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Abstract

We prove that, for the fundamental regression task of learning a single neuron,
training a one-hidden layer ReLU network of any width by gradient flow from a
small initialisation converges to zero loss and is implicitly biased to minimise the
rank of network parameters. By assuming that the training points are correlated
with the teacher neuron, we complement previous work that considered orthogonal
datasets. Our results are based on a detailed non-asymptotic analysis of the dynam-
ics of each hidden neuron throughout the training. We also show and characterise a
surprising distinction in this setting between interpolator networks of minimal rank
and those of minimal Euclidean norm. Finally we perform a range of numerical
experiments, which corroborate our theoretical findings.

1 Introduction

One of the grand challenges for machine learning research is to understand how overparameterised
neural networks are able to fit perfectly the training examples and simultaneously to generalise
well to unseen data [Zhang, Bengio, Hardt, Recht, and Vinyals, 2021]. The double-descent phe-
nomenon [Belkin, Hsu, Ma, and Mandal, 2019], where increasing the neural network capacity beyond
the interpolation threshold can eventually reduce the test loss much further than could be achieved
around the underparameterised “sweet spot”, is a mystery from the standpoint of classical machine
learning theory. This has been observed to happen even for training without explicit regularisers.

Implicit bias of gradient-based algorithms. A key hypothesis towards explaining the double-
descent phenomenon is that the gradient-based algorithms that are used for training are implicitly
biased (or implicitly regularised) [Neyshabur, Bhojanapalli, McAllester, and Srebro, 2017] to con-
verge to solutions that in addition to fitting the training examples have certain properties which
cause them to generalise well. It has attracted much attention in recent years from the research
community, which has made substantial progress in uncovering implicit biases of training algorithms
in many important settings [Vardi, 2023]. For example, for classification tasks, and for homogeneous
networks (which is a wide class that includes ReLU networks provided they contain neither biases at
levels deeper than the first nor residual connections), Lyu and Li [2020] and Ji and Telgarsky [2020]
established that gradient flow is biased towards maximising the classification margin in parameter
space, in the sense that once the training loss gets sufficiently small, the direction of the parameters
subsequently converges to a Karush-Kuhn-Tucker point of the margin maximisation problem.
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Insights gained in this foundational research direction have not only shed light on overparameterised
generalisation, but have been applied to tackle other central problems, such as the susceptibility of
networks trained by gradient-based algorithms to adversarial examples [Vardi, Yehudai, and Shamir,
2022] and the possibility of extracting training data from network parameters [Haim, Vardi, Yehudai,
Shamir, and Irani, 2022].

Regression tasks and initialisation scale. Showing the implicit bias for regression tasks, where the
loss function is commonly mean square, has turned out to be more challenging than for classification
tasks, where loss functions typically have exponential tails. A major difference is that, whereas most
of the results for classification do not depend on how the network parameters are initialised, the
scale of the initialisation has been observed to affect decisively the implicit bias of gradient-based
algorithms for regression [Woodworth, Gunasekar, Lee, Moroshko, Savarese, Golan, Soudry, and
Srebro, 2020]. When it is large so that the training follows the lazy regime, we tend to have fast
convergence to a global minimum of the loss, however without an implicit bias towards sparsity and
with limited generalisation [Jacot, Ged, Şimşek, Hongler, and Gabriel, 2021]. The focus, albeit at the
price of uncertain convergence and lengthier training, has therefore been on the rich regime where
the initialisation scale is small.

Considerable advances have been achieved for linear networks. For example, Azulay, Moroshko,
Nacson, Woodworth, Srebro, Globerson, and Soudry [2021] and Yun, Krishnan, and Mobahi [2021]
proved that gradient flow is biased to minimise the Euclidean norm of the predictor for one-hidden
layer linear networks with infinitesimally small initialisation, and that the same holds also for deeper
linear networks under an additional assumption on their initialisation. A related extensive line of
work is on implicit bias of gradient-based algorithms for matrix factorisation and reconstruction,
which has been a fruitful test-bed for regression using multi-layer networks. For example, Gunasekar,
Woodworth, Bhojanapalli, Neyshabur, and Srebro [2017] proved that, under a commutativity restric-
tion and starting from a small initialisation, gradient flow is biased to minimise the nuclear norm of
the solution matrix; they also conjectured that the restriction can be dropped, which after a number
of subsequent works was refuted by Li, Luo, and Lyu [2021], leading to a detailed analysis of both
underparameterised and overparameterised regimes by Jin, Li, Lyu, Du, and Lee [2023].

