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Abstract

Neural population activity exhibits complex, nonlinear dynamics, varying in time,
over trials, and across experimental conditions. Here, we develop Conditionally
Linear Dynamical System (CLDS) models as a general-purpose method to charac-
terize these dynamics. These models use Gaussian Process (GP) priors to capture
the nonlinear dependence of circuit dynamics on task and behavioral variables.
Conditioned on these covariates, the data is modeled with linear dynamics. This
allows for transparent interpretation and tractable Bayesian inference. We find that
CLDS models can perform well even in severely data-limited regimes (e.g. one
trial per condition) due to their Bayesian formulation and ability to share statistical
power across nearby task conditions. In example applications, we apply CLDS to
model thalamic neurons that nonlinearly encode heading direction and to model
motor cortical neurons during a cued reaching task.

1 Introduction

A central problem in neuroscience is to capture how neural dynamics are affected by external sensory
stimuli, task variables, and behavioral covariates. To address this, a longstanding line of research
has focused on characterizing neural dynamics through recurrent neural networks (RNNs) and their
probabilistic counterparts, state-space models (SSMs; for reviews, see [1, 2, 3]).

Early work in this area utilized latent linear dynamical systems (LDS) with Gaussian observation
noise. Although these assumptions are restrictive, they are beneficial in two respects. First, they
simplify probabilistic inference by enabling Kalman smoothing and expectation maximization (EM)—
two classical and highly effective methods [4]. Second, they produce models that are mathematically
tractable to analyze with well-established tools from linear systems theory [5]. Indeed, many
influential results in theoretical neuroscience have come from purely linear models [6, 7, 8].

In reality, most neural circuits do not behave like time-invariant linear systems. Thus, more recent
work from the machine learning community has cataloged a variety of nonlinear models for neural
dynamics. Although these new models often predict held out neural data more accurately than LDS
models, they are generally more difficult to fit and more difficult to understand. Thus, there has been
a proliferation of competing models for neural data analysis, such as RNNs [9], transformers [10, 11],
and diffusion-based methods [12], as well as competing inference methods, such as generalized
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Figure 1: (a) Neural dataset consisting of spike trains collected over multiple trials, along with
corresponding experimental conditions. (b) Conditionally Linear Dynamical Systems are linear
in state-space dynamics and capture nonlinear dependencies over conditions. Shaded nodes are
observed, clear nodes are latent.

teacher forcing [13], amortized variational inference [9], and sequential Monte Carlo [14]. Choosing
among these strategies and scientifically interpreting the outcomes is challenging.

Here we describe Conditionally Linear Dynamical Systems (CLDS) as a framework to jointly capture
some of the benefits of the classical (i.e. linear) and contemporary (i.e. nonlinear) approaches to
modeling neural data. CLDS models parametrize a collection of LDS models that vary smoothly as a
function of an observed variable ut (e.g. measured sensory input or behavior at time t). Assuming
the presence of ut is often a feature—not a bug—of this approach. Indeed, a common goal in
neuroscience is to relate measured sensory or behavioral covariates to neural activity. Additional
features of the CLDS framework include:

1. CLDS models are locally interpretable. Conditioned on ut, the dynamics are linear and
amenable to a number of classical analyses.

2. CLDS models are easy to fit (§2.3). If Gaussian noise is assumed, then exact latent variable
inference (via Kalman smoothing) and fast optimization (via closed-form EM) is possible.
Under more realistic noise models (e.g. Poisson), the posterior over latent state trajectories
is still log concave and amenable to relatively fast and simple inference routines.

3. CLDS models are expressive. As ut changes, the parameters of the linear system are allowed
to change non-linearly. Thus, CLDS can model complex dynamical structures such as ring
attractors (§3.2), that are impossible for a vanilla LDS to capture.

4. CLDS models are data efficient. To the extent that LDS parameters change smoothly as
a function of ut, we can the recover the parameters of the dynamical system with very
few trials per condition (§3.5). In fact, CLDS models can interpolate to make accurate
predictions on entirely unseen conditions.

Finally, CLDS models have connections to several existing methods (§4). For example, they can
be viewed as a dynamical extension of a Wishart process model [15] and an extension of Gaussian
Process Factor Analysis (GPFA; [16]) with a learnable kernel and readout function that can vary
across time and conditions. They are also similar to various forms of switching linear dynamical
systems models [17, 18, 19]. The key difference is that the “switching” in CLDS models is governed
by an observed covariate vector, ut, rather than by a discrete latent process. This makes inference in
the CLDS model much more straightforward, albeit at the price of not being fully unsupervised.

2 Methods

Notation We use f(·) ∼ GPN (m(·), k(·, ·)) with mean m : X → RN and kernel k : X ×X → R,
to denote samples f : X → RN obtained from stacking independent Gaussian processes into an
N -dimensional vector. Also, ID is the D ×D identity matrix.
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2.1 Conditionally Linear Dynamical Systems

Consider an experiment with N neurons recorded over K trials of length T . Our dataset consists
of the recorded neural firing-rate trajectories {yk

1:T }Kk=1, with yt ∈ RN at time-step t ∈ {1, . . . , T},
along with the corresponding experimental conditions {uk

1:T }Kk=1, with ut in the condition space
U . All modeling is done for single trials, and we drop superscripts k where clear henceforth. By
experimental conditions, we refer to available neural data covariates, either experimentally set or
collected as measurements. These conditions, see Fig. 1a, can vary over time or remain constant
(compare §3.4 vs. §3.5). They can also be a step function over time (e.g. animal moving vs. not
moving), resulting in a switching-like mechanism between different dynamics.

We model responses yt as emissions from a latent time-varying linear dynamical system in xt ∈ RD,
with dynamics governed by the conditions ut. Specifically,

xt+1 = A(ut)xt + b(ut) + ϵt (1a)
yt = C(ut)xt + d(ut) + ωt (1b)

over time steps t ∈ {1, . . . , T} from initial condition x1 ∼ N (x1;m(u1), Q1), and where ϵt ∼
N (0, Q) and ωt ∼ N (0, R) are sources of noise, i.i.d. in time. We assume that the latent variables
xt follow smooth dynamics defined by time-varying linear matrices A(u) ∈ RD×D from initial
mean m(u1) ∈ RD, with bias terms b(u) ∈ RD, and emissions governed by C(u) ∈ RN×D and
d(u) ∈ RN , all dependent on u ∈ U . See graphical depiction in Fig. 1b.

The system in (1a-1b) parameterizes a family of linear systems indexed by a continuous variable
ut, which importantly is observed. Our approach can be viewed as the linearization in xt of a fully
nonlinear system in xt and ut, under additive noise—we detail this relationship in Appendix §A.2.
Most methods treat conditions as additive inputs, influencing the dynamics in (1a) via additive terms
of the form But for a linear encoding matrix B ∈ RD×|U|. In contrast, the mapping of experimental
conditions onto linear dynamics, u 7→ {A(u),b(u),C(u),d(u),m(u)}, is allowed to be nonlinear
and learnable. Specifically, we place an approximate Gaussian Process (GP) prior on each entry
of the parameters through a finite expansion of basis functions, leveraging regular Fourier feature
approximations [20]. For any M ∈ {A,b,C,d,m}, we consider a prior

Mij(u) =

L∑
ℓ=1

w(ij)
ℓ ϕℓ(u), w(ij)

ℓ
iid∼ N (0, 1), (1c)

over each i, j-th entry, truncated at L ∈ N basis functions. Each basis function ϕℓ : U → R is
fixed, and the randomness in the prior purely comes from the weights, w(ij)

ℓ , which are drawn from a
standard normal distribution. When constructed appropriately, the prior in equation (1c) converges to
a nonparametric Gaussian process in the limit that L→ ∞, with kernel structure determined by the
basis functions. Many choices are valid, and we elect to choose basis functions {ϕℓ}Lℓ=1 with the
goal of expressivity; they are designed to approximate a GP prior of the form Mij(·) ∼ GP(0, ku)
for the squared exponential kernel ku with variance σ2 and length-scale κ [21, eq. 13].

