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Abstract
In recent developments within the research001
community, the integration of Large Language002
Models (LLMs) in creating fully autonomous003
agents has garnered significant interest. De-004
spite this, LLM-based agents frequently demon-005
strate notable shortcomings in adjusting to dy-006
namic environments and fully grasping hu-007
man needs. In this work, we introduce the008
problem of LLM-based human-agent collab-009
oration for complex task-solving, exploring010
their synergistic potential. In addition, we pro-011
pose a Reinforcement Learning-based Human-012
Agent Collaboration method, ReHAC. This013
approach includes a policy model designed to014
determine the most opportune stages for hu-015
man intervention within the task-solving pro-016
cess. We construct a human-agent collabo-017
ration dataset to train this policy model in018
an offline reinforcement learning environment.019
Our validation tests confirm the model’s ef-020
fectiveness. The results demonstrate that the021
synergistic efforts of humans and LLM-based022
agents significantly improve performance in023
complex tasks, primarily through well-planned,024
limited human intervention. Datasets and code025
are available at: https://anonymous.026
4open.science/r/ReHAC.027

1 Introduction028

In today’s increasingly complex world, humans are029

confronted with multifaceted tasks stemming from030

technical, social, and economic domains. Solv-031

ing these complex tasks necessitates not only hu-032

man interaction with the environment but also in-033

tricate decision-making processes. To alleviate034

human workload and enhance the automation of035

tasks in both professional and personal spheres, re-036

searchers have been actively developing advanced037

tools for human assistance (Zawacki-Richter et al.,038

2019; Amershi et al., 2019). Recently, the emer-039

gence of Large Language Models (LLMs) such040

as LLaMA (Touvron et al., 2023), Gemini (Team041

et al., 2023) and GPT (Brown et al., 2020; Achiam042
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Figure 1: Different Levels of Automation. (a) No au-
tomation: Tasks are entirely performed by humans. (b)
Full automation: Tasks are completely executed by
agents without human intervention. (c) Conditional
automation: Humans are required only for specific sub-
tasks, without continuous monitoring.

et al., 2023) has marked a significant milestone. 043

LLMs’ remarkable abilities in task understanding, 044

planning, and reasoning (Zhao et al., 2023b) have 045

given rise to the development of LLM-based au- 046

tonomous agents (Wang et al., 2023a; Yao et al., 047

2022; Shinn et al., 2023). These agents are de- 048

signed to leverage the LLMs’ capabilities to assist 049

humans in solving complex tasks autonomously. 050

The LLMs’ capabilities enable them to effectively 051

navigate and address the complexities encountered 052

in real-world scenarios, thereby offering substan- 053

tial support in human decision-making processes 054

of task-solving. 055

Despite the remarkable progress of LLM-based 056

agents, there remains a notable gap in their intelli- 057

gence level to handle complex and dynamic real- 058

world tasks with human-like proficiency. This limi- 059

tation poses a significant challenge to their practi- 060

cality in real-world applications, especially in sce- 061

narios where high accuracy is crucial, such as the 062

legal or financial domains. Addressing this chal- 063

lenge extends beyond just enhancing the agents’ 064

capabilities. Incorporating human intuition and 065
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wisdom is equally vital for the effective manage-066

