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Abstract

Evolutionary multi-view classification (EMVC) methods have gained wide recog-
nition due to their adaptive mechanisms. Fitness evaluation (FE), which aims to
calculate the classification performance of each individual in the population and
provide reliable performance ranking for subsequent operations, is a core step in
such methods. Its accuracy directly determines the correctness of the evolutionary
direction. That is, when FE fails to correctly reflect the superiority-inferiority
relationship among individuals, it will lead to confusion in individual performance
ranking, which in turn misleads the evolutionary direction and results in trapping
into local optima. This paper is the first to identify the aforementioned issue in the
field of EMVC and call it as fitness evaluation bias (FEB). FEB may be caused by a
variety of factors, and this paper approaches the issue from the perspective of view
information content: existing methods generally adopt joint training strategies,
which restrict the exploration of key information in views with low information
content. This makes it difficult for multi-view model (MVM) to achieve optimal
performance during convergence, which in turn leads to FE failing to accurately
reflect individual performance rankings and ultimately triggering FEB. To address
this issue, we propose an evolutionary multi-view classification via eliminating
individual fitness bias (EFB-EMVC) method, which alleviates the FEB issue by
introducing evolutionary navigators for each MVM, thereby providing more accu-
rate individual ranking. Experimental results fully verify the effectiveness of the
proposed method in alleviating the FEB problem, and the EMVC method equipped
with this strategy exhibits more superior performance compared with the original
EMVC method. (The code is available at https://github.com/LiShuailzn/Neurips-
2025-EFB-EMVC)

1 Introduction

Multi-view classification (MVC) aims to integrate data from multiple views to improve classification
accuracy. A large number of methods have been proposed in this field [1–6]. Among them, evo-
lutionary multi-view classification (EMVC) methods differs from traditional approaches where it
dynamically fuses different views through the adaptive mechanism of evolutionary algorithms (EA)
[7], rather than relying on static modeling. They have obtained important applications like protein
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Figure 1: The issues of existing evolutionary multi-view classification and our solutions

secondary structure prediction [8]. Notably, fitness evaluation (FE), as a core step of such methods,
runs through the entire process of individual selection, crossover, and mutation. It provides a reliable
basis for performance ranking for subsequent operations, and thus its evaluation accuracy directly
determines the correctness of the evolutionary direction.

However, when FE fails to correctly reflect the superiority-inferiority relationship among individ-
uals, it will cause confusion in the ranking of individual performance, which in turn misleads the
evolutionary direction and traps the process in local optima. This paper is the first to identify the
above-mentioned issue in the field of EMVC and formally define it as fitness evaluation bias (FEB).
FEB does not generally refer to any error in FE; instead, it specifically refers to the kind of bias
that is sufficient to disrupt the true performance ranking of individuals. Given the core role of FE in
the entire EMVC method, the occurrence of the FEB issue will in turn lead to systematic distortion
in the whole evolutionary process. Specifically, in the selection phase, such biases will interfere
with the screening of high-quality individuals, resulting in the abnormal loss of superior genes; in
the crossover operation, due to the lack of accurate individual ranking relationships as guidance, it
is difficult to form efficient gene combinations; mutation strategies, for lack of reliable guidance,
degenerate into random perturbations. More seriously, the iterative optimization characteristic of
EA will lead to the continuous accumulation of this bias, which in turn misleads the evolutionary
direction and eventually causes the algorithm to fall into local optima (as shown in Fig. 1).

FEB may be caused by a variety of factors, and this paper approaches the issue from the perspective
of view information content: in the multi-view model (MVM) decoded from individuals, there are
significant differences in the information content among different views. Although the joint training
strategy commonly adopted in existing methods can make full use of key information in views with
high information content, it fails to fully explore key information in views with low information
content. This leads to suboptimal utilization of multi-view data, which in turn causes MVM to fail
to achieve optimal performance during the convergence process [9, 10]. Consequently, FE cannot
accurately reflect the performance ranking of individuals, thereby triggering FEB. This phenomenon
can be analogous to a mountaineer misjudging the highest point due to cognitive bias toward the
terrain: if the mountaineer chooses a path based only on a local perspective (partial view information),
they may stop prematurely at a suboptimal mountain top, thus missing the main peak that represents
the global optimum. To our knowledge, none of the existing EMVC methods have considered this
issue, which limits their performance.

To address the issue, we propose an evolutionary multi-view classification via eliminating individual
fitness bias (EFB-EMVC) method, which alleviates the FEB problem by equipping each MVM with
evolutionary navigators (ENs). EN realizes the directional optimization of view branches based
on the knowledge distillation mechanism. Meanwhile, recent studies [11] have pointed out that
cross-category information also plays a key role in the distillation process. Inspired by this, we further
design EN to distill both corresponding category and cross-category information simultaneously,
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so as to better guide the optimization of view branches. Specifically, we propose a wasserstein
distance-oriented loss function (WDOLF) and construct a dual-path optimization mechanism to
alleviate FEB: (1) MVM optimization ensures the consistency of the overall training objective;
(2) the view distillation process fully explores the rich corresponding category and cross-category
information in EN, thereby utilizing multi-view data more comprehensively. This mechanism can
provide more accurate individual performance ranking, and based on this, calibrate the evolutionary
direction in real time to guide the EA to iterate along a more correct path. This process is similar
to an explorer moving forward under the guidance of a guide who is familiar with the terrain: with
each step taken, the explorer can promptly obtain the correct route leading to the highest peak, thus
avoiding falling into local optima (as shown in Fig. 1 for details). By virtue of the concise and
efficient strategy of “global control + local in-depth exploration”, the potential of EMVC methods is
fully unleashed. Notably, EN can be seamlessly integrated with other EMVC methods, demonstrating
strong generality. The core contributions of this paper are summarized as follows:

1. In the field of evolutionary multi-view classification (EMVC), we are the first to identify
and formally define the problem of fitness evaluation bias (FEB), and systematically analyze
its impact on the entire evolutionary process.

2. To alleviate FEB, we equip multi-view model with evolutionary navigators (ENs) to fully
explore the rich corresponding category and cross-category information therein, thereby
achieving efficient utilization of multi-view data.

3. Experimental results fully verify the effectiveness of the proposed method in alleviating
FEB. Moreover, EN can be seamlessly integrated into other EMVC methods, demonstrating
strong compatibility.

