
Published in Transactions on Machine Learning Research (10/2023)

Analysis of Convolutions, Non-linearity and Depth in Graph
Neural Networks using Neural Tangent Kernel

Mahalakshmi Sabanayagam sabanaya@cit.tum.de
School of Computation, Information and Technology
Technical University of Munich

Pascal Esser esser@cit.tum.de
School of Computation, Information and Technology
Technical University of Munich

Debarghya Ghoshdastidar ghoshdas@cit.tum.de
School of Computation, Information and Technology
Technical University of Munich

Reviewed on OpenReview: https: // openreview. net/ forum? id= xgYgDEof29

Abstract

The fundamental principle of Graph Neural Networks (GNNs) is to exploit the structural
information of the data by aggregating the neighboring nodes using a ‘graph convolution’
in conjunction with a suitable choice for the network architecture, such as depth and ac-
tivation functions. Therefore, understanding the influence of each of the design choice on
the network performance is crucial. Convolutions based on graph Laplacian have emerged
as the dominant choice with the symmetric normalization of the adjacency matrix as the
most widely adopted one. However, some empirical studies show that row normalization of
the adjacency matrix outperforms it in node classification. Despite the widespread use of
GNNs, there is no rigorous theoretical study on the representation power of these convo-
lutions, that could explain this behavior. Similarly, the empirical observation of the linear
GNNs performance being on par with non-linear ReLU GNNs lacks rigorous theory.
In this work, we theoretically analyze the influence of different aspects of the GNN architec-
ture using the Graph Neural Tangent Kernel in a semi-supervised node classification setting.
Under the population Degree Corrected Stochastic Block Model, we prove that: (i) linear
networks capture the class information as good as ReLU networks; (ii) row normalization
preserves the underlying class structure better than other convolutions; (iii) performance
degrades with network depth due to over-smoothing, but the loss in class information is
the slowest in row normalization; (iv) skip connections retain the class information even
at infinite depth, thereby eliminating over-smoothing. We finally validate our theoretical
findings numerically and on real datasets such as Cora and Citeseer.

1 Introduction

With the advent of Graph Neural Networks (GNNs), there has been a tremendous progress in the devel-
opment of computationally efficient state-of-the-art methods in various graph based tasks, including drug
discovery, community detection and recommendation systems (Wieder et al., 2020; Fortunato & Hric, 2016;
van den Berg et al., 2017). Many of these problems depend on the structural information of the data, repre-
sented by the graph, along with the features of the nodes. Because GNNs exploit this topological information
encoded in the graph, it can learn better representation of the nodes or the entire graph than traditional
deep learning techniques, thereby achieving state-of-the-art performances. In order to accomplish this, GNNs
apply aggregation function to each node in a graph that combines the features of the neighboring nodes,

1

https://openreview.net/forum?id=xgYgDEof29

Published in Transactions on Machine Learning Research (10/2023)

and its variants differ principally in the methods of aggregation. For instance, graph convolution networks
use mean neighborhood aggregation through spectral approaches (Bruna et al., 2014; Defferrard et al., 2016;
Kipf & Welling, 2017) or spatial approaches (Hamilton et al., 2017; Duvenaud et al., 2015; Xu et al., 2019),
graph attention networks apply multi-head attention based aggregation (Velickovic et al., 2018) and graph
recurrent networks employ complex computational module (Scarselli et al., 2008; Li et al., 2016). Of all the
aggregation policies, the spectral graph Laplacian based approach is most widely used in practice, specifically
the one proposed by Kipf & Welling (2017) owing to its simplicity and empirical success. In this work, we
focus on such graph Laplacian based aggregations in Graph Convolution Networks (GCNs), which we refer
to as graph convolutions or diffusion operators.

Kipf & Welling (2017) propose a GCN for node classification, a semi-supervised task, where the goal is to
predict the label of a node using its feature and neighboring node information. They suggest symmetric
normalization Ssym = D− 1

2 AD− 1
2 as the graph convolution, where A and D are the adjacency and degree

matrix of the graph, respectively. Ever since its introduction, Ssym remains the popular choice. However,
subsequent works such as Wang et al. (2018); Wang & Leskovec (2020); Ragesh et al. (2021) explore row
normalization Srow = D−1A and particularly, Wang et al. (2018) observes that Srow outperforms Ssym for
two-layered GCN empirically. Intrigued by this observation, and the fact that both Ssym and Srow are simply
degree normalized adjacency matrices, we study the behavior over depth and observe that Srow performs
better than Ssym in general, as illustrated in Figure 1 (Details of the experiment in Appendix C.1).

2 4 8

Depth of GCN

80

81

82

83

84

85

86

87

88

A
cc

u
ra

cy
of

cl
as

s
p

re
d

ic
ti

on
(%

)

Linear Srow
ReLU Srow

Linear Ssym
ReLU Ssym

Figure 1: GCN performance
on Cora dataset.

Furthermore, another striking observation from Figure 1 is that the perfor-
mance of GCN without skip connections decreases considerably with depth
for both Ssym and Srow. This contradicts the conventional wisdom about
standard neural networks which exhibit improvement in the performance
as depth increases. Several works (Kipf & Welling, 2017; Chen et al.,
2018b; Wu et al., 2019) observe this behavior empirically and attribute it
to the over-smoothing effect from the repeated application of the diffusion
operator, resulting in averaging out of the feature information to a degree
where it becomes uninformative (Li et al., 2018; Oono & Suzuki, 2019; Esser
et al., 2021). As a solution to this problem, Chen et al. (2020) and Kipf &
Welling (2017) propose different forms of skip connections that overcome
the smoothing effect and thus outperform the vanilla GCN. Extending it to
the comparison of graph convolutions, Figure 1 shows Srow is preferable to
Ssym over depth in general for different GCNs. Naturally, we ask: what characteristics of Srow enable better
representation learning than Ssym in GCNs? Another contrasting behavior to the standard deep networks
is that linear GCNs perform on par or even better than non-linear GCNs as demonstrated in Wu et al.
(2019). While standard neural networks with non-linear activations are proved to be universal function
approximator, hence an essential component in a network, this behavior of GCNs is surprising.

Rigorous theoretical analysis is particularly challenging in GCNs compared to the standard neural networks
because of the added complexity due to the graph convolution. Adding skip connections and non-linearity
further increase the complexity of the analysis. To overcome these difficulties, we consider GCN in infinite
width limit wherein the Neural Tangent Kernel (NTK) captures the network characteristics very well (Jacot
et al., 2018). The infinite width assumption is not restrictive for our analysis as the NTK model shows
same general trends as trained GCN. Moreover, NTK enables the analysis to be parameter-free and thus
eliminate additional complexity induced, for example, by optimization. Through the lens of NTK, we study
the impact of different graph convolutions under a random graph model: Degree Corrected Stochastic Block
Model (DC-SBM) (Karrer & Newman, 2011). The node degree heterogeneity induced in DC-SBM allows us to
analyze the effect of different types of normalization of the adjacency matrix, thus revealing the characteristic
difference between Ssym and Srow. Additionally, this model enables analysis of graphs that have homophilic,
heterophilic and core-periphery structures. In this paper, we present a formal approach to analyze GCNs and,
specifically, the effect of activations, the representation power of different graph convolutions, the influence
of depth and the role of skip connections. This is a significant step toward understanding GCNs as it enables
more informed network design choices like the convolution, depth and activations, as well as development of
competitive methods based on grounded theoretical reasoning rather than heuristics.

2

Published in Transactions on Machine Learning Research (10/2023)

Contributions. We provide a rigorous theoretical analysis of the discussed empirical observations in GCN
under DC-SBM distribution using graph NTK, leading to the following contributions.

(i) In Sections 2–3, we present the NTK for GCN in infinite width limit in the node classification setting
and our general framework of analysis, respectively.

(ii) In Section 4, we derive the NTK under DC-SBM and show that linear GCNs capture the class structure
similar to ReLU GCN (or slightly better than ReLU) and, hence, linear GCN performs as good as ReLU
GCNs. For convenience, we restrict the subsequent analysis to linear GCNs.

(iii) In Section 5, we show that for both homophilic and heterophilic graphs, row normalization preserves the
class structure better, but is not useful in core-periphery models. We also derive that there is over-smoothing
in vanilla GCN since the class separability decreases with depth.

(iv) In Section 6, we leverage the power of NTK to analyze different skip connections (Kipf & Welling,
2017; Chen et al., 2020). We derive the corresponding NTKs and show that skip connections retain class
information even at infinite depth along with numerical validation.

Throughout the paper we illustrate the results numerically on planted models and validate the theoretical
results on real dataset Cora in Section 7 and Citeseer in Appendix C.5, and conclude in Section 8 with the
discussion on the impact of the results and related works. We provide all proofs, experimental details and
more experiments in the appendix.

Notations. We represent matrix and vector by bold faced uppercase and lowercase letters, respectively,
the matrix Hadamard (entry-wise) product by ⊙ and the scalar product by ⟨., .⟩. M⊙k denotes Hadamard
product of matrix M with itself repeated k times. We use σ̇(.) for derivative of function σ(.), E [.] for
expectation, and [d] = {1, 2, . . . , d}.

2 Neural Tangent Kernel for Graph Convolutional Network

Before going into a detailed analysis of graph convolutions we provide a brief background on Neural Tangent
Kernel (NTK) and derive its formulation in the context of node level prediction using infinitely-wide GCNs.
Jacot et al. (2018); Arora et al. (2019); Yang (2019) show that the behavior and generalization properties of
randomly initialized wide neural networks trained by gradient descent with infinitesimally small learning rate
is equivalent to a kernel machine. Furthermore, Jacot et al. (2018) also shows that the change in the kernel
during training decreases as the network width increases, and hence, asymptotically, one can represent an
infinitely wide neural network by a deterministic NTK, defined by the gradient of the network with respect
to its parameters as

Θ(x, x′) := E
W∼N (0,I)

[〈
∂F (W, x)

∂W ,
∂F (W, x′)

∂W

〉]
. (1)

Here F (W, x) represents the output of the network at data point x parameterized by W and the expectation
is with respect to W, where all the parameters of the network are randomly sampled from standard Gaussian
distribution N (0, 1). Although the ‘infinite width’ assumption is too strong to model real (finite width)
neural networks, and the absolute performance may not exactly match, the empirical trends of NTK match
the corresponding network counterpart, allowing us to draw insightful conclusions. This trade-off is worth
considering as this allows the analysis of over-parameterized neural networks without having to consider
hyper-parameter tuning and training.

Formal GCN Setup and Graph NTK. We present the formal setup of GCN and derive the corresponding
NTK, using which we analyze different graph convolutions, skip connections and activations. Given a graph
with n nodes and a set of node features {xi}n

i=1 ⊂ Rf , we may assume without loss of generality that the
set of observed labels {yi}m

i=1 correspond to first m nodes. We consider K classes, thus yi ∈ {0, 1}K and
the goal is to predict the n − m unknown labels {yi}n

i=m+1. We represent the observed labels of m nodes as
Y ∈ {0, 1}m×K , and the node features as X ∈ Rn×f with the assumption that entire X is available during
training. We define S ∈ Rn×n to be the graph convolution operator using the adjacency matrix A and the

3

Published in Transactions on Machine Learning Research (10/2023)

degree matrix D. The GCN of depth d is given by

FW(X, S) :=
√

cσ

hd
Sσ

(
. . . σ

(√
cσ

h1
Sσ (SXW1) W2

)
. . .

)
Wd+1 (2)

where W := {Wi ∈ Rhi−1×hi}d+1
i=1 is the set of learnable weight matrices with h0 = f and hd+1 = K, hi is

the size of layer i ∈ [d] and σ : R → R is the point-wise activation function where σ(x) := x for linear and
σ(x) := max(0, x) for ReLU activations. Note that linear σ(x) is same as Simplified GCN (Wu et al., 2019).
We initialize all the weights to be i.i.d standard Gaussian N (0, 1) and optimize it using gradient descent. We
derive the NTK for the GCN in infinite width setting, that is, h1, . . . , hd → ∞. While this setup is similar
to Kipf & Welling (2017), it is important to note that we consider linear output layer so that NTK remains
constant during training (Liu et al., 2020) and a normalization

√
cσ/hi for layer i to ensure that the input

norm is approximately preserved and c−1
σ = E

u∼N (0,1)

[
(σ(u))2

]
(similar to Du et al. (2019a)). The following

theorem states the NTK between every pair of nodes, as a n × n matrix that can be computed at once.

Theorem 1 (NTK for Vanilla GCN) For the vanilla GCN defined in (2), the NTK Θ at depth d is

Θ(d) =
d+1∑
k=1

S
(

. . . S
(

S︸ ︷︷ ︸
d+1−k terms

(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST . (3)

Here Σk ∈ Rn×n is the co-variance between nodes of layer k, and is given by Σ1 = SXXT ST , Σk = SEk−1ST

with Ek = cσ E
F∼N (0,Σk)

[
σ(F)σ(F)T

]
, Ėk = cσ E

F∼N (0,Σk)

[
σ̇(F)σ̇(F)T

]
and Ėd+1 = 1n×n.

Comparison to Du et al. (2019b). While the NTK in (3) is similar to the graph NTK in Du et al.
(2019b), the main difference is that NTK in our case is computed for all pairs of nodes in a graph as we focus
on semi-supervised node classification, whereas Du et al. (2019b) considers supervised graph classification
where input is many graphs and so the NTK is evaluated for all pairs of graphs. Moreover, the significant
difference is in using the NTK to analytically characterize the influence of convolutions, non-linearity, depth
and skip connections on the performance of GCN.