For non-linear networks, such as those with the popular ReLU activation, progress has been difficult.
Indeed, Vardi and Shamir [2021] showed that precisely characterising the implicit bias via a non-trivial
regularisation function is impossible already for single-neuron one-hidden layer ReLU networks,
and Timor, Vardi, and Shamir [2023] showed that gradient flow is not biased towards low-rank
parameter matrices for multiple-output ReLU networks already with one hidden layer and small
training datasets.

ReLU networks and training dynamics. We suggest that, in order to further substantially our
knowledge of convergence, implicit bias, and generalisation for regression tasks using non-linear
networks, we need to understand more thoroughly the dynamics throughout the gradient-based
training. This is because of the observed strong influence that initialisation has on solutions, but is
challenging due to the highly non-convex optimisation landscape. To this end, evidence and intuition
were provided by Maennel, Bousquet, and Gelly [2018], Li et al. [2021], and Jacot et al. [2021], who
conjectured that, from sufficiently small initialisations, after an initial phase where the neurons get
aligned to a number of directions that depend only on the dataset, training causes the parameters to
pass close to a sequence of saddle points, during which their rank increases gradually but stays low.

The first comprehensive analysis in this vein was accomplished by Boursier, Pillaud-Vivien, and
Flammarion [2022], who focused on orthogonal datasets (which are therefore of cardinality less than
or equal to the input dimension), and established that, for one-hidden layer ReLU networks, gradient
flow from an infinitesimal initialisation converges to zero loss and is implicitly biased to minimise
the Euclidean norm of the network parameters. They also showed that, per sign class of the training
labels (positive or negative), minimising the Euclidean norm of the interpolator networks coincides
with minimising their rank.

Our contributions. We tackle the main challenge posed by Boursier et al. [2022], namely handling
datasets that are not orthogonal. A major obstacle to doing so is that, whereas the analysis of the
training dynamics in the orthogonal case made extensive use of an almost complete separation
between a turning phase and a growth phase for all hidden neurons, non-orthogonal datasets cause
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considerably more complex dynamics in which hidden neurons follow training trajectories that
simultaneously evolve their directions and norms [Boursier et al., 2022, Appendix A].

To analyse this involved dynamics in a reasonably clean setting, we consider the training of one-
hidden layer ReLU networks by gradient flow from a small balanced initialisation on datasets that are
labelled by a teacher ReLU neuron with which all the training points are correlated. More precisely,
we assume that the angles between the training points and the teacher neuron are less than π/4, which
implies that all angles between training points are less than π/2. The latter restriction has featured
per label class in many works in the literature (such as by Phuong and Lampert [2021] and Wang
and Pilanci [2022]), and the former is satisfied for example if the training points can be obtained by
summing the teacher neuron v∗ with arbitrary vectors of length less than ∥v∗∥/

√
2. All our other

assumptions are very mild, either satisfied with probability exponentially close to 1 by any standard
random initialisation, or excluding corner cases of Lebesgue measure zero.

Our contributions can be summarised as follows.

• We provide a detailed non-asymptotic analysis of the dynamics of each hidden neuron throughout
the training, and show that it applies whenever the initialisation scale λ is below a precise bound
which is polynomial in the network width m and exponential in the training dataset cardinality n.
Moreover, our analysis applies for any input dimension d > 1, for any n ≥ d (otherwise exact
learning of the teacher neuron may not be possible), for any m, and without assuming any
specific random distribution for the initialisation. In particular, we demonstrate that the role of
the overparameterisation in this setting is to ensure that initially at least one hidden neuron with a
positive last-layer weight has in its active half-space at least one training point.

• We show that, during a first phase of the training, all active hidden neurons with a positive
last-layer weight get aligned to a single direction which is positively correlated with all training
points, whereas all active hidden neurons with a negative last-layer weight get turned away from
all training points so that they deactivate. In contrast to the orthogonal dataset case where the
sets of training points that are in the active half-spaces of the neurons are essentially constant
during the training, in our correlated setting this first phase in general consists, for each neuron,
of a different sequence of stages during which the cardinality of the set of training points in its
active half-space gradually increases or decreases, respectively.

• We show that, during the rest of the training, the bundle of aligned hidden neurons with their
last-layer weights, formed by the end of the first phase, grows and turns as it travels from near the
origin to near the teacher neuron, and does not separate. To establish the latter property, which
is the most involved part of this work, we identify a set in predictor space that depends only on λ
and the training dataset, and prove: first, that the trajectory of the bundle stays inside the set; and
second, that this implies that the directional gradients of the individual neurons are such that the
angles between them are non-increasing.

