LLM-DAMVC: A Large Language Model Assisted Dynamic Agent for Multi-View Clustering

Haiming Xu¹ Qianqian Wang^{1*}

¹School of Telecommunications Engineering, Xidian University, Xi'an, China 24011211044@stu.xidian.edu.cn, qqwang@xidian.edu.cn

Abstract

Multi-view clustering integrates the consistency and complementarity of different views to achieve unsupervised data grouping. Existing multi-view clustering methods primarily confront two challenges: i) they generally perform feature extraction in the feature domain, which is sensitive to noise and may neglect cluster-specific information that is indistinguishable in the original space; ii) current dynamic fusion methods adopt static strategies to learn weights, lacking capability to adjust strategies adaptively under complex scenarios according to variations in data distribution and view quality. To address these issues, we propose a large language model assisted dynamic agent for multi-view clustering (LLM-DAMVC), a novel framework that recasts multi-view clustering as a dynamic decision-making problem orchestrated by a large language model. Specifically, each view is equipped with complementary agents dedicated to feature extraction. A dual-domain contrastive module is introduced to optimize feature consistency and enhance cluster separability in both the feature domain and frequency domain. Additionally, an LLM-assisted view fusion mechanism provides a flexible fusion weight learning strategy that can be adaptively applied to complex scenarios and significantly different views. Extensive experimental results validate the effectiveness and superiority of the proposed method.

1 Introduction

Nowadays, data from different sources or modalities (*i.e.*, multi-view data) have become increasingly ubiquitous, such as user profiles and behavioral data in social networks, multi-modal scanning results in medical imaging, and multi-variate sensor data generated by IoT devices (1; 2; 3; 4; 5; 6). These multi-view data often contain richer and more comprehensive information than single-view data but also pose challenges such as heterogeneity, noise interference, and missing labels. Multi-View Clustering (MVC), which aims to effectively partition unlabeled data by leveraging the consistent and complementary information across views, has become a core technology in multi-view analysis, data mining, and pattern recognition (7; 8; 9; 10).

To effectively fuse multi-view information, researchers have proposed various MVC methods. Early approaches primarily relied on non-negative matrix factorization, subspace learning, or spectral clustering (11; 12; 13; 9; 14; 15). With the advancement of deep learning, deep MVC methods (e.g., those based on autoencoders, graph neural networks, or contrastive learning) have made significant progress in representation learning and exploring nonlinear relationships (16; 17; 18; 19; 20; 21). Notably, some studies have attempted to address view fusion by using attention mechanisms to adaptively aggregate view features (22; 23). Additionally, to learn a consistent representation with discriminative information, contrastive learning has been widely adopted to improve clustering performance by maximizing the similarity between positive samples and meanwhile minimizing that

^{*}Corresponding Author

between negative samples (24; 25). Despite their effectiveness, most of them focus on feature-domain consistent representation learning, which neglects imperceptible and indistinguishable features in the original feature space. Nevertheless, these features can be separable easily in the frequency domain. Moreover, these methods typically rely on predefined rules to assign weights for each view, making them inflexible when applied in complex scenarios and processing heterogeneous views. Especially, their static strategies for determining view weights may lack adaptability in adjusting strategies when facing drastic variations in view quality at the sample level. Existing methods generally lack a centralized coordination mechanism capable of understanding view content, assessing view quality, and performing intelligent decision-making.

To address these challenges and inspired by the powerful decision-making capacity of Large-scale Language Models (LLMs), we propose an LLM-Assisted Dynamic Agent for Multi-View Clustering (LLM-DAMVC). Different from existing works that introduce LLMs to MVC for feature extraction (26), LLM-DAMVC leverages the semantic reasoning and decision-making capabilities of LLMs for adaptive view fusion in MVC. This is achieved through a synergistic architecture incorporating multiple agents per view and a dual-domain contrastive learning mechanism. Specifically, each view is equipped with a standard agent and an adversarial agent, respectively focusing on semantic feature extraction and adversarial learning. A dual-domain contrastive learning module is introduced to optimize feature consistency in the feature domain and frequency domain. Finally, we utilize the information of the semantic feature quality, cluster structure quality, and intra-cluster compactness to construct a prompt for LLM to dynamically learn a fusion weight for each view. The main contributions of LLM-DAMVC are summarized as follows:

- We propose a novel MVC framework named LLM-DAMVC by introducing LLM as a decision-making module to evaluate the view quality in real time and dynamically assign aggregation weights, so that the model can adaptively adjust the fusion strategy according to the view characteristics and sample distribution.
- We build a dual-domain contrastive learning module that integrates frequency-domain contrastive learning with feature-domain contrastive learning. It maps the features to the frequency space through the FFT transform, capturing imperceptible and indistinguishable features in the original feature space and significantly enhancing the feature representation capability.
- We conduct extensive experiments on several benchmark datasets and compare our method with state-of-the-art MVC methods. The experimental results and analyses demonstrate the effectiveness of the proposed method.

2 Related Work

2.1 Multi-view Clustering

Numerous MVC methods have been proposed in the past few decades. For example, Large-scale Multi-View Spectral Clustering (MVSC) approximates each view's similarity graph via a bipartite anchor graph, reducing time and space complexity of spectral clustering to near-linear while preserving cross-view manifold structure (27). Another line of work focuses on adaptive fusion: Self-weighted Multi-view Clustering (SwMC) learns view-specific Laplacian graphs and their confidence weights jointly, enabling direct cluster assignment without an extra k-means step (10). To further account for sample-specific view importance, Localized multiple kernel k-means clustering extends kernel k-means to multi-view data by learning sample-specific kernel weights through localized data fusion, which adaptively captures view importance and excels on biomedical datasets (28). Diversity-Induced Multi-View Subspace Clustering (DiMSC) leverages the Hilbert–Schmidt Independence Criterion to enforce statistical independence among view-specific representations and thus enhance complementarity (13). However, these methods rely on shallow, linear representations and often fail to capture complex nonlinear dependencies across views, motivating the shift towards deep multi-view clustering techniques.