2 Related Work

Evolutionary Multi-View Classification (EMVC): The EMVC method utilizes the adaptive
mechanism of evolutionary algorithms (EA), enables continuous iterative optimization, and ultimately
screens out satisfactory multi-view model (MVM) from the population. EDF [7] initializes the
population in the search space composed of views and basic fusion operators, and gradually searches
for satisfactory MVM through operations including fitness evaluation, selection, crossover, and
mutation, pioneering research in this field. However, due to its inherent drawbacks such as long
computation time, a series of improvement works have been initiated. For example, DC-NAS [12]
accelerates the search process by adopting a divide-and-conquer strategy for data; CSG-NAS [13]
and CoMO-NAS [14] further reduce complexity through the core structure search space, significantly
improving algorithm efficiency; KS-NAS [15] reduces computational costs via introducing a dynamic
knowledge base. As research advances, the credibility issue of MVM has gradually attracted
attention. For instance, TEF [16] uses EA as a generator for high-quality pseudo-views, thereby
further enhancing the credibility of MVM. Despite the fruitful achievements, the existing EMVC
methods have not taken the problem of fitness evaluation bias (FEB) into account, which limits their
performance. In contrast, the EFB-EMVC method proposed in this paper effectively alleviates the
FEB problem by evolutionary navigators (ENs) into each MVM.

Knowledge Distillation (KD): The core idea of KD is to alleviate the challenges of complex models
in deployment by transferring knowledge from the teacher model to the lightweight student model
[17]. In this study, we draw on the basic idea of KD and introduce it into the EMVC framework, but
its implementation relies on the EN. Through the EN, we can transfer knowledge in a targeted manner
to the corresponding view branches of the MVM to assist in its training. Unlike traditional KD, the
focus of this study is not on proposing a new distillation paradigm, but on using EN to alleviate the
inherent FEB in the EMVC framework. Recent work [11] found that the cross-category information
contained in the teacher model plays a key role in knowledge transfer. Inspired by this, the EN
designed in this study not only provides corresponding category information, but also transmits
cross-category information to better guide the optimization of each view branch. It is noted that the
EN plays a core role in the process of alleviating FEB, while KD only serves as the implementation
mechanism for knowledge transfer.
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Figure 2: The overview of EFB-EMVC

3 Proposed Method

The proposed EFB-EMVC follows the process of the existing evolutionary multi-view classification
(EMVC) method. The only difference is that EFB-EMVC alleviates fitness evaluation bias (FEB) by
introducing evolutionary navigators (ENs) for each multi-view model (MVM) while existing methods
do not. Our EFB-EMVC overview is illustrated in Fig. 2.

3.1 The Alleviation of Fitness Evaluation Bias

In the field of EMVC, we are the first to identify and formally define the FEB issue, which exerts a
systematic impact on the entire evolutionary process. To alleviate FEB, we equip each view branch in
MVM with an EN and guide it by drawing on the knowledge distillation (KD) mechanism. However,
traditional KD can only model corresponding category, while recent studies [11] have shown that rich
cross-category information is crucial for the distillation process. Inspired by this, we design EN to
distill both corresponding category and cross-category information simultaneously, thereby guiding
the optimization of view branches more effectively.

Specifically, the EN is defined as a pre-trained teacher model. Taking the v-th view as an example:
First, the EN corresponding to this view is decoded into a two-layer fully connected deep neural
network (DNN), where the dimension of the first layer is the fused view dimension, the dimension
of the second layer is the number of categories C, and a softmax layer is attached at the end of the
network. Subsequently, the training data and test data are input into the DNN to complete the training
and testing processes. After training, the optimal DNN parameters are frozen. For a given dataset,
we pre-train ENs for all views and store the results in an EN set for subsequent retrieval. During the
individual training process, according to the views corresponding to leaf nodes, the ENs required by
the individual are retrieved from the EN set to serve as the knowledge source for that individual. The
above process is shown in Fig. 2 (b) and is achieved via three steps.

Step 1 aims to extract the category interrelations from the EN. Taking the v-th view as an example:
1 Obtain the predicted probability distribution outputs of all the training data by passing them into

the corresponding EN; 2 Divide the training data into C category groups according to the resulting
predicted probability distribution outputs; 3 For the c-th category divided by the EN, assuming
it contains bc training samples, we collect their logits, and then concatenate them into a feature
matrix Xc

v ∈ RC×bc ; 4 Construct the kernel matrix Kc
v = Xc

v(X
c
v)

⊤ ∈ RC×C . Notably, in some
datasets, the EN corresponding to certain views may end up classifying fewer than C categories —
this indicates that the EN judges there to be no samples belonging to some categories. For the sake of
convenient description, we uniformly consider the number of its classified categories as still C. For
the aforementioned categories with no corresponding samples, the elements in their kernel matrices
are replaced with extremely small positive numbers; 5 After obtaining the kernel matrices {Kc

v}Cc=1
for all categories, we measure the category interrelations using the HSIC score, and then construct
the mutual information matrix Mv for the v-th view as follows: for any two elements Kc1

v and
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Kc2
v from {Kc

v}Cc=1, one computes HSIC(Kc1
v ,Kc2

v ) = 1
C2 tr

(
K̃c1

v K̃c2
v

)
, where K̃c1

v = HKc1
v H ,

K̃c2
v = HKc2

v H , and H = I − 1
C11⊤, with I as the identity matrix and 1 a column vector of ones.

The resulting mutual information matrix quantifies the statistical correlations between categories in
the v-th view, where larger values indicate stronger associations between their feature distributions.

Step 2 aims to effectively guide the training of each view branch by leveraging EN, thereby alleviating
FEB. To this end, we have designed an optimization objective referred to as EN guidance loss (ENL).
The core idea of ENL is as follows: during the training process, each view branch not only needs to
learn information of their corresponding category from EN, but also should capture knowledge of
cross-category relationships provided by EN—this enables the achievement of better optimization
effects. The ENL loss function consists of two components: The first component is the cross-entropy
loss between a view branch and EN with respect to the target category; The second component is the
wasserstein distance (WD) between the output distributions of the two (i.e., a view branch and EN)
with respect to non-target categories.

The loss function for the first part is Lt = −(pT )t · log(pS)t, where t denotes the target category,
pT = softmax(zT ) and pS = softmax(zS) represent the output probability distributions of the EN
and the view branch. zT and zS denote the logits outputs of the EN and the view branch, respectively.