• We prove that, after the training departs from the initial saddle, which takes time logarithmic in λ
and linear in d, the gradient satisfies a Polyak-Łojasiewicz inequality and consequently the loss
converges to zero exponentially fast.

• We prove that, although for any fixed λ the angles in the bundle of active hidden neurons do not
in general converge to zero as the training time tends to infinity, if we let λ tend to zero then the
networks to which the training converges have a limit: a network of rank 1, in which all non-zero
hidden neurons are positive scalings of the teacher neuron and have positive last-layer weights.
This establishes that gradient flow from an infinitesimal initialisation is implicitly biased to select
interpolator networks of minimal rank. Note also that the limit network is identical in predictor
space to the teacher neuron.

• We show that, surprisingly, among all networks with zero loss, there may exist some whose
Euclidean norm is smaller than that of any network of rank 1. Moreover, we prove that this is the
case if and only if a certain condition on angles determined by the training dataset is satisfied.
This result might be seen as refuting the conjecture of Boursier et al. [2022, section 3.2] that the
implicit bias to minimise Euclidean parameter norm holds beyond the orthogonal setting, and
adding some weight to the hypothesis of Razin and Cohen [2020]. The counterexample networks
in our proof have rank 2 and make essential use of the ReLU non-linearity.

• We perform numerical experiments that indicate that the training dynamics and the implicit bias
we theoretically established occur in practical settings in which some of our assumptions are
relaxed. In particular, gradient flow is replaced by gradient descent with a realistic learning rate,
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the initialisation scales are small but not nearly as small as in the theory, and the angles between
the teacher neuron and the training points are distributed around π/4.

We further discuss related work, prove all theoretical results, and provide additional material on our
experiments, in the appendix.

2 Preliminaries

Notation. We write: [n] for the set {1, . . . , n}, ∥v∥ for the Euclidean length of a vector v, v :=
v/∥v∥ for the normalised vector, ∡(v,v′) := arccos(v⊤v′) for the angle between v and v′, and
cone{v1, . . . ,vn} := {∑n

i=1 βivi | β1, . . . , βn ≥ 0} for the cone generated by vectors v1, . . . , vn.

One-hidden layer ReLU network. For an input x ∈ Rd, the output of the network is

hθ(x) :=
∑m

j=1aj σ(w
⊤
j x) ,

where m is the width, the parameters θ = (a,W ) ∈ Rm × Rm×d consist of last-layer weights
a = [a1, . . . , am] and hidden-layer weights W⊤ = [w1, . . . ,wm], and σ(u) := max{u, 0} is the
ReLU function.

Balanced initialisation. For all j ∈ [m] let

w0
j := λ zj a0j := sj∥w0

j∥

where λ > 0 is the initialisation scale, zj ∈ Rd \ {0}, and sj ∈ {±1}.

A precise upper bound on λ will be stated in Assumption 2.

We regard the initial unscaled hidden-layer weights zj and last-layer signs sj as given, without
assuming any specific random distributions for them. For example, we might have that each zj

consists of d independent centred Gaussians with variance 1
dm and each sj is uniform over {±1}.

We consider only initialisations for which the layers are balanced, i.e. |a0j | = ∥w0
j∥ for all j ∈ [m].

Since more generally each difference (atj)
2 − ∥wt

j∥2 is constant throughout training [Du, Hu, and
Lee, 2018, Theorem 2.1] and we focus on small initialisation scales that tend to zero, this restriction
(which is also present in Boursier et al. [2022]) is minor but simplifies our analysis.

Neuron-labelled correlated inputs. The teacher neuron v∗ ∈ Rd and the training dataset
{(xi, yi)}ni=1 ⊆ (Rd \ {0})× R are such that for all i we have

yi = σ(v∗⊤xi) ∡(v∗,xi) < π/4 .

In particular, since the angles between v∗ and the training points xi are acute, each label yi is positive.

To apply our results to a network with biases in the hidden layer and to a teacher neuron with a bias,
one can work in dimension d+ 1 and extend the training points to

[
xi

1

]
.

Mean square loss gradient flow. For the regression task of learning the teacher neuron by the
one-hidden layer ReLU network, we use the standard mean square empirical loss

L(θ) := 1
2n

∑n
i=1(yi − hθ(xi))

2 .