2.2 Deep Multi-view Clustering

Deep Multi-view Clustering (DMVC) leverages deep neural networks to learn non-linear representations from multi-view data. Early approaches primarily focused on learning a shared representation

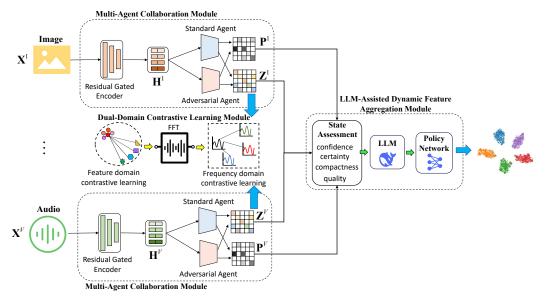


Figure 1: The overall architecture of the proposed LLM-DAMVC framework. Multi-view data $(\mathbf{X}^1,\dots,\mathbf{X}^V)$ are processed by a Residual Gated Encoder to generate shared latent features (\mathbf{H}^v) . These features are then fed into two parallel branches, a Standard Agent and an Adversarial Agent, to produce initial predictions $(\mathbf{P}^v_{\text{std}},\mathbf{P}^v_{\text{adv}})$ and contrastive embeddings $(\mathbf{Z}^v_{\text{std}},\mathbf{Z}^v_{\text{adv}})$. The encoder is subsequently refined by a Dual-Domain Contrastive Learning Module, which enforces consistency on these embeddings in both the feature domain and frequency domain (via FFT). Concurrently, a state assessment based on multi-faceted quality indicators (\mathbf{q}^v_a) informs an **LLM** and a parallel heuristic policy to generate dynamic aggregation weights (\mathbf{w}^v_a) . Finally, these weights guide the fusion of all agent predictions into a unified probability distribution (\mathbf{P}) , from which the final cluster assignments are derived.

space, often employing autoencoders for cross-view reconstruction (29) or deep canonical correlation analysis (DCCA) to maximize inter-view correlations (30; 31). Subsequent advances explored more sophisticated architectures. Graph-based methods, for instance, utilize Graph Neural Networks (GNNs) to capture the underlying topological structure of the data (16; 32). More recently, to address the challenge of static view fusion, attention mechanisms have been widely adopted to learn dynamic, instance-specific weights for view aggregation (33; 22). However, while these attention-based methods offer improved adaptability, they typically rely on predefined rules to assign weights for each view, making them inflexible when applied in complex scenarios and processing heterogeneous views.

3 METHODOLOGY

3.1 Notations and Problem Definition

Multi-view clustering aims to leverage complementary information from different feature spaces to achieve better clustering performance. Given a multi-view dataset $\mathcal{X} = \{\mathbf{X}^1, \mathbf{X}^2, \dots, \mathbf{X}^V\}$, where $\mathbf{X}^v \in \mathbb{R}^{N \times d_v}$ represents the feature matrix of the v-th view containing N samples with d_v -dimensional features. The goal of multi-view clustering is to partition these N samples into K semantically consistent clusters $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K\}$, where K represents the number of inherent classes in the dataset.

In this section, we introduce a novel deep multi-view clustering method called LLM-assisted Dynamic Agent Multi-View Clustering (LLM-DAMVC), which reformulates MVC as a dynamic decision-making problem. Our approach introduces specialized agents that process individual views and dynamically adjust their contributions based on their performance. Instead of using a predefined fusion strategy, LLM-DAMVC employs a dynamic routing mechanism that determines how to optimally combine these features based on their quality and complementarity. LLM-DAMVC mainly consists of three key modules: Multi-Agent Collaboration Module, Dual-Domain Contrastive

Learning Module, and LLM-Assisted Dynamic Feature Aggregation Module. Specific descriptions of these modules will be provided in the subsequent sections.

3.2 Multi-Agent Collaboration Module

The Multi-Agent Collaboration Module serves as the fundamental feature extraction component of our LLM-DAMVC framework. This module is composed of Residual Gated Encoder, Standard Agent, and Adversarial Agent. The Residual Gated Encoder transforms the input into a latent representation \mathbf{H}^v . The two specialized agents operate on the latent representation \mathbf{H}^v in parallel for distinct and complementary purposes.

Residual Gated Encoder: Given the input data matrix $\mathbf{X}^v \in \mathbb{R}^{N \times d_v}$ for view v, we first transform it into a view-specific latent representation through a residual gated encoder \mathbf{E}_v . For the first L-1 layers, each is composed of a linear layer, a batch normalization (BN) layer, and an activation layer. Starting with the initial input $\mathbf{H}^v_0 = \mathbf{X}^v$, each intermediate layer transforms the features as:

$$\mathbf{H}_{l}^{v} = \text{ReLU}\left(\text{BN}(\mathbf{H}_{l-1}^{v}\mathbf{W}_{l} + \mathbf{b}_{l})\right), \quad l = 1, 2, \dots, L - 1$$

$$\tag{1}$$

where $ReLU(\cdot)$ denotes the ReLU activation function; $BN(\cdot)$ is batch normalization, and \mathbf{W}_l , \mathbf{b}_l are learnable parameters. The final layer (*L*-th layer) incorporates a self-gating mechanism and a residual connection to enhance representational capacity (34; 35):

$$\mathbf{H}^{v} = (1 + \operatorname{sigmoid}(\mathbf{H}_{L-1}^{v} \mathbf{W}_{\text{gate}})) \odot \mathbf{H}_{L-1}^{v} + \alpha f(\mathbf{X}^{v})$$
(2)

where $\mathbf{H}^v \in \mathbb{R}^{N \times d}$ represents the latent embedding, $\operatorname{sigmoid}(\cdot)$ is the sigmoid function, \mathbf{W}_{gate} is the gating parameter, \odot denotes element-wise multiplication, and $\alpha > 0$ is a scalar hyperparameter controlling the strength of the residual connection. Crucially, $f(\cdot)$ is a linear projection to ensure dimensional consistency for the residual connection.

Standard Agent: We first incorporate a standard agent to extract stable features and learn cluster structure, which transforms the latent representation into a clustering probability distribution and a standard embedding. To be specific, we utilize a learnable mapping ϕ_{std} composed of two linear layers, a BN layer, a ReLU activation layer, and a softmax operation to learn the clustering probability distribution $\mathbf{P}_{\text{std}}^v \in \mathbb{R}^{N \times K}$ from \mathbf{H}^v as follows:

$$\mathbf{P}_{\mathsf{std}}^{v} = \phi_{\mathsf{std}}(\mathbf{H}^{v}) \tag{3}$$

Then we employ another learnable mapping \mathcal{E}_{std} composed of two linear layers, a BN layer, and a ReLU activation layer, to project \mathbf{H}^v into a standard embedding $\mathbf{Z}_{std}^v \in \mathbb{R}^{N \times d_z}$:

$$\mathbf{Z}_{\mathsf{std}}^{v} = \mathcal{E}_{\mathsf{std}}(\mathbf{H}^{v}) \tag{4}$$