3 Theoretical Framework of our Analysis

In this section we discuss the general framework of our analysis that enables in substantiating different
empirical observations in GCNs. We use the derived NTK in Theorem 1 for our analysis on various aspects
of the GCN architecture and consider four different graph convolutions as defined in Definition 1 with
Assumption 1 on the network.

Definition 1 Symmetric degree normalized Ssym := D− 1
2 AD− 1

2 , row normalized Srow := D−1A, column
normalized Scol := AD−1 and unnormalized Sadj := 1

n A convolutions.

Assumption 1 (GCN with orthonormal features) GCN in (2) is said to have orthonormal features if
XXT := In, where In is the identity matrix of size n.

Remark on Assumption 1. The orthonormal features assumption eliminates the influence of the features
and facilitates identification of the influence of different convolution operators clearly. Additionally, it helps
in quantifying the exact interplay between the graph structure and different activation functions in the
network. Nevertheless, the analysis including the features can be done using Contextual Stochastic Block
Model (Deshpande et al., 2018) resulting in similar theoretical conclusions as detailed in Appendix B.9.
Besides, the evaluation of our theoretical results without this assumption on real datasets is in Section 7
and Appendix C.5 that substantiate our findings.

While the NTK in (3) gives a precise characterization of the infinitely wide GCN, we can not di-
rectly draw conclusions about the convolution operators or activation functions without further assumptions
on the input graph. Therefore, we consider a planted random graph model as described below.

4

Published in Transactions on Machine Learning Research (10/2023)

Random Graph Model. We consider that the underlying graph is from the Degree Corrected Stochastic
Block Model (DC-SBM) (Karrer & Newman, 2011) since it enables us to distinguish between Ssym, Srow,
Scol and Sadj by allowing non-uniform degree distribution on the nodes. The model is defined as follows:
Consider a set of n nodes divided into K latent classes (or communities), Ci ∈ [1, K]. The DC-SBM model
generates a random graph with n nodes that has mutually independent edges with edge probabilities specified
by the population adjacency matrix M = E [A] ∈ Rn×n, where

Mij =
{

pπiπj if Ci = Cj

qπiπj if Ci ̸= Cj

with the parameters p, q ∈ [0, 1] governing the edge probabilities inside and outside classes, and the degree
correction πi ∈ [0, 1] ∀ i ∈ [n] with

∑
i πi = cn for a positive c that controls the graph sparsity. The constant

c should be
[

1√
n

, 1
]

since the expected number of edges in this DC-SBM is O
(

(cn)2
)

and is bounded by[
n, n2]. Note that we deviate from the original condition

∑
i πi = K in Karrer & Newman (2011), to ensure

that the analysis even holds for dense graphs. One can easily verify that the analysis holds for
∑

i πi = K as
well. We denote π = (π1, . . . , πn) for ease of representation. DC-SBM allows us to model different graphs:
Homophilic graphs: 0 ≤ q < p ≤ 1, Heterophilic graphs: 0 ≤ p < q ≤ 1 and Core-Periphery
graphs: p = q (no assumption on class structure) and π encodes core and periphery. It is evident that
the NTK is a complex quantity and computing its expectation is challenging given the dependency of terms
from the degree normalization in S, its powers Si and SST . To simplify our analysis, we make the following
assumption on the DC-SBM,

Assumption 2 (Population DC-SBM) The graph has a weighted adjacency A = M.

Remark on Assumption 2. Assuming A = M is equivalent to analyzing DC-SBM in expected setting and
it further enables the computation of analytic expression for the population NTK instead of the expected
NTK. Moreover, we empirically show that this analysis holds for random DC-SBM setting as well in Figure 5.
Furthermore, this also implies addition of self loop with a probability p.

Analysis Framework. We analyze the observations of different GCNs by deriving the population NTK
for each model and compare the preservation of class information in the kernel. Note that the true class
information in the graph is determined by the blocks of the underlying DC-SBM – formally by p and q and
independent of the degree correction π. Consequently, we define the class separability of the DC-SBM as
r := p−q

p+q . Hence, in order to capture the class information, the kernel should ideally have a block structure
that aligns with the one of the DC-SBM. Therefore, we measure the class separability of the kernel as the
average difference between in-class and out-of-class blocks. The best case is indeed when the class separability
of the kernel is proportional (due to scale invariance of the kernel) to p − q and independent of π.

4 Linear Activation Captures Class Information as Good as ReLU Activation

While Kipf & Welling (2017) proposes ReLU GCNs, Wu et al. (2019) demonstrates that linear GCNs
perform on par or even better than ReLU GCNs in a wide range of real world datasets, seemingly going
against the notion that non-linearity is essential in neural networks. To understand this behavior, we derive
the population NTK under DC-SBM for linear and ReLU GCNs, and compare the class separability of the
kernels (average in-class and out-of-class block difference). Since our objective is in comparing linear and
ReLU GCN, we consider homogeneous degree correction π, that is, ∀ i, πi := c. In this case, population
NTK for symmetric, row and column normalized adjacencies are equivalent, and unnormalized adjacency
differ by a scaling that does not impact the block difference comparison. The following theorems state the
population NTK for linear and ReLU GCNs of depth d for normalized adjacency S and K = 2. The results
hold for K > 2 as presented in Appendix B.3.5.

Theorem 2 (Population NTK Θ̃ for linear GCN) Let Assumption 1 and 2 hold, 1[.] be indicator func-
tion, K = 2, r := p−q

p+q , δij := (−1)1[Ci ̸=Cj] and ∀ i, πi := c. Then ∀ i, j, population NTK for linear GCN of

5

Published in Transactions on Machine Learning Research (10/2023)

0.1 0.5 0.9

True class separability (r)

10−18

10−16

10−14

10−12

10−10

10−8

10−6

∣ ∣ ∣Θ̃
(d

)
C i

=
C j
−

Θ̃
(d

)
C i
6=
C j

∣ ∣ ∣

d = 1
d = 2
d = 4

d = 8
Linear GCN
ReLU GCN

2 4 8

Depth of GCN

80

81

82

83

84

85

86

87

88

A
cc

u
ra

cy
of

cl
as

s
p

re
d

ic
ti

on
(%

)

Linear Srow
ReLU Srow

Linear Ssym
ReLU Ssym

Figure 2: Linear as good as ReLU activation. Left: analytical plot of in-class and out-of-class block
difference of the population NTK Θ̃(d) for a graph of size n = 1000, depths d = {1, 2, 4, 8} and varying class
separability r of linear and ReLU GCNs (in log scale). Right: performance of trained linear and ReLU
GCNs on Cora for d = {2, 4, 8}.

depth d, Θ̃(d)
lin, is (

Θ̃(d)
lin

)
ij

= d + 1
n

(
1 + δijr2(d+1)

)
.

Theorem 3 (Population NTK Θ̃ for ReLU GCN) Let assumptions of Theorem 2 hold and κ0(x) :=
1
π (π − arccos (x)), κ1(x) := 1

π

(
x (π − arccos (x)) +

√
1 − x2

)
, ∆1 := 1−r2

1+r2 and ∆k := (1−r2)+(1+r2)κ1(∆k−1)
(1+r2)+(1−r2)κ1(∆k−1) .

Furthermore, ∆n
k and ∆d

k denote the numerator and denominator of ∆k, respectively. Then ∀ i, j, the
population NTK for ReLU GCN of depth d, Θ̃(d)

ReLU , is computed using (3) with

(Σk)ij = 1
2k−1n

(
1[δij = 1]∆d

k + 1[δij = −1]∆n
k

) k−1∏
k′=1

∆d
k′

(Ek)ij = 1
2k−1n

(κ1 (∆k))1[δij=−1]
k∏

k′=1
∆d

k′ ;
(
Ėk

)
ij

= (κ0 (∆k))1[δij=−1]
.

Comparison of Linear and ReLU GCNs. The left of Figure 2 shows the analytic in-class and out-
of-class block difference

∣∣∣Θ̃(d)
Ci=Cj

− Θ̃(d)
Ci ̸=Cj

∣∣∣ of the population NTKs of linear and ReLU GCNs with input
graph size n = 1000 for different depths d and class separability r. Given the class separability r is large
enough, theoretically linear GCN preserves the class information as good as or slightly better than the ReLU
GCN. Particularly for d = 1, the difference is O

(
r2

n

)
as shown in Appendix B.8. With depth, the difference

prevails showing the effect of over-smoothing is stronger in ReLU than linear GCN, however larger depth
proves to be detrimental for GCN as discussed in later sections. As a validation, we train linear and ReLU
GCNs of depths {2, 4, 8} on Cora dataset for both the popular convolutions Ssym and Srow, and observe at
par performance as shown in the right plot of Figure 2.

5 Convolution Operator Srow Preserves Class Information

In order to analyze the representation power of different graph convolutions S, we derive the population
NTKs under DC-SBM with non homogeneous degree correction π to distinguish the operators. We restrict
our analysis to linear GCNs for convenience. In the following theorem, we state the population NTKs for
graph convolutions Ssym, Srow, Scol and Sadj for K = 2 with Assumption 1 and 2. The result extends to
K > 2 (Appendix B.3.5).

Theorem 4 (Population NTKs Θ̃ and its class separability ζ for the four graph convolutions S)
Let Assumption 1 and 2 hold, K = 2 and r := p−q

p+q , δij := (−1)1[Ci ̸=Cj]. π is chosen such that

6

Published in Transactions on Machine Learning Research (10/2023)

∑n
i=1 πi1[Ci = k] = cn

K ,
∑n

i=1
√

πi1[Ci = k] = τ ∀ k and
∑n

i=1 π2
i 1[Ci = k] = γ ∀ k, where τ and γ are

constants. Then ∀ i, j, population NTKs Θ̃sym, Θ̃row, Θ̃col and Θ̃adj and class separability of the population
NTKs ζ

(d)
sym, ζ

(d)
row, ζ

(d)
col and ζ

(d)
adj of depth d for S = Ssym, Srow,Scol and Sadj respectively, are,

(
Θ̃(d)

sym

)
ij

= (d + 1)
(
1 + δijr2d+2) √

πiπj

cn
; ζ(d)

sym = 16τ2(d + 1)
n2(cn) r2d+2

(
Θ̃(d)

row

)
ij

= (d + 1)
(
1 + δijr2d+2) 2γ

(cn)2 ; ζ(d)
row = 8γ(d + 1)

(cn)2 r2d+2

(
Θ̃(d)

col

)
ij

= (d + 1)
(
1 + δijr2d+2) nπiπj

(cn)2 ; ζ
(d)
col = 4(d + 1)

n
r2d+2

(
Θ̃(d)

adj

)
ij

= (d + 1)πiπj
γ2d+1−1

n2d+2

(
1[δij = 1]

2d∑
l=0

(
2d+1

2l

)
p2d+1−2l+

1[δij = −1]
2d−1∑
l=0

(
2d+1

2l + 1

)
p2d+1−2l−1q2l+1

)
; ζ

(d)
adj = (d + 1)c2γ2d+1−1

n2d+2 (p − q)2d+2
.

Note that the three assumptions on π are only to express the kernel in a simplified, easy to comprehend
format. It is derived without the assumptions on π in Appendix B.3. Furthermore, the numerical validation
of our result in Section 5.2 is without both these assumptions.

Comparison of graph convolutions. The population NTKs Θ̃(d) of depth d in Theorem 4 describes the
information that the kernel has after d convolutions with S. To classify the nodes perfectly, the kernels should
retain the class information of the nodes according to the underlying DC-SBM. That is, the average in-class
and out-of-class block difference of the population NTKs (class separability of the kernel) is proportional to
p − q and independent of π. On this basis, only Θ̃row exhibits a block structure unaffected by the degree
correction π, and the average block difference is determined by r2 and d, making Srow preferable over Ssym,
Sadj and Scol. On the other hand, Θ̃sym, Θ̃col and Θ̃adj are influenced by the degree correction π which
obscures the class information especially with depth. Although Θ̃sym and Θ̃col seem similar, the influence
of π for Θ̃col is O(π2

i) which is stronger compared to O(πi) for Θ̃sym, making it undesirable over Ssym. As
a result, the preference order from the theory is Θ̃row ≻ Θ̃sym ≻ Θ̃col ≻ Θ̃adj .

5.1 Impact of Depth in Vanilla GCN

Given that r := p−q
p+q < 1, Theorem 4 shows that the difference between in-class and out-of-class blocks

decreases with depth monotonically which in turn leads to decrease in performance with depth, therefore
explaining the observation in Figure 1. Corollary 1 characterizes the impact of depth as d → ∞.

Corollary 1 (Class separability of population NTK ζ(∞) as d → ∞) From Theorem 4, the class
separability of population NTKs of the four different convolutions for fixed n and as d → ∞ converge to
0.

