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Abstract

Multi-view clustering integrates the consistency and complementarity of different
views to achieve unsupervised data grouping. Existing multi-view clustering meth-
ods primarily confront two challenges: i) they generally perform feature extraction
in the feature domain, which is sensitive to noise and may neglect cluster-specific
information that is indistinguishable in the original space; ii) current dynamic
fusion methods adopt static strategies to learn weights, lacking capability to adjust
strategies adaptively under complex scenarios according to variations in data dis-
tribution and view quality. To address these issues, we propose a large language
model assisted dynamic agent for multi-view clustering (LLM-DAMVC), a novel
framework that recasts multi-view clustering as a dynamic decision-making prob-
lem orchestrated by a large language model. Specifically, each view is equipped
with complementary agents dedicated to feature extraction. A dual-domain con-
trastive module is introduced to optimize feature consistency and enhance cluster
separability in both the feature domain and frequency domain. Additionally, an
LLM-assisted view fusion mechanism provides a flexible fusion weight learning
strategy that can be adaptively applied to complex scenarios and significantly differ-
ent views. Extensive experimental results validate the effectiveness and superiority
of the proposed method.

1 Introduction

Nowadays, data from different sources or modalities (i.e., multi-view data) have become increasingly
ubiquitous, such as user profiles and behavioral data in social networks, multi-modal scanning results
in medical imaging, and multi-variate sensor data generated by IoT devices (1; 2; 3; 4; 5; 6). These
multi-view data often contain richer and more comprehensive information than single-view data
but also pose challenges such as heterogeneity, noise interference, and missing labels. Multi-View
Clustering (MVC), which aims to effectively partition unlabeled data by leveraging the consistent
and complementary information across views, has become a core technology in multi-view analysis,
data mining, and pattern recognition (7; 8; 9; 10).

To effectively fuse multi-view information, researchers have proposed various MVC methods. Early
approaches primarily relied on non-negative matrix factorization, subspace learning, or spectral
clustering (11; 12; 13; 9; 14; 15). With the advancement of deep learning, deep MVC methods (e.g.,
those based on autoencoders, graph neural networks, or contrastive learning) have made significant
progress in representation learning and exploring nonlinear relationships (16; 17; 18; 19; 20; 21).
Notably, some studies have attempted to address view fusion by using attention mechanisms to
adaptively aggregate view features (22; 23). Additionally, to learn a consistent representation with
discriminative information, contrastive learning has been widely adopted to improve clustering
performance by maximizing the similarity between positive samples and meanwhile minimizing that
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between negative samples (24; 25). Despite their effectiveness, most of them focus on feature-domain
consistent representation learning, which neglects imperceptible and indistinguishable features in the
original feature space. Nevertheless, these features can be separable easily in the frequency domain.
Moreover, these methods typically rely on predefined rules to assign weights for each view, making
them inflexible when applied in complex scenarios and processing heterogeneous views. Especially,
their static strategies for determining view weights may lack adaptability in adjusting strategies
when facing drastic variations in view quality at the sample level. Existing methods generally lack a
centralized coordination mechanism capable of understanding view content, assessing view quality,
and performing intelligent decision-making.

To address these challenges and inspired by the powerful decision-making capacity of Large-scale
Language Models (LLMs), we propose an LLM-Assisted Dynamic Agent for Multi-View Clustering
(LLM-DAMVC). Different from existing works that introduce LLMs to MVC for feature extraction
(26), LLM-DAMVC leverages the semantic reasoning and decision-making capabilities of LLMs
for adaptive view fusion in MVC. This is achieved through a synergistic architecture incorporating
multiple agents per view and a dual-domain contrastive learning mechanism. Specifically, each view
is equipped with a standard agent and an adversarial agent, respectively focusing on semantic feature
extraction and adversarial learning. A dual-domain contrastive learning module is introduced to
optimize feature consistency in the feature domain and frequency domain. Finally, we utilize the
information of the semantic feature quality, cluster structure quality, and intra-cluster compactness
to construct a prompt for LLM to dynamically learn a fusion weight for each view. The main
contributions of LLM-DAMVC are summarized as follows:

• We propose a novel MVC framework named LLM-DAMVC by introducing LLM as a
decision-making module to evaluate the view quality in real time and dynamically assign
aggregation weights, so that the model can adaptively adjust the fusion strategy according to
the view characteristics and sample distribution.