The second part is to calculate the WD between EN and view branches with respect to the probability
distributions of non-target categories. For two discrete distributions P and Q, WD is defined as:

W (P,Q) = min
γ∈Γ

∑
i

∑
j

γij · cij , (1)

where
∑

j γij = pi,
∑

i γij = qj , and γij ≥ 0. Here, γij denotes the transport plan from pi to qj , cij
is the transportation cost, and Γ is the set of feasible couplings that satisfy the marginal constraints.

Since both the EN and the view branch output discrete probability distributions over non-target
categories, we adopt the discrete WD formulation. Specifically, we first mask the target category
in the logits of both models to obtain the non-target feature vectors ẑT and ẑS , and apply the same
masking to the mutual information matrix to derive the masked mutual information matrix M̂v . Then,
we apply temperature-scaled softmax to ẑT and ẑS , yielding the non-target categories probability
distributions p̂T and p̂S .

To efficiently approximate WD, we employ the entropy-regularized Sinkhorn algorithm[18]. The
kernel matrix is defined as K = exp(−M̂v/ϵ), where ϵ = 0.05 is the regularization parameter. The
iteration matrix U is initialized as: U = 1

C−1 · 1. Then, the updates are performed iteratively as:

V ← p̂T

K⊤U
, U ← p̂S

KV
, (2)

and after 10 iterations, the optimal transport plan is obtained as:

γ⋆ = diag(U)K diag(V ). (3)

The WD is then computed as:
Lwd =

∑
i

∑
j

γ⋆
ij · (M̂v)ij . (4)

Finally, the ENL loss is defined as:

LENL = αLt + βLwd, (5)

where α and β are hyperparameters used to balance the contributions of the target-category cross-
entropy loss and the non-target categories WD.

Step 3 aims to combine the proposed ENL loss function with the traditional cross-entropy loss to
jointly optimize the MVM and its individual view branches. This combined loss not only ensures the
consistency of the overall training objective but also makes full use of the critical information from
each view, thereby effectively alleviating the FEB problem.

When considering V views, the whole loss function WDOLF is formulated as follows:

LWDOLF = γ1LCE + γ2

V∑
v=1

L
(v)
ENL = γ1LCE + γ2α

V∑
v=1

L
(v)
t + γ2β

V∑
v=1

L
(v)
wd , (6)
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where LCE represents the cross-entropy loss between the output of the MVM and the ground-truth
labels, and L

(v)
ENL represents the ENL loss between the v-th view branch of the MVM and the

corresponding EN.

3.2 The EMVC Method Driven by Unbiased Fitness Evaluation

The core steps of the EFB-EMVC method include population initialization, unbiased fitness evalua-
tion, offspring generation, and selection.

Population initialization: First, in the search space composed of views and basic fusion operators,
randomly initialize a population P consisting of k individuals encoded in the form of binary trees,
where the leaf nodes consist of views and the branch nodes consist of basic fusion operators. In this
paper, the basic fusion operators consists of concatenation, addition, multiplication, maximize and
average [7]. For each individual, if the binary tree contains V views, then it must contain V − 1 basic
fusion operators. Each individual corresponds to MVM.

Unbiased fitness evaluation: First, according to the views corresponding to the leaf nodes of an
binary tree, the ENs required by the individual are retrieved from the EN set of the current dataset.
Next, the individual is decoded into an MVM. In this MVM, each view first passes through a fully
connected layer (whose dimension is set to the dimension of the fused view). Subsequently, the data
is processed through two streams: 1) one stream enters a fully connected layer (with the dimension
equal to the number of categories) to generate a logits vector, and then the lENL distillation loss
between this vector and the logits output by the EN corresponding to the view is calculated; 2) the
other stream is fused with other views via a fusion operator, then passes through a fully connected
layer (with the dimension equal to the number of categories) to generate the logits vector of the MVM,
and finally enters the softmax layer to obtain a probability distribution, with which the cross-entropy
loss is calculated against the true labels. Finally, all losses are combined into the lWDOLF loss
function, which is used to optimize the entire MVM and each view branch. Finally, the test accuracy
at the optimal state during training is taken as the unbiased fitness value of the individual. The above
process is detailed in Fig. 2 (b).

Crossover and mutation: The crossover rate is r = r1, and the mutation rate is r = r2. At this
stage, following the principles of traditional evolutionary algorithms, the probability of the crossover
operation is significantly higher than that of the mutation operation. For the crossover operation, a
non-root node is first randomly selected from each of two randomly chosen binary trees to serve as
the crossover point. The selected node along with its subtree is then pruned from the original tree
and exchanged with the counterpart from the other tree. These subtrees are subsequently grafted
onto the parent node of the original crossover point in the opposite tree, thereby generating two new
individual structures. For the mutation operation, a node is randomly selected from the individual’s
tree structure. If the selected node is a fusion operation node, a new fusion operation is randomly
sampled from a predefined list to replace the original operation. If the selected node is a view node, a
new view is randomly chosen from a set of views to replace the original one.

Algorithm 1 EFB-EMVC Framework

1: Input: D = (X,Y ): training dataset; D̂ = (X̂, Ŷ ): test dataset; F : a set of basic fusion
operators; T : iteration number; evolutionary navigator set;

2: Output: The satisfactory MVM and its corresponding accuracy;
3: Population initialization: Generate an initial population P0;
4: Fitness evaluation: Obtain the unbiased fitness values of all individuals in P0;
5: for t = 1 to T do
6: Generate offspring Qt using the crossover operator;
7: Conduct mutation on each individuals in Qt;
8: Obtain the unbiased fitness values of all individuals in Qt;
9: Select next generation population Pt+1 from Qt ∪ Pt using a selection operator;

10: end for
11: return The satisfactory MVM and its corresponding accuracy.

Selection: Adopt the binary tournament selection method. Specifically, the selection operation has
three application scenarios: (1) Crossover phase: Randomly select two individuals, compare their
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fitness values, and retain the better one as Parent 1. Repeat this operation to select Parent 2. Then,
perform the crossover operation on the two parent individuals; (2) Mutation phase: Randomly select
two individuals and directly choose the one with the better fitness value for mutation; (3) Generating
the next generation population: Merge the current population with the offspring population, randomly
select two individuals, and retain the better one to be added to the next generation. Repeat this
operation K times.