Adversarial Agent: Operating in parallel, we introduce an adversary agent that explores the boundaries of the feature space to enhance robustness and discriminability. It first learns the adversary clustering probability distribution $\mathbf{P}_{\text{adv}}^v$ through ϕ_{adv} that has the same structure as ϕ_{std} :

$$\mathbf{P}_{\text{adv}}^{v} = \phi_{\text{adv}}(\mathbf{H}^{v}) \tag{5}$$

To obtain the adversarial embedding $\mathbf{Z}_{\text{adv}}^v \in \mathbb{R}^{N \times d_z}$, we use a mapping \mathcal{E}_{adv} with similar structure to \mathcal{E}_{std} :

$$\mathbf{Z}_{\text{adv}}^{v} = \mathcal{E}_{\text{adv}}(\mathbf{H}^{v}) \tag{6}$$

Then, we compute $\hat{\mathbf{y}}^v = \arg \max(\mathbf{P}_{\text{adv}}^v)$ as pseudo-labels, which guides the generation of adversarial samples $\tilde{\mathbf{X}}^v$ by computing input gradients:

$$\tilde{\mathbf{X}}^{v} = \mathbf{X}^{v} + \delta \cdot \operatorname{sign}\left(\nabla_{\mathbf{X}^{v}} \operatorname{CE}(\mathbf{P}_{\text{adv}}^{v}, \hat{\mathbf{y}}^{v})\right) \tag{7}$$

where ∇ represents gradient operation, CE denotes the cross-entropy operation, sign is the sign function, and $\delta > 0$ controls the perturbation intensity. Then, $\tilde{\mathbf{X}}^v$ is used to retrain the adversarial agent, enforcing robustness against input perturbations, and is not propagated to subsequent modules. Subsequently, we build a discriminator ψ with MLP to distinguish real features ($\mathbf{H}^v = \mathbf{E}_v(\mathbf{X}^v)$) and

generated features ($\tilde{\mathbf{H}}^v = \mathbf{E}_v(\tilde{\mathbf{X}}^v)$). This adversarial branch introduces a min-max game between the encoder and the discriminator to enhance representation robustness with discriminator loss \mathcal{L}_{disc} .

$$\mathcal{L}_{disc} = -\mathbb{E}_{\mathbf{X}^{v}}[\log(\psi(\mathbf{H}^{v}))] - \mathbb{E}_{\tilde{\mathbf{X}}^{v}}[\log(1 - (\psi(\tilde{\mathbf{H}}^{v})))]$$
(8)

We compute discrimination scores by $\mathbf{s}_{\mathrm{adv}}^v = \psi(\mathbf{H}^v)$ ($\mathbf{s}_{\mathrm{adv}}^v \in \mathbb{R}^{N \times 1}$). To enforce cross-view alignment and high-quality clustering, we add an alignment loss as follows:

$$\mathcal{L}_{\text{align}} = -\sum_{v=1}^{V} \sum_{u \neq v} \mathcal{A}(\mathbf{H}^{v}, \mathbf{H}^{u}) + \frac{1}{V(V-1)} \sum_{v=1}^{V} \sum_{u \neq v} \mathcal{D}_{\text{KL}}(\mathbf{P}_{\text{std}}^{v} \parallel \mathbf{P}_{\text{std}}^{u})$$
(9)

where $\mathcal{A}(\cdot,\cdot)$ maximizes the canonical correlation between view-specific latent features \mathbf{H}^v by operating on their cross-covariance matrix, and \mathcal{D}_{KL} is KL-divergence to ensure cluster distribution consistency.

3.3 Dual-Domain Contrastive Learning Module

To improve the discriminativeness and consistency, we propose a Dual-domain Contrastive Learning module that integrates analyses of the feature domain and the frequency domain. This module uses the standard embedding $\mathbf{Z}_{\text{std}}^v$ and the adversary embedding $\mathbf{Z}_{\text{adv}}^v$ to build contrastive loss in the two domains. For easier presentation, we employ \mathbf{z}_i^v to represent the embedding of *i*-th sample in view v from $\mathbf{Z}_{\text{std}}^v$ or $\mathbf{Z}_{\text{adv}}^v$.

Feature-domain Contrastive Learning: For corresponding samples across different views v and u, we compute their cosine similarity:

$$s_{ij}^{v,u} = \frac{(\mathbf{z}_i^v)^\top \mathbf{z}_j^u}{\|\mathbf{z}_i^v\| \cdot \|\mathbf{z}_j^u\|}$$
(10)

Following the contrastive learning framework (36), we consider features from different views of the same sample i as positive samples and a different sample j ($j \neq i$) as negative samples. Then, we construct the contrastive loss as follows:

$$\mathcal{L}_{\text{feature}} = -\frac{1}{N} \sum_{1 \le v \le V, u \ne v} \sum_{1 \le i \le N} \log \frac{\exp(s_{ii}^{v,u}/\tau)}{\sum_{j=1}^{N} \exp(s_{ij}^{v,u}/\tau)}$$
(11)

where $\tau > 0$ is a temperature hyperparameter. This objective promotes alignment of corresponding cross-view samples while enforcing separation from non-corresponding instances.

Frequency-domain Contrastive Learning: We extend contrastive learning to the frequency domain to capture global structural patterns that remain elusive in the feature space. For each feature vector $\mathbf{z}_i^v \in \mathbb{R}^{d_z}$, we apply the Fast Fourier Transform (FFT) to compute the frequency-domain feature $\hat{\mathbf{z}}_i^v = \mathcal{F}(\mathbf{z}_i^v)$, where \mathcal{F} denotes the FFT operation and $\hat{\mathbf{z}}_i^v \in \mathbb{C}^{d_z}$ is the complex-valued frequency spectrum. We extract the amplitude spectrum $|\hat{\mathbf{z}}_i^v| \in \mathbb{R}^{d_z}$, which characterizes the energy distribution across frequency components while maintaining translation invariance.

For the embedding \mathbf{z}_i^v of an anchor sample i from view v, we construct a contrastive triplet $(\mathbf{z}_i^v, \mathbf{z}_i^u, \mathbf{z}_j^u)$ by selecting corresponding embedding \mathbf{z}_i^u in another view u ($u \neq v$) as positive sample and select another sample \mathbf{z}_j^u ($j \neq i$) as negative sample. For efficient computation, we only sample M negative samples, and the frequency-domain contrastive loss is defined as follows:

$$\mathcal{L}_{\text{frequency}} = \frac{1}{NMV} \sum_{1 \le v \le V, u \ne v} \sum_{1 \le i \le N} \sum_{j \in \mathcal{J}(i)} \frac{\||\hat{\mathbf{z}}_i^v| - |\hat{\mathbf{z}}_i^u|\|_1}{\||\hat{\mathbf{z}}_i^v| - |\hat{\mathbf{z}}_j^u|\|_1 + \epsilon}$$
(12)

where $\epsilon > 0$ is a small constant for numerical stability, $\mathcal{J}(i)$ represents the set of indices for negative samples corresponding to anchor i.