Our theoretical analysis concentrates on training by gradient flow, which from an initialisation as
above evolves the network parameters by descending along the gradient of the loss by infinitesimal
steps in continuous time [Li, Tai, and E, 2019]. Formally, we consider any parameter trajectory
θt : [0,∞) → Rm × Rm×d that is absolutely continuous on every compact subinterval, and that
satisfies the differential inclusion

dθt/dt ∈ −∂L(θt) for almost all t ∈ [0,∞) ,

where ∂L denotes the Clarke [1975] subdifferential of the loss function (which is locally Lipschitz).
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We work with the Clarke subdifferential, which is a generalisation of the gradient, because the ReLU
activation is not differentiable at 0, which causes non-differentiability of the loss function [Bolte,
Daniilidis, Ley, and Mazet, 2010]. Although it follows from our results that, in our setting, the
derivative of the ReLU can be fixed as σ′(0) := 0 like in the orthogonal case [Boursier et al., 2022,
Appendix D], and the gradient flow trajectories are uniquely defined, that is not a priori clear; hence
we work with the unrestricted Clarke subdifferential of the ReLU. We also remark that, in other
settings, σ′(0) cannot be fixed in this way due to gradient flow subtrajectories that correspond to
gradient descent zig-zagging along a ReLU boundary (cf. e.g. Maennel et al. [2018, section 9.4]).

Basic observations. We establish the formulas for the derivatives of the last-layer weights and the
hidden neurons; and that throughout the training, the signs of the last-layer weights do not change,
and their absolute values track the norms of the corresponding hidden neurons. The latter property
holds for all times t by continuity and enables us to focus the analysis on the hidden neurons.

Proposition 1. For all j ∈ [m] and almost all t ∈ [0,∞) we have:

(i) datj/dt = wt
j
⊤
gt
j and dwt

j/dt = atj g
t
j , where gt

j ∈ 1
n

∑n
i=1(yi − hθt(xi)) ∂σ(w

t
j
⊤
xi)xi;

(ii) atj = sj∥wt
j∥ ≠ 0.

The definition in part (i) of the vectors gt
j that govern the dynamics is a membership because the

subdifferential of the ReLU at 0 is the set of all values between 0 and 1, i.e. ∂σ(0) = [0, 1].

3 Assumptions

To state our assumptions precisely, we introduce some additional notation. Let

I+(v) := {i ∈ [n] |v⊤xi > 0} I0(v) := {i ∈ [n] |v⊤xi = 0} I−(v) := {i ∈ [n] |v⊤xi < 0}
denote the sets of indices of training points that are, respectively, either inside or on the boundary or
outside of the non-negative half-space of a vector v. Then let

J+ := {j ∈ [m] | I+(zj) ̸= ∅ ∧ sj = +1} J− := {j ∈ [m] | I+(zj) ̸= ∅ ∧ sj = −1}
be the sets of indices of hidden neurons that are initially active on at least one training point and
whose last-layer signs are, respectively, positive or negative. Also let

X := [x1, . . . ,xn] γI := 1
n

∑
i∈Iyixi

denote the matrix whose columns are all the training points, and the sum of all training points whose
indices are in a set I , weighted by the corresponding labels and divided by n.

Moreover we define, for each j ∈ J+∪ J−, a continuous trajectory αt
j in Rd by

α0
j := zj dαt

j/dt := sj∥αt
j∥γI+(αt

j)
for all t ∈ (0,∞) .

Thus, starting from the unscaled initialisation zj of the corresponding hidden neuron, αt
j follows a

dynamics obtained from that of wt
j in Proposition 1 (i) and (ii) by replacing the vector gt

j by γI+(αt
j)

,
which amounts to removing from gt

j the network output terms and the activation boundary summands.
These trajectories will be useful as yardsticks in our analysis of the first phase of the training.

Assumption 1. (i) d > 1, span{x1, . . . ,xn} = Rd, and ∥v∗∥ = 1.

(ii) J+ ̸= ∅, I0(zj) = ∅ for all j ∈ [m], and ∡(zj ,γ[n]) > 0 for all j ∈ J−.

(iii) x1, . . . , xn are distinct, the eigenvalues of 1
nXX⊤ are distinct, and v∗ does not belong to a

span of fewer than d eigenvectors of 1
nXX⊤.

(iv) |I0(αt
j)| ≤ 1 for all j ∈ J+∪ J− and all t ∈ [0,∞).