Corollary 1 presents the class separability of the population NTKs for fixed n and d → ∞ for all the four
convolutions Ssym, Srow, Scol and Sadj , showing that the very deep GCN has zero class information. From
this we also infer that, as d → ∞ the population NTKs converge to a constant kernel, thus 0 average in-class
and out-of-class block difference for all the convolutions. Therefore, deeper GCNs have zero class information
for any choice of convolution operator S. The class separability of population kernels at depth d for Ssym,
Srow and Scol is O(dr2d

n) since τ and γ are O(n). Therefore, it shows that the class separation decreases
at the exponential rate in d. This explains the performance degradation of GCN with depth. To further
understand the impact of depth, we plot the average in-class and out-of-class block difference for homophilic
and heterophilic graphs using the theoretically derived population NTK Θ̃(d) for depths [1, 10] and n = 1000
in a well separated DC-SBM (row 2, column 1 of Figure 3 and column 4 of Figure 4, respectively). It clearly

7

Published in Transactions on Machine Learning Research (10/2023)

Figure 3: Numerical validation of Theorem 4 using homophilic (q < p) DC-SBM (Row 1, Column
1). Row 1, Columns 2–5 illustrate the exact NTKs of depth=2 and a graph of size n = 1000 sampled from
the DC-SBM for Srow, Ssym, Scol and Sadj . Row 2 shows the respective analytic population NTKs from
Theorem 4. Row 2, column 1 shows the average gap between in-class and out-of-class blocks from theory,
that is, average of

∣∣∣Θ̃(d)
Ci=Cj

− Θ̃(d)
Ci ̸=Cj

∣∣∣. This validates that Srow preserves class information better than other
convolutions.

shows the exponential degradation of class separability with depth and the gap goes to 0 for large depths in
all the four convolutions. Additionally, the gap in Θ̃(d)

row is the highest showing that the class information is
better preserved, illustrating the strong representation power of Srow. Therefore, large depth is undesirable
for all the convolutions in vanilla GCN and the theory suggests Srow as the best choice for shallow GCN.

5.2 Numerical Validation for Random Graphs

Theorem 4 and Corollary 1 show that Srow has better representation power under Assumption 1 and 2, that
is, for the linear GCN with orthonormal features and population DC-SBM. We validate this on homophilous
and heterophilous random graphs of size n = 1000 with equal sized classes generated from DC-SBM. Figure 3
illustrates the results for depth=2 in the homophily case where the DC-SBM is presented in row 1 and column
1. We plot the NTKs of all the convolution operators computed from the sampled graph and the population
NTKs as per the theory as heatmaps in rows 1 and 2, respectively. The heatmaps corresponding to the exact
and the population NTKs clearly show that the class information for all the nodes is well preserved in Srow

as there is a clear block structure than the other convolutions in which each node is diffused unequally due
to the degree correction. Among Ssym, Scol and Sadj , Ssym retains the class structure better and Sadj has
very small values (see the colorbar scale) and no clear structure. Thus, exhibiting the theoretically derived
preference order. We plot both the exact and the populations NTKs to show that the population NTKs are
a good representative of the exact NTKs especially for large graphs. We show this by plotting the norm of
relative kernel difference, ∥ Θ̃(d)−Θ(d)

Θ̃(d) ∥2, with graph size n for d = 2 in Figure 5. Figure 4 shows the analogous
result for heterophily DC-SBM. The experimental details are provided in the Appendix C.3.

5.3 Ssym Maybe Preferred Over Srow in Core-Periphery Networks (No Class Structure)

While we showed that the graph convolution Srow preserves the underlying class structure, it is natural to
wonder about the random graphs that have no communities (p = q). One such case is graphs with core-
periphery structure where the graph has core nodes that are highly interconnected and periphery nodes that
are sparsely connected to the core and other periphery nodes. Such a graph can be modeled using only the
degree correction π such that πj ≪ πi ∀j ∈ periphery, i ∈ core (similar to Jia & Benson (2019)). Extending
Theorem 4, we derive the following Corollary 2 and show that the convolution Ssym contains the graph
information while Srow is a constant kernel.

8

Published in Transactions on Machine Learning Research (10/2023)

Figure 4: Numerical validation of Theorem 4 using heterophilic (p < q)
DC-SBM (Column 1). Columns 2–3 illustrate the exact NTKs of depth=2 and
a graph of size n = 1000 sampled from the DC-SBM for Srow and Ssym. Column
4 shows the average gap between in-class and out-of-class blocks from theory.

Figure 5: Norm of the
relative kernel difference
∥ Θ̃(2)−Θ(2)

Θ̃(2) ∥2 for depth d =
2 with graph size n.

Corollary 2 (Population NTKs Θ̃ for p = q) Let Assumption 1 and 2 hold, K = 2 and p = q. Further-
more, π is chosen such that

∑
i∈core π2

i = λ and
∑

i∈periphery π2
i = µ. Then ∀ i and j, the population NTKs

Θ̃sym and Θ̃row of depth d for S = Ssym and Srow, respectively, are,

(
Θ̃(d)

sym

)
ij

= (d + 1)
√

πiπj

cn
and

(
Θ̃(d)

row

)
ij

= (d + 1)λ + µ

(cn)2 .

From Corollary 2, it is evident that the Ssym has the graph information and hence could be preferred when
there is no community structure. We validate it experimentally and discuss the results in Figure 18 of
Appendix C.3. While Srow results in a constant kernel for core-periphery without community structure, it
is important to note that when there exists a community structure and each community has core-periphery
nodes, then Srow is still preferable over Ssym as it is simply a special case of homophilic networks. This is
demonstrated in Figure 19 of Appendix C.3.

6 Skip Connections Retain Class Information Even at Infinite Depth

Skip connection is the most common way to overcome the performance degradation with depth in GCNs, but
little is known about the effectiveness of different skip connections and their interplay with the convolutions.
While our focus is to understand the interplay with convolutions, we also include the impact of convolving
with and without the feature information. Hence, we consider the following two variants: Skip-PC (pre-
convolution), where the skip is added to the features before applying convolution (Kipf & Welling, 2017);
and Skip-α, which gives importance to the features by adding it to each layer without convolving with S
(Chen et al., 2020). To facilitate skip connections, we need to enforce constant layer size, that is, hi = hi−1.
Therefore, we transform the input layer using a random matrix W to H0 := XW of size n × h where
Wij ∼ N (0, 1) and h is the hidden layer size. Let Hi be the output of layer i.

Definition 2 (Skip-PC) In a Skip-PC (pre-convolution) network, the transformed input H0 is added to the
hidden layers before applying the graph convolution S, that is, ∀i ∈ [d], Hi :=

√
cσ

h S (Hi−1 + σs (H0)) Wi,
where σs(.) can be linear or ReLU.

Skip-PC definition deviates from Kipf & Welling (2017) in the fact that we skip to the input layer instead
of the previous layer. The following defines the skip connection similar to Chen et al. (2020).

Definition 3 (Skip-α) Given an interpolation coefficient α ∈ (0, 1), a Skip-α network is defined
such that the transformed input H0 and the hidden layer are interpolated linearly, that is, Hi :=√

cσ

h ((1 − α) SHi−1 + ασs (H0)) Wi ∀i ∈ [d], where σs(.) can be linear or ReLU.

9

Published in Transactions on Machine Learning Research (10/2023)

6.1 NTK for GCN with Skip Connections

We derive NTKs for the skip connections – Skip-PC and Skip-α by considering the hidden layers width
h → ∞. Both the NTKs maintain the form presented in Theorem 1 with the following changes to the
co-variance matrices. Let Ẽ0 = E

F∼N (0,Σ0)

[
σs(F)σs(F)T

]
.

Corollary 3 (NTK for Skip-PC) The NTK for an infinitely wide Skip-PC network is as presented in
Theorem 1 where Ek is defined as in the theorem, but Σk is defined as

Σ0 = XXT , Σ1 = SẼ0ST and Σk = SEk−1ST + Σ1.

Corollary 4 (NTK for Skip-α) The NTK for an infinitely wide Skip-α network is as presented in Theo-
rem 1 where Ek is defined as in the theorem, but Σk is defined with Σ0 = XXT ,

Σ1 = (1 − α)2 SE0ST + α (1 − α)
(
SE0 + E0ST

)
+ α2E0 and Σk = (1 − α)2SEk−1ST + α2Ẽ0.

6.2 Impact of Depth in GCNs with Skip Connection

Similar to the previous section we use the NTK for Skip-PC and Skip-α (Corollary 3 and 4) and analyze
the graph convolutions Ssym and Srow under the same considerations detailed in Section 5. Since, Sadj and
Scol are theoretically worse and not popular in practice, we do not consider them for the skip connection
analysis. The linear orthonormal feature NTK, Θ(d), for depth d is same as Θ(d)

lin with changes to Σk as
follows,

Skip-PC: Σk = SkSkT + SST ,

Skip-α: Σk = (1 − α)2k SkSkT + α (1 − α)2k−1 Sk−1 (S + ST
)

Sk−1T

+ α2
k−1∑
l=1

(1 − α)2l SlSlT + α2In.

We derive the population NTK Θ̃(d) and, for convenience, only state the result as d → ∞ in the following
theorems. Expressions for fixed d are presented in Appendices B.5 and B.6.

Theorem 5 (Class Seperability of Population NTK for Skip-PC ζ
(∞)
P C as d → ∞) Under the as-

sumptions of Theorem 4,

ζ
(∞)
P C,sym = 16τ2r2

n2(cn)(1 − r2) , and ζ
(∞)
P C,row = 8γr2

(cn)2(1 − r2) (4)

Theorem 6 (Class Seperability of Population NTK for Skip-α ζ
(∞)
α as d → ∞) Under the as-

sumptions of Theorem 4,

ζ(∞)
α,sym = 16τ2α2

(cn)n2
(

1 − (1 − α)2
r2
) (1

1 − r2

)
, and ζ(∞)

α,row = 8γα2

(cn)2
(

1 − (1 − α)2
r2
) (1

1 − r2

)
. (5)

Theorems 5 and 6 present the class separability of population NTKs of Ssym and Srow for Skip-PC and
Skip-α, respectively. Similar to Theorem 4, assumptions on π in above theorems is to simplify the results.
Note that Srow is better than Ssym in the case of skip connections as well due to the independence on π
and the underlying block structures are well preserved in Srow. The theorems show that the class separation
in the kernel is not zero even at infinite depth for both Skip-PC and Skip-α. In fact, in the case of large n

and d → ∞, it is O
(

r2

n

)
and O

(
α2

n(1−(1−α)2r2)

)
for Skip-PC and Skip-α, respectively, since τ and γ are

O(n). Furthermore, to understand the role of skip connections, we plot in Figure 6 the gap between in-class
and out-of-class blocks at infinite depth for different values of true class separability r and small and large
graph setting, for vanilla linear GCN, Skip-PC and Skip-α using Corollary 1, Theorems 5–6, respectively.
The plot clearly shows that the block difference is away from 0 for both the skip connections in both the
small and large n cases given a reasonable true separation r, wheras the block difference in vanilla GCN is
zero for small n and large n cases. Thus this analytical plot shows that the class information is retained in
skip connections even at infinite depth.

10

Published in Transactions on Machine Learning Research (10/2023)

Figure 6: Skip connection retains class information even at infinite depth. Left: average in-class
and out-of-class block difference at d = ∞ for small and large n and different true class separability r (in
log scale). Heatmaps: exact NTKs Θ(8) for Ssym and Srow for linear GCN and Skip-PC.

6.3 Numerical Validation for Random Graphs

We validate our theoretical result using the same setup detailed in Section 5.2, and compute the exact NTKs
for Skip-PC and Skip-α for both Ssym and Srow. We show the result on homophilic graphs but they equally
extend to the heterophilic case. While Ssym has no class information for depth=8 in vanilla GCN, it is
retained reasonably in Skip-PC (right of Figure 6 column 1). In the case of Srow, we clearly observe the
blocks in both cases with more prevalent gap in Skip-PC illustrating our theoretical results (right of Figure 6
column 2). Similar observation is made for Skip-α despite considering XXT = In as the model interpolates
with the feature, and is discussed in Appendix C.3. Validation of the results for heterophily graphs is also
included in Appendix C.3. While both Ssym and Srow retain the class information in larger depths, we
observe that the degree correction plays a significant role in Ssym as elucidated in our theoretical analysis.

7 Empirical Analysis on Real Data

In this section, we explore how well the theoretical results translate to real dataset Cora with features,
that is, XXT ̸= In and A ̸= M. We consider multi-class node classification for Cora (K = 7). The
NTKs for linear and ReLU GCNs, and GCN with Skip-PC are illustrated in Figure 7. Experimental details
and additional results for Skip-α and Citeseer are in C.4 and Appendices C.5, respectively. We make the
following observations from the experiments that validate the theory even in a much relaxed setting: (i)
clear block structures show up in both GCN with and without skip connections for Srow, thus illustrating
that the class information is well retained by Srow than Ssym; (ii) linear and ReLU GCNs show similar class
preservation qualitatively. Thus, although the theoretical result is based on DC-SBM with mild assumptions,
the conclusions hold reasonably well in real settings on real datasets as well.

Figure 7: Evaluation on Cora dataset. Heatmaps show exact NTKs Θ̃(8) for linear, ReLU and Skip-PC
GCNs for both symmetric and row normalized adjacency.

8 Discussion

Related Work. While GNNs are extensively used in practice, their understanding is limited, and the
analysis is mostly restricted to empirical approaches (Bojchevski et al., 2018; Zhang et al., 2018; Ying et al.,
2018; Wu et al., 2020). Beyond empirical methods, rigorous theoretical analysis using learning theoretical

11

Published in Transactions on Machine Learning Research (10/2023)

bounds such as VC Dimension, Scarselli et al. (2018), PAC-Bayes Liao et al. (2021), Lipschitzness analysis
(Tang & Liu, 2023), or sample complexity using graph topology sampling (Li et al., 2022) are propounded.
Rademacher Complexity bounds (Garg et al., 2020; Esser et al., 2021) show that normalized graph
convolution is beneficial, but those works do not provide insight on the influence of different normalizations
on the GCN performance. Another possible tool is the NTK using which interesting theoretical insights
in deep neural networks are derived (e.g. (Du et al., 2019a)). In the context of GNNs, Du et al. (2019b)
derives the NTK in the supervised setting (each graph is a data instance to be classified) and empirically
studies the NTK performance, however does not extend it to a theoretical analysis, and Krishnagopal &
Ruiz (2023) uses Graph NTK to study convergence of large graphs. In contrast, we derive the NTK in
the semi-supervised setting for GCN with and without skip connections, and use it to further theoretically
analyze the influence of different convolutions with respect to over-smoothing. Theoretical studies (Oono
& Suzuki, 2019; Cai & Wang, 2020) show that over-smoothing causes the expressive power of GNNs to
decrease exponentially with depth, while Keriven (2022) proves that in linear GNNs a finite number of
convolutions improves learning before over-smoothing kicks in. On the other hand, Cong et al. (2021) argues
that over-smoothing does not necessarily happen in practice, and a deeper model is provably expressive.
While over-smoothing and role of skip connections in GNNs are theoretically analyzed in some works (Esser
et al., 2021), the influence of different convolutions that causes over-smoothing and their interplay with skip
connections is not studied. For a comprehensive theory survey see Jegelka (2022).