We denote F = {A,b,C,d,m} as the set of random functions, and analogously the parameter set
F(u) = {A(u),b(u),C(u),d(u),m(u)} for any condition u ∈ U . The model distribution

p(y1:T ,x1:T | A,b,C,m,u1:T ) = p(y1:T ,x1:T | F,u1:T ) (2)

describes a time-varying LDS, conditioned on a parameter sequence set at experimental conditions.
Therefore, we refer to the model (1) as a Conditionally Linear Dynamical System (CLDS1).

2.2 CLDS modeling choices

Practitioners can adapt a CLDS model in several ways to suit different applications and modeling
assumptions. First, the GP prior can be tuned to trade off model expressivity for interpretability and
learnability. In one extreme, as we let κ→ 0, the LDS parameters change rapidly, nonlinearly as a
function of u and become independent per u. In the other extreme, if one takes κ → ∞, then the
LDS parameters become constant (do not change as a function of u) and we recover a time-invariant
LDS model with autonomous dynamics. In this regime, we could also modify the GP prior over b(·)

1Our CLDS implementation is available at https://github.com/neurostatslab/clds.
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to follow a linear kernel, k(u,u′) = u⊤u′, resulting in time-invariant LDS with additive dependence
on ut. Thus, CLDS models capture classical linear models as a special case. Moreover, the model’s
prior can be tuned to capture progressively nonlinear dynamics.

A second source of flexibility is the encoding of experimental covariates, u. Recall our notation
from section 2.1, that uk

t represents experimental covariates at time t ∈ {1, . . . , T} and trial k ∈
{1, . . . ,K}. A simple, and broadly applicable, modeling approach would be to set uk

t = t. This
achieves a time-varying LDS model in which the GP prior encodes smoothness over time. This is
similar in concept to fitting a linear model to data over a sliding time window [22, 23]. However, the
CLDS formulation of this idea is fully probabilistic, which has several advantages. For example, one
can use a single pass of Kalman smoothing to infer the distribution over the latent state trajectory,
xk
1:T , within each trial. It is comparatively non-trivial to average latent state trajectories across

multiple LDS models that are independently fit to data in overlapping time windows.

In section 3, we demonstrate more sophisticated examples where uk
t is specified to track a continu-

ously measured behavioral variable (e.g. head direction or position of an animal) or follow a stepping
or ramping function aligned to discrete task events (e.g. a sensory “go cue” or movement onset).
Section 4 discusses further connections between CLDS models and existing state space models.

2.3 Inference

As mentioned earlier, the conditional distribution in eq. (2) has the advantage of describing a latent
LDS, or linear Gaussian state-space model, given estimates of F. As such, we can benefit from
analytic tools like Kalman filtering to compute the filtering distributions p(xt | y1:t,F,u1:t) and
marginal log-likelihood p(y1:T | F,u1:T ), and Kalman smoothing for p(xt | y1:T ,F,u1:T ) and the
latents posterior mode x̂1:T . We focus on performing maximum-a-posteriori (MAP) inference for
these parameters. In principle, it would be a straightforward extension to use variational inference or
Markov Chain Monte Carlo to approximate the full posterior over these parameters.

Conditionally Linear Regression As a stepping stone towards our goal of performing MAP
inference for {A,b,C,d,m}, consider the model

yn = M(un)xn + ϵn, ϵn ∼ N (0,Σ), M(·) ∼ GPD1×D2(0, ku), (3)

given data yn ∈ RD1 , regressors xn ∈ RD2 , conditions un ∈ U , repeats n ∈ {1, . . . , N}, noise
covariance Σ ≻ 0, and with an approximate GP prior on M parametrized as in (1c). We refer to
the model (3) as conditionally linear regression, and our goal is to perform MAP inference for the
weights {w(ij)

k }i,j,k for M.

Our approximate basis representation in eq. (1c) implies that each entry is a dot product, Mij(·) =
w(ij)⊤ϕ(·), where ϕ(·) = (ϕ1(·), . . . , ϕL(·))⊤ ∈ RL is our vector of basis-functions evaluations.
Therefore, we have

M(u)X = W⊤(ϕ(u)⊗X),

for any u ∈ U and vector or matrix X ∈ RD2,... of appropriate dimension, with “⊗” the Kronecker
product, and with our weights aggregated into the matrix WD2ℓ+j,i := w(ij)

ℓ , W ∈ RD2L×D1 .
Derivations are provided in Appendix §A.1.1. With this, we can rewrite our regression problem as

yn = M(un)xn + ϵn = W⊤zn + ϵn (4)

with zn := ϕ(un) ⊗ xn ∈ RD2L. Thus, we have reformulated our original model into Bayesian
linear regression in an expanded feature space. Namely, the MAP estimate of the weights, WMAP, is
given by

argmax
W

log p(y1:N | W,x1:N ,u1:N ) + log p(W) (5)

which is a linear regression problem with regularization from the prior log p(W) = − 1
2 ∥W∥2F

(up to an additive constant) from (1c). We can analytically solve for the solution (derivations in
Appendix §A.1.2), which yields that WMAP is the solution to the Sylvester equation

Z⊤Z W +WΣ = Z⊤Y (6)

with Z ∈ RN×D2L our matrix obtained by stacking {zn}Nn=1, and similarly for Y ∈ RN×D1 . We
see that if Σ = σ2ID1 for some σ > 0 then we obtain back the familiar looking penalized least
squares estimate WMAP = (Z⊤Z + σ2ID1

)−1Z⊤Y .

4



Composite dynamics

Count fraction

Latent dynamics

Neural activity

Head direction

Dynamics

f

d

e g

c

ba

Bias

Nonlinear dynamicsLinearized dynamics

eigenvalues

Single-neuron reconstruction
Head direction

Head direction

Co-smoothing

Time

Figure 2: Head direction synthetic experiment. (a) Schematic of latent dynamics and neural activity
about θ ∈ [0, 2π), the mouse HD, serving as conditions u = θ in this task. (b) True nonlinear flow-
field corresponding to the schematic in a, computed considering p(θ | x) = δ∠x(θ). (c) Recovered
composite dynamics by CLDS (see text). Grey scale indicates posterior x̂t occupancy, and thus our
ability to estimate the dynamics. The model fixed points (colored) as a function of θ form a perfect
ring, overlapping with the true fixed points. (d-e) Parameter recovery for the dynamics matrix A(θ)
(d) and the bias b(θ) (e) as functions of head direction θ. (f) Recovered eigenvalues of A(θ) as a
function of θ, true in dashed. (g) Co-smoothing reconstruction from the test-set. The firing rate of
one neuron is held-out (bottom) while the rest (top) is observed, and we reconstruct accurately the
single-neuron firing rates for both the held-in (top) and held-out (bottom) neurons.

Inference with Expectation Maximization We can leverage the above to perform MAP inference
for F = {A,b,C,d,m} with the Expectation-Maximization (EM) algorithm [24, 4]. In the E-step
we obtain estimates of the moments of the latents with Kalman-smoothing, which then place us
in a setting akin to eq. (3) with sufficient statistics as data and regressors. We can then perform
closed-form M-steps with our updates in eq. (6). We provide in Appendix §A.1.3 an example of the
associated derivations with these E- and M-steps for the joint update for A(·) and b(·). The resulting
EM algorithm has several advantages: (1) all E- and M-steps are analytic, (2) the E-step provides us
with exact (penalized) marginal log-likelihood calculations, and (3) the algorithm gives monotonic
gradient ascent guarantees of the marginal log-likelihood (resp. log posterior) objective.

We initialize the EM algorithm at samples from our GP priors for F. With the EM algorithm we also
learn the covariance parameters {Q1, Q,R}. The hyper-parameters {L, κ, σ} for the GP priors and
the dimensionality of the latents D are determined through performance on held-out test sets from
80/20 trial splits on all experiments unless specified.

Extensions to non-Gaussian likelihoods The closed form EM updates are only applicable when
the observation distribution of yt conditioned on xt and ut (1b) is Gaussian. This assumption is
common to existing methods (e.g. [16, 25]), though to model spike count data directly, most work
utilize Poisson (e.g. [26]) and COM-Poisson [27] likelihoods. Such emission likelihoods of interest
have log concave distributions, for which inference in CLDS models would remain tractable. Indeed,
conditioned on u1:T , the log posterior density associated with x1:T is equal to a sum of concave
terms up to an additive constant [1]. Thus, we can use standard optimization routines to identify a
MAP estimate of x1:T with theoretical guarantees, and leverage it for approximate EM [26].