(v) For all j ∈ [m] and all 0 ≤ T < T ′, if for all t ∈ (T, T ′) we have I+(w
t
j) = I0

(
wT ′

j

)
̸= ∅

and I0(w
t
j) = I+

(
wT ′

j

)
= ∅, then for all t ≥ T ′ we have wt

j = wT ′

j .
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This assumption is very mild. Part (i) excludes the trivial univariate case without biases (for univariate
inputs with biases one needs d = 2), ensures that exact learning is possible, and fixes the length
of the teacher neuron to streamline the presentation. Part (ii) assumes that, initially: at least one
hidden neuron with a positive last-layer weight has in its active half-space at least one training
point, no training point is at a ReLU boundary, and no hidden neuron with a negative last-layer
weight is perfectly aligned with the γ[n] vector; this holds with probability at least 1− (3/4)m for

any continuous symmetric distribution of the unscaled hidden-neuron initialisations, e.g. zj
i.i.d.∼

N (0, 1
dmId), and the uniform distribution of the last-layer signs sj

i.i.d.∼U{±1}. Parts (iii) and (iv)
exclude corner cases of Lebesgue measure zero; observe that 1

nXX⊤ is positive-definite, and that
(iv) rules out a yardstick trajectory encountering two or more training points in its half-space boundary
at exactly the same time. Part (v) excludes some unrealistic gradient flows that might otherwise be
possible due to the use of the subdifferential: it specifies that, whenever a neuron deactivates (i.e. all
training points exit its positive half-space), then it stays deactivated for the remainder of the training.

Before our next assumption, we define several further quantities. Let η1 > · · · > ηd > 0 denote the
eigenvalues of 1

nXX⊤, and let u1, . . . , ud denote the corresponding unit-length eigenvectors such
that v∗ =

∑d
k=1 ν

∗
kuk for some ν∗1 , . . . , ν

∗
d > 0. Also, for each j ∈ J+∪ J−, let nj := |I−sj (zj)|

be the number of training points that should enter into or exit from the non-negative half-space along
the trajectory αt

j depending on whether the sign sj is positive or negative (respectively), and let

φt
j := ∡(αt

j ,γI+(αt
j)
) for all t ∈ [0,∞) such that I+(αt

j) ̸= ∅

be the evolving angle between αt
j and the vector governing its dynamics (if any). Then the existence

of the times at which the entries or the exits occur is confirmed in the following.
Proposition 2. For all j ∈ J+ ∪ J− there exist a unique enumeration i1j , . . . , i

nj

j of I−sj (zj) and
unique 0 = τ0j < τ1j < · · · < τ

nj

j such that for all ℓ ∈ [nj]:

(i) Isj (α
t
j) = Isj (zj) ∪ {i1j , . . . , iℓ−1

j } for all t ∈ (τ ℓ−1
j , τ ℓj );

(ii) I0(α
t
j) = ∅ for all t ∈ (τ ℓ−1

j , τ ℓj ), and I0

(
α

τℓ
j

j

)
= {iℓj}.

Finally we define two measurements of the unscaled initialisation and the training dataset, which are
positive thanks to Assumption 1, and which will simplify the presentation of our results.

δ := min



mini∈[n] ∥xi∥, mini,i′∈[n] xi
⊤ xi′ , mink∈[d−1](

√
ηk −√

ηk+1)(d− 1),
√
ηd,

mink∈[d] ν
∗
k

√
d, minj∈[m] ∥zj∥, minj∈J+ cosφ0

j , minj∈J− sinφ0
j ,

min

|αt
j
⊤
xi|

∣∣∣∣∣∣∣
j ∈ J+∪ J− ∧ ℓ ∈ [nj]

∧ t ∈ [τ ℓ−1
j , τ ℓj ] ∧ i ∈ [n]

∧ i ̸= iℓj ∧ (ℓ ̸= 1 ⇒ i ̸= iℓ−1
j )

, minj∈J−α0
j
⊤
xi1j

,

min{τ ℓj − τ ℓ−1
j | j ∈ J+∪ J− ∧ ℓ ∈ [nj]}


∆ := max{maxi∈[n]∥xi∥, maxj∈[m]∥zj∥, 1} .

Assumption 2. 0 < ε ≤ 1
4 and λ ≤

(
mn9n∆2/δ3

)−3/ε

.

The quantity ε introduced here has no effect on the network training, but is a parameter of our analysis,
so that varying it within the assumed range tightens some of the resulting bounds while loosening
others. The assumed bound on the initialisation scale λ is polynomial in the network width m and
exponential in the dataset cardinality n. The latter is also the case in Boursier et al. [2022], where the
bound was stated informally and without its dependence on parameters other than m and n.