Conclusion. The performance of GCNs is significantly influenced by the architecture choices, but
existing learning theoretic bounds for GCNs do not provide insights specifically into the representation
power of the graph convolutions and the influence of activation functions. We present a NTK based analysis
that characterizes different convolutions, thereby proving the strong representation power of Srow in
community detection and explaining why Srow, and to some extent Ssym, are preferred in practice (Theorem
4). In contrast to applying spectral analysis of the convolutions to explain over-smoothing, our explicit
characterization of the network provides more exact quantification of the impact of over-smoothing in deep
GCNs (Corollary 1, see Figures 3 and 4). In addition, the NTKs for GCNs with skip connections enable
precise understanding of the role of skip connections in countering the over-smoothing effect (Theorems
5–6). Another value addition of our analysis is the exact quantification of the role of non-linearity
(Theorem 3). While the DC-SBM assumption may seem restrictive, it is important to note that the impact
of depth is derived for different convolutions exactly, therefore, making our result stronger and more precise
than a general comment on the effect of over-smoothing resulting from these convolutions. Moreover, the
experiments on Cora and Citeseer show that the general trends of our theoretical results extend beyond
DC-SBM, although formally characterizing such behavior is difficult without model assumptions.

Possible extensions. (i) Theoretical Analysis. Considering random A would be more precise, but the
concentration inequalities for NTK is more complex than those for Laplacians. We note that our analysis
could be extended by considering feature information (XXT ̸= In) using Contextual Stochastic Block Model
as discussed in Appendix B.9, which would require more involved analysis but could provide further insights
into GCNs, such as interplay between graph and feature information. (ii) Graph Models. The present NTK
based setup allows for the analysis of different graphs having homophilic, heterophilic and core-periphery
structures, and can be extended to other graph generating processes. (iii) GCN Models. Furthermore, the
general formulation of NTK for vanilla GCNs (Theorem 1) and with skip connections (Corollaries 3–4) can
be used for analyzing any new convolutions like topological structure preserving convolutions, for obtaining
a rigorous understanding of GCNs by deriving statistical consistency results or information theoretic limits,
as well as for theoretical analysis of other graph learning problems, such as link prediction. (iv) Analysis. We
consider class separability as the main measure to compare different NTKs. However while we empirically
observe that this measure captures the overall main trends in the MSE and accuracy, there are also cases
where the measure does not capture all the trends. Therefore, we leave analyzing further ways to characterize
the connection between changes in the NTK and the performance of the neural network for future study.

12

Published in Transactions on Machine Learning Research (10/2023)

9 Acknowledgment

This work has been supported by projects from the German Research Foundation (Research Training Group
GRK 2428 and Priority Program SPP 2298, project GH 257/2-1).

References
Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact

computation with an infinitely wide neural net. In Conference on Neural Information Processing Systems,
2019.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Conference on Neural
Information Processing Systems, volume 32, pp. 12873–12884, 2019.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Generating
graphs via random walks. In International Conference on Machine Learning, 2018.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep locally
connected networks on graphs. In International Conference on Learning Representations, 2014.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR, 2020.

Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isometry and a mean field theory
of rnns: Gating enables signal propagation in recurrent neural networks. In International Conference on
Machine Learning, pp. 873–882. PMLR, 2018a.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural networks.
In International Conference on Learning Representations, 2018b.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training graph
convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Conference on Neural Information Processing Systems, 2016.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic block
models. Advances in Neural Information Processing Systems, 31, 2018.

Pedro Domingos. Every model learned by gradient descent is approximately a kernel machine. arXiv preprint
arXiv:2012.00152, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In International Conference on Machine Learning, pp. 1675–1685. PMLR, 2019a.

Simon S Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu Xu.
Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Conference on Neural
Information Processing Systems, 2019b.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-
Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. Neural
Information Processing Systems, 28, 2015.

Pascal Mattia Esser, Leena C. Vankadara, and Debarghya Ghoshdastidar. Learning theory can (sometimes)
explain generalisation in graph neural networks. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, 2021.

13

Published in Transactions on Machine Learning Research (10/2023)

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics reports, 659:
1–44, 2016.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR, 2020.

Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S Schoenholz, Ed H Chi, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of lstms and grus. arXiv preprint arXiv:1901.08987, 2019.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Conference on Neural Information Processing Systems, pp. 1025–1035, 2017.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on deep
neural networks training. In International conference on machine learning, pp. 2672–2680. PMLR, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization
in neural networks. In Conference on Neural Information Processing Systems, pp. 8580–8589, 2018.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning, 2022.

Junteng Jia and Austin R Benson. Random spatial network models for core-periphery structure. In Pro-
ceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 366–374,
2019.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. Physical
review E, 83(1):016107, 2011.

Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. Mean-field theory of graph neural networks
in graph partitioning. Advances in Neural Information Processing Systems, 31, 2018.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. arXiv
preprint arXiv:2205.12156, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Sanjukta Krishnagopal and Luana Ruiz. Graph neural tangent kernel: Convergence on large graphs. arXiv
preprint arXiv:2301.10808, 2023.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. In International Conference on Learning Repre-
sentations, 2018.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of training
graph convolutional networks with graph topology sampling. In International Conference on Machine
Learning, pp. 13014–13051. PMLR, 2022.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
In International Conference on Learning Representations, 2016.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds for
graph neural networks. In International Conference on Learning Representations, 2021.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when and why
the tangent kernel is constant. In Conference on Neural Information Processing Systems, volume 33, pp.
15954–15964, 2020.

14

Published in Transactions on Machine Learning Research (10/2023)

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classifi-
cation. In International Conference on Learning Representations, 2019.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential ex-
pressivity in deep neural networks through transient chaos. Advances in neural information processing
systems, 29, 2016.

Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ramakrishna Bairi, and Vijay Lingam. Hetegcn:
Heterogeneous graph convolutional networks for text classification. In Proceedings of the 14th ACM In-
ternational Conference on Web Search and Data Mining, pp. 860–868, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension of graph
and recursive neural networks. Neural Networks, 108:248 – 259, 2018.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information propa-
gation. In International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=H1W1UN9gg.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. arXiv
preprint arXiv:2305.08048, 2023.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion. arXiv
preprint arXiv:1706.02263, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. stat, 1050:4, 2018.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation.
arXiv preprint arXiv:2002.06755, 2020.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional net-
works by adding fake nodes. In Proceedings of Woodstock’18: ACM Symposium on Neural Gaze Detection,
Woodstock, NY, 2018.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Seidel, and
Thierry Langer. A compact review of molecular property prediction with graph neural networks. Drug
Discovery Today: Technologies, 37:1–12, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International Conference on Machine Learning, pp. 6861–6871. PMLR,
2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive
survey on graph neural networks. In IEEE transactions on neural networks and learning systems, 2020.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dynamical
isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks.
In International Conference on Machine Learning, pp. 5393–5402. PMLR, 2018.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and generalization in
deep neural networks. In International Conference on Machine Learning, pp. 10462–10472. PMLR, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances in neural
information processing systems, 30, 2017.

15

https://openreview.net/forum?id=H1W1UN9gg
https://openreview.net/forum?id=H1W1UN9gg

Published in Transactions on Machine Learning Research (10/2023)

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient
independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Information
Processing Systems, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In AAAI Conference on Artificial Intelligence, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81,
2020.

16

Published in Transactions on Machine Learning Research (10/2023)

A Other Related Works

In contrast to the infinite width analysis, mean field limit analysis of finitely wide neural networks is con-
ducted for various architectures at initialization (Poole et al., 2016; Schoenholz et al., 2017; Yang & Schoen-
holz, 2017; Xiao et al., 2018; Chen et al., 2018a; Gilboa et al., 2019; Xiao et al., 2020). This analysis resorts
to initializing the weights such that the variance of weights in every layer is scaled down by the number of
neurons in the layer so that the input contribution of each neuron in the layer from the activations of the
previous layer remains O(1). The primary objective of these works is to study the trainability, generalization
and expressivity aspects of the neural networks. Poole et al. (2016) shows that the networks with larger
depths have the capacity to express highly non linear functions, rather than larger widths. This is extended to
deriving conditions for the trainability of extremely deep neural networks in Schoenholz et al. (2017). Using
similar analysis, Yang & Schoenholz (2017) shows exponential input space collapse and vanishing/exploding
gradients for deep feedforward networks, whereas it becomes subexponential, even polynomial in some cases
for residual connections, and Hayou et al. (2019) derives initialization parameters for different activations
to accelerate training. Consequently, better initialization schemes for trainability for extremely deep neural
networks based on the conditioning of input-output Jacobian matrix are established for Convolutional Neu-
ral Networks (Xiao et al., 2018), Recurrent Neural Networks and Long Short Term Memory Networks Chen
et al. (2018a); Gilboa et al. (2019). Interestingly, Xiao et al. (2020) studies the trainability and generalization
of networks using the condition number of the NTK and the NTK predictor, and shows that the trainability
and generalizability are at odds in very wide and deep networks. In the context of GNNs, Kawamoto et al.
(2018) extends the mean field analysis to graph partitioning, however exploring the potential of the analysis
is still nascent.

B Mathematical derivations and proofs

We first derive the NTK (Theorem 1) for GCN defined in (2) and prove Theorems 2, 4, 5 and 6, Corollaries
1, 2, 3 and 4 by considering linear GCN and computing the population NTK Θ̃(d) for different graph
convolutions S. We then derive Theorem 3 for ReLU GCN similar to the analysis of linear GCN. We
represent the u-th row of a matrix M as Mu., and use 1n to denote a vector of n dimension with all 1s and
1̂n for a vector of n dimension with −1 as first n

2 entries and +1 as the remaining n
2 entries, and 1n×n for

the n × n matrix of ones.

B.1 Theorem 1: NTK for Vanilla GCN

We rewrite the GCN FW(X, S) defined in (2) using the following recursive definitions:

G1 = SX, Gi =
√

cσ

hi−1
Sσ(Fi−1) ∀i ∈ {2, . . . , d + 1}, Fi = GiWi ∀i ∈ [d + 1]. (6)

Thus, FW(X, S) = Fd+1. Since all the output neurons behave similarly in the infinite width limit, we
consider Wd+1 to be h × 1 and using the definitions in (6), the gradient with respect to Wi of node u is

(
∂FW(X, S)

∂Wi

)
u

= (Gi)T (Bi)u with (Bi)u =


(1n)u if i = d + 1√

cσ

hi
(S)T

u (Bd+1)uWT
d+1 ⊙ (σ̇(Fi))u. if i = d√

cσ

hi
ST (Bi+1)uWT

i+1 ⊙ (σ̇(Fi))u. if i < d

(7)

where (Bi)u ∈ Rn×hi . We derive the NTK, as defined in (1), using the recursive definition of FW(X, S) in
(6) and its derivative in (7). Note that the derivatives in (7) are computed for every node output following
the approach in Arora et al. (2019), hence

(
∂FW(X,S)

∂Wi

)
u

∈ Rhi−1×hi . We give the gradients in B.2.
Co-variance between Nodes. We will first derive the co-variance matrix of size n × n for each layer
comprising of co-variance between any two nodes u and v. The co-variance between u and v in F1 and Fi

are derived below. We denote u-th row of matrix Z as Zu. throughout our proofs.

17

Published in Transactions on Machine Learning Research (10/2023)

E [(F1)uk (F1)vk′] = E [(G1W1)uk (G1W1)vk′]

= E

[
h0∑

r=1
(G1)ur (W1)rk

h0∑
s=1

(G1)vs (W1)sk′

]
(W1)xy∼N (0,1)

= 0 ; if r ̸= s or k ̸= k′

E [(F1)uk (F1)vk] r=s=
k=k′

E

[
h0∑

r=1
(G1)ur (G1)vr (W1)2

rk

]
(W1)xy∼N (0,1)

=
h0∑

r=1
(G1)ur (G1)vr = ⟨(G1)u. , (G1)v.⟩ (8)

E [(Fi)uk (Fi)vk] r=s=
k=k′

E

hi−1∑
r=1

(Gi)ur (Gi)vr (Wi)2
rk


(Wi)xy∼N (0,1)

=
hi−1∑
r=1

(Gi)ur (Gi)vr = ⟨(Gi)u. , (Gi)v.⟩ (9)

Evaluating (8) and (9) in terms of the graph in the following,

(8) : ⟨(G1)u. , (G1)v.⟩ = ⟨(SX)u. , (SX)v.⟩ = Su.XXT ST
.v = (Σ1)uv (10)

(9) : ⟨(Gi)u. , (Gi)v.⟩ = cσ

hi−1
⟨(Sσ(Fi−1))u. , (Sσ(Fi−1))v.⟩

= cσ

hi−1

hi−1∑
k=1

(Sσ(Fi−1))uk (Sσ(Fi−1))vk

hi−1→∞= cσE [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] ; law of large numbers

= cσE

[(
n∑

r=1
Surσ (Fi−1)rk

)(
n∑

s=1
Svsσ (Fi−1)sk

)]

= cσE

[
n∑

r=1

n∑
s=1

SurSvsσ (Fi−1)rk σ (Fi−1)sk

]
(a)=

n∑
r=1

n∑
s=1

Sur (Ei−1)rs ST
sv = Su.Ei−1ST

.v = (Σi)uv (11)

(a): using E [(Fi−1)rk (Fi−1)sk] = (Σi−1)rs and the definition of Ei−1 in Theorem 1.