3 Experiments

3.1 Setup

Metrics For a given trajectory {y1:T ,u1:T }, we denote as data reconstruction the mean emission
E [y1:T | x̂1:T ,F(u1:T )] = (C(u1)x̂1, . . . ,C(uT )x̂T ) from a the posterior mode x̂1:T , computed
with Kalman smoothing, given the observations y1:T and parameters F(u1:T ). As our primary
metric, we use co-smoothing [28] to evaluate the ability of models to predict held-out single-neuron
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Figure 3: (a) Schematic of mouse foraging in an open environment. We have access to θt ∈ [0, 2π)
the mouse HD in time t, which we use as conditions ut just like Fig. 2. (b) Model reconstruction on
the whole dataset recovers the true data. We plot single-neuron traces, averaged over 10s trials. (c)
Model tuning curves over head direction θ, obtained as C(θ)E[x | θ], recover the empirical tuning
curves. Plotted for the top three units in firing rate norm. (d) Dynamics around each fixed point in
x-state space as a function of head direction θ, with the solid-line representing the complete set of
fixed points. (e) Eigenvalues and angles of eigenvectors of A(θ) as a function of θ. (f) Composite
dynamics in xt-space, with overlaid colored model fixed points as a function of θ.

activity. Specifically, for the top 5 neurons with highest variance from the test set, we compute the
coefficient of determination R2 between the true and reconstructed single-neuron firing rate, obtained
by performing data reconstruction using only the other neurons.

Composite dynamics The latent dynamical system (1a) depends on the condition ut, which can
make visualizations challenging. Building on the idea that CLDS models decompose a nonlinear
dynamical system into linearizations governed by u (see App. §A.2), we aim to approximate the
general nonlinear system by marginalizing out ut, conditioned on xt. That is,

xt+1 = g(xt) + ϵt := Ep(u|xt) [A(u)xt + b(u)] + ϵt, (7)

which we define as the composite dynamical system. Intuitively, we expect this to provide a good
approximation to the underlying nonlinear dynamics when ut and xt tightly co-determine each
other—i.e., when the encoding p(xt | ut) and decoding p(ut | xt) conditional distributions have low
variance (see App. §A.2.2). In practice, we estimate the expectation in (7) by averaging over the un

associated with binned values x̂n of the posterior mode given a trajectory {y1:T ,u1:T }. Thus our
ability to accurately estimate the flow-field around a given point under this method depends on how
many posterior samples pass by it, which we report alongside the composite dynamics plots.

Model baselines For model comparison, we use as baselines (1) a standard LDS model and (2) a
more flexible gpSLDS [19] (implemented in a way to include linear boundaries to encompass the
rSLDS [29]), both with additive inputs of the form But in the latent dynamics, and (3) LFADS [9]
model with controller inferred-inputs as a fully nonlinear alternative. For all, we consider Gaussian
observation model to fit directly to the firing rates. See Appendix §B.1 for implementation details.

3.2 Synthetic head-direction ring attractor

We start by considering a synthetic experiment of head direction neural dynamics. We conceptualize
latent dynamics that capture the head direction (HD) of the animal, with attractor dynamics about
a HD-dependent fixed point—see schematic in Fig. 2a. This synthetic experiment is designed to
represent a nonlinear system decomposed as linear systems, per HD serving as the condition. We
plot in Fig. 2b what the resulting, “composite dynamics” (see §3.1), nonlinear flow-field would be,
assuming the latent state encodes the head direction exactly. The generative dynamics are an instance
of a CLDS model by construction, so this example allows us to explore recovery performance.

Concretely, let θt ∈ [0, 2π) denote heading direction at time step t, which we treat as our conditions
ut := θt. To build a ring attractor, we parametrize two orthogonal unit vectors

e1(θ) = [cos(θ) sin(θ)] , e2(θ) = [− sin(θ) cos(θ)] , (8)

that describe the position on the ring and the tangent vector respectively. We design (i.e. impose)
that the system converges to a stable fixed point at e1(θ), and at head direction θ we approximately
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integrate speed input along the subspace spanned by e2(θ). To do this, we define A(θ) to be a
rank-one matrix that defines a leaky line attractor, with attracting (i.e. contracting) dynamics along
the orthogonal e1(θ). For a hyperparameter 0 < ϵ < 1 define:

A(θ) := (1− ϵ)e2(θ)e2(θ)
⊤, b(θ) := e1(θ). (9)

Completing the model description, we assume that the firing rate of individual neurons is given
by a linear readout as yt,i = Ci,:(θt)

⊤xt + ωt for neuron i at time t, with d(ut) = 0 and Ci,:

is sinusoidal bump tuning curve function (see App. §B.2). Finally, we sampled trials of length
T = 100 with N = 10 neurons, generating the evolution of the heading direction as a random walk,
θt ∼ N (θt−1, 0.5

2), and initialize at the origin x1 ∼ N (0, 1).

We report our recovery results in Fig. 2, fixing the decoding matrix C(·) to a known value as to avoid
non-identifiability considerations. We refer to App. §B.2 for recovery plots of C when fitted. First,
we observed that we can generally recover the nonlinear flow-field, plotting in Fig. 2c the composite
dynamics obtained from the posterior trajectories. Second, for a more parameter-based account of the
recovery, we plot in Fig. 2d-e the varying biases b(θ) and dynamics matrices A(θ) as functions of
the head direction θ—we recovered with high-fidelity the true parameters. This recovery translated
into the properties of the dynamics such as the recovered eigenvalues of A(θ) in Fig. 2f. Third, we
observed that the test data single-neuron reconstruction (Fig. 2g) recovers the true observations, and
the model was able to accurately (R2 = 0.86) reconstruct a held out neuron from this test-set through
co-smoothing. Finally, we report in Appendix §B.2 a study on the impact of observational noise on
our quality of fit—we find reliable recovery even as the signal-to-noise ratio degrades.

3.3 Neural circuit model of ring-attractor dynamics

We provide an alternate synthetic ring attractor experiment based on the neuroscience literature [30].
It is meant to test the CLDS and its inference in a synthetic data modality with known underlying
computation but which, importantly, is not generated from a CLDS model.

We write a model of continuous ring attractor dynamics with bumps of activity integrating angular
velocity [31]. In this model, high-dimensional and non-normal attractor dynamics are implemented
through HD-preferential units arranged in a “ring”, with short-range excitation and long-range
inhibition forming a bump of activity for a specific unit in a specific HD, and with a HD velocity
v(t) = θ̇(t) integrator causing a shift in the location of the bump. Let y(ϕ, t) denote the network
activity of cells with preferred head-direction ϕ ∈ [0, 2π) at time t. The dynamics follow the
stochastic partial differential equation

∂

∂t
y = τ

[
−y + f(w ∗ y) + v

∂

∂ϕ
y
]
+ σξ (10)

for ξ(ϕ, t) a white noise process on the ring. Here, f is a nonlinearity, w a “Mexican-hat” convolution
filter, and τ > 0 a time constant. For implementation purposes, y is discretized to yt ∈ RN , N = 32,
for t ∈ {1, . . . , T}, with each unit [y]i having preferred directions ϕi regularly spanning the interval
[0, 2π). See model and implementation details in Appendix §B.3. We use y as our observations and
head-direction θ as conditions again, generated the same way as in our previous synthetic HD model.

The underlying model captures high-dimensional ring attractor dynamics. When fitting a CLDS
model, we expect the low-dimensional latent dynamics to capture the ring-attractor structure and the
nonlinearity of the dynamics, with a linear emission model bringing it back to the high-dimensional
activity. This is precisely what we found when fitting the CLDS—see Appendix §B.3. The results
make us confident that the CLDS can capture this nonlinear structure even under model mismatch.

3.4 Mouse head-direction dynamics

Next, we turned to the analysis of antero-dorsal thalamic nucleus (ADn) recordings from Ref. [32]
of the mouse HD system in mice foraging in an open environment (Fig. 3a). We considered neural
activity from the “wake” period, binned in 50ms time-bins, then processed to firing rates and
separated into 10s trials. As with the synthetic experiment of the previous section, we treat the
recorded head-direction θt ∈ [0, 2π) as conditions ut = θt.