The algorithm framework of the EFB-EMVC method is shown in Algorithm 1.

4 Experiments

In this section, we aim to verify the effectiveness of EFB-EMVC method from four aspects: (1)
Comparison with SOTA methods; (2) Impact analysis of the evolutionary navigator (EN) on EFB-
EMVC; (3) Impact analysis of the distillation loss function ENL on EFB-EMVC; (4) Generality of
evolutionary navigator. In addition, we conducted an in-depth analysis of the hyperparameters of
EFB-EMVC and the experimental results are presented in Appendix A.4.

4.1 Experimental Setup

Datasets. In the experiments, nine multi-view datasets are used and they are MVoxCeleb [16],
YoutubeFace [19], NUS-WIDE-128 (NUS) [20], Reuters [21], CB [7], MM-IMDB [22], NTU RGB-
D [23], and EgoGesture [24]. For the Reuters dataset, two variants named Reuters5 and Reuters3 are
generated by adding Gaussian noise [16]. Their detailed descriptions can be found in Appendix A.3.

Evaluation metrics. In the experimental process, to effectively avoid the randomness interference
caused by data partitioning and network initialization operations, a 5-fold cross-validation strategy
was adopted for the MVoxCeleb [16], YoutubeFace [19], NUS-WIDE-128 (NUS) [20], Reuters5
[16] and Reuters3 [16] datasets, dividing each dataset into a training set and a test set. The specific
partitioning ratio is as follows: 80% of the samples are used for model training, and 20% are used
for model testing. For the remaining datasets, since their original authors have already completed
the partitioning of the training and test sets, the experiments were independently repeated five
times. The final experimental results are presented in the form of average performance metrics and
standard deviations to intuitively reflect the statistical stability of the model performance. For the
MM-IMDB dataset, considering the existence of class imbalance, the weighted F1-score is selected
as the evaluation metric; a higher value of this metric indicates better model performance. For the
remaining datasets, accuracy is used as the evaluation metric.

4.2 Experimental Results

Comparisons with SOTA methods. In this section, we aim to validate the EFB-EMVC’s effective-
ness by comparing with four kinds of SOTA methods. They are (1) fixed fusion operators-based
methods including addition, average, max, multiplication, concatenation, MLB [25], MFB [26], TFN
[27], LMF [28], and PTP [29]; (2) trustworthy multi-view classification methods including TMC [30],
TMOA [31], ETMC [32], RCML [33]; (3) traditional adaptive multi-view classification methods
including BV [7], SSV [7], MR [7], EmbraceNet [34], AWDR [35], RMAR [36]; (4) EMVC methods
including EDF [7], DC-NAS [12], CoMO-NAS [14], CSG-NAS [13] and TEF [16].

The results are shown in Table 1. Based on these results, one can observe that: (1) Compared with
the fixed fusion strategy, the EMVC methods demonstrate significant performance advantages on all
datasets. This is attributed to its acquisition of a high-performance multi-view model (MVM) through
adaptive selection. However, traditional multi-view classification methods, due to being restricted
by manually designed features, sometimes have lower performance than that of the fixed fusion
strategy. At the same time, the trusted multi-view classification method, because it adopts the way of
late-stage desision fusion, results in insufficient feature interaction, and its performance sometimes
cannot surpass that of the fixed fusion strategy. (2) Compared with existing EMVC methods, it can
be observed that: although these methods outperform other types of methods in terms of performance
metrics, the existence of fitness evaluation bias (FEB) causes such methods to fall into local optima,
thereby preventing their performance potential from being fully unleashed. In contrast, EFB-EMVC
effectively alleviates the FEB issue by introducing ENs into MVM, ensuring that the evolutionary
algorithm (EA) can iterate and optimize along a relatively more correct direction to find a more
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Table 1: Accuracy comparison results with SOTA methods (mean ± standard deviation), where the
best performance is highlighted in bold.

Methods MVoxCeleb YoutubeFace NUS Reuters5 Reuters3 CB
Add 87.53±0.41 82.40±0.23 72.81±0.70 79.70±0.25 83.46±0.28 87.16±0.17
Mul 72.31±0.90 83.18±0.14 64.58±0.63 77.02±0.38 81.89±0.70 80.87±1.16
Cat 87.98±0.20 83.05±0.56 72.32±0.50 79.91±0.28 83.66±0.17 86.58±0.11
Max 81.57±0.41 81.49±0.29 71.36±0.47 80.02±0.20 84.01±0.28 84.21±0.11
Avg 87.27±0.33 82.23±0.17 73.00±0.51 79.69±0.30 83.58±0.28 87.05±0.20

MLB (ICLR17) 87.11±0.67 85.20±0.28 70.60±0.29 80.16±0.15 83.80±0.28 82.38±0.32
MFB (TNNLS18) 85.23±0.20 82.85±0.17 71.34±0.40 79.28±0.21 83.25±0.18 87.94±0.32
TFN (EMNLP17) 57.53±0.92 81.33±0.19 63.66±1.22 79.95±0.30 83.73±0.31 73.45±0.30

LMF (ACL18) 89.92±0.25 85.58±0.22 71.74±0.70 80.03±0.15 83.75±0.28 82.81±0.18
PTP (NeurIPS19) 88.61±0.36 85.18±0.30 71.83±0.50 80.10±0.10 84.06±0.20 85.08±0.11
TMC (ICLR22) 73.13±0.15 71.18±2.27 72.73±0.30 79.60±0.56 84.23±0.35 77.87±0.22

TMOA (AAAI22) 84.72±0.21 84.35±0.25 72.60±0.48 79.11±0.43 84.19±0.27 86.80±0.10
ETMC (TPAMI23) 88.70±0.15 79.63±1.89 73.05±0.67 79.80±0.41 84.25±0.42 - -
RCML (AAAI24) 80.51±0.41 81.95±0.20 72.53±0.55 81.39±0.18 85.88±0.29 - -
BV (TEVC2021) 63.25±0.14 82.01±0.18 68.69±0.59 80.61±0.25 83.98±0.14 77.08±0.15
SSV (TEVC2021) 85.10±0.23 84.43±0.31 63.70±0.64 79.51±0.41 84.71±0.22 87.02±0.13
MR (TEVC2021) 79.92±0.29 84.78±0.21 64.39±0.85 78.24±0.45 84.17±0.19 83.36±0.21

