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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance in
reasoning tasks but face challenges such as hallucinations and outdated knowl-
edge, particularly in complex scenarios that require precise and reliable reasoning.
Knowledge Graphs (KGs), with their structured, factual nature, provide a promis-
ing solution by serving as an external knowledge source to enhance LLMs’ per-
formance. However, the vast scale of KGs complicates the retrieval of relevant in-
formation. Existing approaches mainly leverage LLMs to generate retrieval plans
used in logical forms or relation paths for querying KGs, while the generated plans
may mismatch with valid relations in KGs, e.g., predict “language spoken”
for valid relation “languages spoken”. Despite being similar minor inconsis-
tency, it can lead the generated retrieval plan unexecutable. To address this limita-
tion, we propose a novel framework, Combining on Graphs (CoG), where LLMs
act as combiners rather than generators. Specifically, rather than directly gen-
erating a retrieval plan, CoG encourages LLMs to utilize specified relationships
existing within KGs to combine a relational path as the retrieval plan. This ap-
proach constrains the output space of LLMs to be structured rather than arbitrary,
ensuring the generated retrieval plan aligns with the structure of KGs, making it
more reliable and adaptable to diverse KGs. Extensive experiments on a range of
datasets and reasoning tasks demonstrate that the effectiveness of CoG.

1 INTRODUCTION

The development of Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023),
Deepseek-r1 (Guo et al., 2025), and their successors, has brought about significant advancements
in natural language processing (NLP). These models, trained on vast amounts of textual data, ex-
hibit exceptional performance across various tasks, including text generation, machine translation,
and document understanding (Zhao et al., 2023). By learning from extensive corpora, LLMs have
achieved near-human levels of fluency in both language comprehension and generation (OpenAI,
2023; Anthropic, 2024; Guo et al., 2025). Despite their success, in tasks that require precise and
reliable reasoning, LLMs still face notable limitations, such as hallucinations (Ji et al., 2023), where
the model produces incorrect or fabricated information, and knowledge obsolescence (Lewis et al.,
2020), due to the static nature of the training data, which prevents LLMs from incorporating up-to-
date or external knowledge.

In response to these challenges, there has been a growing interest in enhancing LLMs with exter-
nal knowledge sources, particularly Knowledge Graphs (KGs) (Sun et al., 2024; Luo et al., 2024b;
Gao et al., 2025). KGs, which encode structured, factual information about entities and their in-
terrelationships, offer a promising solution. By providing a rich, explicitly defined source of ver-
ifiable knowledge, KGs can significantly improve LLM performance. However, the integration
of KGs with LLMs presents significant challenges. Modern KGs contain vast amounts of infor-
mation—ranging from general knowledge, such as facts about geographical locations, to highly
domain-specific knowledge, such as medical terminology. The sheer scale and complexity of KGs
make it difficult to retrieve the most relevant information in a computationally efficient manner.

To address this issue, based on how answers are generated, previous work can be divided into two
categories. The first category (Gu & Su, 2022; Luo et al., 2024a) employs a generating-then-
retrieving approach, where the question is parsed into a specific logical form (LF) for retrieving
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(a): One-step retrieval (b): Step-by-step retrieval
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Figure 1: Step-by-step retrieval vs. One-step retrieval. Step-by-step retrieval performs non-
directional, dense searches across all connected relations and entities within KG, resulting in low
efficiency. One-step enables directed, sparse searches through predefined retrieval plans.

the answer from KGs. This is known as semantic parsing approach. The second, retrieving-then-
generating, involves retrieving relevant knowledge from the KG before generating an answer using
LLMs (Sun et al., 2019; Saxena et al., 2022). This is known as retrieval-augmented approach. While
semantic parsing-based methods often yield more accurate answers (Das et al., 2021), they are prone
to generating non-executable LFs (Yu et al., 2023), which reduces their reliability. Instead, retrieval-
augmented methods always generate answers using LLMs, but it still relies on relevant knowledge
retrieved from KGs. And recent studies have attempted to leverage additional retrieval LLMs to
retrieve knowledge from KGs. These methods typically fall into two categories, as shown in Fig-
ure 1. The first, step-by-step retrieval (Sun et al., 2024), involves iteratively expanding the query
entity to explore connected relationships and entities. This approach progressively gathers relevant
knowledge. The second category, one-step retrieval (Luo et al., 2024b), takes a different approach
by pre-generating a retrieval plan, such as a relation path, which is then executed in a single query
to retrieve the relevant information more efficiently. While step-by-step retrieval reliably gathers
relevant knowledge, it is computationally expensive due to the frequent invocation of LLMs to as-
sess relevance at each step. One-step retrieval, while more efficient, can lead to failures because
the retrieval plan generated by the LLM may be arbitrary and fail to conform to the structured re-
lations in the KG. For instance, the model might generate an incorrect or non-existent relationship
(e.g., ’languages spoken’ instead of ’language spoken’), causing the query to fail as the KG does
not support such relation.