ment of these intricate and evolving tasks, offering067

a complementary approach to the limitations of068

current agent technologies.069

In this work, we introduce the problem of LLM-070

based human-agent collaboration for complex071

task solving, aiming to augment the capabilities of072

LLM-based agents by integrating human intuition073

and wisdom. The idea is analogous to the evolu-074

tion in autonomous driving technology, which has075

been categorized into varying levels of autonomy,076

ranging from no automation, conditional automa-077

tion to full automation (Khan et al., 2022; SAE078

International, 2021). Referring to this framework,079

we define the different levels of human-agent col-080

laboration, as illustrated in Figure 1. Applying081

this conditional automation mode to LLM-based082

agents offers a practical path for their deployment083

in real-world scenarios, acknowledging the current084

limitations in their cognitive capabilities. Instead085

of aiming for full automation, human-agent col-086

laboration under the paradigm of conditional au-087

tomation enables humans to intervene the complex088

task-solving when necessary, while agents handle089

most of the sub-tasks. This takes advantage of both090

human and machine intelligence.091

While advancements in LLMs significantly en-092

hance the capacity for mutual understanding in093

human-agent collaboration, several crucial chal-094

lenges persist. These challenges include defining095

the division of labor between humans and agents,096

determining the granularity of tool execution, man-097

aging proactive interruption, and implementing098

multi-level intervention. However, our research099

specifically focuses on scenarios where humans100

directly replace agents in action. The key chal-101

lenge we aim to address in human-agent collab-102

oration lies in determining the optimal stages for103

human intervention in task-solving and minimiz-104

ing such intervention to enhance efficiency. Some105

researchers have made preliminary attempts, by de-106

signing heuristic rules or specialized prompts to107

determine the stages at which agents should seek108

human assistance (Cai et al., 2023; Wu et al., 2022a;109

Mehta et al., 2023; Wang et al., 2023b). However,110

these rule-based or prompt-driven approaches are111

heavily reliant on specific application contexts and112

lack universality. They often demand a deep under-113

standing of the domain and substantial experience114

from the designers, otherwise, suboptimal design115

choices can lead to reduced performance. Apart116

from that, a standardized formal framework and 117

universally accepted paradigm for leveraging large 118

language models (LLMs) in human-agent collabo- 119

ration is still lacking. 120

To overcome the aforementioned challenges, we 121

propose a Reinforcement Learning-based Human- 122

Agent Collaboration method, ReHAC, aimed at 123

effectively combining human intervention with the 124

automation capabilities of LLM-based agents. Our 125

method, leveraging reinforcement learning, trains 126

a policy model to dynamically identify the most 127

advantageous moments for human input during the 128

task-solving process. ReHAC is a learnable gen- 129

eral framework that can be applied to various sce- 130

narios and does not require additional prior knowl- 131

edge to design rules and prompts. For training 132

this policy model, we collect a dataset compris- 133

ing tasks collaboratively completed by humans and 134

LLM-based agents, utilized for the offline training 135

of the policy model. We conducted extensive ex- 136

periments on three multi-step reasoning datasets: 137

HotpotQA, StrategyQA, and InterCode, using two 138

popular LLM-based agent frameworks, ReAct and 139

"Try-again". The experimental results indicate that 140

with a policy model learned from limited data, Re- 141

HAC can effectively allocate human intervention 142

in human-agent collaboration scenarios, thereby 143

achieving a balance between effectiveness and effi- 144

ciency. 145

2 Approach 146

In this section, we first formulate the problem 147

of human-agent collaboration for complex task 148

solving, and then introduce our proposed ReHAC 149

method in detail. 150

2.1 Preliminary and Problem Formulation 151

Complex task-solving, inherently necessitating 152

multi-step planning and reasoning, is convention- 153

ally formalized as a multi-step decision-making 154

problem. Historically, complex task-solving was 155

predominantly achieved through human-driven 156

methods. These methods leveraged human cogni- 157

tive capabilities to determine the suitable action in 158

each step. Formally, considering a complex task 159

q, it is traditionally solved via a sequence of ac- 160

tions (a1, a2, · · · an), with each action determined 161

by human decision-making, expressed as: 162

at = Human(q, st), (1) 163

where st = (a1, o1, · · · , at−1, ot−1) denotes the 164

history information of task state at step t and ot is 165
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the observation after at−1 is proceeded.166

The advent of LLMs has brought a paradigm167

shift in this arena. Their impressive understand-168

ing and reasoning abilities have prompted research169

into LLM-based agents for complex task-solving,170

thereby enhancing the level of automation in task-171

solving. These agent-driven methods (e.g., Re-172

Act (Yao et al., 2022)), leverage LLM-based agents173

to supplant human decision-making. This shift is174

represented as:175

at = Agent(q, st). (2)176

This evolution of such AI-driven techniques pro-177

vides a way to the automation of complex task-178

solving.179

However, limited by the current intelligence180

level of LLMs, full automation based on agent-181

driven methods is not yet feasible in practical sce-182

narios (Kiseleva et al., 2022; Mehta et al., 2023).183

Inspired by autonomous driving (Cui et al., 2024;184

Fu et al., 2024; Bastola et al., 2024), we propose185

the problem of LLM-based human-agent collab-186

oration for complex task solving and explore the187

dynamics and efficacy of the human-agent collab-188

orative methods for complex task solving. We189

first explore a specific form of human-agent col-190

laboration: humans intervene in the complex task-191

solving process when necessary. Formally, we need192

to determine whether a human or an agent makes193

decisions based on the actions’ complexity and194

contextual changes, i.e.,195

at = Human(q, st) or Agent(q, st), (3)196

It is generally perceived that direct human in-197

tervention in decision-making, particularly in real-198

world scenarios, incurs higher costs and diminishes199

the system’s automation level (Cai et al., 2023;200

Wang et al., 2023b). On the other hand, human201

intervention plays an important role in enhancing202

task performance and flexibility. Therefore, the203

objective of human-agent collaboration is to en-204

hance the effectiveness of complex task-solving205

with minimal reliance on human decision-making.206

One key challenge is to determine the stages in207

the task-solving process where human interven-208

tion is most beneficial and effective, aligning209

with the goal of minimizing human involvement210

while maximizing task performance.211

2.2 ReHAC212

In this work, we propose a Reinforcement learning-213

based Human-Agent Collaboration method, Re-214

HAC. It formulates the human-agent collabo- 215

ration problem as a Markov Decision Process 216

(MDP) framework, represented by the tuple 217

(S,A, P,R, γ), where S is the set of states, A is 218

the set of actions, P : S×A×S is the state transi- 219

tion probabilities, R serves as the reward function, 220

and γ the discount factor. 221

For each action at ∈ A, we define it as a tuple 222

(acollabt , ataskt ), where acollabt indicates the subtask 223

is allocated to an agent or a human, and ataskt is the 224

task action determined by agent or human: 225

acollabt ∼ πcollab
θ1 (acollabt |st) 226

227

ataskt ∼

{
πtask
θ2

(ataskt |st), if acollabt = 0;