EmbraceNet (IF19) 81.74±0.34 80.90±1.04 72.43±0.38 80.07±0.21 83.58±0.25 85.85±0.09
AWDR(PR19) 91.08±0.09 85.11±0.15 72.44±0.66 79.69±0.27 83.32±0.32 86.66±0.16
RMAR(INS22) 91.54±0.11 85.21±0.17 72.51±0.67 79.84±0.25 83.48±0.25 85.36±0.46

EDF (TEVC2021) 93.09±0.20 85.83±0.08 74.73±0.45 81.12±0.25 85.49±0.21 88.55±0.20
CoMO-NAS (ACMMM24) - - - - 74.24±0.29 - - - - 88.69±0.38

CSG-NAS (IJCAI24) - - - - 74.52±0.40 - - - - 89.20±0.06
DC-NAS (AAAI24) 92.19±0.07 85.28±0.14 74.35±0.58 81.35±0.28 85.86±0.14 88.52±0.13

TEF (ICLR25) 92.41±0.12 86.02±0.41 75.12±0.57 82.26±0.23 86.49±0.10 - -
EFB-EMVC (ours) 94.82±0.12 87.67±0.17 75.79±0.76 82.66±0.24 86.51±0.12 89.67±0.18

satisfactory solution. For instance, on the MVoxCeleb, YouTubeFace, and NUS datasets, the accuracy
of EFB-EMVC is improved by approximately 1.73%, 1.65%, and 0.67% respectively compared with
the suboptimal model. These results fully verify the effectiveness of this mechanism.

To further explore its performance, we carried out additional experiments on other datasets that are
often used to validate the effectiveness of the EMVC methods. In this experiment, the SOTA methods
compared with EFB-EMVC are roughly divided into two categories: (1) Single-view classification
methods, such as Maxout MLP [37], VGG Transfer [38], Inflated ResNet-50 [39], Co-occurrence [40],
ResNext-101 [41]; (2) Multi-view classification methods, such as Two-stream, GMU [22], CentralNet
[42], MFAS [43], VGG-16 + LSTM [44], C3D + LSTM + RSTTM [45], I3D [46], MMTM [47],
MTUT [48], 3D-CDC-NAS2 [49], BM-NAS [50], DC-NAS [12], CoMO-NAS [14], CSG-NAS
[13], and MCTS-CSG [51] and HF-MNAS [52]. According to the results in Table 2, compared
with single-view classification methods, multi-view classification methods generally achieve better
performance. This is mainly due to their ability to fully utilize the rich information across different
views, thereby achieving performance breakthroughs. Compared with SOTA methods, EFB-EMVC
achieves the best performance on most datasets and also reaches performance comparable to SOTA
methods on the EgoGesture dataset. This advantage stems from the EN mechanism of EFB-EMVC
— this mechanism corrects the evolutionary direction in real time by alleviating the FEB issue.

Impact analysis of the evolutionary navigator (EN) on EFB-EMVC. In this experiment, we aim
to analyze the impact of EN on EFB-EMVC (i.e., whether EN alleviates the problem of FEB?) by
an ablation analysis on YouTubeFace dataset. To ensure the generality of this method, we took a
population consisting of 15 randomly initialized individuals as the research object.

As shown in the left side of Fig. 3, the accuracy of all individuals after applying the EN exhibits a
consistent improvement. It is noticed that its core value lies in the reconstruction of the performance
order relationship on which the EMVC method relies. The selection mechanism of the EMVC
method essentially depends on the performance order relationship to identify high-quality solutions.
If this order relationship remains unchanged, it means that the EN only plays a role in enhancing
performance and does not address the core defect of the EMVC method, that is, the FEB problem.
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Table 2: Accuracy comparison results with SOTA methods (mean ± standard deviation), where the
best performance is highlighted in bold.

Method MM-IMDB NTU RGB-D EgoGesture
Modality F1-W (%) Modality Acc (%) Modality Acc (%)

Uni-view methods
Modality 1 Text (T) 57.54 Video (V) 83.91 RGB (R) 93.75
Modality 2 Image (I) 49.21 Pose (P) 85.24 Depth (D) 94.03

Multi-view methods
Two-stream (NeurIPS14) I+T 60.81 V+P 88.60 - - - -
GMU (ICLR17) I+T 61.70 V+P 85.80 - - - -
CentralNet (ECCV18) I+T 62.23 V+P 89.36 - - - -
MFAS (CVPR19) I+T 62.50 V+P 89.50±0.60 - - - -
MMTM (ICCV20) - - - - V+P 88.92 R+D 93.51
MTUT (3DV19) - - - - - - - - R+D 93.87
3D-CDC-NAS2 (TIP21) - - - - - - - - R+D 94.38
BM-NAS (AAAI22) I+T 62.92±0.03 V+P 90.48±0.24 R+D 94.96±0.07
DC-NAS (AAAI24) I+T 63.70±0.11 V+P 90.85±0.05 R+D 95.22±0.05
CoMO-NAS (ACMMM24) I+T 63.84±0.16 V+P 90.94±0.02 R+D 95.25±0.03
CSG-NAS (IJCAI24) I+T 64.12±0.12 V+P 91.12±0.03 R+D 95.25±0.04
MCTS-CSG (IJMLC25) - - - - V+P 91.21±0.10 R+D 95.27±0.01
HF-MNAS (TIP25) I+T 64.17 V+P 91.15 R+D 95.31
EFB-EMVC (ours) I+T 64.53±0.05 V+P 91.30±0.03 R+D 95.30±0.03
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Figure 3: Impact of the EN and the ENL on EFB-EMVC. EN (✗) represents that the final loss function
only includes cross-entropy loss LCE and there is no single-view distillation loss LENL.

Experimental results in Table 3 show that EN significantly changes the performance ranking rela-
tionships of 15 individuals. By calculating three correlation coefficients of the performance ranking
relationships before and after applying EN, results indicate extremely low correlation between the
two. Meanwhile, Table 4 systematically presents the distribution of individual pairs with changed
performance ranking relationships before and after applying EN among the 15 individuals in the EN
ablation experiment. Result shows that within the sample space consisting of 15 individuals, there
are 11 pairs of individuals with significantly restructured performance ranking relationships.

