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Abstract: When limited by their own morphologies, humans and some species
of animals have the remarkable ability to use objects from the environment to-
ward accomplishing otherwise impossible tasks. Robots might similarly unlock
a range of additional capabilities through tool use. Recent techniques for jointly
optimizing morphology and control via deep learning are effective at designing lo-
comotion agents. But while outputting a single morphology makes sense for loco-
motion, manipulation involves a variety of strategies depending on the task goals
at hand. A manipulation agent must be capable of rapidly prototyping specialized
tools for different goals. Therefore, we propose learning a designer policy, rather
than a single design. A designer policy is conditioned on task information and
outputs a tool design that helps solve the task. A design-conditioned controller
policy can then perform manipulation using these tools. In this work, we take
a step towards this goal by introducing a reinforcement learning framework for
jointly learning these policies. Through simulated manipulation tasks, we show
that this framework is more sample efficient than prior methods in multi-goal or
multi-variant settings, can perform zero-shot interpolation or fine-tuning to tackle
previously unseen goals, and allows tradeoffs between the complexity of design
and control policies under practical constraints. Finally, we deploy our learned
policies onto a real robot. Please see our supplementary video and website at
https://robotic-tool-design.github.io/ for visualizations.
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1 Introduction
Humans and some species of animals are able to make use of tools to solve manipulation tasks
when they are constrained by their own morphologies. Chimpanzees have been observed using
tools to access food and hold water [1], and cockatoos are able to create stick-like tools by cutting
shapes from wood [2] with their beaks. To flexibly and resourcefully accomplish a range of tasks
comparable to humans, embodied agents should also be able to leverage tools.

But critically, while any object in a human or robot’s environment is a potential tool, not every
object is directly a useful aid for the task goal at hand. How can a robotic system also acquire the
extraordinary ability of animals to create an appropriate tool to help solve a task after reasoning
about a scene’s physics and its own goals? In this work, we investigate not only how agents can
perform control using tools, but also how they can learn to design appropriate tools when presented
with a particular task goal, such as a target position or object location.

Prior works have studied joint learning of agent morphologies and control policies for locomotion
tasks [3, 4, 5, 6, 7]. However, these approaches optimize designs for a single, predefined generic
goal, such as maintaining balance or forward speed. In this work, we take a step towards agents that
can learn to rapidly prototype specialized tools for different goals or initial configurations.
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Figure 1: A robot may need to use different tools
to fetch an out-of-reach book (blue) or push it into
the bookshelf (pink). It should rapidly prototype
the tool it needs.

We propose tackling this challenge by learning de-
signer and controller policies, that are conditioned
on task information, solely from task rewards via
reinforcement learning (RL). We find that when
trained with a multi-stage Markov decision process
(MDP) formulation, these policies can be efficiently
learned together in a high-dimensional combined
space. We train agents on multiple instantiations of
each task so that they can learn to produce and ma-
nipulate designs best suited to each situation.

We argue that there are three important properties of
an embodied agent that designs and uses tools in re-
alistic settings. Firstly, it must be able to learn design
and control policies without explicit guidance, using signals specified only on task progress. Fur-
thermore, it should form specialized tools based on the task goal at hand, as motivated by Figure 1.
Finally, it should adjust to real-world constraints, rather than creating infeasible designs.

Our main contribution is a learning framework for embodied agents to design and use tools based
on the task at hand. We demonstrate that our approach can jointly learn these policies in a sample-
efficient manner from only downstream task rewards for a variety of simulated manipulation tasks,
outperforming existing stochastic optimization approaches. We empirically analyze the generaliza-
tion and few-shot finetuning capabilities of the learned policies. By introducing a tradeoff parameter
between the complexity of design and control components, our approach can adapt to fit constraints
such as material availability or energy costs. Finally, we demonstrate the real-world effectiveness of
the learned policies by deploying them on a real Franka Panda robot.

2 Related Work

Computational approaches to agent and tool design. Many works have studied the problem of
optimizing the design of robotic agents, end-effectors, and tools via model-based optimization [8,
9], generative modeling [10, 11], evolutionary strategies [3, 5], stochastic optimization [12], or
reinforcement learning [13]. Li et al. [14] use differentiable simulation to find parameters of a
tool that are robust to task variations. These methods provide feedback to the design procedure by
executing pre-defined trajectories or policies, or performing motion planning. In contrast, we aim to
jointly learn control policies along with designing tool structures.

In settings where the desired design is known but must be assembled from subcomponents, geome-
try [15] and reinforcement learning [16] have been used to compose objects into tools. In this work,
we address the fabrication stage of the pipeline using rapid prototyping tools (e.g. 3D printing).

Learning robotic tool use. Several approaches have been proposed for empowering robots to learn
to use tools. Learning affordances of objects, or how they can be used, is one common paradigm
[17, 18, 19, 20]. Noguchi et al. [21] integrate tool and gripper action spaces in a Transporter-style
framework. Learned or simulated dynamics models [22, 23, 24, 25] have also been used for model-
based optimization of tool-aided control. These methods assume that a helpful tool is already present
in the scene, whereas we focus on optimizing tool design in conjunction with learning manipulation,
which is a more likely scenario for a generalist robot operating for example in a household.

