration dataset collected by using GPT-4 to
simulate humans.

A.3 Human Intervention Rate

We denote the number of steps completed by hu-
mans and agents in the dataset by numy, and numy,
respectively. The Human Intervention Ratio (HIR)
is calculated as

num
HR= "
numg, + numy

HIR measures the rate of human intervention. Gen-
erally, a higher HIR indicates better task perfor-
mance, but it also tends to increase costs.


https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf

Experiment «a € Learning Rate Batch Size

HotpotQA _ os(GPT-4-agent, 7b) 0 3e-5
HotpotQA ) os(GPT-4-agent, 7b) 0 3e-5
HotpotQA , _ ;o(GPT-4-agent, 7b) 0 Se-5
HotpotQA , _ os(GPT-4-agent, 13b) 0.1 3e-5
HotpotQA , _ og(human-agent, 7b) ~ 0.05 03 Se-5 64
HotpotQA _ os(human-agent, 7b) 0.1 ’ Se-5
HotpotQA , _ ; (human-agent, 7b) 0.0 Se-5
StrategyQA ,_ os(GPT-4-agent, 7b) 0.1 le-5
InterCode )~ 0s(GPT-4-agent, 7b) 0 5e-5
InterCode)—g os(GPT-4-agent, 13b)  0.05 5e-5

Table 3: Hyper-parameter settings for all experiments.

Methods HotpotQA StrategyQA InterCode
HIR (%) Task Reward Reward HIR (%) Task Reward Reward HIR (%) Task Reward Reward

Agent-only 0.0 22.39 22.39 0.0 60.00 60.00 0.0 53.00 53.00
Human-only 100.0 54.82 23.86 100.0 68.00 43.36 100.0 73.00 33.72
Random 50.84 42.73 27.34 49.50 65.67 53.8 50.09 66.00 4421
Prompt 34.06 40.46 29.26 9.14 61.33 59.12 9.94 59.33 54.69
1L 22.08 31.50 24.70 4.76 59.00 57.88 1.01 54.00 53.52
Ours 51.46 46.90 31.38 20.47 66.00 61.12 4.15 62.00 60.08

Table 4: ReHACgpt14 Human intervention rate (HIR), task reward 7', and reward R of different methods on GPT-4-
agent testsets.

Imagine you are a clever planner.

Given an unfinished trajectory with several steps, your task is to decide whether the next step should
be carried out by ChatGPT or a human. This decision should be based on a thoughtful evaluation of
the difficulty of the next step and the progress made in the current trajectory. Here are two finished
trajectory examples.

Example 1:

${examplel}

Example 2:

${example2}

Now please decide whether the next step should be carried out by ChatGPT or a human. Please
consider the following factors:

1. If the next step is relatively straightforward and well within ChatGPT’s capabilities, instruct
ChatGPT to proceed with the next step. If the task is deemed challenging or requires human
judgment, recommend human intervention.

2. If the trajectory has been consistently handled by ChatGPT without notable issues, encourage
ChatGPT to continue. If there have been challenges or uncertainties in the trajectory, consider
suggesting human involvement for the next step.

3. Note that human intervention will significantly increase the cost, so try to balance the accuracy
and efficiency.

If the next step should be carried out by ChatGPT, return [ChatGPT], otherwise, return [Human].
Only return [ChatGPT] or [Human].

#Your unfinished trajectory#: ${current trajectory}
#Your return#:

Table 5: The prompt template used for the prompt-based method in QA dataset.
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Imagine you are a clever planner in SQL.

Given an unfinished trajectory with several SQL commands, your task is to decide whether the
next command should be carried out by ChatGPT or a human. This decision should be based on a
thoughtful evaluation of the difficulty of the next command and the progress made in the current
trajectory. Here are two finished trajectory examples.

Example 1:

${examplel}

Example 2:

${example2}

Now please decide whether the next command should be carried out by ChatGPT or a human. Please
consider the following factors:

1. If the next command is relatively straightforward and well within ChatGPT’s capabilities, instruct
ChatGPT to proceed with the next command. If the task is deemed challenging or requires human
judgment, recommend human intervention.

2. If the trajectory has been consistently handled by ChatGPT without notable issues, encourage
ChatGPT to continue. If there have been challenges or uncertainties in the trajectory, consider
suggesting human involvement for the next command.

3. Note that human intervention will significantly increase the cost, so try to balance the accuracy
and efficiency.

If the next command should be carried out by ChatGPT, return [ChatGPT], otherwise, return [Human].
Only return [ChatGPT] or [Human].