• We build a dual-domain contrastive learning module that integrates frequency-domain
contrastive learning with feature-domain contrastive learning. It maps the features to the
frequency space through the FFT transform, capturing imperceptible and indistinguishable
features in the original feature space and significantly enhancing the feature representation
capability.

• We conduct extensive experiments on several benchmark datasets and compare our method
with state-of-the-art MVC methods. The experimental results and analyses demonstrate the
effectiveness of the proposed method.

2 Related Work

2.1 Multi-view Clustering

Numerous MVC methods have been proposed in the past few decades. For example, Large-scale
Multi-View Spectral Clustering (MVSC) approximates each view’s similarity graph via a bipartite an-
chor graph, reducing time and space complexity of spectral clustering to near-linear while preserving
cross-view manifold structure (27). Another line of work focuses on adaptive fusion: Self-weighted
Multi-view Clustering (SwMC) learns view-specific Laplacian graphs and their confidence weights
jointly, enabling direct cluster assignment without an extra k-means step (10). To further account
for sample-specific view importance, Localized multiple kernel k-means clustering extends kernel
k-means to multi-view data by learning sample-specific kernel weights through localized data fusion,
which adaptively captures view importance and excels on biomedical datasets (28). Diversity-Induced
Multi-View Subspace Clustering (DiMSC) leverages the Hilbert–Schmidt Independence Criterion
to enforce statistical independence among view-specific representations and thus enhance comple-
mentarity (13). However, these methods rely on shallow, linear representations and often fail to
capture complex nonlinear dependencies across views, motivating the shift towards deep multi-view
clustering techniques.

2.2 Deep Multi-view Clustering

Deep Multi-view Clustering (DMVC) leverages deep neural networks to learn non-linear representa-
tions from multi-view data. Early approaches primarily focused on learning a shared representation
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Figure 1: The overall architecture of the proposed LLM-DAMVC framework. Multi-view data (X1, . . . ,XV )
are processed by a Residual Gated Encoder to generate shared latent features (Hv). These features are then fed
into two parallel branches, a Standard Agent and an Adversarial Agent, to produce initial predictions (Pv

std,P
v
adv)

and contrastive embeddings (Zv
std,Z

v
adv). The encoder is subsequently refined by a Dual-Domain Contrastive

Learning Module, which enforces consistency on these embeddings in both the feature domain and frequency
domain (via FFT). Concurrently, a state assessment based on multi-faceted quality indicators (qv

a) informs an
LLM and a parallel heuristic policy to generate dynamic aggregation weights (wv

a). Finally, these weights
guide the fusion of all agent predictions into a unified probability distribution (P), from which the final cluster
assignments are derived.

space, often employing autoencoders for cross-view reconstruction (29) or deep canonical correlation
analysis (DCCA) to maximize inter-view correlations (30; 31). Subsequent advances explored more
sophisticated architectures. Graph-based methods, for instance, utilize Graph Neural Networks
(GNNs) to capture the underlying topological structure of the data (16; 32). More recently, to address
the challenge of static view fusion, attention mechanisms have been widely adopted to learn dy-
namic, instance-specific weights for view aggregation (33; 22). However, while these attention-based
methods offer improved adaptability, they typically rely on predefined rules to assign weights for
each view, making them inflexible when applied in complex scenarios and processing heterogeneous
views.

3 METHODOLOGY

3.1 Notations and Problem Definition

Multi-view clustering aims to leverage complementary information from different feature spaces
to achieve better clustering performance. Given a multi-view dataset X = {X1,X2, . . . ,XV },
where Xv ∈ RN×dv represents the feature matrix of the v-th view containing N samples with
dv-dimensional features. The goal of multi-view clustering is to partition these N samples into K
semantically consistent clusters {C1, C2, . . . , CK}, where K represents the number of inherent classes
in the dataset.

In this section, we introduce a novel deep multi-view clustering method called LLM-assisted Dynamic
Agent Multi-View Clustering (LLM-DAMVC), which reformulates MVC as a dynamic decision-
making problem. Our approach introduces specialized agents that process individual views and
dynamically adjust their contributions based on their performance. Instead of using a predefined
fusion strategy, LLM-DAMVC employs a dynamic routing mechanism that determines how to
optimally combine these features based on their quality and complementarity. LLM-DAMVC
mainly consists of three key modules: Multi-Agent Collaboration Module, Dual-Domain Contrastive
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Learning Module, and LLM-Assisted Dynamic Feature Aggregation Module. Specific descriptions
of these modules will be provided in the subsequent sections.