We recovered single-neuron firing rates with high accuracy (Fig. 3b) through data reconstruction. We
further validated our fit by computing the empirical tuning curves, which our model recovered almost
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exactly (Fig. 3c). The model tuning curves are given by

E [yi | θ] = E [E [yi | x, θ]] = Ci,:(θ)
⊤E [x | θ] , (11)

which follows from the law of total expectation. The later quantity E[x | θ] represents the expected
encoding of the conditions θ, which we estimate by averaging posterior trajectories, obtained with
Kalman smoothing, over (binned) θ given corresponding firing rates.

Finally, we analyzed the learned latent dynamics. Like the synthetic example, we identified a ring
attractor structure (Fig. 3d). Unlike the synthetic example, per the eigenvalues of A(θ) in Fig. 3e,
this ring attractor is composed of HD-dependent fixed points as opposed to line attractors.

3.5 Macaque center-out reaching task

Finally, we analyzed neural recordings of dorsal premotor cortex (PMd) in macaques performing
center-out reaching task (Fig. 4a) from Ref. [33]. In contrast to the previous experimental conditions,
we consider here two-dimensional conditions uk

t = (θk, zt), where θk ∈ [0, 2π) is the instructed
reach angle, constant per trial k, and zt ∈ {0, 1} indicates the task reach condition (see Fig. 4b) set at
0 during the delay and 1 at 100ms past the go-cue, at the onset of the movement-related firing rate
ramp Fig. 4a-(right). Discrete-valued conditions, such as the reach onset zt ∈ {0, 1}, are considered
as supported on a continuous interval. The correlation between such discrete points is determined by
the length-scale parameter κ, which we’ve set to κ = 0.5 from a hyperparameter search. More details
on hyperparameters and data-preprocessing can be found in Appendix §B. Finally, we use a fixed
emission matrix C and let the latent dynamics capture the dependency on experimental conditions
through A(u) and b(u).

We found the latent dynamics to encode the conditions through attracting fixed-points during both the
delay and reach periods. We show in Fig. 4c the projection of the D = 5 latent dimensions along the
3-dimensional subspace most aligned (i.e. best decoding) with the experimental conditions, following
common analyses [33]—we observed clear aligned rings of fixed points from delay to reach. In CLDS
models, we obtain the fixed points by simply solving for x∗(u) satisfying (I −A(u))x∗ = b(u)
for any u, in contrast to numerical fixed-point methods usually employed [34].

We performed co-smoothing (see §3.1) to evaluate the model. We recovered with good accuracy
single held-out neurons from the validation set excluded from training (Fig. 4d). We then compared
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the performance of the CLDS against the baseline models, exploring further how each fares in
low-data regimes. We report in Fig. 4e the co-smoothing R2 per model, computed as a function
of the number of trials used in each reach-angle θk, averaged over 5 random seeds. We found
that the CLDS outperformed other models, displaying the highest difference at 1 training trial per
condition. Introducing more training trials per condition, the gpSLDS model sometimes approached
the performance of the CLDS. While the LFADS model showed progressively better performance
that did not plateau yet, it nonetheless underperformed in these low data regimes.

4 Related work

Wishart process models CLDS models capture the dependence of neural responses y1:T on
continuous experimental conditions u1:T . Ref. [15] investigated a very similar problem, focusing
on single-trial responses yk to continuous experimental conditions uk ∈ U . They use a conditional
Gaussian model for responses yk given conditions uk

yk | uk ∼ N (y;µ(uk),Σ(uk)) (12a)

and they place Gaussian process and Wishart process [35] priors on the mean and covariance functions

µ(·) ∼ GPM (0, kµ), Σ(u) = U(u)U(u)⊤ + Λ(u) (12b)

with U(·) ∼ GPM×p(0, kΣ) and Λ(·) ∼ GPM (0, kΛ) for chosen kernel functions {kµ, kΣ, kΛ}.
The hyper-parameter p ∈ N determines the low-rank structure of Σ.

For a single time step t = T = 1 and assuming a degenerate prior m(u1) = 0, the marginal
distribution of y1 conditioned on u1 in our system (1) reads

N
(
d(u1),C(u1)Q1C(u1)

⊤ +R
)
. (13)

which can be compared with (12). The models are analogous with µ(u) = d(u) and with the CLDS
emission matrix C(u) serving as the Wishart process prior decomposition matrix U(u), right-scaled
by Q1/2

1 ∈ RD×D. This makes the parameter p = D now bear meaning as the dimensionality of the
latents x ∈ RD, akin to factor analysis. Thus, we can view CLDS models as a direct extension of
Wishart process models that capture condition-dependent dynamics across multiple time steps.

Markovian GPs Latent GP models [36, 37], such as GPFA [16], are widely used in neuroscience.
One can view MAP inference in a CLDS model as optimizing a kernel that defines a latent GP prior.
Taking this a step further, the stationary dynamics of an AR-1 process (i.e. linear dynamical system)
can be expressed as draws from a GP [16, 38]. Vice versa, all stationary, real-valued, and finitely
differentiable GPs admit a representation in terms of linear state space models [39, 40], a relationship
that has proven useful for both modeling and aiding GP inference [40, 41, 42]. We expand upon
this direction by allowing the dynamics to vary not only across time but over conditions too. For a
fixed set of LDS parameters at experimental covariates, F (u1:T ), the distribution of latent states in a
CLDS are jointly Gaussian. Thus, a set of LDS parameters induces a (generally non-stationary) GP
prior on the latent trajectories. In this view, the GP prior we place over the parameters of the LDS
can be seen as a hyperprior over the latent dynamical process.

Switching dynamical systems A second class of relevant models generalizing the LDS are Switch-
ing LDS models (SLDS; [43, 44, 17]). SLDS models consist of a discrete latent state zt, with
finite Markov chain dynamics, dictating the dynamics matrix A(zt). This switching behavior can be
mimicked in our setting if the condition space is discrete (see, e.g., §3.5). We can take the relationship
a step further by embedding the discrete process in the continuous dynamics parameter space of
A(zt) ∈ RD×D. In a similar line of thinking as with Markovian GPs, we show in Appendix §A.3
how a one-dimensional SLDS model of dynamics

p(zt+1 = i | zt = j) = Pij , xt+1 = a(zt)xt + ϵt,

is equivalent, up to the first two moments of the stochastic process a := az, to a CLDS model with

a(·) ∼ GP
(
π⊤a,a⊤ (

P |tj−ti|diag(π)− ππ⊤)a) ,
over time conditions ut = t, for a the vector of values taken by a(zi) and π the stationary distribution
of the zt discrete state process. In a similar vein, previous work has considered the discrete states
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zt dictating the dynamics to live on a continuous support [45], however without leveraging this
continuity in the parameters A(·) themselves.

The recurrent SLDS (rSLDS) model [29, 46, 47] takes an important departure from the SLDS by
leveraging the continuous latent states xt to guide the discrete state transitions. Recent work [48] use
this dependency but turn to the linearization of nonlinear systems with x-space fixed points as guide
for the linear dynamics. In contrast, we linearize based on observed conditions (see App. A.2).

Smoothly varying dynamical systems models Switching LDS models can be contrasted with
models that smoothly interpolate between dynamical parameter regimes. The simplest example of
this would be time-varying linear models (e.g. [22]); CLDS models are a generalization of this idea
that comes with several advantages (see §2.2). Recent work [49] relaxed switching dynamics to be
subject to an approximately continuous and latent time warping factor. More similar to CLDS models
are smoothly varying latent linear dynamical models, such as the gpSLDS [19], which relax the
discrete switching in rSLDS models to allow smoothly varying soft mixtures of linear dynamics, and
the dLDS [50], which learns a dictionary of linear dynamics combined with time-varying coefficients.
Again, the primary difference is that CLDS models achieve a similar effect but utilize observed
experimental covariates to infer these dynamical transitions. This approach is closer to previous work
[51] using neural network architectures to parametrize input-dependent linear recurrent dynamics.

5 Conclusion

In this work, we extend classical linear-Gaussian state space models of neural dynamics. Our results
suggest that these models are competitive with modern methods when the dynamical parameters vary
smoothly as a function of available covariates. Like classical linear models, CLDS models are easy
to fit and interpret. Our main technical contribution was to introduce an approximate GP prior over
system parameters and show that this leads to closed-form inference under a Gaussian noise model.