In this paper, we introduce a novel retrieval-augmented method, Combining on Graphs (CoG), to
address key challenges in leveraging LLMs for knowledge graph retrieval. To avoid frequent invoca-
tions of LLMs, we aim to leverage LLMs to generate a reliable retrieval plan in advance, so that we
can obtain relevant knowledge in a single interaction with KGs. However, LLMs often struggle to
generate such retrieval plans that align with the structured schema of KGs, frequently producing hal-
lucinated or invalid relationships that are not grounded in the graph’s predefined structure, leading to
erroneous or unexecutable outputs. To overcome these limitations, CoG first employs a lightweight
model to efficiently explore relevant subgraphs in the KG, identifying key relationships associated
with the query. These relationships are incorporated into prompts to guide LLMs, enabling them to
comprehend the KG’s structural constraints. Specifically, LLMs are encouraged to combine these
identified relationships into a coherent and valid retrieval plan, constrained to only use relationships
explicitly defined within the KG. This constraint ensures that the generated plan is structurally valid,
as it adheres to the KG’s schema and prevents the fabrication of non-existent relationships. Finally,
the combined retrieval plan is executed within the KGs to retrieve question-relevant knowledge for
answering user queries. By anchoring the LLMs’ output to the KG’s verified structure, CoG signifi-
cantly mitigates the risks of errors and hallucinations, thereby improving the robustness, reliability,
and precision of knowledge extraction for query answering.

Our main contributions can be summarized as follows:
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• We propose Combining-on-Graph (CoG), a retrieval-augmented framework that fundamen-
tally shifts how LLMs interact with knowledge graphs—from arbitrary generation to con-
strained combination of existing KG relations. This addresses a critical failure mode where
LLMs generate non-executable retrieval plans due to hallucinated or mismatched relations.

• We introduce a principled approach that restricts LLM outputs to valid KG relations iden-
tified through lightweight graph exploration, ensuring structural validity of retrieval plans.
Our theoretical analysis shows that this constraint mechanism provably increases the prob-
ability of generating correct retrieval paths compared to unconstrained ones (Theorem 3.1).

• Through extensive experiments on WebQSP and CWQ benchmarks, we demonstrate that
CoG achieves state-of-the-art performance (86.7% Hits@1 on WebQSP) while maintaining
computational efficiency with 5× fewer LLM calls compared to iterative methods. Our
ablation studies isolate the impact of each component, validating our design choices.

2 RELATED WORK

Currently, KGQA methods primarily consist of two types: retrieval-augmented KGQA and semantic
parsing-based KGQA.

Retrieval-augmented KGQA extracts relevant information from knowledge graphs to generate an-
swers for complex questions, typically by retrieving subgraphs, entities, or triples pertinent to the
query. This process is typically divided into two stages: Information Retrieval and Reasoning. The
Information Retrieval stage aims to select question-related knowledge from large-scale knowledge
graphs. Dense Passage Retrieval (Karpukhin et al., 2020) implements retrieval using dense repre-
sentations alone, where embeddings are learned from a small number of questions and passages by
a simple dualencoder framework. ToG (Sun et al., 2024) leverages LLMs to assess the relevance
between the questions and entities within knowledge graphs as well as relations. In the Reasoning
stage, the focus shifts to inferring the final answer based on the retrieved knowledge (Luo et al.,
2024b; Mavromatis & Karypis, 2025; He et al., 2021). UniK-QA (Oguz et al., 2020) employs
specialized architectures to simulate multi-hop reasoning. However, these approaches often have
limited reasoning capabilities. Recently, studies have been focused on leveraging LLMs for reason-
ing on knowledge graph. ToG (Sun et al., 2024) utilizes the reasoning power of LLMs to iteratively
explore multiple reasoning paths within KGs to derive the final answer. RoG (Luo et al., 2024b)
introduces a framework for planning retrieval and reasoning by fine-tuning LLMs alongside KGs
for more accurate and explainable results. GNN-RAG (Mavromatis & Karypis, 2025) combines lan-
guage understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented
generation style. Despite their potential, these approaches frequently face challenges in achieving
an optimal trade-off between retrieval efficiency and retrieval accuracy, limiting their performance
in complex knowledge graph question-answering scenarios.