The above experimental results fully demonstrate that the distortion effect of FEB on individual
performance ranking relationships is extremely prominent, confirming that FEB is a key issue
urgently needing to be addressed in the EMVC method. Meanwhile, the role of EN is not limited to
performance improvement; instead, it fundamentally corrects the distorted individual performance
ranking relationships, enabling EMVC methods to conduct effective optimization based on more
accurate performance rankings. This reconstruction of ranking relationships breaks through the
constraint bottleneck faced by traditional EMVC methods due to FEB, providing a new solution for
algorithm design and theoretical development in this field.

Table 3: Rankings and Correlation Coefficients (PC: Pearson Correlation; SRC: Spearman’s Rank
Correlation; KT: Kendall’s Tau)

EN Sort the fitness values of 15 individuals PC SRC KT
✗ [4, 15, 5, 7, 1, 8, 13, 10, 11, 2, 14, 6, 12, 3, 9] 0.2143 0.2143 0.1429
✓ [4, 15, 5, 7, 8, 13, 2, 11, 1, 10, 12, 6, 14, 9, 3]
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Table 4: Pairs of individuals with changed fitness value relationships between EN (✗) and EN (✓)
Individual Pair EN (✗) EN (✓)

[4,0,2,3,-0,-1, -0] vs [0,2,3,4,-2,-3,-0] 82.00 vs 78.70 83.09 vs 83.92
[4,0,2,3,-0,-1, -0] vs [1,0,4,2,-4,-2,-2] 82.00 vs 81.81 83.09 vs 84.12

[4,0,2,3,-0,-1, -0] vs [3,2,4,-3,-4] 82.00 vs 79.09 83.09 vs 83.11
[4,0,2,3,-0,-1, -0] vs [1,4,2,-4,-2] 82.00 vs 81.71 83.09 vs 84.02
[0,2,3,4,-2,-3,-0] vs [0,4,3,-4,-0] 78.70 vs 79.75 83.92 vs 82.93
[0,2,3,4,-2,-3,-0] vs [3,2,4,-3,-4] 78.70 vs 79.09 83.92 vs 83.11

[2,4,-4] vs [0,3,-4] 70.17 vs 58.39 72.33 vs 79.11
[3,4,-3] vs [3,4,0,2,-0,-2,-3] 77.73 vs 76.69 82.41 vs 82.66

[3,4,-3] vs [3,2,-1] 77.73 vs 78.45 82.41 vs 79.12
[0,4,3,-4,-0] vs [3,2,4,-3,-4] 79.75 vs 79.09 82.93 vs 83.11
[3,4,0,2,-0,-2,-3] vs [3,2,-1] 76.69 vs 78.45 82.66 vs 79.12

Table 5: Classification accuracy comparison of EDF and DC-NAS before and after applying EN

Methods MVoxCeleb YoutubeFace NUS Reuters5 Reuters3
EDF 93.09±0.20 85.83±0.08 74.73±0.45 81.12±0.25 85.49±0.21

EDF+EN 94.70±0.23 87.29±0.43 75.81±0.71 82.72±0.16 86.48±0.15
DC-NAS 92.19±0.07 85.28±0.14 74.35±0.58 81.35±0.28 85.86±0.14

DC-NAS+EN 94.82±0.12 87.67±0.17 75.79±0.76 82.66±0.24 86.51±0.12

Impact analysis of ENL on EFB-EMVC. In this part, we will conduct an in-depth analysis of the
impacts of the KL divergence and the custom loss function ENL on EFB-EMVC to demonstrate that
rich cross-category information is an important component of the KD process. To this end, we have
selected the YouTubeFace dataset for the experiment. We first randomly initialize 15 individuals.
Subsequently, we perform knowledge KD by applying the KL divergence and the ENL loss function
respectively. Conclusions can be drawn from the results on the right side of Fig. 3. After applying
the ENL loss function, the accuracy of individuals in the population has been improved to varying
degrees. This also fully demonstrates the importance of the ENL loss function in leveraging rich
cross-category information.

Generality of the proposed evolutionary navigator. In this experiment, we aim to verify whether
EN can achieve a high degree of compatibility with other EMVC methods. To this end, we have
selected two methods, EDF [7] and DC-NAS [12]. In EDF, individuals are encoded in the form of
sequences, while in DC-NAS, individuals are encoded in the form of trees. As shown in Table 5,
after integrating EN into these two methods, both methods have achieved significant performance
improvements across all datasets. Taking the MVoxCeleb and YoutubeFace datasets as examples,
the performance of EDF has been improved by 1.61% and 1.46%, and the performance of DC-NAS
has been improved by 2.63% and 2.39%. This experimental result indicates that EN is capable of
achieving a high degree of compatibility with various EMVC methods.

5 Conclusion

In the field of evolutionary multi-view classification (EMVC), this paper is the first to identify and
formally define the fitness evaluation bias (FEB) issue, and systematically analyze its impact on
the entire evolutionary process. On this basis, we propose an effective method to alleviate FEB
from the perspective of view information content, namely EFB-EMVC. Specifically, EFB-EMVC
introduces evolutionary navigators (ENs) into each multi-view model (MVM), and leverages the rich
corresponding category and cross-category information contained in ENs to guide the optimization of
each view, thereby effectively alleviating the FEB that is prevalent in existing EMVC methods. It is
worth emphasizing that ENs can be seamlessly integrated into various multi-view learning methods,
demonstrating strong compatibility and extensibility. In future work, there are still several important
issues regarding FEB that require in-depth research. For instance: Beyond differences in information
content, what other potential factors can cause FEB and what are the corresponding countermeasures?
How to integrate efficient optimization techniques to reduce the training cost of EFB-EMVC? These
issues will all be key directions for advancing the further development of EMVC.
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A Appendix

In the supplemental material:

• A.1. Variables and Corresponding Meanings

• A.2. Experimental Settings

• A.3. Datasets

• A.4. Hyperparameter Analysis of EFB-EMVC

• A.5. Individuals Used in Ablation Experiment

A.1 Variables and Corresponding Meanings

To help readers understand the content of this paper more clearly, this section provides a detailed orga-
nization and explanation of the variable symbols involved in the paper, with the specific corresponding
relationships shown in Table 6.