3.2 Multi-Agent Collaboration Module

The Multi-Agent Collaboration Module serves as the fundamental feature extraction component of our
LLM-DAMVC framework. This module is composed of Residual Gated Encoder, Standard Agent,
and Adversarial Agent. The Residual Gated Encoder transforms the input into a latent representation
Hv. The two specialized agents operate on the latent representation Hv in parallel for distinct and
complementary purposes.

Residual Gated Encoder: Given the input data matrix Xv ∈ RN×dv for view v, we first transform
it into a view-specific latent representation through a residual gated encoder Ev. For the first L− 1
layers, each is composed of a linear layer, a batch normalization (BN) layer, and an activation layer.
Starting with the initial input Hv

0 = Xv , each intermediate layer transforms the features as:

Hv
l = ReLU

(
BN(Hv

l−1Wl + bl)
)
, l = 1, 2, . . . , L− 1 (1)

where ReLU(·) denotes the ReLU activation function; BN(·) is batch normalization, and Wl, bl

are learnable parameters. The final layer (L-th layer) incorporates a self-gating mechanism and a
residual connection to enhance representational capacity (34; 35):

Hv =
(
1 + sigmoid(Hv

L−1Wgate)
)
⊙Hv

L−1 + αf(Xv) (2)

where Hv ∈ RN×d represents the latent embedding, sigmoid(·) is the sigmoid function, Wgate is
the gating parameter, ⊙ denotes element-wise multiplication, and α > 0 is a scalar hyperparameter
controlling the strength of the residual connection. Crucially, f(·) is a linear projection to ensure
dimensional consistency for the residual connection.

Standard Agent: We first incorporate a standard agent to extract stable features and learn cluster
structure, which transforms the latent representation into a clustering probability distribution and
a standard embedding. To be specific, we utilize a learnable mapping ϕstd composed of two linear
layers, a BN layer, a ReLU activation layer, and a softmax operation to learn the clustering probability
distribution Pv

std ∈ RN×K from Hv as follows:

Pv
std = ϕstd(H

v) (3)

Then we employ another learnable mapping Estd composed of two linear layers, a BN layer, and a
ReLU activation layer, to project Hv into a standard embedding Zv

std ∈ RN×dz :

Zv
std = Estd(H

v) (4)

Adversarial Agent: Operating in parallel, we introduce an adversary agent that explores the bound-
aries of the feature space to enhance robustness and discriminability. It first learns the adversary
clustering probability distribution Pv

adv through ϕadv that has the same structure as ϕstd:

Pv
adv = ϕadv(H

v) (5)

To obtain the adversarial embedding Zv
adv ∈ RN×dz , we use a mapping Eadv with similar structure to

Estd:
Zv

adv = Eadv(H
v) (6)

Then, we compute ŷv = argmax(Pv
adv) as pseudo-labels, which guides the generation of adversarial

samples X̃v by computing input gradients:

X̃v = Xv + δ · sign (∇XvCE(Pv
adv, ŷ

v)) (7)

where ∇ represents gradient operation, CE denotes the cross-entropy operation, sign is the sign
function, and δ > 0 controls the perturbation intensity. Then, X̃v is used to retrain the adversarial
agent, enforcing robustness against input perturbations, and is not propagated to subsequent modules.
Subsequently, we build a discriminator ψ with MLP to distinguish real features (Hv = Ev(X

v)) and

4



generated features (H̃v = Ev(X̃
v)). This adversarial branch introduces a min-max game between

the encoder and the discriminator to enhance representation robustness with discriminator loss Ldisc.

Ldisc = −EXv [log(ψ(Hv))]− EX̃v [log(1− (ψ(H̃v)))] (8)

We compute discrimination scores by svadv = ψ(Hv) (svadv ∈ RN×1). To enforce cross-view alignment
and high-quality clustering, we add an alignment loss as follows:

Lalign = −
V∑

v=1

∑
u̸=v

A(Hv,Hu) +
1

V (V − 1)

V∑
v=1

∑
u ̸=v

DKL
(
Pv

std ∥Pu
std

)
(9)

where A(·, ·) maximizes the canonical correlation between view-specific latent features Hv by
operating on their cross-covariance matrix, and DKL is KL-divergence to ensure cluster distribution
consistency.