NTK for Vanilla GCN. Let us first evaluate the tangent kernel component from Wk respective
to nodes u and v. The following two results are needed to derive it. To compute the NTK we need to
evaluate the sum of all parameters gradient dot product between two nodes u and v. To do so, we first
evaluate

〈(
∂F

∂Wk

)
u

,
(

∂F
∂Wk

)
v

〉
in the following.

〈(
∂F

∂Wk

)
u

,

(
∂F

∂Wk

)
v

〉
=

hk−1,hk∑
i=1,j=1

((
∂F

∂Wk

)
u

)
ij

((
∂F

∂Wk

)
v

)
ij

=
hk−1,hk∑
i=1,j=1

(
GT

k (Bk)u

)
ij

(
GT

k (Bk)v

)
ij

=
hk−1,hk∑
i=1,j=1

n,n∑
a=1,b=1

(
GT

k

)
ia

((Bk)u)aj

(
GT

k

)
ib

((Bk)v)
bj

18

Published in Transactions on Machine Learning Research (10/2023)

=
hk∑

j=1

n,n∑
a=1,b=1

cσ

hk

(
ST (Bk+1)u WT

k+1
)

aj
(σ̇ (Fk))aj

(
GkGT

k

)
ab

(
ST (Bk+1)u WT

k+1
)

bj
(σ̇ (Fk))bj (12)

=
hk,hk+1,hk+1∑
j=1,l=1,m=1

n,n∑
a=1,b=1

cσ

hk

(
ST (Bk+1)u

)
al

(
WT

k+1
)

lj
(σ̇ (Fk))aj

(
GkGT

k

)
ab

(
ST (Bk+1)u

)
bm

(
WT

k+1
)

mj
(σ̇ (Fk))bj

hk→∞=
hk+1→∞

cσ

hk,hk+1∑
j=1,l=1

n,n∑
a=1,b=1

(
ST (Bk+1)u

)
al

(σ̇ (Fk))aj

(
GkGT

k

)
ab

(
ST (Bk+1)u

)
bl

(σ̇ (Fk))bj

= cσ

hk+1∑
l=1

n,n∑
a=1,b=1

(
ST (Bk+1)u

)
al

(
ST (Bk+1)u

)
bl

(
GkGT

k

)
ab

E
[(

σ̇ (Fk) σ̇ (Fk)T
)

ab

]
(b)=

hk+1∑
l=1

((
ST (Bk+1)u

)T (GkGT
k ⊙ Ėk

) (
ST (Bk+1)u

))
ll

= tr((Bk+1)T
u S

(
Σk ⊙ Ėk

)
ST (Bk+1)v)

(c)= tr((Bd+1)T
u Su

(
. . . S

(
S
(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST

v (Bd+1)v)
= Su.

(
. . . S

(
S
(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST

v. (13)

(b): cσE
[(

σ̇ (Fk) σ̇ (Fk)T
)

ab

]
=
(
Ėk

)
ab

.
(c): Expanding Bk+1 will result in the expression similar to (12), and repeated expansion until Bd+1. The
final equation is obtained by substituting (Bd+1)u = 1 from its definition in (3).

Extending (13) to all n nodes which will result in n × n matrix, we get

〈
∂F

∂Wk
,

∂F
∂Wk

〉
= S

(
. . . S

(
S
(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST

E
Wk

[〈
∂F

∂Wk
,

∂F
∂Wk

〉]
= S

(
. . . S

(
S
(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST (14)

Finally, NTK Θ is,

Θ =
d+1∑
k=1

E
Wk

[〈
∂F

∂Wk
,

∂F
∂Wk

〉]

=
d+1∑
k=1

S
(
. . . S

(
S
(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ Ėd

)
ST (15)

with definition of Σk and Ėk mentioned in the theorem. □

B.2 Gradients of functions with scalar output

We list here the aggregation of gradients for different functions that enable deriving the equation (7). The
following ∂f

∂W are derived assuming f ∈ R. Hence the derivative will be of same dimension as W.

19

Published in Transactions on Machine Learning Research (10/2023)

∂XW
∂W = XT 1 ; ∂σ(XW)

∂W = XT σ̇(XW)

∂XWY
∂W = XT 1YT ; ∂σ(XWY)

∂W = XT σ̇(XWY)YT

∂Zσ(XW)Y
∂W = XT

(
ZT 1YT ⊙ σ̇(XW)

)
∂σ(Z1σ(Z2σ(XW)Y1)Y2)

∂W = XT
(
ZT

2
(
ZT

1 σ̇(Z1σ(Z2σ(XW)Y1)Y2)YT
2 ⊙ σ̇(Z2σ(XW)Y1)

)
YT

1 ⊙ σ̇(XW)
)

In the above, all 1 are scalars. These derivatives are used to derive (7).

B.3 Theorems 2, 4 and Corollary 1: Population NTK Θ̃ for Different Convolutions S

We consider linear GCN with Assumption 1, that is, orthonormal features and Assumption 2. We derive it
generally without the assumption on γ. We first prove it for K = 2 and then extend it to K classes. We
consider that all nodes are sorted per class for ease of analysis which implies A is a n × n matrix with pπiπj

entries in [1, n
2][1, n

2] and [n
2 + 1, n][n

2 + 1, n] blocks and qπiπj entries in [1, n
2][n

2 + 1, n] and [n
2 + 1, n][1, n

2]
blocks. Therefore,

A = ππT ⊙
(

p + q

2 11T + p − q

2 1̂1̂T

)
= p + q

2 ππT + p − q

2 π̂π̂T (16)

where the entries of π̂ are −πi ∀ i ∈ [1, n
2] and +πi ∀ i ∈ [n

2 +1, n]. The degree matrix D is D = (p+q)cn
2 diag(π).

B.3.1 Symmetric Degree Normalized Adjacency Ssym

Now, lets compute Ssym using A (16) and its degree matrix D.

Ssym = D− 1
2 AD− 1

2

= 2
(p + q) cn

diag(π)− 1
2

(
p + q

2 ππT + p − q

2 π̂π̂T

)
diag(π)− 1

2

= 1
cn

(
π

1
2 π

1
2 T + p − q

p + q
π̂

1
2 π̂

1
2 T

)

=


√

π1√
cn

−
√

π1√
cn

...
...√

πn√
cn

+
√

πn√
cn


n×2

[
1 0
0 r

]
2×2


√

π1√
cn

−
√

π1√
cn

...
...√

πn√
cn

+
√

πn√
cn


T

2×n

= UΛUT (17)

Note that π
1
2 T π

1
2 = π̂

1
2 T π̂

1
2 = cn, π

1
2 T π̂

1
2 = 0 since

∑
i∈Ck

π = cn
K and UT U = I2, thus (17) is the singular

value decomposition of Ssym.

20

Published in Transactions on Machine Learning Research (10/2023)

To compute the population NTK Θ̃(d)
sym for linear GCN with orthonormal features, we need Sk

symSkT
sym. Using

(17),

Sk
symSkT

sym

(17)= UΛ2kUT

=


√

π1√
cn

−
√

π1√
cn

...
...√

πn√
cn

+
√

πn√
cn


n×2

[
1 0
0 r2k

]
2×2


√

π1√
cn

−
√

π1√
cn

...
...√

πn√
cn

+
√

πn√
cn


T

2×n(
Sk

symSkT
sym

)
ij

=
(
1 + δijr2k

) √
πiπj

cn
; δij = (−1)1[Ci ̸=Cj]

Sk
symSkT

sym
matrix=

notation
(cn)−1


(
1 + r2k

)√
πiπj

(
1 − r2k

)√
πiπj

(
1 − r2k

)√
πiπj︸ ︷︷ ︸

n
2 entries

(
1 + r2k

)√
πiπj︸ ︷︷ ︸

n
2 entries


n×n

(18)

Consequently, population NTK Θ̃(d)
sym for nodes i and j using (18) is as follows,(
Θ̃(d)

sym

)
ij

=
d+1∑
k=1

Sd+1
symS(d+1)T

sym

= (d + 1)
(
1 + δijr2d+2) √

πiπj

cn
(19)

Hence, the average block difference of the population NTK which we refer to class separability of the kernel
ζ

(d)
sym is derived with

∑n
i=1

√
πi1[Ci = k] = τk ∀ k

ζ(d)
sym = 4(d + 1)

n2(cn)

(
n/2∑
i=1

n/2∑
j=1

(
1 + r2d+2)√

πiπj +
n∑

i=n/2+1

n∑
j=n/2+1

(
1 + r2d+2)√

πiπj

−
n/2∑
i=1

n∑
j=n/2+1

(
1 − r2d+2)√

πiπj −
n∑

i=n/2+1

n/2∑
j=1

(
1 − r2d+2)√

πiπj

)

= 4(d + 1)
n2(cn)

(
1 + r2d+2) (τ2

1 + τ2
2
)

− 2
(
1 − r2d+2) (τ1τ2)

= d + 1
cn

(
4
n2 (τ1 − τ2)2 + 4

n2 r2d+2 (τ1 + τ2)2
)

(20)

In (20), τ1 is of same order as τ2 and τ1 ≈ τ2 for large n with
∑

i∈Ck
π = cn

K . Hence, considering τ1 = τ2 = τ ,
we get the block difference as 16τ2(d+1)

n2(cn) r2d+2. It is of O(dr2d

n), since (τ1 + τ2)2 has n2 terms, each of O(1).

Therefore, the block difference of the population NTK Θ̃(d)
sym at d → ∞ is

lim
d→∞

16τ2 (d + 1)
n2 (cn) r2d+2 = lim

d→∞

16τ2

n2 (cn)
d + 1

r−(2d+2)

= lim
d→∞

16τ2

n2 (cn)
1

r−(2d+2) log(r)(−2)
= 0 (21)

Apart from the block difference, we can also see that the population kernel at ij is proportional to
√

πiπj

cn as
d → ∞, thus converging to a constant kernel. Equations (19) and (21) prove the population NTK Θ̃(d)

sym and
class separability of Θ̃(∞)

sym in Theorem 4 and Corollary 1, respectively. Substituting d = 1 and ∀i, πi = 1
n ,

Theorem 2 can be derived. □

21

Published in Transactions on Machine Learning Research (10/2023)

B.3.2 Row Degree Normalized Adjacency Srow

The assumption on γ in Assumption 2 is only to simplify the expression of population NTK for Srow. We
derive it without this assumption in the following. We first derive Sk

rowSkT
row.

Srow = D−1A

= D− 1
2 D− 1

2 AD− 1
2 D+ 1

2

= D− 1
2 UΛUT D+ 1

2

Sk
row = D− 1

2 UΛkUT D+ 1
2

Sk
rowSkT

row = D− 1
2 UΛkUT D+ 1

2 D+ 1
2 UΛkUT D− 1

2

= D− 1
2 UΛkUT DUΛkUT D− 1

2

=
(

D− 1
2 UΛkUT D− 1

2

)
D+ 1

2 DD+ 1
2

(
D− 1

2 UΛkUT D− 1
2

)
=
(

ÛΛkÛT
)

D2
(

ÛΛkÛT
)

; Û = D− 1
2 U =

√
2

cn
√

p + q

[
1T

n

1̂T
n

]
n×2

(
Sk

rowSkT
row

)
ij

= (cn)−2


(
1 + rk

)2
λ +

(
1 − rk

)2
µ if i and j ∈ class 1(

1 + rk
) (

1 − rk
)

(λ + µ) if i and j /∈ same class(
1 − rk

)2
λ +

(
1 + rk

)2
µ if i and j ∈ class 2

; λ =
n
2∑

s=1
π2

s ; µ =
n∑

s= n
2 +1

π2
s

Sk
rowSkT

row
matrix not.= (cn)−2


(
1 + rk

)2
λ +

(
1 − rk

)2
µ

(
1 + rk

) (
1 − rk

)
(λ + µ)

(
1 + rk

) (
1 − rk

)
(λ + µ)︸ ︷︷ ︸

n
2 entries

(
1 − rk

)2
λ +

(
1 + rk

)2
µ︸ ︷︷ ︸

n
2 entries


n×n

(22)

Note that each block is a constant and independent of individual πi. Using (22) and the assumption λ = µ = γ
in Theorem 4, the population NTK for nodes i and j is,

(
Θ̃(d)

row

)
ij

(22)=
d+1∑
k=1

Sd+1
rowS(d+1)T

row

= (d + 1)
(
1 + δijr2d+2) 2γ

(cn)2 (23)

Using (23), we derive the class separability of the kernel ζ
(d)
row.

ζ(d)
row = 2γ(d + 1)

(cn)2 4r2d+2 (24)

Similar to (20), ζ
(d)
row is of O(dr2d

n) since γ is O(n), and the class separability of the population NTK Θ̃(d)
row

at d → ∞ is 0. Likewise, the population kernel at ij is proportional to 2γ
(cn)2 as d → ∞, thus converging to

a constant kernel proving Theorem 4 and Corollary 1, respectively. □

22

Published in Transactions on Machine Learning Research (10/2023)

B.3.3 Column Normalized Adjacency Scol

In this section we derive the population NTK Θ̃(d)
col .