We obtain the dual-domain contrastive loss with a balancing factor ρ as follows:

$$\mathcal{L}_{\text{cont}} = \mathcal{L}_{\text{feature}} + \rho \mathcal{L}_{\text{frequency}},\tag{13}$$

The dual-domain contrastive learning enhances the features and helps to capture both local discriminative details and global structural patterns.

3.4 LLM-Assisted Dynamic Feature Aggregation Module

To address the limitation of static fusion strategies in traditional MVC, we propose the LLM-Assisted Dynamic Feature Aggregation Module, which leverages an LLM to dynamically assess and aggregate multi-view representations. This module processes the latent features $\{\mathbf{H}^v\}_{v=1}^V$, clustering predictions $\{\mathbf{P}_{\mathrm{std}}^v, \mathbf{P}_{\mathrm{adv}}^v\}_{v=1}^V$, and discriminative score $\{\mathbf{s}_{\mathrm{adv}}^v\}_{v=1}^V$ from the preceding stages.

For an agent of the v-th view with type a ($a \in \{adv, std\}$), we compute a quality indicator vector $\mathbf{q}_a^v \in \mathbb{R}^{4 \times 1}$ to provide a multi-faceted assessment of its real-time performance:

$$\mathbf{q}_{a}^{v} = \begin{bmatrix} \mathbb{E}[\max(\mathbf{P}_{a}^{v}(i,:))] \\ \zeta(\mathbf{H}^{v}, \mathbf{P}_{a}^{v}) \\ 1 - \mathcal{H}(\mathbf{P}_{a}^{v}) \\ \mathbb{E}[\mathbf{s}_{adv}^{v}(i)] \end{bmatrix}$$
(14)

where $\mathbb{E}[\max(\mathbf{P}_a^v(i,:))]$ measure the agent's average prediction confidence, $\zeta(\mathbf{H}^v, \mathbf{P}_a^v)$ measures cluster structure quality, ζ calculates a compactness score based on intra-cluster distances, $1 - \mathcal{H}(\mathbf{P}_a^v)$ measures prediction certainty, \mathcal{H} is entropy operation, and $\mathbb{E}[\mathbf{s}_{\text{adv}}^v(i)]$ measures the average representation quality score, respectively.

The LLM-assisted mechanism processes these quality indicators \mathbf{q}_a^v to generate a dynamic aggregation strategy. Specifically, the quality vectors are formatted into a structured prompt and fed to a frozen large language model (LLM). The LLM analyzes the global performance of all agents and outputs a high-level routing policy, the core component of which is a confidence threshold τ_c for filtering out unreliable agents. Based on this policy, we compute adaptive aggregation weights for each agent. The raw weight r_a^v for each agent is determined by:

$$r_a^v = \begin{cases} \mathbb{E}[\max(\mathbf{P}_a^v(i,:))] \cdot ||\mathbf{H}^v||_F, & \text{if } \mathbb{E}[\max(\mathbf{P}_a^v[i,:])] \ge \tau_c \\ 0, & \text{otherwise} \end{cases}$$
(15)

where $\|\cdot\|_F$ denotes the Frobenius norm. The raw weights are then normalized to sum to one via softmax, yielding the final weight $\{w_a^v\}$ as follows:

$$w_a^v = \frac{\exp(r_a^v)}{\sum_{v=1}^V \sum_{a \in \{\text{std,adv}\}} \exp(r_a^v)}.$$
 (16)

The final aggregated prediction is obtained by weighted fusion of all agent predictions:

$$\mathbf{P} = \sum_{v=1}^{V} \sum_{a \in \{ \text{std,adv} \}} w_a^v \mathbf{P}_a^v \in \mathbb{R}^{N \times K}.$$
 (17)

The clustering loss is formulated as:

$$\mathcal{L}_{\text{clus}} = -\sum_{i \in \mathcal{T}_{\text{tot}}} \sum_{k=1}^{K} y_{ik} \log \mathbf{P}_{ik} + \lambda_1 \sum_{k=1}^{K} \left| \bar{\mathbf{P}}_k - \frac{1}{K} \right| + \lambda_2 \sum_{i=1}^{N} \left(-\log \max(\mathbf{P}_i) \right)$$
(18)

where \mathbf{P}_{ik} is the (i,k)-th entry of the aggregated prediction \mathbf{P} ; $\mathcal{I}_{\text{high}}$ is the set of high-confidence samples, and a sample i is considered as a high-confidence sample if $\max(\mathbf{P}_i)$ exceeds a predefined threshold; \mathbf{y}_i is one-hot vector indicating the assignment of sample $i \in \mathcal{I}_{\text{high}}$, and $y_{ik} = 1$ for $\operatorname{Ind}(\max(\mathbf{P}_i))$ and 0 otherwise; $\operatorname{Ind}(\cdot)$ is the indexing operation. The second term encourages balanced cluster sizes by minimizing the L1 deviation of the mean assignment $\bar{\mathbf{P}}_k = \frac{1}{N} \sum_i \mathbf{P}_{ik}$ from the uniform distribution 1/K, and the third term promotes prediction clarity.

3.5 The Objective Function

The total loss function combines the losses above and is as follows:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{disc} + \gamma \mathcal{L}_{align} + \lambda \mathcal{L}_{\text{cont}} + \beta \mathcal{L}_{\text{clus}}$$
(19)

where γ , λ , and β are hyperparameters balancing different parts of the objective.

The final cluster assignments are directly obtained from the aggregated prediction of the LLM-Assisted Dynamic Feature Aggregation:

$$c_i = \arg\max_k(\mathbf{P}_{ik}) \quad \text{for } 1 \le i \le N,$$
 (20)

where $c_i \in \{1, 2, \dots, K\}$ denotes the cluster index for the *i*-th sample.