4 First phase: alignment or deactivation

We show that, for each initially active hidden neuron, if its last-layer sign is positive then it turns to
include in its active half-space all training points that were initially outside, whereas if its last-layer
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sign is negative then it turns to remove from its active half-space all training points that were initially
inside. Moreover, those training points cross the activation boundary in the same order as they cross
the half-space boundary of the corresponding yardstick trajectory αt

j , and at approximately the same
times (cf. Proposition 2).
Lemma 3. For all j ∈ J+∪ J− there exist unique 0 = t0j < t1j < . . . < t

nj

j such that for all ℓ ∈ [nj]:

(i) Isj (w
t
j) = Isj (zj) ∪ {i1j , . . . , iℓ−1

j } for all t ∈ (tℓ−1
j , tℓj);

(ii) I0(w
t
j) = ∅ for all t ∈ (tℓ−1

j , tℓj), and I0

(
w

tℓj
j

)
= {iℓj};

(iii) |τ ℓj − tℓj | ≤ λ
1−

(
1+ 3ℓ−1

3nj

)
ε
.

The preceding lemma is proved by establishing, for this first phase of the training, non-asymptotic
upper bounds on the Euclidean norms of the hidden neurons and hence on the absolute values of the
network outputs, and inductively over the stage index ℓ, on the distances between the unit-sphere
normalisations of αt

j and wt
j . Based on that analysis, we then obtain that each negative-sign hidden

neuron does not grow from its initial length and deactivates by time T0 := maxj∈J+∪J− τ
nj

j + 1.
Lemma 4. For all j ∈ J− we have:

∥wT0
j ∥ ≤ λ∥zj∥ wt

j = wT0
j for all t ≥ T0 .

We also obtain that, up to a later time T1 := ε ln(1/λ)/∥γ[n]∥, each positive-sign hidden neuron:
grows but keeps its length below 2∥zj∥λ1−ε, continues to align to the vector γ[n] up to a cosine of
at least 1− λε, and maintains bounded by λ1−3ε the difference between the logarithm of its length
divided by the initialisation scale and the logarithm of the corresponding yardstick vector length.
Lemma 5. For all j ∈ J+ we have:

∥wT1
j ∥ < 2∥zj∥λ1−ε wT1

j

⊤
γ[n] ≥ 1− λε | ln ∥αT1

j ∥ − ln ∥wT1
j /λ∥| ≤ λ1−3ε .

5 Second phase: growth and convergence

We next analyse the gradient flow subsequent to the deactivation of the negative-sign hidden neurons
by time T0 and the alignment of the positive-sign ones up to time T1, and establish that the loss
converges to zero at a rate which is exponential and does not depend on the initialisation scale λ.
Theorem 6. Under Assumptions 1 and 2, there exists a time T2 < ln(1/λ)(4 + ε)d∆2/δ6 such that
for all t ≥ 0 we have L(θT2+t) < 0.5∆2 e−t · 0.4 δ4/∆2

.

In particular, for ε = 1/4 and λ =
(
(mnn)9∆

2/δ3
)−3/ε

(cf. Assumption 2), the first bound in

Theorem 6 becomes T2 < (lnm+ n lnn) d · 17 · 27∆4/δ9.

The proof of Theorem 6 is in large part geometric, with a key role played by a set S := S1 ∪ · · · ∪ Sd

in predictor space, whose constituent subsets are defined as

Sℓ :=

v =

d∑
k=1

νkuk

∣∣∣∣∣∣
∧

1≤k<ℓ

Ωk ∧ Φℓ ∧
∧

ℓ≤k<k′≤d

(Ψ↓
k,k′ ∧Ψ↑

k,k′) ∧ Ξ

 ,

where the individual constraints are as follows (here η0 := ∞ so that e.g. η1

2η0
= 0):

Ωk : 1 <
νk
ν∗k

Φℓ :
ηℓ

2ηℓ−1
<

νℓ
ν∗ℓ

≤ 1 Ψ↓
k,k′ :

ηk′

2ηk

νk
ν∗k

<
νk′

ν∗k′

Ξ: v⊤ XX⊤(v∗ − v) > λε/3 Ψ↑
k,k′ :

νk′

ν∗k′
< 1−

(
1− νk

ν∗k

)1
2+

η
k′

2ηk

.

Thus S is connected, open, and constrained by Ξ to be within the ellipsoid v⊤XX⊤(v∗ − v) = 0

which is centred at v∗

2 , with the remaining constraints slicing off further regions by straight or curved
boundary surfaces.
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In the most complex component of this work, we show that, for all t ≥ T1, the trajectory of the sum
vt :=

∑
j∈J+

atjw
t
j of the active hidden neurons weighted by the last layer stays inside S, and the

cosines of the angles between the neurons remain above 1− 4λε. This involves proving that each
face of the boundary of S is repelling for the training dynamics when approached from the inside;
we remark that, although that is in general false for the entire boundary of the constraint Ξ, it is
in particular true for its remainder after the slicing off by the other constraints. We also show that
all points in S are positively correlated with all training points, which together with the preceding
facts implies that, during this second phase of the training, the network behaves approximately like
a linear one-hidden layer one-neuron network. Then, as the cornerstone of the rest of the proof,
we show that, for all t ≥ T2, the gradient of the loss satisfies a Polyak-Łojasiewicz inequality
∥∇L(θt)∥2 >