Semantic parsing-based KGQA converts natural language questions into structured queries, such
as SPARQL, for execution on knowledge graphs. These methods aim to map questions to logical
forms that capture their semantic structure, enabling precise querying of the knowledge graph. For
instance, DECAF (Yu et al., 2023) jointly generates both logical forms and direct answers, and then
combines the merits of them to get the final answers. TIARA (Shu et al., 2022) applies multi-grained
retrieval to help pretrained language models focus on the most relevant contexts. FM-KBQA (Gao
et al., 2025) generates the index of reasoning paths that lead to correct answers by fine-tuning LLMs
using multi-task learning, achieving remarkable performance. Despite these advancements, seman-
tic parsing-based methods face challenges, including the need for extensive training data, difficulty
in handling colloquial or poorly formed questions, and limited generalizability to open-domain set-
tings where question structures vary widely.

3 METHODS

CoG leverages LLMs to formulate robust retrieval strategies, enabling precise knowledge extraction
from KGs to address user queries. The methodology systematically integrates a multi-stage process
to ensure accurate and efficient reasoning. Specifically, CoG employs LLMs to evaluate the com-
plexity of the query, determining the requisite number of retrieval iterations on KGs. Subsequently,
a lightweight model conducts initial exploration to identify pertinent relationships within the graph.
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These relationships are then refined and synthesized by LLMs to construct an optimal retrieval plan.
This plan facilitates targeted knowledge extraction from the graph, which LLMs subsequently uti-
lizes for rigorous reasoning to derive reliable answers. The process encompasses five distinct stages:
Perceiving, Exploring, Planning, Retrieving, and Reasoning.

3.1 PERCEIVING AND EXPLORING

CoG generates retrieval plans by integrating relevant relationships within KGs to effectively resolve
user queries. To achieve this, an initial exploration of KGs is performed to identify relations per-
tinent to the query. Given the extensive scale of knowledge graphs, comprehensive exploration is
computationally impractical. Prior approaches, such as ToG, required iterative querying of LLMs
following each exploration step to evaluate whether the retrieved knowledge sufficed to address the
query. This process incurred significant computational costs, leading to inefficient retrieval. In this
study, we propose leveraging LLMs’ ability to perceive query complexity to determine the neces-
sary number of reasoning steps for resolution. To enable this functionality, we apply Supervised
Fine-Tuning (SFT) to the model, formalized as follows:

Lper = − 1

|Dper|
∑

(Q,n)∈Dper

logP (n | Q;ϕ) , (1)

where Q is the natural language question, n is the predicted number of reasoning steps and ϕ . By
optimizing the equation 1, we maximize the probability of LLMs perceiving the difficulty of the
question.

After perceiving the question, we employ a lightweight model such as BERT (Devlin et al., 2019) to
conduct an initial exploration of KGs, thereby filtering out knowledge relevant to the question. To
achieve this, we train a classifier using the following objective:

min
θe

CE (ϕθe (Q,O) , Ye(Q,O)) , (2)

where O is relations in the graph and Ye(Q,O) ∈ {0, 1} stands for the label of the relation O.
Ye(Q,O) = 1 represents that the relation O is question-relevant, while Ye(Q,O) = 0 means that
the relation is irrelevant to the question and will not be included in the context. These selected
question-relevant relations R are used to assist in generating retrieval plans.

3.2 PLANNING AND RETRIEVING

The key contribution of this paper lies in leveraging LLMs to combine existing relationships within
KGs to form retrieval plans, rather than directly using LLMs for generation, thereby avoiding hallu-
cinations. To achieve this, we first conduct preliminary exploration of KGs to filter out relationships
relevant to the query. Subsequently, these explored relationships are submitted alongside the user
query to the large model to generate reliable retrieval paths:

Please select appropriate relations from the following set of relations and combine them into
a valid relation path that can be helpful for answering the question. Question: {Question}.
Relation set: {Relation Set}.

where <question >indicates the question Q and <relations>indicates the question-relevant reala-
tions R. And such prompt is fed into LLMs to generate the relation path as the retrieval plan:
P = [r1, r2, .., rn], where ri is the i-th relation in the retrieval plan. Our learning objective is to
maximize the likelihood of the relation ri given the question Q and the the relations r<i, with the
following objective function:

Lplan = − 1

|Dplan|
∑

(Q,R,r)∈Dplan

|m|∑
i=1

log p(ri|Q,R, r<i;ϕ), (3)
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where R is a set of selected candidate relations.