#Your unfinished trajectory#: ${current trajectory }
#Your return#:

Table 6: The prompt template used for the prompt-based method in InterCode dataset.
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please choose your task

Please complete all steps before saving
data.

task 21 v

Human-Agent Collaborative Data
Labeling - 1720

Task Instructions

Hello! Thank you for participating in our human-computer collaborative reasoning study. In this task, you
need to work with ChatGPT to complete 141 multi-hop reasoning tasks. In each task, you need to
complete the task in a pattern of thinking (thought) and action (action). Specifically, when you see a
question, you first need to write down your current solution idea, and then you can take action. Actions
are divided into three types: Search, Lookup, and Finish. When you choose Search, you will be asked to fill
in the keywords you want to search for, and then we will help you get the page of that keyword from
Wikipedia; when you choose Lookup, you can also fill in the keywords, and this time we will return the first
sentence of the page that contains that keyword, to mimic our Ctrl+F when searching for information;
when you choose Finish, you need to fill in the final answer. The task is quite complex, and it often takes
multiple steps of reasoning to complete, but there is only a 50% chance that you need to complete some
of the steps, and the other steps will be completed using ChatGPT 3.5. At the same time, to reduce your
burden, when it's your turn to complete a step, we have provided GPT-4's response at this point, and you
only need to modify it based on your thoughts. Please remember to submit and save when you complete
each task.

Current Question

Question: What was the middle name of the actress who was cast alongside Harvey Fierstein, Linda Hart,
Dick Latessa, Clarke Thorell, Mary Bond Davis, Laura Bell Bundy, Matthew Morrison, Corey Reynolds, and
Marissa Jaret Winokur in Hairspray?

Step 1 Completed by human

Thought Process: | need to search Hairspray, find the actress who was cast alongside Harvey Fierstein,
Linda Hart, Dick Latessa, Clarke Thorell, Mary Bond Davis, Laura Bell Bundy, Matthew Morrison, Corey
Reynolds, and Marissa Jaret Winokur, then find her middle name.

Action: Search[Hairspray]

Feedback: Could not find [Hairspray]. Similar: ['Hairspray (2007 film), 'Hairspray (musical)}, 'Hairspray’,
'Hairspray (1988 film)', 'Hairspray Live!'].

Step 2 Completed by human

Thought Process: To find the actress, | can search Hairspray (musical).

Action: Search[Hairspray (musical)]

Feedback: Hairspray is an American musical with music by Marc Shaiman and lyrics by Marc Shaiman and
Scott Wittman, with a book by Mark O'Donnell and Thomas Meehan, based on John Waters's 1988 film of
the same name. The songs include 1960s-style dance music and "downtown" rhythm and blues. Set in
1962 Baltimore, Maryland, the production follows teenage Tracy Tumblad's dream to dance on The Corny
Collins Show, a local TV dance program based on the real-life Buddy Deane Show[1] When Tracy wins a
role on the show, she becomes a celebrity overnight, leading to social change as Tracy campaigns for the
show's integration... The musical opened in Seattle in 2002 and moved to Broadway later that year. In
2003, Hairspray won eight Tony Awards, including one for Best Musical, out of 13 nominations.

Step 3 Completed by human

Thought Process: The paragraph does not mention the actress who was cast alongside Harvey Fierstein,
Linda Hart, Dick Latessa, Clarke Thorell, Mary Bond Davis, Laura Bell Bundy, Matthew Morrison, Corey
Reynolds, and Marissa Jaret Winokur. Maybe | can look up "cast".

Action: Lookup[cast]

Feedback: (Result 1/ 19) Winokur was one of the first to audition for the role of Tracy and spent two years
preparing with voice and dance lessons.[5] Divine portrayed Tracy's mother, Edna Turnblad, in the original
film, and Shaiman liked the idea of maintaining the tradition of casting a man as Edna.

Step 4 Completed by the Machine Model

Thought Process: The paragraph does not mention the actress who was cast alongside the mentioned
actors. | need to search the cast of Hairspray and find the actress.

Action: Searchcast of Hairspray]

Feedback: Could not find cast of Hairspray. Similar: ['Hairspray (2007 film), 'Hairspray Live!', 'Hairspray
(musical), 'Hairspray’, 'Hairspray (2002 album)'].

Step 5 to be Completed by Human
Your Thought Process.

I can search Hairspray (2007 film) to find the actress.

Choose Your Action

Searchlentity] v

Enter Action Entity

Hairspray (2007 film)

submit

o/

Figure 6: Human-Agent collaborative labelling user interface
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