2ηd∥γ[n]∥
5η1

L(θt). Here T2 := inf{t ≥ T1 | νt1/ν∗1 ≥ 1/2} is a time by which the
network has departed from the initial saddle, more precisely when the first coordinate νt1 of the bundle
vector vt with respect to the basis consisting of the eigenvectors of the matrix 1

nXX⊤ crosses the
half-way threshold to the first coordinate ν∗1 of the teacher neuron.

The interior of the ellipsoid in the constraint Ξ actually consists of all vectors that have an acute
angle with the derivative of the training dynamics in predictor space, and the “padding” of λε/3 is
present because the derivative of the bundle vector vt is “noisy” due to the latter being made up
of the approximately aligned neurons. The remaining constraints delimit the subsets S1, . . . , Sd

of the set S, through which the bundle vector vt passes in that order, with each unique “handover”
from Sℓ to Sℓ+1 happening exactly when the corresponding coordinate νtℓ exceeds its target ν∗ℓ . The
non-linearity of the constraints Ψ↑

k,k′ is needed to ensure the repelling for the training dynamics.

6 Implicit bias of gradient flow

Let us denote the set of all balanced networks by

Θ := {(a,W ) ∈ Rm × Rm×d | ∀j ∈ [m] : |aj | = ∥wj∥}
and the subset in which all non-zero hidden neurons are positive scalings of v∗, have positive
last-layer weights, and have lengths whose squares sum up to ∥v∗∥ = 1, by

Θv∗ := {(a,W ) ∈ Θ | ∑m
j=1∥wj∥2 = 1 ∧ ∀j ∈ [m] : wj ̸= 0 ⇒ (wj = v∗ ∧ aj > 0)} .

Our main result establishes that, as the initialisation scale λ tends to zero, the networks with zero loss
to which the gradient flow converges tend to a network in Θv∗ . The explicit subscripts indicate the
dependence on λ of the parameter vectors. The proof builds on the preceding results and involves a
careful control of accumulations of approximation errors over lengthy time intervals.

Theorem 7. Under Assumptions 1 and 2, L
(

lim
t→∞

θt
λ

)
= 0 and lim

λ→0+
lim
t→∞

θt
λ ∈ Θv∗ .

7 Interpolators with minimum norm

To compare the set Θv∗ of balanced rank-1 interpolator networks with the set of all minimum-norm
interpolator networks, in this section we focus on training datasets of cardinality d, we assume the
network width is greater than 1 (otherwise the rank is necessarily 1), and we exclude the threshold
case of Lebesgue measure zero where M = 0. The latter measurement of the training dataset is
defined below in terms of angles between the teacher neuron and vectors in any two cones generated
by different generators of the dual of the cone of all training points.

Let [χ1, . . . ,χd]⊤ := X−1 and

M := max

cos∡(p, q)− sin∡(p,v∗)

∣∣∣∣∣∣
∅ ⊊ K ⊊ [d]

∧ 0 ̸= p ∈ cone{χk | k ∈ K}
∧ 0 ̸= q ∈ cone{χk | k /∈ K}

 .

Assumption 3. n = d, m > 1, and M ≠ 0.

We obtain that, surprisingly, Θv∗ equals the set of all interpolators with minimum Euclidean norm if
M < 0, but otherwise they are disjoint.

8



10−810−610−410−2100102
10−6

10−4

10−2

100

102

m
ax

.a
ng

le
b.

ac
tiv

e
ne

ur
on

s

Centred training dataset

10−810−610−410−2100102
10−6

10−4

10−2

100

102

Uncentred training dataset

d = 4 d = 16 d = 64 d = 256 d = 1024

Figure 1: Dependence of the maximum angle between active hidden neurons on the initialisation
scale λ, for two generation schemes of the training dataset and a range of input dimensions, at the end
of the training. Both axes are logarithmic, and each point plotted shows the median over five trials.

Theorem 8. Under Assumptions 1 and 3:

(i) if M < 0 then Θv∗ is the set of all global minimisers of ∥θ∥2 subject to L(θ) = 0;

(ii) if M > 0 then no point in Θv∗ is a global minimiser of ∥θ∥2 subject to L(θ) = 0.