Table 6: Variable names and their corresponding meanings
Variables Meaning
C The number of categories
c The c-th category
v The v-th view
t The target category
bc The number of samples assigned to the c-th category by the teacher model
V The number of views contained in the MVM
Xc

v The feature matrix of the c-th category in the v-th view
Kc

v The kernel matrix of the c-th category in the v-th view
Mv The mutual information matrix of the v-th view
M̂v The mutual information matrix of the v-th view after masking the target category
K The kernel matrix in the Sinkhorn algorithm
HSIC(Kci

v ,K
cj
v ) The HSIC score between the ci-th and cj-th category in the v-th view

zT The logits output of the evolutionary navigator
zS The logits output of the view branch
ẑT The logits of the evolutionary navigator after masking the target category
ẑS The logits of the view branch after masking the target category
pT The probability distribution of the evolutionary navigator
pS The probability distribution of the view branch
p̂T The probability distribution of the evolutionary navigator after masking the

target category
p̂S The probability distribution of the view branch after masking the target category
ϵ The regularization parameter
U , V The iteration matrix
γ⋆ The optimal transport plan

A.2 Experimental Settings

In our experiments, all methods are implemented using TensorFlow 2.10.0. The computing environ-
ment includes Ubuntu 24.04.2 LTS as the operating system, equipped with an AMD EPYC processor
with 160 physical cores (320 logical threads), 566 GB of DDR4 memory, and 8 NVIDIA GeForce
RTX 5090 GPUs, each with 32 GB of VRAM. The experimental setup is based on Python 3.9.23 and
CUDA 11.2.

Parameter settings:

a) Training of multi-view model (MVM): All MVM are trained using the Adam algorithm. The
learning rate is set to 0.001, with a first-moment exponential decay rate of 0.9 and a second-moment
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exponential decay rate of 0.999. Each network undergoes training for 200 epochs. To prevent
overfitting, if the performance of a MVM does not improve after 10 epochs, the training process will
be halted.

b) EFB-EMVC Algorithm: Inspired by the work of EDF[7], we set the population size to 28,
the number of iteration rounds to 20, the crossover rate to 0.9, and the mutation rate to 0.2. For
the MVoxCeleb [16] and CB [7] datasets, especially the CB dataset with up to 10,000 categories,
directly applying our proposed ℓENL loss function will lead to an excessively large dimension of
the mutual information matrix, resulting in the program being unable to run. In the ablation study
section, we have fully verified the key role of cross-category information in the distillation process.
To facilitate code reproduction, we use the traditional KL divergence loss instead of ℓENL on these
two datasets to ensure the executability of the method and the stability of the experiment. In addition,
for the MM-IMDB [22] dataset — a multi-label and multi-category dataset — the application of the
ℓENL loss function may cause numerical instability during the optimization process due to potential
dimension mismatch issues of the mutual information matrix. To address this issue, we still use
the traditional KL divergence to replace the ℓENL loss function. To facilitate the experiment, only
the following simplified settings are made for the weights of the loss function: The weight of the
fusion output, γ1, is set to 1.0×V , where V represents the number of views of the current individual.
For datasets using the ℓENL loss function, the output weight of each view, γ2, is set to 1.0. For the
cross-entropy loss between EN and the view branch on the target category, the parameter α is set
to 1.0; for the Wasserstein distance between their output distributions on non-target categories, the
parameter β is set to 0.3. In addition, for datasets using KL divergence, the weight of each view is
directly set to 1.0. The temperature coefficient is uniformly set to t=2.

A.3 Datasets

All used datasets in our paper can be downloaded from the https://github.com/LiShuailzn/
Neurips-2025-EFB-EMVC.

• MVoxCeleb [16] is a multi-view audio classification dataset that is constructed with Vox-
Celeb dataset [53]. Each audio are extracted five view features and they are two deep feature
including ecapa and resnet, and three traditional features including fbank, mfcc and spec. To
study aim, Gaussian noise is added on ecapa and resnet mfcc. On this dataset, the specific
parameter configuration of our EFB-EMVC method is as follows: the fusion view dimension
to 128 and the reuse of view features is not allowed.

• YouTube-Faces [19]. The dataset includes 3,425 videos of 1,595 different people downloded
from YouTube. Similar to, we use a subset consists of 101,499 frames of 31 subjects and
the same five features are extracted. The parameter configuration of the dataset is as follows:
the fusion view dimension to 128, and the reuse of view features is not allowed.

• NUS-WIDE-128 (NUS) [20]. NUS dataset contains 43,800 single label images from 128
categories. For each image, six types of image features including color histogram (CH),
color correlogram (CORR), edge direction histogram (EDH), wavelet texture (WT), block-
wise color moments (CM) and bag of words based on SIFT descriptions (BoW), and one
text feature are extracted. The dataset extended from the NUS-WIDE dataset [54]. In our
experiments, we use its a subset consisting of 23,438 images from 10 category, including
animal, architecture, art, flowers, food, man, person, sky, toy, and water. In this subset,
each image is related to one label and each category includes at least 1,500 images. For the
EFB-EMVC evolutionary algorithm parameters, the fusion view dimension to 128, and the
reuse of view features is not allowed.

• Reuters [21]. Reuters is a multilingual multi-view dataset, each document is described
by five different languages including English, French, German, Spanish and Italian. To
make used model can work on this data, the dimensions of all views are reduced to 1,000
using PCA. Then, following, Gaussian noise is added to all views or 3 views for obtaining
its two versions, named as Reuters5 [16] and Reuters3 [16], respectively. The parameter
configuration of the dataset is as follows: the fusion view dimensions are set to 128, and the
reuse of view features is not allowed.

• CB [7]. CB dataset designed for chemical structure image recognition in patent retrieval
studies, which contains 100,000 chemical structure images distributed into 10,000 categories.

16

https://github.com/LiShuailzn/Neurips-2025-EFB-EMVC
https://github.com/LiShuailzn/Neurips-2025-EFB-EMVC


Among them, the specific experimental parameter settings are as follows: the fusion view
dimension to 256, and the reuse of view features is not allowed.

• MM-IMDB [22]. MM-IMDB dataset for the multi-label film genre classification task,
which contains a total of 23 categories. The dataset is divided into a training set of 15,552
films, a validation set of 2,608 films, and a test set of 7,799 films. To ensure fair comparison
with other explicitly multi-view fusion approaches, we adopted the same neural network
backbone models as BM-NAS and DC-NAS to extract various view features, using weighted
F1 score as the evaluation metric. The specific parameter settings are as follows: fusion
vector dimension FD is 128, and the reuse of view features is not allowed.