After obtaining the retrieval plan, we can retrieve relevant knowledge z from KGs according to the
established plan. Specifically, we start from the question entity e0 on the knowledge graph and
traverse the graph along the established retrieval plan until the plan is completed, formulated as:

Z = e0
r1−→ e1

r2−→, . . . ,
rn−→ en. (4)

During the retrieval process, there may be multiple valid paths, and we utilize all valid paths for
reasoning.

3.3 REASONING

After retrieving relevant knowledge from the knowledge graph, we feed it along with the question
to LLMs. Leveraging LLMs’ reasoning capabilities, it reliably answers user questions based on the
retrieved knowledge. The optimization objectives for the reasoning model are as follows:

Lrea = − 1

|Drea|
∑

(Q,Z,t)∈Drea

|n|∑
i=1

log p(ri|Q,Z, r<i;ϕ), (5)

where log p(ri|Q,Z, r<i;ϕ) denotes that LLMs provides the correct answer r based on the retrieved
relevant knowledge Z, and ri denotes the tokens of answer r.

Finally, the overall loss function for training LLMs is:

L = Lper + Lplan + Lrea, (6)

In summary, CoG systematically integrates five stages—Perceiving, Exploring, Planning, Retriev-
ing, and Reasoning—into a robust framework for knowledge extraction and reasoning over KGs.
The method leverages the perceptual capabilities of LLMs to assess query complexity, guiding the
number of necessary retrieval iterations. A lightweight model, such as BERT, is employed for
efficient initial exploration of the KG to filter relevant relations, significantly reducing the computa-
tional overhead of exhaustive search methods. During the planning stage, LLMs are utilized to form
reliable retrieval paths from the set of relevant relationships, mitigating the risk of hallucinations
typically associated with direct generation-based approaches. The refined retrieval plans enable tar-
geted knowledge extraction, which, when fed into LLMs, results in accurate reasoning and reliable
answers. This multi-stage approach not only enhances retrieval efficiency but also ensures the ro-
bustness and accuracy of the reasoning process, highlighting the potential of combining LLMs with
KGs for advanced, scalable KGQA. An overview of our method is presented in Figure 2.

3.4 A PROBABILISTIC PERSPECTIVE OF COG

The advantage of CoG over LLMs directly generating retrieval plans from scratch is intuitive: by
restricting the generation process to incorporate only legitimate relations as defined in the knowl-
edge graph, CoG eliminates invalid paths, focusing the generation process on viable candidates. To
rigorously establish this advantage, we construct a mathematical framework using a Markov chain
model, which aligns with the autoregressive nature of LLMs. We compare the traditional uncon-
strained sequential generation (denoted Pgen) with CoG (denoted Pcom). The following probabilistic
framework, through clear definitions and a formal theorem, proves that CoG assigns a higher prob-
ability to correct paths, offering a compelling theoretical justification for its superiority.

3.4.1 PRELIMINARIES

We establish the foundational definitions for our sequential generation framework.
Definition 3.1 (Relation Sets). Let R be the finite set of authentic relations in the KG, with car-
dinality |R| = n < ∞. Let E be the set of invalid relations not present in the KG. The complete
relation vocabulary accessible to the LLM is V = R∪ E .
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Figure 2: An overview of CoG. CoG operates as a multi-stage pipeline. By systematically combining
the retrieved relations from the knowledge graph, it constructs a faithful retrieval plan, enabling
effective and structured querying of relevant knowledge.

Definition 3.2 (Retrieval Paths). A retrieval path p = (r1, r2, . . . , rk) is a sequence of relations,
where k ∈ N is the path length (fixed or variable). Define:

• Ω: the set of all possible paths, i.e., the union over possible k of Vk.

• ΩR ⊂ Ω: the subset of paths where each relation ri ∈ R.

• C ⊂ ΩR: the set of correct retrieval paths, which are composed of authentic relations (R)
and traversable in the KG to reach the target knowledge.