While these results are promising, CLDS models have limitations that merit consideration. To start,
we did not extend to non-Gaussian observations to model spike counts directly, nor leveraged the
prior structure on the coefficients F to convey more complete parameter posteriors—we discuss
both of these options in the text, and see them as essential avenues for future work. Furthermore,
as their name implies, CLDS models assume conditionally linear latent dynamics. We detail in
Appendix §A.2 how our approach can be viewed as a first-order (in x) approximation to a full
nonlinear system of the form

E[xt+1 | xt,ut] = fx(xt,ut), E[yt | xt,ut] = fy(xt,ut).

We derive upper bounds for the approximation error between our linearized dynamics and this
nonlinear system, focusing of fx and showing that the quality of this approximation is guaranteed to
be small if fx is well-behaved and the conditional covariance in xt given ut is small. These same
guarantees help shed light onto limitations. First, these models rely on observing a time series of
experimental covariates u1:T and performance would suffer if the covariates are corrupted, such
as during forecasting or with partial observations. Second, the model assumes linear dynamics
conditioned on ut. We believe this is a good approximation in many settings of interest, particularly
when there is strong tuning in x to sensory or behavioral variables u, and expect CLDS models
to struggle when they are loosely correlated (e.g. cognitive tasks with long periods of internal
deliberation). In these scenarios, we expect that more nonlinear approaches will outperform CLDS
models when given access to large amounts of data. Nevertheless, neural recordings are often trial-
limited in practice [52]. We therefore view CLDS models as a broadly applicable modeling tool for
many neuroscience applications.

Future work could extend CLDS models to overcome these limitations, such as handling partially
observed covariates, uk

t . Since CLDS models can be viewed as a dynamical extension of Wishart
process models (see §4), future work could also apply this method to infer across-time noise corre-
lations [reviewed in 53], in addition to classical across-trial noise correlations. Recent work [54]
shows how across-time correlations can be used to quantify similarity in dynamical systems—a topic
that has recently attracted strong interest [55]. CLDS models are a potentially attractive framework
for tackling the unsolved challenge of estimating this high-dimensional correlation structure in
trial-limited regimes.
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A Modeling

A.1 Inference

A.1.1 Basis space form

We want to show

M(u)X = W⊤(ϕ(u)⊗X)

for M defined as in (1c) with basis functions {ϕℓ}Lℓ=1, u ∈ U , and X ∈ RD2×D3 , D3 ∈ N.

For each i, j-th entry,

[M(u)X]ij =

D2∑
k=1

[M(u)]ik [X]kj

=

D2∑
k=1

L∑
ℓ=1

w(ik)
ℓ ϕℓ(u)Xkj

=

D2∑
k=1

L∑
ℓ=1

w(ik)
ℓ (ϕ(u)⊗X)D2ℓ+k,j

=

D2∑
k=1

L∑
ℓ=1

W⊤
i,D2ℓ+k (ϕ(u)⊗X)D2ℓ+k,j

= W⊤
i,: (ϕ(u)⊗X):,j

=
[
W⊤ (ϕ(u)⊗X)

]
ij

as desired, where we’ve defined WD2ℓ+k,i := w(ik)
ℓ .

A.1.2 Least squares derivation for Conditionally Linear Regression

Recall
M(u)X = W⊤(ϕ(u)⊗X), W ∈ RD2L×D1

for M(u) ∈ RD1×D2 , X ∈ RD2×M . In particular, M(un)xn = W⊤zn. What follows are standard
least-squares derivations for matrix coefficients with matrix regularization, which we include for
completeness.

Our posterior objective reads as

log p(W | y1:N ,x1:N ,u1:N ) ∝ log p(y1:N | W,x1:N ,u1:N ) + log p(W)

=

N∑
n=1

log p(yn | W,xn,un) + log p(W).

We have

log p(yn | xn,ut) = − 1
2 (yn −W⊤zn)

⊤Σ−1(yn −W⊤zn)− c

= − 1
2Tr

[
(yn −W⊤zn)

⊤Σ−1(yn −W⊤zn)
]
− c

= − 1
2Tr

[
Σ−1(yn −W⊤zn)(yn −W⊤zn)

⊤]− c

= − 1
2

(
Tr

[
Σ−1yny

⊤
n

]
− 2Tr

[
Σ−1W⊤zny

⊤
n

]
+Tr

[
Σ−1W⊤znz

⊤
nW

])
− c.

with the normalizing constant c = 1
2 log |2πΣ|.

To optimize this expression with respect to W, we consider the zeros of the derivative

∂

∂W
log p(yn | xn,un) =

∂

∂W
Tr

[
W⊤zny

⊤
nΣ

−1
]
− 1

2

∂

∂W
Tr

[
Σ−1W⊤znz

⊤
nW

]
= zny

⊤
nΣ

−1 − znz
⊤
nWΣ−1,
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and

log p(W) = − 1
2 ∥W∥2F =⇒ ∂

∂W log p(W) = −W.

Taken together, we thus have that the stationary point of the posterior satisfies
N∑

n=1

(
zny

⊤
nΣ

−1 − znz
⊤
nWΣ−1

)
−W = 0.

Define Y ∈ RN×D1 , Z ∈ RN×D2L by row-wise stacking yn and zn respectively, and note that∑
n zny

⊤
n = Z⊤Y . We get

Z⊤Y Σ−1 − Z⊤ZWΣ−1 −W = 0

=⇒ Z⊤ZW +WΣ = Z⊤Y

as desired.

A.1.3 Joint dynamics and bias EM update in weight-space

Here we detail how one EM update for the parameters governing {A,b} is carried out. Using the
function-space weights WA ∈ RDL×D and Wb ∈ RL×D, the dynamics read

xt+1 = A(ut)xt + b(ut) + ϵt

= W⊤
A (ϕ(ut)⊗ xt)︸ ︷︷ ︸

zt

+W⊤
b ϕ(ut) + ϵt

Define zt = ϕ(ut)⊗ xt ∈ RLD, and note

Ext [zt] = ϕ(ut)⊗ Ext [xt]

Ext,xt+1

[
ztx

⊤
t+1

]
= ϕ(ut)⊗ Ext,xt+1

[
xtx

⊤
t+1

]
The quantity of interest for the M-step from the complete data log-likelihood is (up to an additive
constant)

E

[
T−1∑
t=1

log p(xt+1 | xt,F,ut)

]

= −1

2
E

[
T−1∑
t=1

(xt+1 − (A(ut)xt + b(ut)))
⊤
Q−1 (xt+1 − (A(ut)xt + b(ut)))

]
+ const.

= −1

2
E

[
T−1∑
t=1

x⊤
t+1Q

−1xt+1 − 2x⊤
t+1Q

−1A(ut)xt − 2x⊤
t+1Q

−1b(ut)

+ x⊤
t A(ut)

⊤Q−1A(ut)xt + 2x⊤
t A(ut)

⊤Q−1b(ut) + b(ut)
⊤Q−1b(ut)

]
+ const.

= −1

2
Tr

[
T−1∑
t=1

Q−1E[xt+1x
⊤
t+1]− 2Q−1A(ut)E[xtx

⊤
t+1]− 2Q−1b(ut)E[x⊤

t+1]

+A(ut)
⊤Q−1A(ut)E[xtx

⊤
t ] + 2A(ut)

⊤Q−1b(ut)E[x⊤
t ] + b(ut)

⊤Q−1b(ut)

]
+ const.