Scol = AD−1

= D+ 1
2 UΛUT D− 1

2

Sk
col = D+ 1

2 UΛkUT D− 1
2

Sk
colSkT

col = D+ 1
2 UΛkUT D− 1

2 D− 1
2 UΛkUT D+ 1

2

=
(
ŨΛkŨT

)
D−2 (ŨΛkŨT

)
; Ũ = D+ 1

2 U =
√

p + q

2

[
πT

π̂T

]
n×2

matrix not.= n

(cn)2


πiπj

(
1 + r2k

)
πiπj

(
1 − r2k

)
πiπj

(
1 − r2k

)︸ ︷︷ ︸
n
2 entries

πiπj

(
1 + r2k

)︸ ︷︷ ︸
n
2 entries


n×n

(25)

Therefore, Θ̃(d)
col for all i and j is

(
Θ̃(d)

col

)
ij

(25)=
d+1∑
k=1

Sd+1
col S(d+1)T

col

= (d + 1)
(
1 + δijr2d+2) nπiπj

(cn)2 (26)

Using (26) and
∑

i∈Ck
π = cn

K , the class separability of the kernel ζ
(d)
col is

ζ
(d)
col = 4(d + 1)

n
r2d+2 (27)

which is of O(dr2d

n) and the class separability of the population NTK Θ̃(d)
row at d → ∞ is 0 similar to

symmetric and row normalization cases. Likewise, the population kernel at ij is proportional to nπiπj

(cn)2 as
d → ∞, thus converging to a constant kernel. Hence, equations (26) and (27) prove the population NTK
Θ̃(d)

col and ζ
(d)
col in Theorem 4 and Corollary 1, respectively. □

B.3.4 Unnormalized Adjacency Sadj

We can rewrite A as follows,

A = ππT ⊙
[

p q
q︸︷︷︸

n
2 entries

p︸︷︷︸
n
2 entries

]
n×n

=

π1
. . .

πn


n×n


p q

q p


n×n

π1
. . .

πn


n×n

(28)

We consider γ assumption for the analysis of unnormalised adjacency to simplify the computation. But the
result holds without this assumption.

23

Published in Transactions on Machine Learning Research (10/2023)

A2 (28)=

π1
. . .

πn



(
p2 + q2) γ 2pqγ

2pqγ
(
p2 + q2) γ


π1

. . .
πn



A4 =

π1
. . .

πn



(
p4 + q4 + 6p2q2) γ3 (

4p3q + 4pq3) γ3

(
4p3q + 4pq3) γ3 (

p4 + q4 + 6p2q2) γ3


π1

. . .
πn


Note that in the above shown A2k it is the even powers of binomial expansion of (p + q)2k

for i, j in same
class whereas it is the odd powers for i, j not in the same class. We compute the filter Sadj using this fact.

Sadj = 1
n

A

Sk
adj = 1

nk
Ak

Sk
adjSkT

adj = 1
n2k

A2k

=


πiπj

γ2k−1

n2k

2k−1∑
l=0

(2k

2l

)
p2k−2lq2l if i and j ∈ same class

πiπj
γ2k−1

n2k

2k−1−1∑
l=0

(2k

2l+1
)
p2k−2l−1q2l+1 if i and j ∈ different class

Θ̃(d)
adj = (d + 1)Sd+1

adj S(d+1)T
adj

= (d + 1)πiπj
γ2d+1−1

n2d+2



2d∑
l=0

(2d+1

2l

)
p2d+1−2lq2l if i and j ∈ same class

2d−1∑
l=0

(2d+1

2l+1
)
p2d+1−2l−1q2l+1 if i and j ∈ different class

The class separability in this case is ζ
(d)
adj = (d + 1)c2 γ2d+1−1

n2d+2 (p − q)2d+2. The above form is not simplified
as it is not an interesting case where the gap between the two blocks disappears rapidly and

(
Θ̃(∞)

adj

)
ij

= 0.
There is no information in the kernel proving both Theorem 4 and Corollary 1. □

B.3.5 Number of Classes K > 2

From the above derivation for K = 2, it can be seen that once Sk
symSkT

sym is computed, the population NTK
for all the graph convolutions can be derived using it. Therefore, we derive it for K > 2 and it suffices
to show the conclusions of Theorem 4 and Corollary 1. We denote the vector π̂1k with −πi∀i ∈

[
1, n

K

]
,

+πi∀i ∈
[

n(k−1)
K , nk

K

]
and 0 for the rest. With this definition, A is

A = p + (K − 1)q
K

ππT + p − q

K

K∑
l=2

π̂1lπ̂
T
1l. (29)

24

Published in Transactions on Machine Learning Research (10/2023)

D for K classes is (p+(K−1)q)cn
K diag(π) from (29). We can compute Ssym using A and D as follows,

Ssym = D− 1
2 AD− 1

2

= K

(p + (K − 1)q) cn
diag(π− 1

2)
(

p + (K − 1)q
K

ππT + p − q

K

K∑
l=2

π̂1lπ̂
T
1l

)
diag(π− 1

2)

= π
1
2 π

1
2 T

cn
+ p − q

(p + (K − 1)q) cn

K∑
l=2

π̂
1
2
1lπ̂

1
2 T

1l

cn

(Ssym)ij =
√

πiπj

cn

(
1 + δij

(
p − q

p + (K − 1)q

) K∑
l=2

K

l + l2

)
(
Sk

sym

)
ij

=
√

πiπj

cn

(
1 + δij

(
p − q

p + (K − 1)q

)k K∑
l=2

K

l + l2

)
(
Sk

symSkT
sym

)
ij

=
√

πiπj

cn

(
1 + δij

(
p − q

p + (K − 1)q

)2k K∑
l=2

K

l + l2

)
(30)

It is noted that the equation (30) is very much similar to (18) for K = 2. The further derivations of the
population NTKs Θ̃ for all the convolutions are similar and the theoretical results extend without any issues.
□

B.4 Corollary 3 and 4: NTK for GCN with Skip Connections

We observe that the definitions of Gi ∀i ∈ [1, d + 1] are different for GCN with skip connections from the
vanilla GCN. Despite the difference, the definition of gradient with respect to Wi in (7) does not change as
Gi in the gradient accounts for the change and moreover, there is no new learnable parameter since the input
transformation H0 = XW0 where (W0)ij is sampled from N (0, 1) is not learnable in our setting. Given
the fact that the gradient definition holds for GCN with skip connection, the NTK will retain the form from
NTK for vanilla GCN as evident from the derivation of NTK for vanilla GCN in Section B.1. The change in
Gi will only affect the co-variance between nodes. Hence, we will derive the co-variance matrix for Skip-PC
and Skip-α in the following.

Skip-PC: Co-variance between nodes. The co-variance between nodes u and v in F1 and Fi are derived
below.

E [(F1)uk (F1)vk] = ⟨(G1)u. , (G1)v.⟩

= cσ

h
⟨(Sσs(H0))u. , (Sσs(H0))v.⟩

= cσ

h

h∑
k=1

(Sσs(H0))uk (Sσs(H0))vk

h→∞= cσE [(Sσs(H0))uk (Sσs(H0))vk] ; law of large numbers

= Su.Ẽ0ST
.v ; Ẽ0 = cσ E

F∼N (0,XXT)

[
σs(F)σs(F)T

]
= (Σ1)uv (31)

25

Published in Transactions on Machine Learning Research (10/2023)

E [(Fi)uk (Fi)vk] = ⟨(Gi)u. , (Gi)v.⟩

= cσ

h
⟨(S (σ(Fi−1) + σs(H0)))u. , (S (σ(Fi−1) + σs(H0)))v.⟩

= cσ

h

h∑
k=1

(Sσ(Fi−1) + Sσs(H0))uk (Sσ(Fi−1) + Sσs(H0))vk

h→∞= cσE [(Sσ(Fi−1) + Sσs(H0))uk (Sσ(Fi−1) + Sσs(H0))vk] ; law of large numbers

= cσ

[
E [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] + E [(Sσ(Fi−1))uk (Sσs(H0))vk]

+ E [(Sσs(H0))uk (Sσ(Fi−1))vk] + E [(Sσs(H0))uk (Sσs(H0))vk]
]

= Su.Ei−1ST
.v + cσE [(Sσ(Fi−1))uk (Sσs(XW0))vk]

+ cσE [(Sσs(XW0))uk (Sσ(Fi−1))vk]

+ cσE

[
n∑

r=1

n∑
s=1

SurSqsσs (XW0)rk σs (XW0)sk

]
(f)= Su.Ei−1ST

.v + cσSu.E [σs (XW0)rk σs (XW0)sk] ST
.v

= Su.Ei−1ST
.v + Su.Ẽ0ST

.v = Su.Ei−1ST
.v + (Σ1)uv

= (Σi)uv (32)

(f): E [(Sσ(Fi−1))uk (Sσs(XW0))vk] and E [(Sσs(XW0))uk (Sσ(Fi−1))vk] evaluate to 0 by conditioning
on W0 first and rewriting the expectation based on this conditioning. The terms within expectation are
independent when conditioned on W0, and hence it is

E
W0

[
E

Σi−1|W0
[(Sσ(Fi−1))uk |W0] E

Σi−1|W0
[(Sσs(XW0))vk |W0]

]
by taking h in W0 going to infinity first.

Here, E
Σi−1|W0

[(Sσs(XW0))vk |W0] = 0.

We get the co-variance matrix for all pairs of nodes Σ1 = SẼ0ST and Σi = SEi−1ST + Σ1 from (31) and
(32).

Skip-α: Co-variance between nodes. Let u and v be two nodes and the co-variance between u and v in
F1 and Fi are derived below.

E [(F1)uk (F1)vk] = ⟨(G1)u. , (G1)v.⟩

= cσ

h

h∑
k=1

((1 − α)Sσs(H0) + ασs(H0))uk ((1 − α)Sσs(H0) + ασs(H0))vk

h→∞= cσE [((1 − α)Sσs(H0) + ασs(H0))uk ((1 − α)Sσs(H0) + ασs(H0))vk]

= cσ

[
(1 − α)2E [(Sσs(H0))uk (Sσs(H0))vk]

+ (1 − α)α
(
E [(Sσs(H0))uk (σs(H0))vk] + E [(Sσs(H0))vk (σs(H0))uk]

)
+ α2E [(σs(H0))uk (σs(H0))vk]

= (1 − α)2Su.Ẽ0ST
.v + (1 − α)α

(
Su.

(
Ẽ0
)

.v
+
(
Ẽ0
)

u.
ST

.v

)
+ α2 (Ẽ0

)
uv

= (Σ1)uv (33)

Using E [(F1)uk (F1)vk], we recursively evalaue E [(Fi)uk (Fi)vk] in the following,

26

Published in Transactions on Machine Learning Research (10/2023)

E [(Fi)uk (Fi)vk] = ⟨(Gi)u. , (Gi)v.⟩

= cσ

h

h∑
k=1

((1 − α)Sσ(Fi−1) + ασs(H0))uk ((1 − α)Sσ(Fi−1) + ασs(H0))vk

h→∞= cσE [((1 − α)Sσ(Fi−1) + ασs(H0))uk ((1 − α)Sσ(Fi−1) + ασs(H0))vk]

= cσ

[
(1 − α)2E [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] + α2E [(σs(H0))uk (σs(H0))vk]

+ (1 − α)α
(
E [(Sσ(Fi−1))uk (σs(H0))vk] + E [(σs(H0))uk (Sσ(Fi−1))vk]

)]
(g)= (1 − α)2Su.Ei−1ST

.v + α2 (Ẽ0
)

uv
= (Σi)uv (34)

(g): same argument as (f) in derivation of Σi in Skip-PC.

We get the co-variance matrix for all pairs of nodes Σ1 = (1 − α)2SẼ0ST + α(1 − α)
(
SẼ0 + Ẽ0ST

)
+ α2Ẽ0

and Σi = (1 − α)2SEi−1ST + α2Ẽ0 from (33) and (34).

B.5 Theorem 5: Class Separability of Population NTK Θ̃ for Skip-PC

NTK at depth d, Θ(d)
P C for Skip-PC with linear activations is

Θ(d)
P C =

d+1∑
k=1

Sd+1−kΣkS(d+1−k)T

=
d+1∑
k=1

Sd+1−k
(
SkSkT + SST

)
S(d+1−k)T

=
d+1∑
k=1

Sd+1S(d+1)T︸ ︷︷ ︸
I

+ Sd+2−kS(d+2−k)T︸ ︷︷ ︸
II

(35)

In (35), I is NTK without skip connection and II is computed for Srow and Ssym as follows.