4 EXPERIMENT

4.1 Datasets & Metric

We evaluate our method on six benchmark multi-view datasets to validate its effectiveness across diverse data types: **NUS-WIDE** (**NUS**) (37), an image dataset containing 6,251 samples described by 5 visual feature views; **BDGP** (38), a Drosophila image dataset with 2,500 samples and 2 views (visual and textual); **Handwritten** (39), a digit recognition dataset comprising 2,000 samples represented by 6 heterogeneous feature views; **MNIST-USPS** (38), a cross-domain digit benchmark with 5,000 samples from two complementary image datasets; **Reuters** (40), a multilingual news corpus consisting of 1,800 short articles and their associated topics, represented by 5 language-specific views; and **CCV** (40), a consumer video dataset with 6,773 samples and 3 deep feature views. We report three standard clustering metrics: Accuracy (ACC), Normalized Mutual Information (NMI), and Purity (PUR). All experiments are implemented in PyTorch and conducted on an NVIDIA GeForce RTX 4090 GPU.

4.2 Comparing Methods

To evaluate LLM-DAMVC on complete multi-view datasets, we benchmark it against state-of-the-art multi-view clustering (MVC) methods, spanning classical baselines, deep representation learning approaches, contrastive learning techniques, and advanced dynamic fusion strategies. As a classical baseline, **K-Means** (41) minimizes intra-cluster distances for partitioning but overlooks multi-view complementarity. Deep MVC methods include **DCP** (42), **EE-IMVC** (43), **ASR** (44), and **MFLVC** (24). Contrastive approaches include **CVCL** (18) and **COMPLETER** (25). Advanced techniques include **ADMC** (45), which enhances efficiency with active sample selection in semi-supervised settings, and **COPER** (40), which aligns cluster assignments through correlation-based permutations.

Table 1: Clustering performance comparisons on 6 selected datasets. Best results in **blue bold**, second best in **red bold**.

	NUS			BDGP			Handwritten			MNIST-USPS			Reuters			CCV		
Method	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR
K-Means (41)	20.90	15.45	32.19	45.72	27.43	46.20	38.95	37.21	39.45	49.30	45.40	52.90	6.70	5.90	4.01	5.12	8.97	5.01
EE-IMVC (43)	22.29	10.35	39.02	88.00	71.76	87.76	89.30	81.07	89.30	76.00	68.04	76.48	19.05	11.39	16.38	23.37	18.22	26.46
ASR (44)	21.50	13.73	38.97	97.68	92.63	97.68	93.95	88.26	93.95	97.90	94.72	7.90	15.51	18.42	14.55	24.06	17.41	22.73
DSIMVC (46)	28.89	18.06	43.27	99.04	96.86	99.04	87.20	80.39	87.20	99.34	98.13	99.34	24.35	22.17	20.41	31.90	30.70	30.54
DCP (42)	19.43	5.45	30.72	97.04	92.43	97.04	85.75	85.05	85.75	99.02	97.29	99.02	26.66	32.74	21.04	20.04	16.61	14.22
MFLVC (24)	24.11	16.43	30.87	98.72	96.13	98.72	86.55	85.98	86.55	99.66	99.01	99.66	21.14	19.98	20.37	31.23	31.60	33.90
CVCL (18)	28.65	13.96	39.83	99.20	97.29	99.20	97.35	94.05	97.35	99.70	99.13	99.70	55.64	31.14	57.35	26.23	26.25	21.17
COMPLETER(25)	22.48	7.71	38.73	59.95	56.18	59.95	69.36	73.93	69.70	89.08	88.86	89.02	25.63	31.73	25.34	24.58	22.51	21.14
ADMC(45)	24.36	15.97	40.06	96.96	96.12	96.96	84.10	81.17	84.10	91.26	95.50	91.26	77.33	70.49	77.33	23.25	20.68	23.57
COPER(40)	25.55	11.67	35.54	89.65	73.92	75.96	87.55	77.15	89.05	99.88	99.64	99.88	53.15	31.10	51.79	28.06	26.32	24.57
Our Method	37.11	37.51	48.53	99.67	98.76	99.64	98.66	95.36	98.43	99.92	99.63	99.92	78.76	76.48	79.83	46.55	55.77	49.81

4.3 Experimental Analysis

Performance Comparison: To comprehensively evaluate the efficacy of our proposed method, we conduct an extensive comparative analysis against multi-view clustering methodologies across six challenging benchmark datasets. As detailed in Table 1, the empirical results unequivocally demonstrate the superior performance of our approach. Our method, LLM-DAMVC, consistently outperforms all baseline models across all datasets and evaluation metrics, which underscores its exceptional generalizability and robustness to diverse data characteristics. The superiority of our method is particularly illustrated on well-structured datasets such as BDGP and MNIST-USPS, where it achieves superior clustering outcomes with both accuracy and purity levels surpassing 99%. On these datasets, our approach markedly surpasses even the most competitive baselines, showcasing its capability to discern fine-grained cluster structures. Furthermore, when confronted with more intricate and noisy datasets like CCV and Reuters, our method sustains its high efficacy. This consistent performance across varied data modalities validates the effectiveness of our LLM-assisted dynamic fusion mechanism in adaptively handling complex, real-world data distributions.

Hyper-parameter Analysis: We analyze the sensitivity of our model to the hyperparameters λ , β , and γ that weight the contrastive loss (\mathcal{L}_{cont}), clustering loss (\mathcal{L}_{clus}), and alignment loss (\mathcal{L}_{align}). The model is robust to the choice of λ : performance remains stable over a wide range of values, which

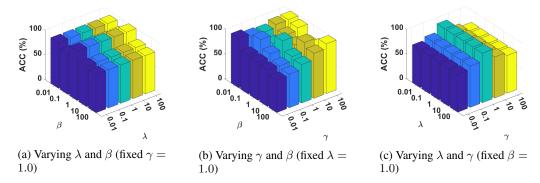


Figure 2: Parameter sensitivity analysis of our method on the MNIST-USPS dataset. We investigate the impact of hyperparameters λ , β , and γ on clustering accuracy (ACC). Each subplot shows the performance landscape by varying two parameters while keeping the third fixed at its optimal value (e.g., $\gamma = 1.0$).

shows that the contrastive loss consistently fulfills its role of pulling similar samples together and pushing dissimilar ones apart, and this function is reliably effective without requiring precise tuning. In contrast, for the parameters γ and β , there exist performance peaks only at specific values and drops when deviating, demonstrating that the alignment loss and clustering loss must be carefully balanced to work properly. The alignment loss is responsible for establishing cross-view consistency by aligning representations from different views into a shared space, and the clustering loss directly optimizes the cluster structure by encouraging samples to form coherent groups. By comprehensively analyzing the three figures, we found that high performance is achieved when all three losses are present. Removing or severely weakening any one of them leads to degradation, which confirms that each loss performs a distinct and necessary function: contrastive learning handles fine-grained sample discrimination, alignment ensures cross-view agreement, and clustering enforces global semantic grouping.