3.4.2 SEQUENTIAL GENERATIVE MODEL

We model the LLM’s path generation as a Markov process to reflect its autoregressive behavior.

For the traditional method, path generation follows a Markov chain with transition probabili-
ties π(ri | r1, . . . , ri−1) defined on V , where ri is the i-th relation conditioned on the prefix
(r1, . . . , ri−1). The probability of a path p = (r1, . . . , rk) is:

Pgen(p) =

k∏
i=1

π(ri | r1, . . . , ri−1).

Let qi =
∑

r∈R π(r | r1, . . . , ri−1) denote the probability of selecting an authentic relation at step
i. We assume 0 < qi < 1 for all prefixes, indicating a non-zero probability of generating invalid
relations (

∑
r∈E π(r | ·) > 0).

Our method, CoG, constrains generation to ΩR by using renormalized transition probabilities:

πR(ri | r1, . . . , ri−1) =
π(ri | r1, . . . , ri−1) · 1(ri ∈ R)∑

r∈R π(r | r1, . . . , ri−1)
=

π(ri | r1, . . . , ri−1)

qi
, for ri ∈ R,

and πR(ri | ·) = 0 for ri /∈ R, assuming qi > 0. The probability of a path p ∈ ΩR is:

Pcom(p) =

k∏
i=1

πR(ri | r1, . . . , ri−1).

For p /∈ ΩR, Pcom(p) = 0.
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Table 1: Performance comparison with different baselines on the two KGQA datasets.

Type Methods WebQSP CWQ

F1 Hits@1 F1 Hits@1

Non-LLMs methods

Rigel - 73.3 - 48.7
TIARA 78.9 75.2 - -

UniK-QA 79.1 - - -
UniKGQA 72.2 77.2 49.4 51.2

Prompting-LLMs Only methods
Zero-shot (gpt-4) 59.7 62.3 37.9 42.7
Few-shot (gpt-4) 62.7 68.7 43.7 51.5

CoT (gpt-4) 65.3 72.1 44.7 53.5

Prompting-LLMs + KG
ToG (gpt-3.5) 72.3 75.1 56.9 57.5
ToG (gpt-4) 75.9 81.8 60.2 68.5

InteractiveKBQA(gpt-4) 66.3 72.9 56.5 60.3

Finetuning-LLMs + KG

NSM 62.8 68.7 42.4 47.6
KD-CoT 52.5 68.6 49.7 53.3
DECAF 78.8 82.1 - -

RoG 69.8 83.2 56.2 61.4
GNN-RAG 71.3 85.7 59.4 66.8

CoG 72.3 86.7 59.7 67.1

Within such framework, we have the following theorem:

Theorem 3.1. Assuming
∑

r∈E π(r | r1, . . . , ri−1) > 0 (i.e., qi < 1) for all prefixes and Pgen(C) >
0, CoG yields:

Pcom(C) > Pgen(C).

Theorem 3.1 formally establishes that the combination-based retrieval path generation approach
employed by CoG yields a higher probability of producing valid paths compared to direct generation
methods, thereby providing a robust theoretical foundation for the efficacy of the CoG framework.
A detailed proof of this theorem is presented in Appendix A.2.

4 EXPERIMENTS

In this section, we first describe the experimental setup in detail, followed by a presentation of the
experimental results and a comparison with baseline methods. Subsequently, we conduct ablation
studies to evaluate the contribution of individual components of CoG.

4.1 SETUP

Datasets. Following previous work (Luo et al., 2024b), we evaluate the performance of CoG on
two benchmark KGQA datasets: WebQuestionSP (WebQSP) (Yih et al., 2016) and Complex We-
bQuestions (CWQ) (Talmor & Berant, 2018), with Freebase (Bollacker et al., 2008) as the back-
ground knowledge graph. WebQSP contains 4,737 simple natural language questions with SPARQL
queries. And CWQ contains 34,689 complex questions with SPARQL queries.

Implementation details. For the exploration module, we employ a lightweight model BERT (De-
vlin et al., 2019) to select question-related relations. This model is trained for 5 epochs on WebQSP
and CWQ with a learning rate of 2e-5. For LLMs, Llama-2-7B (Touvron et al., 2023) is fine-tuned
and evaluated on both datasets. The model is fine-tuned with a batch size of 16 and a learning rate
of 2e-5. And the beam size is set to 5 during beam search in the evaluation process.