3.3 Dual-Domain Contrastive Learning Module

To improve the discriminativeness and consistency, we propose a Dual-domain Contrastive Learning
module that integrates analyses of the feature domain and the frequency domain. This module uses
the standard embedding Zv

std and the adversary embedding Zv
adv to build contrastive loss in the two

domains. For easier presentation, we employ zvi to represent the embedding of i-th sample in view v
from Zv

std or Zv
adv.

Feature-domain Contrastive Learning: For corresponding samples across different views v and u,
we compute their cosine similarity:

sv,uij =
(zvi )

⊤zuj
∥zvi ∥ · ∥zuj ∥

(10)

Following the contrastive learning framework (36), we consider features from different views of the
same sample i as positive samples and a different sample j (j ̸= i) as negative samples. Then, we
construct the contrastive loss as follows:

Lfeature = − 1

N

∑
1≤v≤V,u̸=v

∑
1≤i≤N

log
exp(sv,uii /τ)∑N
j=1 exp(s

v,u
ij /τ)

(11)

where τ > 0 is a temperature hyperparameter. This objective promotes alignment of corresponding
cross-view samples while enforcing separation from non-corresponding instances.

Frequency-domain Contrastive Learning: We extend contrastive learning to the frequency domain
to capture global structural patterns that remain elusive in the feature space. For each feature vector
zvi ∈ Rdz , we apply the Fast Fourier Transform (FFT) to compute the frequency-domain feature
ẑvi = F(zvi ), where F denotes the FFT operation and ẑvi ∈ Cdz is the complex-valued frequency
spectrum. We extract the amplitude spectrum |ẑvi | ∈ Rdz , which characterizes the energy distribution
across frequency components while maintaining translation invariance.

For the embedding zvi of an anchor sample i from view v, we construct a contrastive triplet (zvi , z
u
i , z

u
j )

by selecting corresponding embedding zui in another view u (u ̸= v) as positive sample and select
another sample zuj (j ̸= i) as negative sample. For efficient computation, we only sample M negative
samples, and the frequency-domain contrastive loss is defined as follows:

Lfrequency =
1

NMV

∑
1≤v≤V,u̸=v

∑
1≤i≤N

∑
j∈J (i)

∥|ẑvi | − |ẑui |∥1
∥|ẑvi | − |ẑuj |∥1 + ϵ

(12)

where ϵ > 0 is a small constant for numerical stability, J (i) represents the set of indices for negative
samples corresponding to anchor i.

We obtain the dual-domain contrastive loss with a balancing factor ρ as follows:

Lcont = Lfeature + ρLfrequency, (13)

The dual-domain contrastive learning enhances the features and helps to capture both local discrimi-
native details and global structural patterns.
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3.4 LLM-Assisted Dynamic Feature Aggregation Module

To address the limitation of static fusion strategies in traditional MVC, we propose the LLM-Assisted
Dynamic Feature Aggregation Module, which leverages an LLM to dynamically assess and aggregate
multi-view representations. This module processes the latent features {Hv}Vv=1, clustering predictions
{Pv

std,P
v
adv}Vv=1, and discriminative score {svadv}Vv=1 from the preceding stages.

For an agent of the v-th view with type a (a ∈ {adv, std}), we compute a quality indicator vector
qv
a ∈ R4×1 to provide a multi-faceted assessment of its real-time performance:

qv
a =

E[max(Pv
a(i, :))]

ζ(Hv,Pv
a)

1−H(Pv
a)

E[svadv(i)]

 (14)

where E[max(Pv
a(i, :))] measure the agent’s average prediction confidence, ζ(Hv,Pv

a) measures
cluster structure quality, ζ calculates a compactness score based on intra-cluster distances, 1 −
H(Pv

a) measures prediction certainty, H is entropy operation, and E[svadv(i)] measures the average
representation quality score, respectively.