πtask
Human(a

task
t |st), otherwise,

(4) 228

where πcollab
θ1

is the collaboration policy model, 229

πtask
θ2

is the agent-based task policy model, and 230

πtask
Human is the human task policy. 231

To balance the maximization of task perfor- 232

mance and the cost of human intervention, we de- 233

fine the reward function as: 234

R(s, a) = T (s, a)− λC(s, a), (5) 235

where T (s, a) is the measure of expected task re- 236

wards received after taking action a in state s, 237

C(s, a) is the number of human interventions in 238

the trajectory after taking action a, λ is a hyper- 239

parameter that serves as a penalty coefficient of the 240

number of human interventions. We utilize Monte- 241

Carlo estimation to compute this reward function. 242

Optimization: Following the REINFORCE algo- 243

rithm (Williams, 1992), we optimize the expected 244

reward: 245

J (πθ) = Eπθ
[R(s, a)], (6) 246

which aims to find an optimal policy πθ that ensures 247

the maximization of task rewards while minimizing 248

the human intervention costs, and θ = [θ1, θ2]. 249

We utilize the advantage function to enhance the 250

stability of optimization and important sampling 251

for offline learning: 252

A(s, a) = R(s, a)− 1

|A|
∑
a′∈A

R(s, a′) 253

∇θJ (πθ) =
∑
s

∑
a

w(s, a)∇θ log πθ(a|s)A(s, a), 254

w(h, a) = Clip
(

πθ(s, a)

πbeh(s, a)

)
, (7) 255
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where A(s, a) is the advantage function, the clip256