Computing II for population NTK Θ̃(d) for Ssym: for nodes i and j,

d+1∑
k=1

(
Sd+2−k

sym S(d+2−k)T
sym

)
ij

=
d+1∑
k=1

(
1 + δijr2d+4−2k

)√
πiπj (cn)−1

= (d + 1)
√

πiπj

cn
+ δij

√
πiπj

cn

d+1∑
k=1

r2k

= (d + 1)
√

πiπj

cn
+ δij

√
πiπj

cn

r2 (1 − r2(d+1))
1 − r2 (36)

Combining (36) with (19), the class separability of the kernel ζ
(d)
P C,sym as d → ∞ is determined only by the

last term in (36) as the other terms give 0 separation. Hence, the influence of skip connection gives

ζ
(∞)
P C,sym = 16τ2r2

n2(cn)(1 − r2) (37)

where τ is defined as in Theorem 4.
√

πiπj

(
2 + δijr2). Thus showing class separation information retained even at ∞ depth and graph size. □

27

Published in Transactions on Machine Learning Research (10/2023)

Similarly, computing II for Srow without assumption on γ, i and j in class 1,
d+1∑
k=1

(
Sd+2−k

row S(d+2−k)T
row

)
ij

= (cn)−2
d+1∑
k=1

(
1 + r2k + 2rk

)
λ +

(
1 + r2k − 2rk

)
µ

= (cn)−2

(
(λ + µ)

(
(d + 1) +

r2 (1 − r2(d+1))
1 − r2

)
+ 2 (λ − µ)

r
(
1 − rd+1)
1 − r

)
(38)

For i and j in class 2,
d+1∑
k=1

(
Sd+2−k

row S(d+2−k)T
row

)
ij

= (cn)−2
d+1∑
k=1

(
1 + r2k − 2rk

)
λ +

(
1 + r2k + 2rk

)
µ

= (cn)−2

(
(λ + µ)

(
(d + 1) +

r2 (1 − r2(d+1))
1 − r2

)
+ 2 (−λ + µ)

r
(
1 − rd+1)
1 − r

)
(39)

For i and j in different class,
d+1∑
k=1

(
Sd+2−k

row S(d+2−k)T
row

)
ij

= (cn)−2
d+1∑
k=1

(
1 − r2k

)
(λ + µ)

= (cn)−2 (λ + µ)
(

(d + 1) −
r2 (1 − r2(d+1))

1 − r2

)
(40)

Therefore, the influence of the skip connection in the class separability of population NTK Θ̃(∞)
P C,row with γ

assumption is obtained by substituting λ + µ = 2γ and λ − µ = 0 in (38), (39) and (40) .

ζ
(∞)
P C,row = 8γr2

(cn)2(1 − r2)

hence deriving Theorem 5. □

B.6 Theorem 6: Population NTK Θ̃ for Skip-α

We expand Σ1 and Σk of Skip-α first to derive the population NTK.

Σ1 = (1 − α)2 SST + α (1 − α)
(
S + ST

)
+ α2In

Σk = (1 − α)2 SΣk−1ST + α2In

= (1 − α)2k SkSkT + α (1 − α)2k−1 Sk−1 (S + ST
)

Sk−1T

+ α2
k−1∑
l=0

(1 − α)2l SlSlT (41)

Exact NTK of depth d for Skip-α is expanded using the above as follows.

Θ(d)
α =

d+1∑
k=1

Sd+1−kΣkS(d+1−k)T

=
d+1∑
k=1

(1 − α)2k Sd+1S(d+1)T︸ ︷︷ ︸
I

+ α (1 − α)2k−1 Sd
(
S + ST

)
SdT︸ ︷︷ ︸

II

+ α2
k−1∑
l=0

(1 − α)2l Sd+1−k+lS(d+1−k+l)T

︸ ︷︷ ︸
III

(42)

We compute the class separability of the kernel Θ(∞)
α as d → ∞ for Ssym and Srow. From (42), it is clear

that terms I and II lead to 0 class separation as derived in previous cases. So, we evaluate III of (42) in
the following.

28

Published in Transactions on Machine Learning Research (10/2023)

IIIij = α2
d+1∑
k=1

k−1∑
l=0

(1 − α)2l Sd+1−k+l
sym S(d+1−k+l)T

sym

=
√

πiπj

cn
α2

d+1∑
k=1

k−1∑
l=0

(1 − α)2l (1 + δijr2d+2−2k+2l
)

=
√

πiπj

cn
α2

d+1∑
k=1

1 − (1 − α)2k

1 − (1 − α)2 + δij

r2(d+1−k)
(

1 −
(

(1 − α)2
r2
)k
)

1 − (1 − α)2
r2

=
√

πiπjα2

cn

[
(d + 1)

1 − (1 − α)2 −
(1 − α)2

(
1 − (1 − α)2(d+1)

)
(

1 − (1 − α)2
)2 +

δij

1 − (1 − α)2
r2

1 − r2(d+1)

1 − r2 − r2(d+1)
(1 − α)2

(
1 − (1 − α)2(d+1)

)
1 − (1 − α)2

] (43)

The class separability of kernel is non zero only for the last term in (43). Hence, the class separability ζ
(d)
α,sym

is

ζ(d)
α,sym = 16τ2α2

(cn)n2
(

1 − (1 − α)2
r2
)
1 − r2(d+1)

1 − r2 − r2(d+1)
(1 − α)2

(
1 − (1 − α)2(d+1)

)
1 − (1 − α)2


ζ(∞)

α,sym = 16τ2α2

(cn)n2
(

1 − (1 − α)2
r2
) (1

1 − r2

)

proving Theorem 6. □

We now compute III for population NTK Θ̃(∞)
α using Srow under λ = µ = γ. The derivation holds without

this consideration as well.

IIIij = α2
d+1∑
k=1

k−1∑
l=0

(1 − α)2l Sd+1−k+l
row S(d+1−k+l)T

row

= 2γ

(cn)2 α2
d+1∑
k=1

k−1∑
l=0

(1 − α)2l (1 + δijr2d+2−2k+2l
)

= 2γ

(cn)2 α2
d+1∑
k=1

1 − (1 − α)2k

1 − (1 − α)2 + δij

r2(d+1−k)
(

1 −
(

(1 − α)2
r2
)k
)

1 − (1 − α)2
r2

= 2γα2

(cn)2

[
(d + 1)

1 − (1 − α)2 −
(1 − α)2

(
1 − (1 − α)2(d+1)

)
(

1 − (1 − α)2
)2 +

δij

1 − (1 − α)2
r2

1 − r2(d+1)

1 − r2 − r2(d+1)
(1 − α)2

(
1 − (1 − α)2(d+1)

)
1 − (1 − α)2

] (44)

29

Published in Transactions on Machine Learning Research (10/2023)

Similar to Ssym, the class separability of kernel is non zero only for the last term in (44). Hence, the class
separability ζ

(d)
α,row is

ζ(d)
α,row = 8γα2

(cn)2
(

1 − (1 − α)2
r2
)
1 − r2(d+1)

1 − r2 − r2(d+1)
(1 − α)2

(
1 − (1 − α)2(d+1)

)
1 − (1 − α)2


ζ(∞)

α,row = 8γα2

(cn)2
(

1 − (1 − α)2
r2
) (1

1 − r2

)

proving Theorem 6. □

B.7 Theorem 3: Population NTK Θ̃ for ReLU GCN for normalized adjacency S

We first state the NTK for ReLU GCN using the general NTK Theorem 1 and result from Bietti & Mairal
(2019) in the following corollary. Note that cσ = 2 for ReLU activation.

Corollary 5 (ReLU GCN) Consider σ(x) := ReLU(x) in FW(X, S). The NTK is computed as in (3),
where given Σk at each layer, one can evaluate the entries of Ek and Ėk using a result from Bietti & Mairal
(2019) as

(
Ek

)
ij

=
√

(Σk)ii (Σk)jj κ1

 (Σk)ij√
(Σk)ii (Σk)jj


(
Ėk

)
ij

= κ0

 (Σk)ij√
(Σk)ii (Σk)jj

 ,

where κ0(x) = 1
π

(π − arccos (x)) and κ1(x) = 1
π

(
x (π − arccos (x)) +

√
1 − x2

)
.

Using Corollary 5, we derive Theorem 3, the population NTK of the ReLU GCN for depth d, Θ̃(d)
ReLU

considering homogeneous degree correction π. That is, π = (c, . . . , c)T . Therefore, symmetric, row and
column normalized adjacencies are equivalent and is,

S = D− 1
2 AD− 1

2

= 1
n

(
11T + r1̂1̂T

)
Therefore, using S, κ0(.) and κ1(.) we compute Σ1, E1 and Ė1 as,

Σ1 = SST = 1
n

[
1 + r2 1 − r2

1 − r2 1 + r2

]
n×n

E1 = 1
n

(
1 + r2) 1 κ1

(
1−r2

1+r2

)
κ1

(
1−r2

1+r2

)
1


n×n

= 1
n

(
1 + r2) [1 κ1 (∆1)

κ1 (∆1) 1

]
n×n

; ∆1 := 1 − r2

1 + r2

Ė1 =
[

1 κ0 (∆1)
κ0 (∆1) 1

]
n×n

(45)

30

Published in Transactions on Machine Learning Research (10/2023)

Now, lets define ∆k := (1 − r2) + (1 + r2)κ1(∆k−1)
(1 + r2) + (1 − r2)κ1(∆k−1) . Furthermore, ∆n

k and ∆d
k denote the numerator and

denominator of ∆k, respectively. With this definition, we compute Σk, Ek and Ėk recursive as follows to
compute the population NTK Θ̃(d),

Σ2 = SE1ST = ∆d
1

2n

[
∆d

2 ∆n
2

∆n
2 ∆d

2

]
n×n

E2 = ∆d
1∆d

2
2n

[
1 κ1 (∆2)

κ1 (∆2) 1

]
n×n

; Ė2 =
[

1 κ0 (∆2)
κ0 (∆2) 1

]
n×n

Extending to k,

Σk =
∆d

1 . . . ∆d
k−1

2k−1n

[
∆d

k ∆n
k

∆n
k ∆d

k

]
n×n

Ek = ∆d
1 . . . ∆d

k

2k−1n

[
1 κ1 (∆k)

κ1 (∆k) 1

]
n×n

; Ėk =
[

1 κ0 (∆k)
κ0 (∆k) 1

]
n×n

(46)

We obtain population NTK for ReLU GCN in Theorem 3 by substituting Σk, Σ1 and Ėk in the NTK
equation in (3). □

B.8 Difference between block difference of linear and ReLU GCNs for depth d = 1

First, lets compute the average in-class and out-of-class block differences for d = 1 linear and ReLU GCNs.
To do so, lets consider homogeneous degree correction as in Section B.7. Therefore, population NTKs for
linear and ReLU GCNs Θ̃(1) and Θ̃(1)

ReLU are,

Θ̃(1) = 2
n

[
1 + r2 1 − r2

1 − r2 1 + r2

]
n×n

(47)

Θ̃(1)
ReLU = 1

2n

[(
1 + r2)2 +

(
1 − r2)2

κ0(∆1)
(
1 − r4)+

(
1 − r4)κ0(∆1)(

1 − r4)+
(
1 − r4)κ0(∆1)

(
1 + r2)2 +

(
1 − r2)2

κ0(∆1)

]
n×n

+ ∆d
1

2n

[
∆d

2 ∆n
2

∆n
2 ∆d

2

]
n×n

(48)

Let the average block difference for linear and ReLU GCNs of depth 1 be denoted by ζlin and ζReLU ,
respectively. Using (47) and (48), we get

ζlin = 8r2

n
= O

(
r2

n

)
ζReLU =

4r2 (r2 + 1 +
(
r2 − 1

)
κ0(∆1)

)
2n

+
4r2 (1 + r2) (1 − κ1(∆1))

2n

= O
(

r2

n

)
Therefore, theoretically linear GCN and ReLU GCN of depth 1 retains similar class information for large
graphs and hence they perform similarly. □

B.9 Analysis without orthonormal feature assumption XXT ̸= In

To include the features so that XXT ̸= In, we consider Contextual Stochastic Block Models (Deshpande
et al., 2018) in which the features of node i, xi ∼ ziµ + N (0, σ2If), where µ ∈ Rf and zi = +1 if node
i ∈ C1, −1 if i ∈ C2 for K = 2. The analysis can be extended to K > 2 as well. Under this model, the

31

Published in Transactions on Machine Learning Research (10/2023)

population version of XXT is zµT µzT = ||µ||2zzT where z = (z1, . . . , zn) ∈ Rn. For simplicity, we present
the average in-class and out-of-class block difference of linear (ζlin) and ReLU GCNs (ζReLU) for depth d = 1.
ζlin = ||µ||2

(
2r4) and ζReLU = ||µ||2

(
4r4(1 + 1/n)

)
, respectively. Consequently, ζlin ≤ ζReLU ∀r ∈ [0, 1], n.

However, both are of O(r4). As the population NTK for depth d will be a more complex expression under
Contextual SBM, we show the result for d = 1 for simplicity. But, we note that the result will extend to
general d. □

C Empirical Analysis

We provide the code for NTK and the block model in
https://github.com/mahalakshmi-sabanayagam/NTK_GCN.

C.1 Experimental Details of Figure 1

We use the code for GCN without skip connections from github1(Kipf & Welling, 2017) and skip connection
from github2(Chen et al., 2020). The following hyperparameters are used for GCN without skip connections:
learning rate is 0.01, weight decay is 5e − 4, hidden layer width is 64 and epochs is 500, 1500, 2000 for depths
2, 4, 8 respectively. For the skip connections, we used GCNII model, same parameters as vanilla GCN with
α = 0.1. The performance is averaged over 5 runs.

In Figure 8, we showcase the performance degradation of GCN with depth. The right plot shows the zoomed
in version of the left plot to show the performance drop more clearly. Note that depth refers to the number
of hidden layers in the definition of GCN (2). Hence, depth= 0 means there is no hidden layer.

0 1 2 4 8

Depth of GCN

55

60

65

70

75

80

85

A
cc

u
ra

cy
of

cl
as

s
p

re
d

ic
ti

on
(%

)

Linear Srow
ReLU Srow

Linear Ssym
ReLU Ssym

1 2 4 8

Depth of GCN

80

81

82

83

84

85

86

87

88

A
cc

u
ra

cy
of

cl
as

s
p

re
d

ic
ti

on
(%

)

Linear Srow
ReLU Srow

Linear Ssym
ReLU Ssym

Figure 8: Performance of GCN with depth on Cora. Depth= 0 refers to no hidden layer in GCN. The
right plot shows the zoomed in version of the left plot.