The LLM-assisted mechanism processes these quality indicators qv
a to generate a dynamic aggregation

strategy. Specifically, the quality vectors are formatted into a structured prompt and fed to a frozen
large language model (LLM). The LLM analyzes the global performance of all agents and outputs a
high-level routing policy, the core component of which is a confidence threshold τc for filtering out
unreliable agents. Based on this policy, we compute adaptive aggregation weights for each agent.
The raw weight rva for each agent is determined by:

rva =

{
E[max(Pv

a(i, :))] · ∥Hv∥F , if E[max(Pv
a[i, :])] ≥ τc

0, otherwise
(15)

where ∥ · ∥F denotes the Frobenius norm. The raw weights are then normalized to sum to one via
softmax, yielding the final weight {wv

a} as follows:

wv
a =

exp(rva)∑V
v=1

∑
a∈{std,adv} exp(r

v
a)
. (16)

The final aggregated prediction is obtained by weighted fusion of all agent predictions:

P =

V∑
v=1

∑
a∈{std,adv}

wv
aP

v
a ∈ RN×K . (17)

The clustering loss is formulated as:

Lclus = −
∑

i∈Ihigh

K∑
k=1

yik logPik + λ1

K∑
k=1

∣∣∣∣P̄k − 1

K

∣∣∣∣+ λ2

N∑
i=1

(− logmax(Pi)) (18)

where Pik is the (i, k)-th entry of the aggregated prediction P; Ihigh is the set of high-confidence
samples, and a sample i is considered as a high-confidence sample if max(Pi) exceeds a predefined
threshold; yi is one-hot vector indicating the assignment of sample i ∈ Ihigh , and yik = 1 for
Ind(max(Pi)) and 0 otherwise; Ind(·) is the indexing operation. The second term encourages
balanced cluster sizes by minimizing the L1 deviation of the mean assignment P̄k = 1

N

∑
i Pik from

the uniform distribution 1/K, and the third term promotes prediction clarity.

3.5 The Objective Function

The total loss function combines the losses above and is as follows:
Ltotal = Ldisc + γLalign + λLcont + βLclus (19)

where γ, λ, and β are hyperparameters balancing different parts of the objective.

The final cluster assignments are directly obtained from the aggregated prediction of the LLM-
Assisted Dynamic Feature Aggregation:

ci = argmax
k

(Pik) for 1 ≤ i ≤ N, (20)

where ci ∈ {1, 2, . . . ,K} denotes the cluster index for the i-th sample.
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4 EXPERIMENT

4.1 Datasets & Metric

We evaluate our method on six benchmark multi-view datasets to validate its effectiveness across
diverse data types: NUS-WIDE (NUS) (37), an image dataset containing 6,251 samples described
by 5 visual feature views; BDGP (38), a Drosophila image dataset with 2,500 samples and 2
views (visual and textual); Handwritten (39), a digit recognition dataset comprising 2,000 samples
represented by 6 heterogeneous feature views; MNIST-USPS (38), a cross-domain digit benchmark
with 5,000 samples from two complementary image datasets; Reuters (40), a multilingual news
corpus consisting of 1,800 short articles and their associated topics, represented by 5 language-specific
views; and CCV (40), a consumer video dataset with 6,773 samples and 3 deep feature views. We
report three standard clustering metrics: Accuracy (ACC), Normalized Mutual Information (NMI),
and Purity (PUR). All experiments are implemented in PyTorch and conducted on an NVIDIA
GeForce RTX 4090 GPU.

4.2 Comparing Methods

To evaluate LLM-DAMVC on complete multi-view datasets, we benchmark it against state-of-
the-art multi-view clustering (MVC) methods, spanning classical baselines, deep representation
learning approaches, contrastive learning techniques, and advanced dynamic fusion strategies. As
a classical baseline, K-Means (41) minimizes intra-cluster distances for partitioning but overlooks
multi-view complementarity. Deep MVC methods include DCP (42), EE-IMVC (43), ASR (44),
and MFLVC (24). Contrastive approaches include CVCL (18) and COMPLETER (25). Advanced
techniques include ADMC (45), which enhances efficiency with active sample selection in semi-
supervised settings, and COPER (40), which aligns cluster assignments through correlation-based
permutations.

Table 1: Clustering performance comparisons on 6 selected datasets.Best results in blue bold, second best in
red bold.