function limits the importance sampling term to the257

interval 1− ϵ to 1 + ϵ, and the behavior policy πbeh258

represents the policy under of the offline training.259

Moreover, we have incorporated an entropy regu-260

larization term. This term encourages the policy261

to explore a variety of actions, thereby preventing262

the policy from becoming too deterministic and263

overfitting to the training data. Finally, the gradient264

of objective function is as follows:265

∇θJ̃ (πθ) = ∇θJ (πθ) + α∇θH(πθ(·|s)). (8)266

3 Experiments267

3.1 Experimental Setup268

Datasets Following Yao et al. (2022); Shinn et al.269

(2023); Liu et al. (2023b); Xu et al. (2023), we eval-270

uate the efficacy of our method on question answer-271

ing and coding datasets: (1) HotpotQA (Yang et al.,272

2018) is a Wikipedia-based question answering273

benchmark which needs model to perform multi-274

hop reasoning over complex questions. (2) Strate-275

gyQA (Geva et al., 2021) is a question answering276

benchmark with questions that need implicit rea-277

soning. (3) InterCode (Yang et al., 2023) is an278

interactive coding dataset that enables agents to279

receive feedback from the code interpreter. In this280

work, we use InterCode-SQL part, which requires281

models to write SQL statements to fulfil the query.282

Implementation details We use LLaMA-2 (Tou-283

vron et al., 2023) as the collaboration policy model284

πcollab
θ1

and use Low-Rank Adaptation (LoRA, Hu285

et al. (2021)) methods to train the policy model.286

In all experiments, we utilized ChatGPT (gpt-3.5-287

turbo-0613) to simulate the agent policy πtask
θ2

.288

More model implementation and data collection289

details can be found in Appendix A.1.290

In this study, we set humans and agents to solve291

tasks under the ReAct framework (Yao et al., 2022)292

for question-answering datasets. The action space293

of atask is {Search[entity], Lookup[keyword], and294

Finish[answer]}. All actions are supported by a295

Wikipedia web API, following the original Re-296

Act implementation. For the InterCode dataset,297

we solve tasks under the “Try Again” framework298

(Yang et al., 2023). Here, agents and humans in-299

teract with the code interpreter through the action300

at and receive execution outputs from the code301

interpreter as observations ot. The task-solving302

process ends if any one of the following conditions303

is satisfied: 1) the Finish[answer] action is exe- 304

cuted actively by πtask
θ2

for the question answering 305

dataset. 2) the task reward T (s, a) = 1 for Inter- 306

Code dataset. 3) the number of actions t exceeds a 307

pre-defined step threshold. 308

Reward Calculation For all datasets, the final 309

reward is computed as equation (5). For question 310

answering datasets, we choose the F1 score as the 311

task reward T (s, a). For the InterCode dataset, 312

following Yang et al. (2023), we use Intersection 313

over Union as the task reward T (s, a). 314

Baselines We compare our method ReHAC with 315

the following baselines: 1) Agent-only which car- 316

ries out all actions by agents. 2) Human-only, 317

which conducts all actions by humans. 3) Ran- 318

dom, which selects an agent or human randomly 319

at a probability of 50% to perform each action. 4) 320

Prompt, which prompts the agent to actively decide 321

whether the action is executed by itself or a human. 322

5) Imitation Learning (IL), which trains the pol- 323

icy model to decide whether the action should be 324

finished by an agent or human by the IL method. 325

More details about baselines can be found in the 326

Appendix A.2. 327

3.2 Overall Results 328

In this section, we verify the effectiveness of our 329

proposed ReHAC method for human-agent collab- 330

oration on the HotpotQA dataset. 331

Human-Agent Experiments Figure 2(a) shows 332

the evaluation results of human-agent collabora- 333

tion on the HotpotQA dataset. From the figure, 334

we can observe that all human-agent collabora- 335

tion methods outperform Human-only and Agent- 336

only methods. This underscores the importance 337

of collaborating human and agent in complex 338

task-solving for getting higher reward. In addi- 339

tion, ReHACHuman achieves the best performance 340

compared with prompt-based and random-based 341

method in achieving higher rewards. Specifically, 342

when λ = 0.06, ReHAC achieves a higher reward 343

with approximately 30% more human interventions 344

compared with the prompt-based baseline; when 345

λ = 0.1, it also achieves a reward improvement 346

with about 20% less human interventions. This 347

indicates that our ReHAC method can dynamically 348

introduce human intervention in real human-agent 349

collaboration scenarios, thereby achieving a bal- 350

ance between effectiveness and efficiency. 351
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Figure 2: (a) Human-agent collaboration evaluation. (b) GPT-4-agent collaboration evaluation. The bars above
the 0-axis represent the reward R, the bars below the 0-axis represent the human intervention cost λC, and the
entire columns, composed of the bars above and below the 0-axis, represent the task reward T . Numbers within
the bars means the human intervention rate (%). ReHACGPT-4 and ReHACHuman represent the policy model trained
on GPT-4-agent and human-agent collaboration datasets, respectively. ReHAC outperforms other baselines in
human-agent collaboration scenarios.

Focusing on ReHACHuman, we observe that as352

λ increases, the human intervention rate1 (HIR)353

of ReHACHuman gradually decreases. This trend354

suggests that a higher human penalty coefficient el-355

evates our policy model’s “threshold” for assigning356

actions to humans. Simultaneously, the decrease of357

the HIR correspondingly results in a deterioration358

of human-agent interaction performance.359

Human Simulation Due to the high cost of hir-360

ing annotators to label real human-agent collabora-361

tion data, it is costly for us to collect human-agent362

collaboration data on more datasets and, as a result,363

validate the efficacy of our method in broader sce-364

narios. We instead use GPT-4 (gpt-4-0613) to build365

a simulation environment and make it collaborate366

with agents to solve tasks. This setup enables us to367

collect more “human-agent” collaboration data at a368

reasonable cost.369

To verify the feasibility of using GPT-4 to simu-370

late humans to collect “human-agent” collaboration371

data, we learn ReHAC on the HotpotQA GPT-4-372

agent collaboration data, named as ReHACGPT-4373

and test its performance in the real human-agent374

collaboration environment. From Figure 2(a), we375

can see that ReHACGPT-4 exhibits better perfor-376

mance compared to ReHACHuman in human-agent377

collaboration when λ = 0.06 and 0.08. We sup-378

1The formula for calculating the human intervention rate
is in Appendix A.3.

pose that this is possibly attributed to individual 379

differences among humans, leading to a distribu- 380

tion variance in the human-agent collaboration 381

data, while GPT-4-agent collaboration data exhibits 382

higher consistency and lower variance. This makes 383

ReHACGPT-4 learn the collaboration signal more 384

easily, and thus is more stable and performs better. 385

To further reduce costs and observe the reward 386

variation of ReHAC during the training process, 387

we use GPT-4 to simulate humans in the evalua- 388

tion phase. Figure 2(b) shows the evaluation re- 389

sults when using GPT-4 to simulate humans for 390

collaboration. Comparing the results in Figure 2(a) 391

and (b), we notice that the relative performance 392

of various methods is generally consistent in both 393

human-agent collaboration and GPT-4-agent col- 394

laboration. For example, the rewards R of ReHAC 395

consistently surpass those of the Prompt method, 396

and both ReHAC and the Prompt method outper- 397

form the Random method. This demonstrates the 398

viability of using GPT-4 to simulate humans for 399

evaluation. 400

Considering feasibility and cost-effectiveness, 401

we will continue to use GPT-4 as a substitute for 402

human participants in all subsequent extension ex- 403

periments. 404

Learning Curves Figure 3 shows the learning 405

curves during the training process. The curves are 406

obtained by assessing the policy model’s rewards 407
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Figure 3: Reward R variations of different methods during the training process on HotpotQA dataset. Here we set
the human intervention penalty coefficient λ to 0.06, 0.08, and 0.1. Curves of ReHAC and IL are averaged over 15
points, with shadows indicating the variance.
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Figure 4: Reward R variations during the training process on three datasets. Curves of ReHAC and IL are averaged
over 15 points, with shadows indicating the variance.