• NTU [23]. NTU dataset for multi-view action recognition task containing 60 categories. The
training, validation and test sets include 23,760, 2,519 and 16,558 samples, respectively. To
ensure the fairness of the experimental results, we followed the data preprocessing pipelines
of BM-NAS and DC-NAS. Specifically, we used Inflated ResNet-50 and Co-occurrence
as feature extractors for the skeleton and video views. For the EFB-EMVC evolutionary
algorithm parameters, the fusion view dimension to 1024, and the reuse of view features is
allowed.

• Ego [24]. Ego dataset for multi-view gesture recognition task containing 83 categories.
The training set of this dataset includes 14,416 samples, the validation set includes 4,768
samples, and the test set includes 4,977 samples. We followed the methods of BM-NAS and
DC-NAS, using ResNext-101 as the backbone network for RGB and depth video views. For
the EFB-EMVC evolutionary algorithm parameters, the fusion view dimension to 512, and
the reuse of view features is not allowed.

A.4 Hyperparameter Analysis of EFB-EMVC

Impact Analysis of the fusion dimension on EFB-EMVC. In this experiment, we selected the
YoutubeFace and NUS datasets to investigate the impact of fusion view dimension on the performance
of the EFB-EMVC method. Specifically, we first randomly selected 15 individuals as a fixed initial
population. Subsequently, within the framework of this fixed initial population, we independently
validated the performance of the model when the fusion view dimension was set to 32, 64, 128,
256, and 512 respectively. Experimental results were quantitatively presented using the average
performance and maximum performance of the fixed initial population, as shown in Figure 4. It can
be observed that on the YoutubeFace dataset, as the fusion dimension increases, the performance
of the model shows a trend of continuous improvement and tends to stabilize at high dimensions;
whereas on the NUS dataset, increasing the dimension does not bring significant benefits. The above
results indicate that the impact of fusion dimension on the performance of the model exhibits dataset
dependence: for datasets with higher representation complexity, higher dimensions can effectively
enhance feature representation capability, while on datasets with more information redundancy, the
benefits of blindly increasing dimensions are limited.

A.5 Individuals Used in Ablation Experiment

In this section, we will list in detail the individuals used in the ablation experiment part. Specifically,
in Table 7, the left side shows the sample set of the EN ablation experiment, and the right side shows
the sample set of the ENL ablation experiment.
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Figure 4: Mean and maximum value variations with integrate the view dimension (FD) on Youtube-
Face and NUS datasets

Table 7: The set of individuals used in the ablation experiment
EN ENL

[4,0,2,3,-0,-1, -0] [4,0,-4]
[0,2,3,4,-2,-3,-0] [1,0,-2]

[2,4,-4] [4,1,1,-0,-2]
[4,3,0,1,2,-1,-1,-2,-4] [0,0,-3,2,1,-3,-3]
[0,2,4,3,1,-1,-2,-3,-2] [4,4,4,1,-0,-1,-1]

[3,4,-3] [2,4,2,1,-1,-3,-0]
[1,4,3,0,2,-1,-4,-2,-3] [3,4,4,4,1,-2,-4,-3,-0]

[1,0,4,2,-4,-2,-2] [2,2,-4,0,3,0,-1,-0,-3]
[0,3,-4] [0,1,1,-2,-1,2,2,-1,-2]

[0,4,3,-4,-0] [2,0,-0,2,3,3,-0,-0,-2]
[3,2,4,-3,-4] [0,4,4,-4,-1,4,2,-0,-0]

[3,4,0,2,-0,-2,-3] [4,4,2,2,-1,-0,-3]
[1,4,2,-4,-2] [1,4,2,1,-0,-2,-3]

[3,2,-1] [4,1,-3]
[3,2,1,4,-4,-1,-2] [2,4,0,-0,-1]
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: Yes
Justification: The abstract and introduction have clearly identified the contribution of this
paper as introducing evolutionary navigators for each multi-view model to address the
fitness evaluation bias problem. Experimental results fully demonstrate the effectiveness of
our proposed method, and evolutionary navigators can be seamlessly integrated into other
evolutionary multi-view classification methods, demonstrating their strong compatibility.
See section 4.2 for details.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes
Justification: This paper elaborates on the limitation of high training costs in the section
5, and mentions that optimization techniques will be considered in future work to reduce
training costs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: Yes
Justification: This paper provides detailed explanations for all the formulas involved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: Yes
Justification: In Appendix A.2 and Appendix A.3, this paper elaborates on details such as
the datasets used, the acquisition method for each dataset, the preprocessing workflow for
each dataset, the specific values of all hyperparameters applied to each dataset, the network
training approach, and the selection of optimizers. Additionally, section 4.1 provides a
detailed description of the five-fold cross-validation method employed in the experiments,
while section 4.2 thoroughly outlines the comparative methods involved. Through the above
descriptions, the experimental results can be fully reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: Yes
Justification: We will release the code and data with sufffcient instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: Yes
Justification: All implementation details were provided in Appendix A.2, Appendix A.3 and
section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: Yes
Justification: In this paper, to avoid the randomness caused by data partitioning and network
initialization, we adopt a five-fold cross-validation strategy across all datasets. The experi-
mental results are presented in the form of mean values and standard deviations. Details can
be found in section 4.1.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: No

Justification: This paper provides detailed explanations of the types of computing devices,
memory, and storage information used in the experiments, see Appendix A.2, but does not
include relevant computation time. This is because the focus of this paper is on addressing
the fitness evaluation bias problem rather than accelerating the process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes

Justification: We have checked the NeurIPS code of ethics for our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: Yes
Justification: The work in this paper enhances the accuracy and generalization of evolution-
ary multi-view classification methods in specific societal applications, including chemical
structure recognition and medical image classification.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: NA
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: Yes
Justification: The assets (datasets, code, models) used in the paper are open source, and our
use follows the relevant protocols.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: Yes
Justification: Documentation will be provided alongside the released code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: NA
Justification: Our paper doesn’t involve the crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: NA
Justification: Our paper does not involve crowdsourcing nor research with human subjectss.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: NA
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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