NUS BDGP Handwritten MNIST-USPS Reuters CCV
Method ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
K-Means (41) 20.90 15.45 32.19 45.72 27.43 46.20 38.95 37.21 39.45 49.30 45.40 52.90 6.70 5.90 4.01 5.12 8.97 5.01
EE-IMVC (43) 22.29 10.35 39.02 88.00 71.76 87.76 89.30 81.07 89.30 76.00 68.04 76.48 19.05 11.39 16.38 23.37 18.22 26.46
ASR (44) 21.50 13.73 38.97 97.68 92.63 97.68 93.95 88.26 93.95 97.90 94.72 7.90 15.51 18.42 14.55 24.06 17.41 22.73
DSIMVC (46) 28.89 18.06 43.27 99.04 96.86 99.04 87.20 80.39 87.20 99.34 98.13 99.34 24.35 22.17 20.41 31.90 30.70 30.54
DCP (42) 19.43 5.45 30.72 97.04 92.43 97.04 85.75 85.05 85.75 99.02 97.29 99.02 26.66 32.74 21.04 20.04 16.61 14.22
MFLVC (24) 24.11 16.43 30.87 98.72 96.13 98.72 86.55 85.98 86.55 99.66 99.01 99.66 21.14 19.98 20.37 31.23 31.60 33.90
CVCL (18) 28.65 13.96 39.83 99.20 97.29 99.20 97.35 94.05 97.35 99.70 99.13 99.70 55.64 31.14 57.35 26.23 26.25 21.17
COMPLETER(25) 22.48 7.71 38.73 59.95 56.18 59.95 69.36 73.93 69.70 89.08 88.86 89.02 25.63 31.73 25.34 24.58 22.51 21.14
ADMC(45) 24.36 15.97 40.06 96.96 96.12 96.96 84.10 81.17 84.10 91.26 95.50 91.26 77.33 70.49 77.33 23.25 20.68 23.57
COPER(40) 25.55 11.67 35.54 89.65 73.92 75.96 87.55 77.15 89.05 99.88 99.64 99.88 53.15 31.10 51.79 28.06 26.32 24.57
Our Method 37.11 37.51 48.53 99.67 98.76 99.64 98.66 95.36 98.43 99.92 99.63 99.92 78.76 76.48 79.83 46.55 55.77 49.81

4.3 Experimental Analysis

Performance Comparison: To comprehensively evaluate the efficacy of our proposed method,
we conduct an extensive comparative analysis against multi-view clustering methodologies across
six challenging benchmark datasets. As detailed in Table 1, the empirical results unequivocally
demonstrate the superior performance of our approach. Our method, LLM-DAMVC, consistently
outperforms all baseline models across all datasets and evaluation metrics, which underscores its
exceptional generalizability and robustness to diverse data characteristics.The superiority of our
method is particularly illustrated on well-structured datasets such as BDGP and MNIST-USPS, where
it achieves superior clustering outcomes with both accuracy and purity levels surpassing 99%. On
these datasets, our approach markedly surpasses even the most competitive baselines, showcasing its
capability to discern fine-grained cluster structures. Furthermore, when confronted with more intricate
and noisy datasets like CCV and Reuters, our method sustains its high efficacy. This consistent
performance across varied data modalities validates the effectiveness of our LLM-assisted dynamic
fusion mechanism in adaptively handling complex, real-world data distributions.

Hyper-parameter Analysis: We analyze the sensitivity of our model to the hyperparameters λ, β,
and γ that weight the contrastive loss (Lcont), clustering loss (Lclus), and alignment loss (Lalign). The
model is robust to the choice of λ: performance remains stable over a wide range of values, which
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(a) Varying λ and β (fixed γ =
1.0)

(b) Varying γ and β (fixed λ =
1.0)

(c) Varying λ and γ (fixed β =
1.0)

Figure 2: Parameter sensitivity analysis of our method on the MNIST-USPS dataset. We investigate the impact
of hyperparameters λ, β, and γ on clustering accuracy (ACC). Each subplot shows the performance landscape
by varying two parameters while keeping the third fixed at its optimal value (e.g., γ = 1.0).

shows that the contrastive loss consistently fulfills its role of pulling similar samples together and
pushing dissimilar ones apart, and this function is reliably effective without requiring precise tuning.
In contrast, for the parameters γ and β, there exist performance peaks only at specific values and
drops when deviating, demonstrating that the alignment loss and clustering loss must be carefully
balanced to work properly. The alignment loss is responsible for establishing cross-view consistency
by aligning representations from different views into a shared space, and the clustering loss directly
optimizes the cluster structure by encouraging samples to form coherent groups. By comprehensively
analyzing the three figures, we found that high performance is achieved when all three losses are
present. Removing or severely weakening any one of them leads to degradation, which confirms that
each loss performs a distinct and necessary function: contrastive learning handles fine-grained sample
discrimination, alignment ensures cross-view agreement, and clustering enforces global semantic
grouping.

Table 2: Progressive ablation study showing the contribution of each component in LLM-DAMVC. Best results
in blue bold, second best in red bold.