on the trainset and testset every 5 steps. From the408

figure, we can observe that (1) the rewards of Re-409

HAC gradually increase during the training process,410

indicating that ReHAC can progressively identify411

suitable points to introduce human interventions.412

(2) While the IL method achieves high rewards on413

the trainset, it performs poorly on the testset. This414

suggests our RL-based learning method learns a415

more generalized human-agent collaboration strat-416

egy compared to directly learning the optimal strat-417

egy with the imitation learning method.418

3.3 Performance on Different Dataset419

In this part, we train and test ReHAC method on420

StrategyQA, and InterCode datasets in the GPT-4421

simulation environment. For all experiments, we422

fix the parameter λ = 0.08. Throughout the train-423

ing phase, we evaluate the policy model’s rewards424

on the trainset and testset every 5 steps. Experi- 425

mental results are shown in Figure 4. From the 426

figure, we observe that: (1) Our proposed ReHAC 427

method achieves higher reward scores compared 428

to other baselines on all datasets. This validates 429

the effectiveness of our approach across a broader 430

range of datasets. (2) Both ReHAC and IL exhibit 431

low variance and stability during the training pro- 432

cess. Although our method and the IL method show 433

a continuous reward increase during the training 434

process, ReHAC can ultimately achieve higher re- 435

wards compared to the IL method. This indicates 436

that our reinforcement learning-based method can 437

provide more valuable guidance to the policy model 438

πcollab
θ1

, enabling it to determine when to introduce 439

human interventions and consequently achieving 440

higher rewards. 441

In summary, our method demonstrates superior 442
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Dataset Model HIR (%) Task Reward T Reward R

HotpotQA LLaMA-7B 51.46 46.90 31.38
LLaMA-13B 47.64 46.78 32.22

InterCode LLaMA-7B 4.15 62.00 60.08
LLaMA-13B 3.10 60.00 58.56

Table 1: Experimental results regarding different model
scales. HIR represents the human intervention rate.

.

Thought 3: I couldn't find the Battle 

of Manila…the Battle of Manila is not 

specified…

Act 3: Finish[unknown]

Thought 3: There are several Battles 

of Manila. But they are all later than 

1 July 1862, so I think the answer is 

Seven Days Battles.

Act 3: Finish[Seven Days Battles]

Hotpot QA

Question: Which was fought earlier in our nation's history, the Seven Days 

Battles or the Battle of Manila? 

Thought 1: I need to search the Seven Days Battles and the Battle of Manila…

Act 1: Search[Seven Days Battles]

Obs 1: The Seven Days Battles were fought from June 25 to July 1, 1862…

Thought 2: The Seven Days Battles were fought from June 25 to July 1, 1862. 

I need to search the the Battle of Manila.

Act 2: Search[Battle of Manila]

Obs 2: Could not find [Battle of Manila]. Similar: ['Battle of Manila (1945)', 

'Battle of Manila Bay', 'Battle of Manila', 'Battle of Manila (1898)', 'Battle of 

Manila (1899)'].

Agent

Agent Human

Figure 5: Case Study. When the agent completes the
task, the third step cannot be answered due to the ambi-
guity of the problem identified; using our method, the
first two simple retrieval tasks are assigned to the agent
to complete, while the third step is assigned to humans.
Humans can complete the correct answer through bold
speculation