Table 2: Progressive ablation study showing the contribution of each component in LLM-DAMVC. Best results in **blue bold**, second best in **red bold**.

Method	NUS			BDGP			Handwritten			MNIST-USPS			Reuters			CCV		
	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR
Baseline (Only $\mathcal{L}_{feature}$)	27.42	6.20	30.05	34.41	16.14	35.23	29.30	21.87	29.30	23.70	14.24	24.67	37.83	29.76	39.17	18.86	20.93	19.15
+ \mathcal{L}_{disc}	29.15	9.80	32.40	35.71	20.14	37.16	31.20	24.50	32.10	25.80	17.30	27.20	40.20	33.10	41.50	20.70	23.80	21.90
+ $\mathcal{L}_{\text{frequency}}$	31.60	14.20	36.80	40.15	26.61	40.15	55.40	48.71	55.40	65.51	62.17	65.51	45.65	38.93	47.20	23.92	28.44	25.78
+ L _{clus}	34.37	20.44	40.67	81.73	78.15	81.73	87.75	90.30	87.75	97.30	97.73	98.30	72.82	65.48	73.20	43.61	51.14	45.53
+ \mathcal{L}_{align} (Full)	37.11	37.51	48.53	99.67	98.76	99.64	98.66	95.36	98.43	99.92	99.63	99.92	78.76	76.48	79.83	46.55	55.77	49.81

Ablation Studies: To rigorously evaluate the contribution of each proposed component, we conduct a progressive ablation study, with detailed results presented in Table 2. The findings clearly demonstrate that each module synergistically contributes to the final performance of LLM-DAMVC. Our analysis begins with a baseline model trained solely on the feature-domain contrastive loss ($\mathcal{L}_{\text{feature}}$), which establishes a foundational performance level. From this baseline, we observe a clear and consistent trend of improvement as each new component is incrementally introduced. Notably, the most significant performance increase is observed upon the integration of the frequency-domain contrastive loss (+ $\mathcal{L}_{\text{frequency}}$) and the clustering loss (+ $\mathcal{L}_{\text{clus}}$). The former's impact strongly validates our core hypothesis that incorporating frequency-domain analysis is crucial for capturing global structural patterns that are often missed by conventional feature-domain methods. Meanwhile, the substantial gains from the latter highlight the undeniable necessity of a direct and well-structured clustering objective to guide the model towards forming high-quality and coherent cluster structures. Finally, the inclusion of the discriminator loss (+ $\mathcal{L}_{\text{disc}}$) and the alignment loss (+ $\mathcal{L}_{\text{align}}$) provides further valuable refinements, incrementally improving the model's capabilities to its best performance. The full model, incorporating all components, consistently achieves the best results across all datasets.

Multi-Dimension Analysis: Figure 3 illustrates feature representation evolution on BDGP dataset, from unstructured raw features (Figure 3a) to well-defined clustering structures, validating our LLM-DAMVC framework. Figure 4 (left) shows convergence trajectories stabilizing after 60 iterations with monotonic loss descent, demonstrating robust convergence. Figure 4 (right) reveals DeepSeek-8B outperforming across all datasets, particularly on complex ones (NUS, CCV), while even the 1.5B

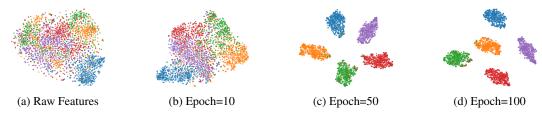


Figure 3: T-SNE visualization on the BDGP dataset with increasing training iteration.

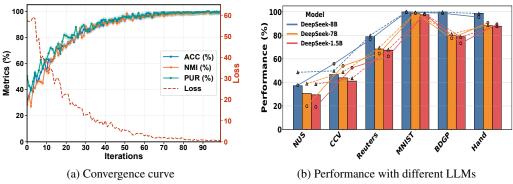


Figure 4: Convergence curve and performance of different LLM decision models

variant maintains acceptable performance on structured datasets (MNIST, BDGP). These findings highlight both LLMs' critical role in multi-view clustering and our framework's scalability under diverse computational constraints.

4.4 Limitations

Despite our achievements, the designed LLM-Assisted Dynamic Feature Aggregation Module adopts general LLMs to build the decision-making module for view fusion. Though it indicates effectiveness, the performance could be improved by adjusting the LLMs to be dedicated to view fusion tasks in MVC. Therefore, our future work will fine-tune the LLMs to make them more suitable for MVC. Besides, we will also consider introducing the model distillation technique to enhance the efficiency of the dynamic feature aggregation process.

5 Conclusions

In this paper, we propose LLM-DAMVC, a novel multi-view clustering framework that reformulates view fusion as a dynamic decision-making process orchestrated by LLMs. To address the limitations of existing methods, *i.e.*, their reliance on feature-domain representation learning and static fusion strategies, we introduce two key modules. First, a dual-domain contrastive learning module jointly optimizes feature consistency and cluster separability in both the original feature domain and the frequency domain via FFT, thereby capturing subtle structural patterns that are indistinguishable in the raw feature space. Second, an LLM-assisted dynamic fusion mechanism leverages semantic reasoning to evaluate view quality at the sample level based on semantic feature quality, cluster structure coherence, and intra-cluster compactness and adaptively assigns fusion weights without predefined rules. Unlike prior works that employ LLMs for feature extraction, our framework uniquely positions the LLM as a decision-making module that coordinates multi-view integration in response to data distribution shifts and view heterogeneity. Extensive experiments across six benchmark datasets demonstrate that LLM-DAMVC consistently outperforms state-of-the-art methods, particularly in complex scenarios with heterogeneous views and varying data quality, validating the effectiveness of our dynamic LLM-assisted clustering method.