Which with the finite basis expansion reads as

L = −1

2
Tr

[
T−1∑
t=1

Q−1E[xt+1x
⊤
t+1]− 2Q−1W⊤

A(ϕ(ut)⊗ E[xtx
⊤
t+1])− 2Q−1W⊤

b (ϕ(ut)E[x⊤
t+1])

+WAQ
−1W⊤

A(ϕ(ut)ϕ(ut)
⊤ ⊗ E[xtx

⊤
t ]) + 2WAQ

−1W⊤
b (ϕ(ut)ϕ(ut)

⊤ ⊗ E[x⊤
t ])

+WbQ
−1W⊤

b ϕ(ut)ϕ(ut)
⊤

]
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The partial derivatives satisfy, denoting ϕt = ϕ(ut),

∂L
∂WA

=

T−1∑
t=1

(ϕt ⊗ E[xtx
⊤
t+1])Q

−1 − (ϕtϕ
⊤
t ⊗ E[xtx

⊤
t ])WAQ

−1 − (ϕtϕ
⊤
t ⊗ E[xt]

⊤)⊤WbQ
−1

=: N∆Q
−1 −N(1,T−1)WAQ

−1 − (Φ⊤Z)⊤WbQ
−1 (14)

∂L
∂Wb

=

T−1∑
t=1

ϕtE[x⊤
t+1]Q

−1 − (ϕtϕ
⊤
t ⊗ E[x⊤

t ])WAQ
−1 + ϕtϕ

⊤
t WbQ

−1

=: Φ⊤XQ−1 − Φ⊤ZWAQ
−1 +Φ⊤ΦWbQ

−1 (15)

where we’ve defined the matrices Φ ∈ R(T−1)×L, Z ∈ R(T−1)×DL, X ∈ R(T−1)×D obtained by
stacking ϕ(ut), ϕ(ut)⊗ E[xt] and E[xt+1] respectively for t ∈ {1, . . . , T − 1}, and the sufficient
statistics

N(t1,t2) =

t2∑
t1

ϕtϕ
⊤
t ⊗ E[xtx

⊤
t ], N∆ =

T−1∑
t=1

ϕ(ut)⊗ E[xtx
⊤
t+1].

which are all defined during our E-step. These statistics are in contrast to the “typical” sufficient stats
without the weight-space parametrization

M(t1,t2) =

t2∑
t1

E[xtx
⊤
t ], M∆ =

T−1∑
t=1

E[xtx
⊤
t+1].

Incorporating the Gaussian prior on WA and Wb and equating the two partial derivatives in (14-15)
to 0 to obtain the stationary points, we obtain the system of equations[

WA

Wb

]
Q+

[
N(1,T−1) Z⊤Φ
Φ⊤Z −Φ⊤Φ

] [
WA

Wb

]
=

[
N∆

Φ⊤X

]
(16)

which solving for WA and Wb jointly amounts to solving our M-step.

A.2 Nonlinear dynamics: linearization and composite dynamics

Consider input-driven nonlinear dynamics in xt ∈ RD,

xt+1 = f(xt,ut) + ϵt (17)

governed by f : RD × U → RD, and where ϵt is zero-mean Gaussian noise. We assume that f
has continuous and bounded second-order partial derivatives in both x and u. Below we treat the
state and input variables (xt,ut) as random variables that are jointly drawn from some unspecified
distribution.

A.2.1 CLDS conditional approximation error

Let f1, . . . , fD denote the output dimensions of f ; that is, f(xt,ut) =

[f1(xt,ut) . . . fD(xt,ut)]
⊤. In a first step to relate our CLDS dynamics to f , consider

the first-order Taylor expansion for each output dimension in the first argument x about a ∈ RD. For
i ∈ {1, . . . , D}, this is

fi(xt,ut) = fi(a,ut) +∇xfi(a,ut)
⊤(xt − a) + Ei (18)

where ∇xfi denotes the vector-valued gradient of fi with respect to it’s first argument x and Ei is the
residual of the Taylor approximation. The Lagrange remainder form of Taylor’s theorem tells us that
this residual can be expressed as:

Ei = (xt − a)⊤∇2
xfi(ζ,ut)(xt − a) (19)

for some ζ ∈ RD, where ∇2
xfi is the matrix-valued Hessian of fi with respect to its first argument.

We can upper bound the absolute value of this remainder using the Cauchy-Schwartz inequality and a
standard operator norm inequality. Specifically, for i ∈ {1, . . . , D}, we have

|Ei| ≤
∥∥∇2

xfi(ζ,ut)
∥∥
2
∥xt − a∥22 (20)
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where
∥∥∇2

xfi(ζ,ut)
∥∥
2

denotes the maximal singular value (operator norm) of the matrix
∇2

xfi(ζ,ut) ∈ RD×D. We assume that this operator norm is upper bounded globally by a constant
Li > 0, ∥∥∇2

xfi(x,u)
∥∥
2
≤ Li ∀ x,u ∈ RD. (21)

Intuitively, this assumption implies that the second-order derivatives of f with respect to x are not
too large, meaning that the accuracy of the first-order Taylor approximation degrades in proportion to
the magnitude of curvature in f .

Returning to equation (20), we proceed by taking conditional expectations with respect to xt given
ut on both sides of the inequality. This yields an upper bound on the expected approximation error,

E [|Ei| | ut] ≤ Li · E
[
∥xt − a∥22

∣∣∣ut

]
.

This upper bound is minimized by choosing a = E[xt | ut]. Plugging in this choice, we observe that

E [|Ei| | ut] ≤ Li · Tr [Cov[xt | ut]]

where Cov[xt | ut] = E
[
(xt − E[xt | ut])(xt − E[xt | ut])

⊤
∣∣ut

]
is the conditional covariance of

xt given ut. Finally, we can sum these upper bounds over i = {1, . . . , D} to bound the total expected
approximation error as ∑

i

E [|Ei| | ut] ≤ L · Tr [Cov[xt | ut]] (22)

where we have defined L =
∑

i Li as a global constant bounding the second-order smoothness of f
across all dimensions.

Returning to equation (18) and plugging in the optimal choice of a = E[xt | ut], we obtain the
following CLDS approximation to the nonlinear dynamics

h(xt,ut) := f(E[xt | ut],ut) +∇xf(E[xt | ut],ut)(xt − E[xt | ut]) = A(ut)xt + b(ut)
(23)

where ∇xf is the matrix-valued Jacobian, ∇xf(x,u) ∈ RD×D, with respect to the first argument
of f and we have re-arranged the terms and defined

A(ut) := ∇xf(E[xt | ut],ut), b(ut) := f(E[xt | ut],ut)−∇xf(E[xt | ut],ut)E[xt | ut].

For each value of ut, the quality of this approximation is guaranteed by equation (22) to be small
if the second-order derivatives of f with respect to x are small and if the conditional variance of
xt given ut is small. We note that this analysis of approximation error and does not account for
the additional estimation error we incur when learning the functions A(u) and b(u) from noisy
and limited data. Nonetheless, this analysis tells us that we expect the CLDS to perform well in
circumstances where the underlying dynamics are smooth and the conditional distributions of xt

given ut have low variance.

A.2.2 Composite dynamics

When considering the composite dynamics in (7) (Section §3.1), we are interested in approximating
the input-driven nonlinear dynamics given by equation (17) with autonomous nonlinear dynamics,
governed by some function g such that

f(xt,ut) ≈ g(xt).

We can evaluate the quality of this approximation using the conditional expectation of the squared
error

E
[
∥f(xt,ut)− g(xt)∥22

∣∣ xt

]
where the conditional expectation is taken over ut given xt. This approximation error is minimized
by choosing

g(xt) = E[f(xt,ut) | xt] = E[xt+1 | xt]

However, learning f from limited data is challenging, so we replace this with our CLDS model to
achieve the composite dynamical system

g(xt) ≈ E[h(xt,ut) | xt] (24)
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where h(x,u) = A(u)x+ b(u) as in equation (23). Now we analyze the quality of this approxima-
tion. Consider the residual along dimension i ∈ {1, . . . , D},

Ri = fi(xt,ut)− E[hi(xt, ũt) | xt]

where the expectation in the second term is taken over ũt, which is drawn from the conditional
distribution of ut given xt. That is, Ri is a random variable that depends on a joint sample of
(xt,ut) from the stationary distribution, and ũt is a dummy variable that is integrated out during the
calculation of Ri. To proceed, we note that

Ri = E[fi(xt,ut)− hi(xt, ũt) | xt]

= E[fi(xt,ut)− fi(xt, ũt) + fi(xt, ũt)− hi(xt, ũt) | xt]

and, applying Jensen’s inequality and the triangle inequality, we conclude

|Ri| ≤ Eũt|xt
[
∣∣fi(xt,ut)− fi(xt, ũt) + fi(xt, ũt)− hi(xt, ũt)

∣∣ ]
≤ Eũt|xt

[
∣∣fi(xt,ut)− fi(xt, ũt)

∣∣ ] + Eũt|xt
[
∣∣fi(xt, ũt)− hi(xt, ũt)

∣∣ ]
where we have introduced a minor change in notation, using Eũt|xt

to denote the conditional
expectation of ũt, given xt. Now we take expectations on both sides of this inequality with respect
to the remaining random variables, xt and ut, which are sampled from some stationary distribution
associated with the dynamical system. Using the law of total expectation, we obtain

E|Ri| ≤ Ext

[
Eut,ũt|xt

[
∣∣fi(xt,ut)− fi(xt, ũt)

∣∣ ]]+ Eut

[
Ext|ut

[
∣∣fi(xt,ut)− hi(xt,ut)

∣∣ ]]
(25)

On the right hand side, the first term takes the conditional expectation over ut and ũt, followed by an
expectation over xt. The second term reverses this order, taking the conditional expectation over xt,
followed by an expectation over ut (since this is identically distributed to ũt, we drop the tilde).