performance across all datasets, affirming its ability443

to achieve an optimal balance between efficiency444

and effectiveness.445

3.4 Scaling Analysis of Policy Model446

In this section, we analyze the impact of the model447

scale on the performance of the policy model. Here,448

we set λ = 0.08 and conduct experiments on Hot-449

potQA and InterCode datasets. As shown in Table450

1, the LLaMA-7B model performs competitively451

with the LLaMA-13B model. This suggests that452

the Llama2-7B model is already proficient in han-453

dling the human-agent collaboration task, and the454

benefit of increasing the size of the model is slight.455

We will explore smaller policy model size in the456

future.457

3.5 Case Study458

In this part, we give a specific case on the Hot-459

potQA dataset, as illustrated in Figure 5, to show460

how human-agent collaboration helps the complex 461

task-solving. The task is to determine which his- 462

torical event, the Seven Days Battles or the Battle 463

of Manila, occurred first. When given the entire 464

problem, the agent accurately determines the date 465

of the Seven Days Battles but encounters multiple 466

entries for the Battle of Manila, resulting in am- 467

biguity. Consequently, the agent deems the query 468

ambiguous and opts to respond with “unknown”. 469

On the contrary, our ReHAC method requires the 470

human intervention in this situation. Upon exam- 471

ining the related entries, the human observes that 472

all mentioned dates for the Battle of Manila occurs 473

after to July 1, 1862. Based on this insight, he con- 474

jectures that the Seven Days Battles occurred first. 475

Although this conjecture is not absolutely certain, 476

it represents the most likely decision based on the 477

available information. Thus, our ReHAC method 478

returns a correct response “Seven Days Battles”. 479

This case also highlights an insightful aspect of our 480

research into LLM-based agents: Researchers are 481

committed to eliminating hallucinations in large 482

language models (LLMs) to create rigorous and 483

accurate intelligent agents. However, many tasks 484

require imagination and intuition, making it cru- 485

cial to integrate human creative thinking through 486

human-agent collaboration at this juncture. 487

4 Discussion 488

In this paper, we conduct a preliminary exploration 489

of key aspects of human-agent collaboration, aim- 490

ing to lay the groundwork for further research in 491

this field. Despite progress, unresolved problems 492

and potential challenges persist. We propose three 493

extended research directions to enhance the effec- 494

tiveness, safety, and intelligence of human-agent 495

collaboration: 496

Multi-level Human-Agent Collaboration Our 497

focus is on modes where humans directly replace 498

agents in action. However, given the distinct ad- 499

vantages of both humans and agents, we see a need 500

to explore more complex collaboration levels. This 501

includes human involvement in feedback, decision 502

modification, and planning. 503

Development Stages of LLM-based Agents In- 504

spired by the L1 to L5 grading model in au- 505

tonomous driving, we suggest adapting this frame- 506

work for LLM-based human-agent collaboration. 507

It offers a clear structure to assess the current de- 508

velopment stage of human-agent technologies and 509
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guide future research. While LLM agents have510

not reached high or full automation, this frame-511

work is crucial for identifying key technologies512

and challenges. However, our research indicates513

a significant gap before LLM agents achieve full514

automation (L5). Effective human-agent collabora-515

tion could be a bridge towards this goal.516

Safety and Super Alignment Safety is517

paramount in human-agent collaboration, partic-518

ularly in high-risk scenarios. It’s vital to explore519

methods to secure the collaboration process and520

mitigate risks. Moreover, with the potential of521

LLM-based agents evolving into superintelligence,522

effective collaboration becomes increasingly cru-523

cial. This collaboration is key, as it not only allows524

humans to guide ethical and safety decisions but525

also ensures the alignment of LLM-based agents’526

objectives with human interests.527

5 Related Work528

LLM-based Agent Recent advancements in529

LLMs have demonstrated their capabilities in rea-530

soning (Wei et al., 2022; Kojima et al., 2022; Hao531

et al., 2023; Luong et al., 2024; Yue et al., 2023)532

and task planning (Yao et al., 2023a; Kong et al.,533

2023; Shen et al., 2023; Yao et al., 2023b; Deng534

et al., 2023). These capabilities lay the foundation535

for the development of LLM-based agents (Shrid-536

har et al., 2021; Yang et al., 2023; Liu et al., 2023b;537

Song et al., 2023; Wang et al., 2023a). LLM-based538

agents, which can interact with the environment539

and select subsequent actions based on environ-540

ment feedback, have been applied in many do-541

mains, including web navigation (Nakano et al.,542

2021; Cheng et al., 2024; He et al., 2024), soft-543

ware engineering (Qian et al., 2023; Hong et al.,544

2023), and robotics (Wang et al., 2024; Mahadevan545

et al., 2024). By synergizing the reasoning and546

action abilities of LLMs, ReAct (Yao et al., 2022)547

incorporates environment feedback into reasoning548

traces and determines the next step action dynami-549

cally. Subsequent research focuses on integrating550

code (Wang et al., 2023b; Roziere et al., 2023; Xu551

et al., 2023), memory modules (Rana et al., 2023;552

Park et al., 2023), experience reflection (Shinn553

et al., 2023; Zhao et al., 2023a), and tools into554

LLM-based agents (Liu et al., 2023a; Patil et al.,555

2023; Qin et al., 2023), thereby augmenting their556

abilities in solving complex problems. However,557

current LLM-based agents still perform poorly on558

some complex tasks. This work aims to introduce559

human interventions and enable humans and agents 560

to collaboratively address complex tasks, thereby 561

achieving improved task performance. 562

Human-Agent Collaboration In Human-Agent 563

Collaboration (HAC), traditional research has been 564

centered on improving the naturalness and effi- 565

ciency of human interactions with intelligent agents 566

like robots and AI systems, effectively meeting hu- 567

man needs (Wang et al., 2021; Wu et al., 2022b). 568

The rise of large-scale language models (LLM- 569

based agents) marks a significant shift in the field, 570

underscoring the role of human feedback and rea- 571

soning in enhancing agent capabilities. This ap- 572

proach leverages human insights to refine perfor- 573

mance and decision-making processes. Recent 574

studies employ heuristic rules to direct these agents 575

towards seeking human assistance (Cai et al., 2023; 576

Wu et al., 2022a; Mehta et al., 2023). Further- 577

more, there is an increasing emphasis on develop- 578

ing specialized prompts that motivate LLM-based 579

agents to proactively seek human input, thus nurtur- 580

ing a more interactive and collaborative dynamic 581

in these partnerships (Huang et al., 2022; Wang 582

et al., 2023b). However, the effectiveness of these 583

methods relies on designing high-quality rules or 584

prompts. This is highly dependent on the designer’s 585

domain knowledge. Poor design may result in a sys- 586

tem that cannot accurately understand or respond to 587

complex task requirements. Our research focuses 588

on designing a generalised and learnable method 589

that coordinates human to effectively work with 590

LLM-based agents in the form of direct planning. 591

6 Conclusion 592

In this paper, we propose the problem of large 593

language model-based human-agent collaboration, 594

delving into the synergy of human intuition and 595

expertise with the computational prowess of LLM- 596

based agents, particularly emphasizing their appli- 597

cation in intricate decision-making tasks. We intro- 598

duce a reinforcement learning-based approach for 599

human-agent collaboration, named ReHAC. Cen- 600

tral to ReHAC is a learnable policy model designed 601

to pinpoint the most critical junctures for human 602

intervention within the task-solving trajectory. Our 603

experimental results show that ReHAC aspects bet- 604

ter results and is more generalizable than heuristic 605

rule-based or prompt-based approaches in human- 606

agent collaboration tasks. We believe that ReHAC 607

offers a practical pathway for the application of 608

llm-agents in real-world scenarios. 609
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Ethical Considerations and Limitations610