Evaluation metrics. Following previous works (Luo et al., 2024b; Sun et al., 2024; Gao et al.,
2025), we take Hits@1 and F1 score as the evaluation metrics. The Hits@1 represents the overall
coverage of the answers and F1 score represents the top-ranked single answer.
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Table 2: Faithful Retrieval under CoG.

Method Generation Combination

Question what religions are popular in france?

Answer Catholicism

Prompt

Please generate a valid relation path
that can be helpful for answering the
following question: {question}

Please select appropriate relations
from the following set of relations and
combine them into a valid relation path
that can be helpful for answering the
question. Question: {Question}. Re-
lation set: {Relation Set}.

Retrieval Plan location.statistical region.religion → location.statistical region.religions →
location.religion percentage.religion location.religion percentage.religion

prediction None Catholicism

Table 3: Efficiency comparison.

Method LLM Calls time (s) Hits@1

ToG 16.3 63.9 81.8
RoG 2.0 1.5 83.2
CoG 3.0 2.3 86.7

Table 4: CoG with different retriever.

Retriever Recall Hits@1 F1

BERT 89.3 86.7 72.3
T5 88.4 86.2 71.9

Perfect 100.0 87.4 74.6

Baselines. To ensure a thorough comparison, we compare our method with the following four
distinct types of methods: non-LLMs methods, which directly leverages knowledge from KGs to
answer user questions; prompting-LLMs only methods, which directly utilizes LLMs to answer user
questions; prompting-LLMs + KG methods, which retrieves knowledge from KGs by prompting
LLMs to answer user questions; and finetuning-LLMs + KG methods, which combines fine-tuned
LLMs with KGs to generate responses. For non-LLMs methods, we include Rigel (Sen et al.,
2021), TIARA (Shu et al., 2022), UniK-QA (Oguz et al., 2020) and UniKGQA (Jiang et al., 2023).
For prompting-LLMs only methods, We employ three prompting techniques on GPT-4: zero-shot,
few-shot (Brown et al., 2020), and CoT prompting (Wei et al., 2022). For prompting-LLMs +
KG methods, we include ToG (Sun et al., 2024) and InteractiveKBQA (Xiong et al., 2024). For
finetuning-LLMs + KG methods, we include NSM (He et al., 2021), KD-CoT (Wang et al., 2023),
DECAF (Yu et al., 2023), RoG (Luo et al., 2024b) and GNN-RAG (Mavromatis & Karypis, 2025).

4.2 MAIN RESULTS

Comparison with other baselines. As shown in Table 1, we compare our method with other base-
lines on WebQSP and CWQ. Our approach achieves the best Hits@1 score on WebQSP, outperform-
ing previous state-of-the-art methods. On CWQ, our method demonstrate comparable performance
to that achieved using GPT-4. Notably, our approach achieves performance comparable to powerful
commercial models using only a fine-tuned Llama2-7b model. This demonstrates the effectiveness
of small models on KGQA. Furthermore, our method doesn’t require frequent invocations of LLMs
to interact with KGs, resulting in higher efficiency. As shown in Table 3, we compare the aver-
age number of LLM calls and the time required to answer one question on WebQSP. The results
reveal that the one-step retrieval approach of CoG exhibits a significant efficiency advantage over
step-by-step retrieval methods like ToG.

Faithful Retrieval under CoG. As shown in Figure 2, we present an empirical case study from
the CWQ dataset to illustrate the performance of different retrieval plan generation approaches.
Both the directly generated retrieval plan and the plan derived from the model’s exploration of rela-
tional pathways demonstrate a robust understanding of the user query, yielding conceptually sound
retrieval strategies. However, the directly generated plan exhibits minor structural inconsistencies
with the knowledge graph, rendering it impractical and impeding effective knowledge retrieval. In
contrast, the structured reasoning approach employed by CoG ensures that the generated retrieval
plans align precisely with the knowledge graph’s structure, thereby facilitating successful and effi-
cient knowledge retrieval.
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4.3 ABLATION STUDY

In this section, we perform ablation experiments. Unless otherwise stated, experiments are con-
ducted on WebQSP.

Table 5: Analysis of the Perceiver.