To upper bound the first term, we introduce an assumption that fi is Lipschitz continuous in its second
argument. That is, there exists a constant Ci > 0 such that

|fi(xt,u)− fi(xt,u
′)| ≤ Ci∥u− u′∥2 ∀u,u′ ∈ U .

In conjunction with Jensen’s inequality, this Lipschitz assumption implies the following upper bound:

Eut,ũt|xt
[
∣∣fi(xt,ut)− fi(xt, ũt)

∣∣ ] ≤ Ci · Eut,ũt|xt
[
∥∥ut − ũt

∥∥
2
]

≤ Ci

√
Eut,ũt|xt

∥∥ut − ũt

∥∥2
2

= Ci

√
2Tr[Cov[ut | xt]]

It remains to upper bound the second term in equation (25). A direct application of the results in
§A.2.1 yields the bound

Ext|ut
[
∣∣fi(xt,ut)− hi(xt,ut)

∣∣ ] ≤ Li · Tr[Cov[xt | ut]]

where Li, defined in (21), is a constant bounding the second derivatives of fi with respect to xt.
Putting these pieces together we conclude that

E|Ri| ≤ Ci · Ext

√
2Tr[Cov[ut | xt]] + Li · Eut

Tr[Cov[xt | ut]]

And so an upper bound on the total absolute error of the composite dynamics is given by
D∑
i=1

E|Ri| ≤ C · Ext

√
2Tr[Cov[ut | xt]] + L · Eut Tr[Cov[xt | ut]]

where we have defined C =
∑

i Ci and L =
∑

i Li.

In summary, we have shown that the approximation error of the composite dynamical system, defined
in equation (7), is bounded by a sum of two terms. The first term approaches zero in the limit that
the conditional covariance of ut given xt goes to zero, while the second term approaches zero in the
limit that the conditional covariance of xt given ut goes to zero. Thus, the composite dynamics have
the potential to provide an accurate depiction of the true nonlinear dynamical system if xt and ut are
close to being in one-to-one correspondence with each other.

We note that in practice when computing the composite dynamics in (7), we make the simplifying
assumption that p(ut|xt = x) does not depend on t (i.e. we assume that this decoding distribution is
stationary).
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A.3 Correspondence between CLDS and Switching LDS

In this section, we explore the relationship between the linear time-variant dynamics of (1a) with
Aij

iid∼ GP(0, kt), and the dynamics of a switching linear dynamical system. While the latter has
parameters evolving over a discrete set, we can nonetheless explore how to think of this discrete
support as embedded within RD×D, and seek to match the moments of these two processes.

The first thing to note is that by drawing the entries of Aij i.i.d., we can gain insight by considering a
single process a(·) ∼ GP(0, kt), and a SLDS with one-dimensional dynamics. Thus, we consider the
SLDS model

p(zt+1 = i | zt = j) = Pij (26a)

xt+1 = a(zt)xt + ϵt (26b)

with discrete states zt governing dynamics in xt, with transition matrix P and dynamics a(z) for
z ∈ Z . Denote z = (z1, . . . , zK)⊤ ∈ R|Z| for the vector of the |Z| = K values that can be taken
by the stochastic process z, and similarly a = (a(z1), . . . , a(zK))⊤. We consider π the stationary
distribution for the z process. Finally, note that the map zn → a(zn) is deterministic, one-to-one and
onto, such that we can think of the Markov chain in zt as having support over a. Let at := a(zt), and
denote ai = a(zi).

Let us now explore the moments of the stochastic process at to determine its relationship with the
CLDS. Assume zt has reached stationarity, such that p(zt) = p(at) = π. Then, first,

E[a] = π⊤a (27)

and then we have the cross-correlation

E [atat+n] = E [E [atat+n | at]]

=

K∑
j=1

E [atat+n | at = aj ] p(at = aj)

=

K∑
j=1

K∑
i=1

aj (p(at+n = zi | at = aj)) p(at = aj)

=

K∑
i=1

K∑
j=1

aiajP
n
ijπj

= a⊤Pndiag(π)a.

Denote Π = diag(π). We get the desired covariance

Cov(at, at+n) = E [atat+n]− E [at]E [at+n] = a⊤ (
PnΠ− ππ⊤)a,

yielding our kernel form

Cov(a(ti), a(tj)) = kt(ti, tj) = a⊤
(
P |tj−ti|Π− ππ⊤

)
a. (28)

Hence, in all, our approximation of the stochastic process at over R up to the first two moments is

a(·) ∼ GP
(
π⊤a,a⊤

(
P |tj−ti|Π− ππ⊤

)
a
)

(29)

which in particular can be made zero-mean by consider values a such that π⊤a = 0. This establishes
the form of the GP prior over a(·) for which the corresponding CLDS best matches the SLDS.

B Experiments

B.1 Model implementations

We initialize observation matrices for all models (C in LDS, CLDS and gpSLDS models, log-rate
decoder weights in LFADS) as the PCA principal axes in y-space—that is, the top D right singular
vectors of the data—for each task.
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CLDS In all experiments, we assume that d(ut) = 0, which forces the predicted firing rates,
conditioned on ut, to lie in a N -dimensional space spanned by the columns of C(ut).

gpSLDS We implemented the gpSLDS [19] using its accompanying code at https://github.
com/lindermanlab/gpslds. We used a latent dimension of D = 2 in all experiments as we
encountered significant OOM errors with higher dimensions. We used exactly the same inputs u1:T

as those provided to the (C)LDS models. We use J = 2 and the feature transformation

ϕ(x) =
[
1 x1 x2 x2

1 x2
2

]⊤
(30)

as to allow both linear (as in the rSLDS) and circular π(x) partitions. We experimented with
providing the same basis functions for the feature transformation as the ones provided to the CLDS
but found that it did not provide any advantage. Other hyper-parameters we set to default provided
values.

LFADS We use the Jax implementation of LFADS available at https://github.com/
google-research/computation-thru-dynamics/tree/master/lfads_tutorial, which is
under a Apache-2.0 license. We choose the factor dimension to be the same as the latent dimension
D of the (C)LDS models and the inferred inputs to be of dimension |U|, both following the (C)LDS
models on any given experiment. The other components of the architecture are held fixed across all
experiments:

• Encoder, controller and generator have hidden-states of dimension 32;
• The inferred inputs are modeled as having an auto-correlation of 1.0 and a variance of 0.1;
• We train for 1000 epochs, with an initial learning rate of 0.5 with exponential decay at rate
0.995, along with a KL warm-up coming in at 500 steps.

B.2 Synthetic experiment and parameter recovery

Tuning width = 0.1

Tuning width = 0.25

Tuning width = 0.5

True EM

Figure 5: Recovery of C. Rows indicate
varying level of tuning curve width γ for
Ci,:(u). Recovery becomes more challeng-
ing for smaller width since it requires a higher
and higher number of bases L to approximate
the true tuning bump.

Figure 6: Hyperparameter search, CLDS
marginal log-likelihood on a held-out vali-
dation dataset set for κ ∈ {0.2, 0.6, 1.0} and
σ ∈ {0.2, 0.5, 1.0, 1.5, 2.0}. Maximum at-
tained at {κ, σ} = {0.6, 0.5}.