C.2 Comparison of GCN and NTK

Although it is theoretically clear that the infinite width assumption should not affect the observations made
on performance of GCN with Ssym and Srow in Figure 1, we illustrate the same using graph NTK. Figure 9
shows that the observation is seen in graph NTK as well, thus supporting our theoretical argument.

32

https://github.com/tkipf/pygcn
https://github.com/chennnM/GCNII

Published in Transactions on Machine Learning Research (10/2023)

Figure 9: Comparison of the accuracy of a trained finite width GCN and the corresponding
NTK. NTK captures the performance trend of the GCN, although the exact performance doesn’t match.

C.3 Numerical Validation for DC-SBM for Vanilla GCN and Skip-α

Experimental Details. For the experiments, we fix the size of the sampled graphs to n = 1000, p = 0.8
and q = 0.1 for homophily DC-SBM, p = 0.1 and q = 0.8 for heterophily DC-SBM and p = q = 1 for core-
periphery DC-SBM. π is sampled uniformly [0, 1] for homophily and heterophily, and πi ∼ Unif(0.5, 1)∀i ∈
core and πi ∼ Unif(0, 0.5)∀i ∈ periphery for core-periphery DC-SBM.

Illustration of impact of depth in Vanilla GCN using Homophily DC-SBM. We show the impact of
depth in Vanilla GCN using homophily DC-SBM in Figure 10. The DC-SBM is shown in the first column and
columns 2 and 3 show the exact NTK for depth=1 and 8 for symmetric and row normalization, respectively.
The plots clearly illustrate the complete loss of class information in symmetric normalization with depth
(column 2). While the prevalence of block difference has decresed in row normalization over depth (column
3), the block/community structure is still retained. Thus showing the strong representation power of Srow.

Figure 10: Numerical validation of Theorem 4 using DC-SBM shown in the first plot of column 1.
Columns 2 and 3 illustrate the exact NTKs of depth=1 and 8 for Ssym and Srow, respectively. Second plot
in column 1 shows the average gap between in-class and out-of-class blocks from theory.

Illustration of Scol and Sadj in Vanilla GCN using Homophily DC-SBM. We extend the experiments
on numerical validation for random graphs using vanilla GCN described in Section 5.2 to column normalized
adjacency Scol and unnormalized adjacency Sadj here. We use the same setup described in Section 5.2 and
Figure 11 illustrates the results. We observe that even for depth 1 both the convolutions are influenced by

33

Published in Transactions on Machine Learning Research (10/2023)

the degree correction and there is no class information in the kernels for higher depth. Thus, this validates
the theoretical result in Theorem 4.

Figure 11: Numerical validation of DC-SBM for Vanilla GCN. The first two heatmaps show the exact
NTK Θ(d) for column normalized adjacency convolution Scol and the other two for unnormalized adjacency
Sadj for depths d = 1 and 8.

Validation of the theoretical filter ordering based on the population kernel block difference.
We validate the theoretical finding of the filter Θ̃row ≻ Θ̃sym ≻ Θ̃col ≻ Θ̃adj based on the population kernel
block difference by sampling a graph from a DC-SBM and measuring the Mean Squared Error (MSE) of the
prediction from the exact kernel for various depth of GCN. Figure 12 illustrates the order of convolution
filters obtained theoretically holds very well in practice.

Figure 12: Numerical validation of the theoretical filter ordering based on the kernel class
separability. Left plot shows the result from theory based on the block difference of the population NTK.
The right plot shows the Mean Squared Error (MSE) of the prediction from the exact kernel of a sampled
graph. The order of convolutions based on MSE clearly validates the theory.

Illustration of impact of depth in Skip-PC and Skip-α using Homophily DC-SBM. We present a
complementary result to Section 6.3 here. We use the same setting as described in Section 6.3 and plot the
exact NTKs of depths 1 and 8 for symmetric and row normalization. Figure 13 shows the results for Skip-PC
and we observe that the gap between in-class and out-of-class blocks decreases for both Srow and Ssym with
depth, but the class information is still retained for larger depth and the gap doesn’t vanish. Between Srow

and Ssym, the heatmaps show that Srow retains the block structure better than Ssym and is devoid of the
influence of the degree corrections.

Figure 13: Numerical validation of DC-SBM for Skip-PC. It shows the exact NTKs Θ(d) for Ssym

and Srow for depths d = 1 and 8.

34

Published in Transactions on Machine Learning Research (10/2023)

In the case of Skip-α,we use α = 0.1 to obtain the result illustrated in Figure 14. Similar conclusions are
derived from the experiment. Although we consider XXT = In for Skip-α which fundamentally relies on the
feature information to interpolate, the results are still meaningful and demonstrate the theoretical findings.

Figure 14: Numerical validation of DC-SBM for Skip-α. It shows the exact NTKs Θ(d) for Ssym and
Srow for depths d = 1 and 8.

Numerical analysis of the results using Heterophily DC-SBM. We extend the analysis to heterophily
setting by sampling a graph of size n = 1000 and validate our theoretical results on the impact of depth in
Vanilla GCN, Skip-PC and Skip-α. We plot the NTKs for depth d = 1 and d = 8 for symmetric and row
normalized adjacency matrices and linear GCN for all the cases. Figure 15 illustrates the results for Vanilla
GCN where the plot in the first column shows the heterophilic DC-SBM from which the graph is sampled.
Observations are similar to the homophilic setting, validating our theoretical results from Theorem 4.

Figure 15: Numerical validation of Theorem 4 using DC-SBM shown in the first plot of column 1.
Columns 2 and 3 illustrate the exact NTKs of depth=1 and 8 for Ssym and Srow, respectively. Second plot
in column 1 shows the average gap between in-class and out-of-class blocks from theory.

Validation of the theoretical filter ordering based on the population kernel block difference.
Similar to the homophily case, we validate the theoretical finding of the filter Θ̃row ≻ Θ̃sym ≻ Θ̃col ≻ Θ̃adj

based on the population kernel block difference by sampling a graph from a DC-SBM and measuring the
Mean Squared Error (MSE) of the prediction from the exact kernel for various depth of GCN. Figure 16
illustrates the order of convolution filters obtained theoretically holds very well in practice.

35

Published in Transactions on Machine Learning Research (10/2023)

Figure 16: Numerical validation of the theoretical filter ordering based on the kernel class
separability. Left plot shows the result from theory based on the block difference of the population NTK.
The right plot shows the Mean Squared Error (MSE) of the prediction from the exact kernel of a sampled
graph. The order of convolutions based on MSE clearly validates the theory.

Figure 17 shows the impact of depth for symmetric and row normalized adjacency in Skip-PC and Skip-α
GCNs. Again, we observe similar results as homophilic and also the theoretic results hold such as the class
information is still retained for larger depth and the gap doesn’t vanish, and between Srow and Ssym, the
heatmaps show that Srow retains the block structure better than Ssym and is devoid of the influence of the
degree corrections.

Figure 17: Numerical validation of DC-SBM for Skip-PC and Skip-α. It shows the exact NTKs
Θ(d) for Ssym and Srow for depths d = 1 and 8.

Numerical Validation of Core-Periphery DC-SBM. In this section, we validate the two scenarios
discussed in Section 5.3 - core-periphery without community structure and core-periphery with community
structure. For the firsr case, we consider core-periphery DC-SBM with n/4 nodes as core and the rest as
periphery as shown in the first heatmap of Figure 18. We plot the exact NTKs of depth 2 for symmetric and
row normalization using Vanilla GCN as shown in the second and third heatmaps of Figure 18. This clearly
demonstrates the theoretical result presented in Corollary 2 where the symmetric normalization exhibits the
graph structure and the row normalization is a constant kernel.

Figure 18: Numerical validation of Core-Periphery DC-SBM. It shows the exact NTKs Θ(d) for Ssym

and Srow for depth 2.

36

Published in Transactions on Machine Learning Research (10/2023)

In the second setting, we consider two communities of equal size n/2 with core-periphery in each, and the
link probabilities between cores of the communities is higher than core-periphery or periphery-periphery
of the two communities as shown in the first heatmap of Figure 19. The exact NTKs of symmetric and
row normalization are illustrated in the second and third heatmaps of Figure 19 where we see that row
normalization retains the community structure again.

Figure 19: Numerical validation of Core-Periphery DC-SBM with community structure. It shows
the exact NTKs Θ(d) for Ssym and Srow for depth 2.

C.4 Experiments on Real Dataset: Cora

Orthonormal Feature XXT = In Assumption. In this section, we present additional experiments on
Cora. Since our theory assumed orthonormal features XXT = In, we validate it experimentally in similar
setup described in Section 7. Figure 20 shows the result for Ssym and Srow for depth 1 and 8. The conclusions
derived from real setting hold here as well and shows Srow preserves the class information better than Ssym.

Figure 20: Evaluation on Cora with XXT = In. Plot shows Ssym and Srow for depths d = 1 and 8.

ReLU GCN. We present the result for ReLU GCN in this section. Figure 21 shows the result where the
conclusions derived in Section 7 holds very well. Additionally, we plot the average in-class and out-of-class
block difference in the case of vanilla GCN (line plots in first row of Figure 21), we observe that the average
in-class and out-of-class block difference degrades with depth for each class in Cora, showing the negative
impact of depth which aligns well with the theoretical result.

Figure 21: Evaluation on Cora dataset. Heatmaps show results of vanilla GCN and the decrease in class
separability with depth for Ssym and Srow. Last two show NTKs of Skip-PC where a min and max threshold
of 30 and 70 percentile is set for better visualization.

37

Published in Transactions on Machine Learning Research (10/2023)

Figure 22: Class wise performance
of trained GCN of depth 4.

Another experimental study is to understand how easy it is to
learn the classes that showed good in-class and out-of-class gap
preservation from the above experiment. The line plot in Figure 21
shows class C2 and C5 are well represented by both Ssym and Srow.
To study how well this holds in the trained GCN, we considered
depth 4 vanilla GCN with ReLU activations and used the same
hyperparameters mentioned in Section C.1. The results are shown
in Figure 22 where we observe that C2 and C5 are well learnt.
On the other hand, other classes that showed small gap are also
well learnt by the trained GCN. This needs further investigation
as it has to do with the data split and some classes are poorly
represented in the training data, for instance C6. Thus, we leave
it for further analysis.

Linear GCN. We present the result for linear GCN with the same setup as described in Section 7 to check
the goodness of our theory. The results are illustrated in Figure 23 where we observe that the theory holds
very well for linear GCN than ReLU GCN. The class information is better preserved in Srow than Ssym

especially for higher depth in the case of both GCN with and without skip connections. All the conclusions
derived in the main section hold here as well.

Figure 23: Evaluation on Cora using linear GCN. First row shows the results for vanilla GCN for
depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8. The last column shows
the average in-class and out-of-class block difference per class of both the symmetric and row normalized
adjacencies.

C.5 Experiments on Real Dataset: Citeseer

Figure 24: Evaluation on Citeseer dataset using linear GCN. First row shows the results for vanilla
GCN for depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8.

38

Published in Transactions on Machine Learning Research (10/2023)

In this section, we validate our theoretical findings on Citeseer without much of the assumptions. We
consider multi-class node classification (K = 6) using GCN with linear activations and relax the orthonormal
feature condition, so XXT ̸= In. The NTKs for vanilla GCN, GCN with Skip-PC and Skip-α for depths
d = 1, 2, 4, 8, 16 are computed and Figure 24 illustrates the results. All the observations made in Section 7
hold here as well and clear blocks emerge for Srow making it the preferable choice as suggested in the theory.

39

	Introduction
	Neural Tangent Kernel for Graph Convolutional Network
	Theoretical Framework of our Analysis
	Linear Activation Captures Class Information as Good as ReLU Activation
	Convolution Operator Srow Preserves Class Information
	Impact of Depth in Vanilla GCN
	Numerical Validation for Random Graphs
	Ssym Maybe Preferred Over Srow in Core-Periphery Networks (No Class Structure)

	Skip Connections Retain Class Information Even at Infinite Depth
	NTK for GCN with Skip Connections
	Impact of Depth in GCNs with Skip Connection
	Numerical Validation for Random Graphs

	Empirical Analysis on Real Data
	Discussion
	Acknowledgment
	Other Related Works
	Mathematical derivations and proofs
	Theorem 1: NTK for Vanilla GCN
	Gradients of functions with scalar output
	Theorems 2, 4 and Corollary 1: Population NTK for Different Convolutions S
	Symmetric Degree Normalized Adjacency Ssym
	Row Degree Normalized Adjacency Srow
	Column Normalized Adjacency Scol
	Unnormalized Adjacency Sadj
	Number of Classes K>2

	Corollary 3 and 4: NTK for GCN with Skip Connections
	Theorem 5: Class Separability of Population NTK for Skip-PC
	Theorem 6: Population NTK for Skip-
	Theorem 3: Population NTK for ReLU GCN for normalized adjacency S
	Difference between block difference of linear and ReLU GCNs for depth d=1
	Analysis without orthonormal feature assumption XXT =In

	Empirical Analysis
	Experimental Details of Figure 1
	Comparison of GCN and NTK
	Numerical Validation for DC-SBM for Vanilla GCN and Skip-
	Experiments on Real Dataset: Cora
	Experiments on Real Dataset: Citeseer