Cases Equal
Difficulty

Overestimated
Difficulty

Proportion (%) 73.86 21.21

Analysis of the Perceiver. CoG utilizes
a perceiver-based mechanism to evaluate the
complexity of a given question, enabling proac-
tive determination of the optimal number of
layers to explore within the knowledge graph
for efficient and accurate retrieval. When the

perceiver underestimates the complexity of the question, it may result in an incomplete exploration
of the knowledge graph, potentially missing critical relations. As presented in Table 5, we eval-
uate the performance of the perceiver on CWQ by calculating the proportion of queries where its
difficulty rating accurately aligned with the actual complexity and where its rating overestimated
the actual complexity. In both cases, the knowledge graph was fully traversed. The results demon-
strate that the majority of questions can be comprehensively explored within the knowledge graph,
ensuring robust retrieval of relevant information.

Figure 3: The effect of beam size.

Analysis of the retriever. In our method, a
small language model is employed for the pre-
liminary exploration of the knowledge graph to
identify question-related relations. In the pri-
mary experiments, we select BERT as the re-
triever. Additionally, we evaluate the perfor-
mance of CoG when using T5 as the retriever
and assess its performance under perfect condi-
tions, where all relevant relations are success-
fully retrieved. As demonstrated in Table 4,

even lightweight models such as BERT and T5 achieve high retrieval recall rates. Under ideal
conditions, where all relevant relations are retrieved, CoG’s performance can be further enhanced.

The effect of beam size. As shown in Figure 3, we analyze the effect of beam size on CoG. Beam
size is a critical parameter in the beam search decoding strategy employed by large language models
to generate responses. It determines the number of candidate sequences retained at each decoding
step, balancing exploration of diverse outputs with computational efficiency. To investigate its im-
pact on the performance of CoG, we vary the beam size from 1 to 7 and measure the Hits@1 and
F1 score. The results indicate that the F1 stabilizes when the beam size reaches 2, while the Hits@1
increases slightly with increasing beam size. To balance computational cost and performance, we
set the beam size to 5 in our experiments.

5 CONCLUSION

In this paper, we introduce the Combining on Graphs (CoG) framework, which improves the inte-
gration of Knowledge Graphs (KGs) with Large Language Models (LLMs) for reasoning tasks. By
enabling LLMs to combine existing relationships within KGs, rather than generate retrieval plans,
CoG ensures that the generated plans are structurally aligned with the graph, enhancing reliability
and adaptability. Experiments show that CoG outperforms existing methods, addressing issues like
hallucinations and outdated knowledge. This work paves the way for more accurate and interpretable
knowledge-driven reasoning in LLMs.

6 LIMITATIONS

• CoG assumes a consistent and comprehensive KG, but real-world KGs with incomplete or
erroneous triples can introduce errors, which may result in a decline in CoG’s performance.

• CoG’s reliance on fine-tuning Llama 2 to generate accurate retrieval paths introduces sig-
nificant computational and training overhead, potentially limiting scalability.

9
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REPRODUCIBILITY STATEMENT

We outline the pipeline of our proposed method in Fig. 2 and provide implementation details in
Appendix A.3. The data and code will be released once prepared.
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Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural
Information Processing Systems,NeurIPS, 2020.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma,
Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, and Anh Tuan Luu. Chatkbqa: A generate-
then-retrieve framework for knowledge base question answering with fine-tuned large language
models. In Findings of the Association for Computational Linguistics, ACL, 2024a.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. In International Conference on Learning Repre-
sentations, ICLR, 2024b.

Costas Mavromatis and George Karypis. GNN-RAG: graph neural retrieval for efficient large lan-
guage model reasoning on knowledge graphs. In Findings of the Association for Computational
Linguistics, ACL, 2025.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified representations
of structured and unstructured knowledge for open-domain question answering. arXiv preprint
arXiv:2012.14610, 2020.

OpenAI. GPT-4 Technical Report. Technical report, OpenAI, 2023.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph
completion and question answering. arXiv preprint arXiv:2203.10321, 2022.

Priyanka Sen, Armin Oliya, and Amir Saffari. Expanding end-to-end question answering on differ-
entiable knowledge graphs with intersection. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP, 2021.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F Karlsson, Tingting Ma, Yuzhong Qu, and Chin-Yew Lin.
Tiara: Multi-grained retrieval for robust question answering over large knowledge bases. arXiv
preprint arXiv:2210.12925, 2022.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W. Cohen. Open domain question answering using early fusion of knowledge bases
and text. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, EMNLP, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W. Cohen. Pullnet: Open domain question answer-
ing with iterative retrieval on knowledge bases and text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing and the International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP, 2019.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M.
Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In International Conference on Learning Representations,
ICLR, 2024.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong,
and Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-
intensive question answering. arXiv preprint arXiv:2308.13259, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, NeurIPS, 2022.