Method NUS BDGP Handwritten MNIST-USPS Reuters CCV
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

Baseline (Only Lfeature) 27.42 6.20 30.05 34.41 16.14 35.23 29.30 21.87 29.30 23.70 14.24 24.67 37.83 29.76 39.17 18.86 20.93 19.15
+ Ldisc 29.15 9.80 32.40 35.71 20.14 37.16 31.20 24.50 32.10 25.80 17.30 27.20 40.20 33.10 41.50 20.70 23.80 21.90
+ Lfrequency 31.60 14.20 36.80 40.15 26.61 40.15 55.40 48.71 55.40 65.51 62.17 65.51 45.65 38.93 47.20 23.92 28.44 25.78
+ Lclus 34.37 20.44 40.67 81.73 78.15 81.73 87.75 90.30 87.75 97.30 97.73 98.30 72.82 65.48 73.20 43.61 51.14 45.53
+ Lalign (Full) 37.11 37.51 48.53 99.67 98.76 99.64 98.66 95.36 98.43 99.92 99.63 99.92 78.76 76.48 79.83 46.55 55.77 49.81

Ablation Studies: To rigorously evaluate the contribution of each proposed component, we con-
duct a progressive ablation study, with detailed results presented in Table 2. The findings clearly
demonstrate that each module synergistically contributes to the final performance of LLM-DAMVC.
Our analysis begins with a baseline model trained solely on the feature-domain contrastive loss
(Lfeature), which establishes a foundational performance level. From this baseline, we observe a clear
and consistent trend of improvement as each new component is incrementally introduced. Notably,
the most significant performance increase is observed upon the integration of the frequency-domain
contrastive loss (+ Lfrequency) and the clustering loss (+ Lclus). The former’s impact strongly validates
our core hypothesis that incorporating frequency-domain analysis is crucial for capturing global
structural patterns that are often missed by conventional feature-domain methods. Meanwhile, the
substantial gains from the latter highlight the undeniable necessity of a direct and well-structured
clustering objective to guide the model towards forming high-quality and coherent cluster structures.
Finally, the inclusion of the discriminator loss (+ Ldisc) and the alignment loss (+ Lalign) provides
further valuable refinements, incrementally improving the model’s capabilities to its best performance.
The full model, incorporating all components, consistently achieves the best results across all datasets.

Multi-Dimension Analysis: Figure 3 illustrates feature representation evolution on BDGP dataset,
from unstructured raw features (Figure 3a) to well-defined clustering structures, validating our LLM-
DAMVC framework. Figure 4 (left) shows convergence trajectories stabilizing after 60 iterations
with monotonic loss descent, demonstrating robust convergence. Figure 4 (right) reveals DeepSeek-
8B outperforming across all datasets, particularly on complex ones (NUS, CCV), while even the 1.5B
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Figure 3: T-SNE visualization on the BDGP dataset with increasing training iteration.
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Figure 4: Convergence curve and performance of different LLM decision models

variant maintains acceptable performance on structured datasets (MNIST, BDGP). These findings
highlight both LLMs’ critical role in multi-view clustering and our framework’s scalability under
diverse computational constraints.

4.4 Limitations

Despite our achievements, the designed LLM-Assisted Dynamic Feature Aggregation Module adopts
general LLMs to build the decision-making module for view fusion. Though it indicates effectiveness,
the performance could be improved by adjusting the LLMs to be dedicated to view fusion tasks in
MVC. Therefore, our future work will fine-tune the LLMs to make them more suitable for MVC.
Besides, we will also consider introducing the model distillation technique to enhance the efficiency
of the dynamic feature aggregation process.