For each of the two cases, we provide a family of example datasets in the appendix. We remark that a
sufficient condition for M < 0 to hold is that the inner product of any two distinct rows χk of the
inverse of the dataset matrix X is non-positive, i.e. that the inverse of the Gram matrix of the dataset
(in our setting this Gram matrix is positive) is a Z-matrix (cf. e.g. Fiedler and Pták [1962]). Also, if
the training points were orthogonal then all the cos∡(p, q) terms in the definition of M would be
zero and consequently we would have M < 0; this is consistent with the result that, per sign class of
the training labels in the orthogonal setting, minimising the Euclidean norm of interpolators coincides
with minimising their rank [Boursier et al., 2022, Appendix C].

8 Experiments

We consider two schemes for generating the training dataset, where Sd−1 is the unit sphere in Rd.

Centred: We sample µ from U(Sd−1), then sample x1, . . . ,xd from N (µ, ρ
dId) where ρ = 1, and

finally set v∗ = µ. This distribution has the property that, in high dimensions, the angles between the
teacher neuron v∗ and the training points xi concentrate around π/4. We exclude rare cases where
some of these angles exceed π/2.

Uncentred: This is the same, except that we use ρ =
√
2− 1, sample one extra point x0, and finally

set v∗ = x0. Here the angles between v∗ and xi also concentrate around π/4 in high dimensions,
but the expected distance between v∗ and µ is

√
ρ.

For each of the two dataset schemes, we train a one-hidden layer ReLU network of width m = 200 by
gradient descent with learning rate 0.01, from a balanced initialisation such that zj

i.i.d.∼N (0, 1
dmId)

and sj
i.i.d.∼U{±1}, and for a range of initialisation scales λ and input dimensions d.2

We present in Figure 1 some results from considering initialisation scales λ = 42, 41, . . . , 4−12, 4−13

and input dimensions d = 4, 16, 64, 256, 1024, where we train until the number of iterations

2We are making code to run the experiments available at https://github.com/englert-m/shallow_
ReLU_dynamics.
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Figure 2: Evolution of the training loss, and of an outside distribution test loss, during training for an
example centred training dataset in dimension 16 and width 200. The horizontal axes, logarithmic for
the training loss and linear for the test loss, show iterations. The vertical axes are logarithmic.

reaches 2 · 107 or the loss drops below 10−9. The plots are in line with Theorem 7, showing
how the maximum angle between active hidden neurons at the end of the training decreases with λ.

Figure 2 on the left illustrates the exponentially fast convergence of the training loss (cf. Theorem 6),
and on the right how the implicit bias can result in good generalisation. The test loss is computed
over an input distribution which is different from that of the training points, namely we sample 64 test
inputs from N (0, Id). These plots are for initialisation scales λ = 4−2, 4−3, . . . , 4−7, 4−8.

9 Conclusion

We provided a detailed analysis of the dynamics of training a shallow ReLU network by gradient flow
from a small initialisation for learning a single neuron which is correlated with the training points,
establishing convergence to zero loss and implicit bias to rank minimisation in parameter space. We
believe that in particular the geometric insights we obtained in order to deal with the complexities of
the multi-stage alignment of hidden neurons followed by the simultaneous evolution of their norms
and directions, will be useful to the community in the ongoing quest to understand implicit bias of
gradient-based algorithms for regression tasks using non-linear networks.

A major direction for future work is to bridge the gap between, on one hand, our assumption that
the angles between the teacher neuron and the training points are less than π/4, and the other, the
assumption of Boursier et al. [2022] that the training points are orthogonal, while keeping a fine
granularity of description. We expect this to be difficult because it seems to require handling bundles
of approximately aligned neurons which may have changing sets of training points in their active
half-spaces and which may separate during the training. However, it should be straightforward to
extend our results to orthogonally separable datasets and two teacher ReLU neurons, where each of
the latter has an arbitrary sign, labels one of the two classes of training points, and has angles less
than π/4 with them; the gradient flow would then pass close to a second saddle point, where the
labels of one of the classes have been nearly fitted but the hidden neurons that will fit the labels of the
other class are still small. We report on related numerical experiments in the appendix.

We also obtained a condition on the dataset that determines whether rank minimisation and Euclidean
norm minimisation for interpolator networks coincide or are distinct. Although this dichotomy
remains true if the π/4 correlation bound is relaxed to π/2, the implicit bias of gradient flow in
that extended setting is an open question. Other directions for future work include considering
multi-neuron teacher networks, student networks with more than one hidden layer, further non-linear
activation functions, and gradient descent instead of gradient flow; also refining the bounds on the
initialisation scale and the convergence time.
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