The objective of this work focuses on human-agent611

collaboration, which requires humans to interact612

with LLM-based agents. We acknowledge that613

agents are likely to output some hallucinations and614

misleading information, and it is unclear how these615

contents impact humans. Additionally, all datasets616

used in this work are publicly available, and there-617

fore, there are no data privacy concerns. All data618

collected will be used for research purposes only619

The limitations of this paper can be summarised620

in three aspects:621

1) The current study is confined to basic LLM-622

based agent architectures based on the "ReAct"623

and "Try Again" frameworks, while more complex624

architectures involving self-reflection and memory625

capabilities are still unexplored.626

2) Our research primarily focuses on the use of627

7B and 13B scale models as policy models for task628

allocation. Future work will investigate the feasi-629

bility of smaller models in carrying out these tasks,630

aiming to maintain performance while reducing631

resource consumption.632

3) This study is based on the assumption that hu-633

man performance supersedes that of agents. How-634

ever, as technology advances, agents might surpass635

human capabilities. Future research will thus shift636

towards exploring human-agent collaboration mod-637

els in this new context. Emphasis will be placed638

on assessing how human-agent collaboration can639

ensure the safety of agent decisions while aligning640

with human preferences.641
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A Appendix941

A.1 Experimental Details942

Model Implementation In our most experi-943

ments, we use Llama-2-7b-hf2 downloaded from944

Huggingface as our policy model πcollab
θ1

. We also945

conduct experiments based on Llama-2-13b-hf3946

model (see Section 3.3). We implement LoRA947

based on PEFT (Mangrulkar et al. (2022)) and set948

rLoRA = 16 and αLoRA = 16 for all experiments.949

Based on Yao et al. (2022) and Yang et al. (2023),950

we set the step threshold for HotpotQA, Strate-951

gyQA, and InterCode to 7, 5, and 8, respectively.952

All experiments are conducted on NVIDIA A100953

GPUs with 40GB memory.954

Human-Agent Dataset For a real human-agent955

collaboration dataset, we employ a uniform sam-956

pling method where each action at has a 50% prob-957

ability of being assigned to either a human annota-958

tor or the ChatGPT. For each question, we sample959

as many interaction trajectories as possible. Specifi-960

cally, for each time t, we aim to sample trajectories961

including acollabt = 0 and acollabt = 1. Considering962

the diversity of responses from different annotators,963

we permit repeated sampling of the same trajectory964

during uniform sampling, which means all acollabt965

of two trajectories are the same. To enhance the966

quality of annotation, annotators are allowed to ref-967

erence GPT-4’s answers. We recruit 14 annotators968

through social media, all of whom are graduate969

students with strong language and reasoning skills.970

They are asked to annotate a total of about 2000971

trajectories in four days and they get paid about972

$10 an hour. They were explicitly told that the973

data would be used to train the model and made974

public and that all the labeled data was unrelated975

to any individual’s privacy. To facilitate the annota-976

tion process, we develop a graphical user interface977

(GUI)4 and provide one hour of training to annota-978

tors. The collected data details are in Table 2.979

GPT-4-Agent Dataset For the dataset con-980

structed using GPT-4 to simulate human annotation,981

we adopt the same sampling method as human-982

agent dataset collection. However, due to the uni-983

form or near-uniform distribution of GPT-4’s re-984

sponses, we skip duplicate paths during uniform985

sampling. Collected data details are listed in Table986

2.987

2https://huggingface.co/meta-llama/Llama-2-7b-hf
3https://huggingface.co/meta-llama/Llama-2-13b-hf
4The GUI is as shown in Figure 6.

A.2 Baselines Details 988

Random We randomly choose a human or an 989

agent to conduct action at at a probability of 50%. 990

Prompt We prompt an agent to actively decide 991

action at should be finished by itself or a human. 992

The related prompts are shown in Table 5 and Table 993

6. Experimental results of Random and Prompt are 994

averaged over three repeated experiments. 995

Imitation Learning We select the top 50% of 996

actions that receive the highest rewards in each 997

state st as expert demonstrations. These expert 998

demonstrations (state-action pairs) are then used to 999

supervise the fine-tuning of the policy model. This 1000

approach allows the policy model to learn how to 1001

make decisions that get a higher return in a given 1002

state. 1003

Dataset
Trainset Testset

Questions Trajectories Questions

HotpotQA(real) 141 1937 100

HotpotQA(sim) 141 2135 100
StrategyQA(sim) 250 2420 100
InterCode(sim) 100 2071 100

Table 2: Collected dataset details. Questions mean the
number of questions we used for human-agent collabora-
tion task. Trajectories mean the overall trajectory num-
ber we collected. (real) refers to the real human-agent
collaboration dataset, and (sim) refers to the human-
agent collaboration dataset collected by using GPT-4 to
simulate humans.