6 Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant 62176203, the Fundamental Research Funds for the Central Universities (ZYTS25267, QTZX25004), and the Science and Technology Project of Xi'an (Grant 2022JH-JSYF-0009), Open Project of Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University (No. MMC202416), Selected Support Project for Scientific and Technological Activities of Returned Overseas Chinese Scholars in Shaanxi Province 2023-02,

References

- [1] Y. Yang and H. Wang, "Multi-view clustering: A survey," *Big data mining and analytics*, vol. 1, no. 2, pp. 83–107, 2018.
- [2] P. Hu, D. Peng, Y. Sang, and Y. Xiang, "Multi-view linear discriminant analysis network," *IEEE Transactions on Image Processing*, vol. 28, no. 11, pp. 5352–5365, 2019.
- [3] Z. Kang, X. Zhao, C. Peng, H. Zhu, J. T. Zhou, X. Peng, W. Chen, and Z. Xu, "Partition level multiview subspace clustering," *Neural Networks*, vol. 122, pp. 279–288, 2020.
- [4] F. Dornaika, S. El Hajjar, J. Charafeddine, and N. Barrena, "Unified multi-view data clustering: Simultaneous learning of consensus coefficient matrix and similarity graph," *Cognitive Computation*, vol. 17, no. 1, p. 38, 2025.
- [5] Z. Han, C. Zhang, H. Fu, and J. T. Zhou, "Trusted multi-view classification with dynamic evidential fusion," *IEEE transactions on pattern analysis and machine intelligence*, vol. 45, no. 2, pp. 2551–2566, 2022.
- [6] C. Tang, Z. Li, J. Wang, X. Liu, W. Zhang, and E. Zhu, "Unified one-step multi-view spectral clustering," *IEEE Transactions on Knowledge and Data Engineering*, vol. 35, no. 6, pp. 6449– 6460, 2022.
- [7] Q. Wang, M. Chen, F. Nie, and X. Li, "Detecting coherent groups in crowd scenes by multiview clustering," *IEEE transactions on pattern analysis and machine intelligence*, vol. 42, no. 1, pp. 46–58, 2018.
- [8] R. Zhou and Y.-D. Shen, "End-to-end adversarial-attention network for multi-modal clustering," in *IEEE CVPR*, 2020, pp. 14619–14628.
- [9] R. Li, C. Zhang, H. Fu, X. Peng, T. Zhou, and Q. Hu, "Reciprocal multi-layer subspace learning for multi-view clustering," in *Proceedings of the IEEE/CVF international conference on computer vision*, 2019, pp. 8172–8180.
- [10] F. Nie, J. Li, X. Li *et al.*, "Self-weighted multiview clustering with multiple graphs." in *IJCAI*, 2017, pp. 2564–2570.
- [11] J. Li, Q. Gao, Q. Wang, M. Yang, and W. Xia, "Orthogonal non-negative tensor factorization based multi-view clustering," in *NeurIPS*, 2023.
- [12] L. Zong, X. Zhang, L. Zhao, H. Yu, and Q. Zhao, "Multi-view clustering via multi-manifold regularized non-negative matrix factorization," *Neural Networks*, vol. 88, pp. 74–89, 2017.
- [13] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, "Diversity-induced multi-view subspace clustering," in *IEEE CVPR*, 2015, pp. 586–594.
- [14] Z. Huang, J. T. Zhou, X. Peng, C. Zhang, H. Zhu, and J. Lv, "Multi-view spectral clustering network." in *IJCAI*, vol. 2, no. 3, 2019, p. 4.
- [15] X. Zhu, S. Zhang, W. He, R. Hu, C. Lei, and P. Zhu, "One-step multi-view spectral clustering," *IEEE Transactions on Knowledge and Data Engineering*, vol. 31, no. 10, pp. 2022–2034, 2018.
- [16] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, and B. Wang, "One2multi graph autoencoder for multi-view graph clustering," in proceedings of the web conference 2020, 2020, pp. 3070–3076.

- [17] Q. Wang, H. Xu, Z. Zhang, W. Feng, and Q. Gao, "Deep multi-modal graph clustering via graph transformer network," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 39, no. 8, 2025, pp. 7835–7843.
- [18] J. Chen, H. Mao, W. L. Woo, and X. Peng, "Deep multiview clustering by contrasting cluster assignments," in *Proceedings of the IEEE/CVF international conference on computer vision*, 2023, pp. 16752–16761.
- [19] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, "Deep subspace clustering networks," arXiv preprint arXiv:1709.02508, 2017.
- [20] Q. Wang, Z. Tao, W. Xia, Q. Gao, X. Cao, and L. Jiao, "Adversarial multiview clustering networks with adaptive fusion," *IEEE TNNLS*, 2022.
- [21] Y. Xie, B. Lin, Y. Qu, C. Li, W. Zhang, L. Ma, Y. Wen, and D. Tao, "Joint deep multi-view learning for image clustering," *IEEE TKDE*, vol. 33, no. 11, pp. 3594–3606, 2020.
- [22] B. Diallo, J. Hu, T. Li, G. A. Khan, X. Liang, and H. Wang, "Auto-attention mechanism for multi-view deep embedding clustering," *Pattern Recognition*, vol. 143, p. 109764, 2023.
- [23] Z. Huang, Y. Ren, X. Pu, S. Huang, Z. Xu, and L. He, "Self-supervised graph attention networks for deep weighted multi-view clustering," in *Proceedings of the AAAI conference on artificial intelligence*, vol. 37, no. 7, 2023, pp. 7936–7943.
- [24] J. Xu, H. Tang, Y. Ren, L. Peng, X. Zhu, and L. He, "Multi-level feature learning for contrastive multi-view clustering," in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2022, pp. 16051–16060.
- [25] Y. Lin, Y. Gou, Z. Liu, B. Li, J. Lv, and X. Peng, "Completer: Incomplete multi-view clustering via contrastive prediction," in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021, pp. 11 174–11 183.
- [26] Z. Chen, Y. Duan, R. Zhu, Z. Sun, and M. Gong, "Agent-centric personalized multiple clustering with multi-modal llms," *arXiv preprint arXiv:2503.22241*, 2025.
- [27] Y. Li, F. Nie, H. Huang, and J. Huang, "Large-scale multi-view spectral clustering via bipartite graph," in *Proceedings of the AAAI conference on artificial intelligence*, vol. 29, no. 1, 2015.
- [28] M. Gönen and A. A. Margolin, "Localized data fusion for kernel k-means clustering with application to cancer biology," *Advances in neural information processing systems*, vol. 27, 2014.
- [29] G. Du, L. Zhou, Y. Yang, K. Lü, and L. Wang, "Deep multiple auto-encoder-based multi-view clustering," *Data Science and Engineering*, vol. 6, no. 3, pp. 323–338, 2021.
- [30] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, "Deep canonical correlation analysis," in *International conference on machine learning*. PMLR, 2013, pp. 1247–1255.
- [31] W. Wang, R. Arora, K. Livescu, and J. Bilmes, "On deep multi-view representation learning," in *International conference on machine learning*. PMLR, 2015, pp. 1083–1092.
- [32] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, "Multi-view attribute graph convolution networks for clustering," in *Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence*, 2021, pp. 2973–2979.
- [33] T. Du, W. Zheng, and X. Xu, "Composite attention mechanism network for deep contrastive multi-view clustering," *Neural Networks*, vol. 176, p. 106361, 2024.
- [34] P. Savarese and D. Figueiredo, "Residual gates: A simple mechanism for improved network optimization," in *Proc. Int. Conf. Learn. Representations*, 2017.
- [35] R. K. Srivastava, K. Greff, and J. Schmidhuber, "Highway networks," arXiv preprint arXiv:1505.00387, 2015.