For the peaks ξi spanning regularly the interval [−π, π) and widths γ, the tuning curves in the rows
of C for the synthetic experiment are defined as

Ci,:(u) =

{(
1 + cos

(
u−ξi
γ

))
u⊤ if u ∈ (ξi − γπ, ξi + γπ)

0 else
(31)
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We plot the its recovery with our inference procedure in Fig. 5, up to the invertible transform
non-identifiability inherent to LDS models.

In Table 1, we report the results of our inference method on the first synthetic ring-attractor experiment
(§3.2) for varying emission noise scale R = σ2

RI , keeping all other experimental setup parameters
exactly the same as in the original experiment and fixed. We see that even as the signal-to-noise ratio
degrades and we reach a co-smoothing value of 0.21, which is lower than our fit on the monkey data
of §3.5, we still have decent A recovery and near-perfect R recovery.

True noise log scale log σR −2 −1 0 1

Recovered R log scale −1.97 −0.98 0.02 1.02
A(·) recovery error 0.01 0.02 0.11 0.32
Co-smoothing R2 0.99 0.94 0.68 0.21

Table 1: Impact of observational noise on quality of fit. The “recovered R scale” is the square-root of
the matrix 2-norm of R. The A(·) recovery error is the average in 2-norm error (between recovered
and true) in eigenvalues over a regular grid of 50 angular conditions θ. The co-smoothing R2 is the
average validation set R2 on top-5-variance neurons, like in the main text.

B.3 Neural circuit ring attractor experiment

Let y(ϕ, t) be the firing-rate “bump” on angles ϕ ∈ [0, 2π) with periodic boundary conditions, and let
v(t) = θ̇(t) be the angular velocity derived from the head-direction input. We consider its dynamics
governed by the stochastic PDE

dy(ϕ, t) = τ
[
−y(ϕ, t) + f

(
(w ∗ y)(ϕ, t)

)
+ κvv(t) ∂ϕy(ϕ, t)

]
dt+ σdB(ϕ, t)

with

• f(·) pointwise ReLU nonlinearity.

• The recurrent drive is a circular convolution

(w ∗ y)(ϕ, t) =

∫ 2π

0

w(ϕ− ψ) y(ψ, t) dψ,

with a rotationally symmetric kernel (in radians)

W (∆) = Je exp
(
− 1

2 (∆/σe)
2
)
− Ji exp

(
− 1

2 (∆/σi)
2
)

for ∆ ∈ (−π, π] (wrapped), {Je, σe}, {Ji, σi} parameters of excitation and inhibition.

• The term κv v(t) ∂ϕy shifts the bump at speed proportional to v(t), of parameter κv .

• B cylindrical Wiener process on the ring with covariance E[B(ϕ, t)B(ϕ′, t′)] = δ(ϕ −
ϕ′) min(t, t′) (“white-noise” dB/dt).

• τ > 0 a the time constant.

Numerical implementation We discretize time to ∆t and head-direction to ϕi, i ∈ {1, . . . , N},
N = 32, regularly spanning [0, 2π). Let y(ϕi, n∆t) = [yn]i. Consider W a circulant matrix
implementing w, and D a centered difference discretization of the derivative. Our update is

ẏt = −yt + f(Wyt) + κv θtDyt

yt+1 = yt + τ ∆t ẏt + σ
√
∆t η, η ∼ N (0, 1)

as the Euler–Maruyama discretization of the SPDE.

After a search over kernel hyperparameters, we found the best-performing model (Fig. 7) to encode a
ring of fixed points that closely resembles the synthetic HD fixed points (§3.2), and with eigenvalues
closer to the ones observed from the CLDS fits on the mouse ADn recordings (§3.4). The results
make us confident that the CLDS can capture this nonlinear structure even under model mismatch.
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a b c

Figure 7: Inferred CLDS fixed points (a), local dynamics (b) and eigenvalues of A (c) as a function
of head-direction θ for the neural circuit ring attractor experiment. Hyperparameter values are
{σ, κ} = {1.0, 0.4}, obtained held-out LL over a grid search.

B.4 Data and Pre-processing

Mice Head-Direction We analyze neural recordings of antero-dorsal thalamic nucleus (ADn) from
Ref. [32] of the mouse HD system in mice foraging in an open environment (Fig. 3a). The data was
accessed through the pynapple (PYthon Neural Analysis Package, https://pynapple.org/, MIT
License) package, with the data itself stored in NWB format on OSF at https://osf.io/jb2gd.

We considered neural activity from the “wake” period, binned in 50ms time-bins, then processed to
firing rates by smoothing over a window of 4 bins, and separated into 10s trials.

Macaque center-out reaching We analyzed neural recordings of dorsal premotor cortex (PMd) in
macaques performing center-out reaching task from Ref. [33]—the associated article is under a CC
BY 4.0 license.

The experiments supported 3 different reach radii, and we selected only the middle reach radius at
8cm. We were left with only the angular direction as the reach condition, over N = 16 possible
reach angles. We aligned all trials around the go-cue, selecting 200 ms before the go-cue and 300ms
after. We binned the data into 5ms bins, and performed Gaussian kernel smoothing with a standard
deviation of 0.5 over bins.

B.5 Hyper-parameters

Throughout all experiments, we’ve set L = 5 to balance expressivity and number of parameters.
While it is possible to treat L as a hyperparameter tuned to improve performance, we propose to
instead set L to a large enough value that results in negligible error in the GP kernel approximation.
As L → ∞, we pay a larger computational price in fitting the model, but the statistical properties
of the model are essentially unchanged because high-frequency basis functions have nearly zero
amplitude. This idea is well established in GP regression literature [56].

To select the other hyper-parameters of GP prior length-scale κ and scale σ, we evaluated the various
models on a held-out validation set. We plot in Fig. 6 our search over {κ, σ} on the macaque
center-out reaching data.

Finally, a dimensionality of D = 2 for the head-direction experiments is chosen throughout for
interpretability, as the latent space is thought to encode head-direction. For the macaque center-out
reaching data, we computed co-smoothing over D ∈ {3, 5, 10, 15} (Table 2) and selected D = 5.

D 3 5 10 15

CLDS 0.229 0.232 0.207 0.168
LDS 0.211 0.193 0.196 0.170

Table 2: Co-smoothing R2 reconstruction of single held-out neurons from the test-set, over varying
latent dimensionality D, averaged over two random seeds.

B.6 Compute Resources

We list below the compute resources used per experiment:
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1. Synthetic HD experiment: Results were computed on a personal machine (Apple MacBook
Pro, M2 Pro chip, 32G RAM). Inference converges in a few seconds.

2. Mouse HD experiment: Results were computed on a personal machine (Apple MacBook
Pro, M2 Pro chip, 32G RAM). Inference converges in a few minutes.

3. Monkey-reaching experiment: Results were computed on an external cluster equipped
with NVIDIA A100 GPUs. Fitting a single model typically used 60GB of GPU memory.
All CLDS models were run strictly on CPU-only nodes (Intel Xeon Silver 4309Y Processor,
2.80 GHz, 8 cores/16 threads), using approximately 2 GB of RAM per run. Wall-clock
times were between ten minutes and one hour.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The derivations for the theoretical results of §2.3 can be found in Appendix
§A.1, the claims on linearization are supported by Appendix §A.2 and necessary further
derivations (than the main text) on model equivalences can be found in Appendix §A.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The contribution is primarily a new model, which is described in the text and
example derivations for inference are fully carried out in Appendix §A.1. Accompanying
code is available at https://github.com/neurostatslab/clds. Finally, Appendix
§B provides complimentary information to the text for experiments, which contains most
information needed to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code for the model, synthetic dataset generation and notebooks for analysis are
publicly available at https://github.com/neurostatslab/clds. Experimental data is
publicly available, with pre-processing detailed in Appendix §B.4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see Appendix §B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars on the co-smoothing results, the only metric used in
model comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix §B.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The modeling presented here aims to provide a methodology to enhance our
understanding of neural computation. Analysis of electrophysiological data can have long-
term implications for the treatment and understanding of medical treatment and neurological
disorders across different species. However, these considerations are far removed for the
preliminary analyses and theoretical modeling presented, and we foresee no immediate
societal consequences of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Citations are present whenever relevant, and Appendix §B details the specific
assets and licenses related to the models and data considered.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The manuscript presents the model is under a CC BY 4.0 license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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