5 Conclusions

In this paper, we propose LLM-DAMVC, a novel multi-view clustering framework that reformulates
view fusion as a dynamic decision-making process orchestrated by LLMs. To address the limitations
of existing methods, i.e., their reliance on feature-domain representation learning and static fusion
strategies, we introduce two key modules. First, a dual-domain contrastive learning module jointly
optimizes feature consistency and cluster separability in both the original feature domain and the
frequency domain via FFT, thereby capturing subtle structural patterns that are indistinguishable
in the raw feature space. Second, an LLM-assisted dynamic fusion mechanism leverages semantic
reasoning to evaluate view quality at the sample level based on semantic feature quality, cluster
structure coherence, and intra-cluster compactness and adaptively assigns fusion weights without
predefined rules. Unlike prior works that employ LLMs for feature extraction, our framework uniquely
positions the LLM as a decision-making module that coordinates multi-view integration in response to
data distribution shifts and view heterogeneity. Extensive experiments across six benchmark datasets
demonstrate that LLM-DAMVC consistently outperforms state-of-the-art methods, particularly in
complex scenarios with heterogeneous views and varying data quality, validating the effectiveness of
our dynamic LLM-assisted clustering method.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the paper’s main contri-
butions, including: (1) proposing the LLM-DAMVC framework which leverages large
language models for dynamic decision-making in multi-view clustering; (2) developing a
dual-domain contrastive learning module that captures both feature space similarities and
frequency domain structural patterns; (3) implementing an LLM-assisted dynamic feature
aggregation mechanism. These contributions are thoroughly validated in the methodol-
ogy and experimental sections, with results showing significant improvements across six
benchmark datasets.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses limitations in Section 4.3 "Limitations".
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper primarily proposes a new multi-view clustering method and val-
idates its effectiveness through experiments, without containing theoretical theorems or
mathematical derivations requiring formal proofs. The formulas in the paper are mainly
used to describe model structures and optimization objectives, rather than theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides key information needed to reproduce the experiments,
including: (1) detailed descriptions of each component of the architecture, such as the
Multi-Agent Collaboration Module, Dual-Domain Contrastive Learning Module, and LLM-
Assisted Dynamic Feature Aggregation mechanism; (2) information on all datasets used
and evaluation metrics; (3) detailed explanation of experimental settings and parameter
sensitivity analysis in the Experimental Analysis section. The code files further supplement
implementation details.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset or provide access to the model. In general. Releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to make the code repository publicly available via GitHub after
the paper is published, with detailed usage instructions and reproduction guidelines.The
supplementary materials include core code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides key experimental details necessary to understand the
results, including: (1) dataset information and performance evaluation metrics; (2) detailed
descriptions of model architecture and formulations in the methodology section; (3) sensitiv-
ity analysis of important hyperparameters in Figure 2; (4) specific training configurations in
the train.py code, such as learning rate, batch size , training epochs, etc. This information is
sufficient to understand and interpret the main results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not explicitly report error bars or confidence intervals in tables
and figures. While it demonstrates significant performance improvements of our method
compared to baselines, it lacks statistical analysis of the variability of experimental results.
In future work, we plan to enhance the reliability of results by running experiments multiple
times and reporting means and standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This article provides detailed information about the computational resources
required for the experiment, such as GPU type and memory requirements. More detailed
requirements will be provided in the supplementary materials

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: This research fully complies with the NeurIPS Code of Ethics. The datasets
used are all publicly available benchmark datasets that do not involve privacy or sensitive
information. Our method aims to improve clustering performance on multi-view data for
academic and scientific purposes, without obvious risks of misuse. No deceptive methods
or data fabrication were used in the research process, and all results are based on genuine
experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper does not specifically discuss the societal impacts of the research.
This work is fundamental research focused on improving multi-view clustering algorithms,
primarily for scientific and academic applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release high-risk data or models that could be misused.
Our work focuses on multi-view clustering algorithms, uses publicly available standard
academic datasets, and the proposed model is for unsupervised learning scenarios, not
involving content generation or other functionalities that might lead to ethical concerns.
Therefore, special safeguards are not necessary.

Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in the paper are publicly available benchmark datasets, and
their original sources are properly cited in the paper. The LLM models used (such as
DeepSeek) are also appropriately referenced. Although the paper does not explicitly list
the specific licenses for each asset, we ensured that all usage complies with the original
license terms, and all datasets are used for academic research purposes, consistent with their
intended use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Provided source code

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve crowdsourcing experiments or human subjects.
Our work is entirely based on publicly available datasets and algorithm development, without
collecting or using data or feedback from human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve crowdsourcing experiments or human subjects.
Our work is entirely based on publicly available datasets and algorithm development, without
collecting or using data or feedback from human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper details the use of LLMs as a core component of the method. The
LLM-DAMVC framework integrates large language models (DeepSeek series) as a dynamic
decision system to evaluate view quality and assign aggregation weights. Section 3.3
explains in detail how the LLM processes metrics, generates routing policies, and guides
feature integration. Figure 2 (right) also shows the impact of DeepSeek models of different
parameter scales (1.5B to 8B) on performance, fully demonstrating the key role of LLMs in
the method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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