A.3 Human Intervention Rate 1004

We denote the number of steps completed by hu- 1005

mans and agents in the dataset by numh and numa, 1006

respectively. The Human Intervention Ratio (HIR) 1007

is calculated as 1008

HIR =
numh

numh + numa
. 1009

HIR measures the rate of human intervention. Gen- 1010

erally, a higher HIR indicates better task perfor- 1011

mance, but it also tends to increase costs. 1012
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Experiment α ϵ Learning Rate Batch Size

HotpotQAλ=0.06(GPT-4-agent, 7b) 0

0.3

3e-5

64

HotpotQAλ=0.08(GPT-4-agent, 7b) 0 3e-5
HotpotQAλ=0.10(GPT-4-agent, 7b) 0 5e-5
HotpotQAλ=0.08(GPT-4-agent, 13b) 0.1 3e-5
HotpotQAλ=0.06(human-agent, 7b) 0.05 5e-5
HotpotQAλ=0.08(human-agent, 7b) 0.1 5e-5
HotpotQAλ=0.1(human-agent, 7b) 0.0 5e-5
StrategyQAλ=0.08(GPT-4-agent, 7b) 0.1 1e-5
InterCodeλ=0.08(GPT-4-agent, 7b) 0 5e-5
InterCodeλ=0.08(GPT-4-agent, 13b) 0.05 5e-5

Table 3: Hyper-parameter settings for all experiments.

Methods
HotpotQA StrategyQA InterCode

HIR (%) Task Reward Reward HIR (%) Task Reward Reward HIR (%) Task Reward Reward

Agent-only 0.0 22.39 22.39 0.0 60.00 60.00 0.0 53.00 53.00
Human-only 100.0 54.82 23.86 100.0 68.00 43.36 100.0 73.00 33.72
Random 50.84 42.73 27.34 49.50 65.67 53.8 50.09 66.00 44.21
Prompt 34.06 40.46 29.26 9.14 61.33 59.12 9.94 59.33 54.69
IL 22.08 31.50 24.70 4.76 59.00 57.88 1.01 54.00 53.52
Ours 51.46 46.90 31.38 20.47 66.00 61.12 4.15 62.00 60.08

Table 4: ReHACGPT-4 Human intervention rate (HIR), task reward T , and reward R of different methods on GPT-4-
agent testsets.

Imagine you are a clever planner.

Given an unfinished trajectory with several steps, your task is to decide whether the next step should
be carried out by ChatGPT or a human. This decision should be based on a thoughtful evaluation of
the difficulty of the next step and the progress made in the current trajectory. Here are two finished
trajectory examples.
Example 1:
${example1}
Example 2:
${example2}
Now please decide whether the next step should be carried out by ChatGPT or a human. Please
consider the following factors:
1. If the next step is relatively straightforward and well within ChatGPT’s capabilities, instruct
ChatGPT to proceed with the next step. If the task is deemed challenging or requires human
judgment, recommend human intervention.
2. If the trajectory has been consistently handled by ChatGPT without notable issues, encourage
ChatGPT to continue. If there have been challenges or uncertainties in the trajectory, consider
suggesting human involvement for the next step.
3. Note that human intervention will significantly increase the cost, so try to balance the accuracy
and efficiency.
If the next step should be carried out by ChatGPT, return [ChatGPT], otherwise, return [Human].
Only return [ChatGPT] or [Human].

#Your unfinished trajectory#: ${current trajectory}
#Your return#:

Table 5: The prompt template used for the prompt-based method in QA dataset.
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Imagine you are a clever planner in SQL.

Given an unfinished trajectory with several SQL commands, your task is to decide whether the
next command should be carried out by ChatGPT or a human. This decision should be based on a
thoughtful evaluation of the difficulty of the next command and the progress made in the current
trajectory. Here are two finished trajectory examples.
Example 1:
${example1}
Example 2:
${example2}
Now please decide whether the next command should be carried out by ChatGPT or a human. Please
consider the following factors:
1. If the next command is relatively straightforward and well within ChatGPT’s capabilities, instruct
ChatGPT to proceed with the next command. If the task is deemed challenging or requires human
judgment, recommend human intervention.
2. If the trajectory has been consistently handled by ChatGPT without notable issues, encourage
ChatGPT to continue. If there have been challenges or uncertainties in the trajectory, consider
suggesting human involvement for the next command.
3. Note that human intervention will significantly increase the cost, so try to balance the accuracy
and efficiency.
If the next command should be carried out by ChatGPT, return [ChatGPT], otherwise, return [Human].
Only return [ChatGPT] or [Human].

#Your unfinished trajectory#: ${current trajectory}
#Your return#:

Table 6: The prompt template used for the prompt-based method in InterCode dataset.

15



Figure 6: Human-Agent collaborative labelling user interface
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