Guanming Xiong, Junwei Bao, and Wen Zhao. Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, 2024.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL, 2016.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and
logical forms for question answering over knowledge bases. In International Conference on
Learning Representations, ICLR, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

A APPENDIX

A.1 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to assist with
language polishing and refinement of the text. Specifically, the LLM was employed to enhance the
clarity, coherence, and grammatical accuracy of the writing, ensuring that the manuscript adheres to
high standards of academic communication. The LLM did not contribute to the research ideation,
methodology, data analysis, or core content development, which were entirely conducted by the
authors. All outputs generated by the LLM were carefully reviewed and edited by the authors to
ensure alignment with the intended scientific contributions and to maintain the integrity of the work.

A.2 PROOF

Proof. Consider a path p = (r1, . . . , rk) ∈ C ⊆ ΩR. The probability under CoG is:

Pcom(p) =

k∏
i=1

πR(ri | r1, . . . , ri−1) =

k∏
i=1

π(ri | r1, . . . , ri−1)

qi
=

∏k
i=1 π(ri | r1, . . . , ri−1)∏k

i=1 qi
=

Pgen(p)∏k
i=1 qi

.

Since qi < 1, the factor 1∏k
i=1 qi

> 1.

The probability of generating a correct path is:

Pcom(C) =
∑
p∈C

Pcom(p) =
∑
p∈C

Pgen(p)∏k
i=1 qi

=
1∏k

i=1 qi

∑
p∈C

Pgen(p) =
Pgen(C)∏k

i=1 qi
.

Since
∏k

i=1 qi < 1 and Pgen(C) > 0, we conclude:

Pcom(C) > Pgen(C).

Remark A.1. The enhancement factor 1∏k
i=1 qi

depends on the path length k and the context-specific
qi. This reflects the cumulative effect of constraining each step to authentic relations, amplifying the
probability mass on correct paths.
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A.3 IMPLEMENTATION DETAILS

For the exploration module, we employ a lightweight model BERT to select question-related re-
lations. Specifically, we use bert-large-uncased. This model is trained for 5 epochs on WebQSP
and CWQ with a learning rate of 2e-5. For LLMs, we use use LLaMA2-Chat-7B. The model is
fine-tuned with a batch size of 16 and a learning rate of 2e-5. The training is conducted on 4 H100
GPUs. During inference, the beam size is set to 5 during beam search.

A.4 DETAILS OF DATASET

In this paper, we conduct experiments on two widely used KGQA datasets: WebQuestionSP (We-
bQSP) and Complex WebQuestions (CWQ). To ensure a fair comparison, the training and testing
splits are the same as in previous works (Luo et al., 2024b; Sun et al., 2018), as shown in Table 6.
More detailed statistical results for WebQSP and CWQ are provided in Table 7 8.

Table 6: Split of training and test sets.

Datasets #Train #Test Max #hop

WebQSP 2,826 1,628 2
CWQ 27,639 3,531 4

Table 7: Statistics of the number of answers to questions in WebQSP and CWQ.

Dataset #Ans = 1 2 ≤ #Ans ≤ 4 5 ≤ #Ans ≤ 9 #Ans ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 8: Statistics of the answer hops in WebQSP and CWQ.

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49% 34.51% 0.00%
CWQ 40.91% 38.34% 20.75%

A.5 DETAILS OF PROMPTS

In the CoG framework, LLMs are strategically deployed to fulfill three primary functions: (1) assess
the complexity of input queries; (2) construct retrieval plans; and (3) generate responses based on
retrieved knowledge from the knowledge graph.

For the assessment of query complexity, the employed prompt is:

How many steps do you think are needed to solve the following question: {Question}

In the formulation of retrieval plans, the utilized prompt is:

Please select appropriate relations from the following set of relations and combine them into
a valid relation path that can be helpful for answering the question.
Question: {Question}.
Relation set: {Relation Set}.

For the generation of answers, the applied prompt is:
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Based on the reasoning paths, please answer the given question. Please keep the answer as
simple as possible and return all the possible answers as a list.
Reasoning Paths:{Reasoning Paths}.
Question:{Question}.

This structured utilization of LLMs, guided by tailored prompts, ensures that the retrieval and rea-
soning processes are aligned with the KG’s predefined relational schema, thereby enhancing the
accuracy and reliability of the CoG approach.
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