- [36] P. H. Le-Khac, G. Healy, and A. F. Smeaton, "Contrastive representation learning: A framework and review," *Ieee Access*, vol. 8, pp. 193 907–193 934, 2020.
- [37] J. Ji and S. Feng, "Anchors crash tensor: efficient and scalable tensorial multi-view subspace clustering," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- [38] Q. Wang, H. Xu, Z. Zhang, Z. Tao, and Q. Gao, "Efficient multi-view clustering via reinforcement contrastive learning."
- [39] C. Cui, Y. Ren, J. Pu, X. Pu, and L. He, "Deep multi-view subspace clustering with anchor graph," *arXiv preprint arXiv:2305.06939*, 2023.
- [40] R. Eisenberg, J. Svirsky, and O. Lindenbaum, "Coper: Correlation-based permutations for multiview clustering," in *The Thirteenth International Conference on Learning Representations*.
- [41] J. MacQueen *et al.*, "Some methods for classification and analysis of multivariate observations," in *BSMSP*, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.
- [42] Y. Lin, Y. Gou, X. Liu, J. Bai, J. Lv, and X. Peng, "Dual contrastive prediction for incomplete multi-view representation learning," *IEEE TPAMI*, vol. 45, no. 4, pp. 4447–4461, 2022.
- [43] X. Liu, M. Li, C. Tang, J. Xia, J. Xiong, L. Liu, M. Kloft, and E. Zhu, "Efficient and effective regularized incomplete multi-view clustering," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 43, no. 8, pp. 2634–2646, 2021.
- [44] J. Chen, S. Yang, X. Peng, D. Peng, and Z. Wang, "Augmented sparse representation for incomplete multiview clustering," *IEEE TNNLS*, vol. 35, no. 3, pp. 4058–4071, 2022.
- [45] H. Zhao, W. Chen, and P. Zhou, "Active deep multi-view clustering," in *IJCAI*, 2024, pp. 5554–5562.
- [46] H. Tang and Y. Liu, "Deep safe incomplete multi-view clustering: Theorem and algorithm," in *International Conference on Machine Learning*. PMLR, 2022, pp. 21 090–21 110.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the paper's main contributions, including: (1) proposing the LLM-DAMVC framework which leverages large language models for dynamic decision-making in multi-view clustering; (2) developing a dual-domain contrastive learning module that captures both feature space similarities and frequency domain structural patterns; (3) implementing an LLM-assisted dynamic feature aggregation mechanism. These contributions are thoroughly validated in the methodology and experimental sections, with results showing significant improvements across six benchmark datasets.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses limitations in Section 4.3 "Limitations".

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper primarily proposes a new multi-view clustering method and validates its effectiveness through experiments, without containing theoretical theorems or mathematical derivations requiring formal proofs. The formulas in the paper are mainly used to describe model structures and optimization objectives, rather than theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in the appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides key information needed to reproduce the experiments, including: (1) detailed descriptions of each component of the architecture, such as the Multi-Agent Collaboration Module, Dual-Domain Contrastive Learning Module, and LLM-Assisted Dynamic Feature Aggregation mechanism; (2) information on all datasets used and evaluation metrics; (3) detailed explanation of experimental settings and parameter sensitivity analysis in the Experimental Analysis section. The code files further supplement implementation details.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset or provide access to the model. In general. Releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We plan to make the code repository publicly available via GitHub after the paper is published, with detailed usage instructions and reproduction guidelines. The supplementary materials include core code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/quides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper provides key experimental details necessary to understand the results, including: (1) dataset information and performance evaluation metrics; (2) detailed descriptions of model architecture and formulations in the methodology section; (3) sensitivity analysis of important hyperparameters in Figure 2; (4) specific training configurations in the train.py code, such as learning rate, batch size, training epochs, etc. This information is sufficient to understand and interpret the main results of the paper.

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not explicitly report error bars or confidence intervals in tables and figures. While it demonstrates significant performance improvements of our method compared to baselines, it lacks statistical analysis of the variability of experimental results. In future work, we plan to enhance the reliability of results by running experiments multiple times and reporting means and standard deviations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: This article provides detailed information about the computational resources required for the experiment, such as GPU type and memory requirements. More detailed requirements will be provided in the supplementary materials

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research fully complies with the NeurIPS Code of Ethics. The datasets used are all publicly available benchmark datasets that do not involve privacy or sensitive information. Our method aims to improve clustering performance on multi-view data for academic and scientific purposes, without obvious risks of misuse. No deceptive methods or data fabrication were used in the research process, and all results are based on genuine experiments.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: The paper does not specifically discuss the societal impacts of the research. This work is fundamental research focused on improving multi-view clustering algorithms, primarily for scientific and academic applications.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release high-risk data or models that could be misused. Our work focuses on multi-view clustering algorithms, uses publicly available standard academic datasets, and the proposed model is for unsupervised learning scenarios, not involving content generation or other functionalities that might lead to ethical concerns. Therefore, special safeguards are not necessary.

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets used in the paper are publicly available benchmark datasets, and their original sources are properly cited in the paper. The LLM models used (such as DeepSeek) are also appropriately referenced. Although the paper does not explicitly list the specific licenses for each asset, we ensured that all usage complies with the original license terms, and all datasets are used for academic research purposes, consistent with their intended use.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Provided source code

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing experiments or human subjects. Our work is entirely based on publicly available datasets and algorithm development, without collecting or using data or feedback from human participants.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing experiments or human subjects. Our work is entirely based on publicly available datasets and algorithm development, without collecting or using data or feedback from human participants.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper details the use of LLMs as a core component of the method. The LLM-DAMVC framework integrates large language models (DeepSeek series) as a dynamic decision system to evaluate view quality and assign aggregation weights. Section 3.3 explains in detail how the LLM processes metrics, generates routing policies, and guides feature integration. Figure 2 (right) also shows the impact of DeepSeek models of different parameter scales (1.5B to 8B) on performance, fully demonstrating the key role of LLMs in the method.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.