Joint optimization of morphology and control. One approach for jointly solving tool design and
manipulation problems is formulating and solving nonlinear programs, which have been shown to
be especially effective at longer horizon sequential manipulation tasks [26, 27]. In this work, we
aim to apply our framework to arbitrary environments, and so we select a purely learning-based
approach at the cost of increasing the complexity of the search space.

Reinforcement learning and Bayesian optimization (BO) [28] based approaches have also been ap-
plied to jointly learn morphology and control. These include policy gradient methods with either
separate [29] or weight-sharing [30] design and control policies or methods that consider the agent
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design as a computational graph [31]. Evolutionary or BO algorithms have been combined with
control policies learned via RL [32] to solve locomotion and manipulation tasks. Luck et al. [4] use
an actor-critic RL formulation with a graph neural network (GNN) value function for improved sam-
ple efficiency. Pathak et al. [33] learn to design modular agents by adding morphology-modifying
actions to an MDP. Yuan et al. [7] provide a generalized formulation with a multi-stage MDP and
GNN policy and value networks. These methods have demonstrated promising performance on lo-
comotion tasks. In this work, we focus on developing tools for manipulation, where the challenge
is learning designer and controller policies that can create and operate different tools depending on
the task variation at hand, and it is less feasible to use actuated joints as design components.

3 Problem Setting

Our framework tackles learning tool design and use for agents to solve manipulation problems,
without any supervision except for task progress. We represent the agent’s environment as a two-
phase MDP consisting of the “design phase” and “control phase”. We use environment interactions
from both phases to jointly train a designer policy and controller policy.

Designer Policy


Initial state    ,  
goal observation

Tool design

Control Policy
 Control  
action

Observation    ,

    Reward      

Environment

Figure 2: Solving a task using learned designer and
controller policies. During the design phase, the de-
signer policy observes the task at hand and outputs the
parameters for a tool. In the control phase, the con-
troller policy outputs motor commands given the tool
structure, task specification, and observation.

At the start of each episode, the environment
begins in the design phase, visualized at the top
of Figure 2. During the design phase, the action
ad ∈ AD specifies the parameters of the tool
that will be used for the rest of the episode. The
environment state s0 ∈ Stask consists of a vec-
tor of task observations: the positions and ve-
locities of objects in the scene and the Cartesian
end-effector position of the robot if present.

After a single transition, the MDP switches to
the control phase, illustrated in the lower half
of Figure 2. During the control phase, the ac-
tions ac ∈ AC represent inputs to a position or
velocity controller actuating the base of the pre-
viously designed tool. The control phase state
is the concatenation of the task observation st ∈ Stask and the previously taken design action ad.
That is, the control state space SC = Stask ×AD. The agent receives rewards rt at each timestep t
based on task progress (e.g., the distance of an object being manipulated to the target position). The
control phase continues until the task is solved or a time limit is reached, and the episode then ends.

To learn design and control policies for multiple goals, we condition our policies on a supplied
parameter g from a goal or task variation space G. In this paper, we choose goals that represent
the final position of an object to be manipulated or the number of objects that must be trans-
ported. The objective is then to find the optimal goal-conditioned designer and controller policies
π⋆
D(a|s, g), π⋆

C(a|s, g) that maximize the expected discounted return of a goal-dependent reward
function R(s, a, g).

4 Instantiating Our Framework
Next, we concretely implement our framework toward solving a series of manipulation tasks. Specif-
ically, we select a tool design space, policy learning procedure, and auxiliary reward function.

Tool design space. The design space significantly impacts the difficulty of the joint design and
control optimization problem. When the set of possible designs is large but many of them are
unhelpful for any task, the reward signal for optimization is sparse. Thus, we would like to select
a design parameterization that is low-dimensional but can also enable many manipulation tasks.
Furthermore, we prefer designs that are easy to deploy in the real world.

Toward these goals, we consider tools composed of rigid links. While simple, we find that this pa-
rameter space includes tools that are sufficient to help solve a variety of manipulation tasks. They
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can also be easily deployed in the real world on soft robots [12] or through rapid fabrication tech-
niques like 3D printing. However, we note that our framework is not limited to this design space.

For example, the parameterization used in our 2D environments consists of three links attached end-
to-end as shown in Figure 2, where a tool is represented by a vector [l1, l2, l3, θ1, θ2] ∈ R5 = AD,
where l represents each link length and θ represents the relative angle between the links.

Policy learning. Similarly to Yuan et al. [7], we interactively collect experience in the environment
using the design and control policies, where each trajectory spans the design and control phase.
We then train the policies jointly using proximal policy optimization (PPO) [34], a popular policy
gradient method. We adopt the graph neural network (GNN) policy and value function architecture
from Yuan et al. [7]. When training in goal-conditioned environments, we supply the policies with
randomized goals sampled from the environment for each interaction episode.

Auxiliary reward. An embodied agent that creates and uses tools in the real world must also
consider resource constraints. Many prior co-optimization procedures assume that actuated joints or
body links can be arbitrarily added to the agent morphology. However, as an example, when an agent
solves manipulation tasks in a household environment, it may not have access to additional motors
or building materials. On the other hand, when possible, constructing a larger tool may reduce the
amount of power expended for motor control, especially if a task must be completed many times.

We enable our framework to accommodate preferences in this trade-off between design material cost
and control energy consumption, proxied by end-effector velocity, using a parameter α that adjusts
an auxiliary reward that is added to the task reward at each environment step:

rtradeoff = K

[
1−

(
α · dused

dmax
+

(1− α) · cused

cmax

)]
, (1)

where K is a scaling hyperparameter, α ∈ [0, 1] controls the emphasis on either the control or design
component, dused and dmax represent the utilized and maximum possible combined length of the tool
components in the design respectively, and cused and cmax represent the control velocity at the current
step and the maximum single-step control velocity allowed by the environment. Intuitively the agent
favors using less material for tool construction when α is large, and less energy for the control policy
when α is small. Except in Section 5.3, we use K = 0 to isolate this reward’s effects.

5 Experiments

(a) Push (b) Catch balls (c) Scoop

(d) Fetch cube (e) Lift cup (f) Scoop (3D)

Figure 3: Simulated manipulation environments.

For our experiments, we introduce three 2D
manipulation environments in the Box2D
simulator [35] and three 3D environments in
PyBullet [36]. These tasks showcase the ad-
vantages of using different tools when there
does not exist a single tool that can solve all
instances. The six tasks are shown in Fig-
ure 3. For each task, we initialize the de-
signed tool by matching a fixed point on the
tool to a fixed starting position regardless of
the goal. During the control phase, we sim-
ulate a scenario in which a robot has grasped
the tool and manipulates it, via end-effector
velocity control in 2D or position control in
3D. All 2D tasks use the 3-link chain parameterization described in Section 4. A short description
of each task is as follows, with additional details in the Appendix:

• Push (2D): Push a round puck using the tool such that it stops at the specified 2D goal location.
• Catch balls (2D): Use the tool to catch three balls that fall from the sky. The agent’s goal is

to catch all three balls, which start from random locations on the x-y plane.
• Scoop (2D): Use the tool to scoop balls out of a reservoir containing 40 total balls. Here we

specify goals of scooping n ∈ {1, 2, ..., 7} balls.
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Figure 4: Learning curves for our framework, prior methods, and baselines. Across all tasks, our framework
achieves improved performance and sample efficiency. Shaded areas indicate standard error across 6 random
seeds on all methods, except the scoop (3D) task where we use 3 seeds due to computational constraints.

• Fetch cube (3D): Use the tool to retrieve an object randomly positioned beneath an overhang.
This task is challenging because the end effector is restricted to a 0.8m × 0.2m region of the x-y
plane to avoid collision with the overhang. The tool is a three-link chain where each link is a box
parameterized by its width, length, height, and relative angle to its parent link.

• Lift cup (3D): Use the tool to lift a cup of randomized geometry from rest to a certain height.
This task requires careful tool design to match cup geometry. The tool is a four-link fork with two
prongs symmetrically parameterized by their separation, tilt angle, width, length, and height.

• Scoop (3D): An analog of the 2D scoop task (with the same goal space), but the tool in 3D is
a six-link scoop composed of a rectangular base plate parameterized by its length and width, and
four rectangular side plates attached to each side of the base plate, parameterized by their height
and relative angle to the bottom plate. A fixed-dimension handle is attached to one side plate.

In our experiments, we analyze whether the instantiation of our framework on these manipulation
tasks has the following four desirable properties:

• Can our framework jointly learn designer and controller policies in a sample-efficient manner,
using just rewards based on task progress?

• Do learned designer and controller policies generalize or enable fine-tuning for unseen goals?
• Can the adjustable parameter α enable agents to trade off design and control complexity?
• Can designer and controller policies learned by our framework be deployed on a real robot?

5.1 Evaluating sample efficiency

Sample efficiency is critical for a performant joint tool design and control learning pipeline, as many
sampled designs will be unhelpful for any goal or initialization. As prior joint optimization works
do not handle situations where diverse designs may be produced depending on the particular task
variation, we compare to the following prior methods and baselines (details in Appendix B.2):

• Bi-level optimization (CMA-RL): This follows the common bi-level paradigm for joint opti-
mization [4]. We use CMA-ES [37] to perform outer-loop stochastic design optimization and
learn design-conditioned policies with PPO in the inner loop, as the reward signal for design.

• Hardware-as-Policy Minimal [31]/Ha [30]: The variant of HWasP without differentiable
physics assumptions (HWasP-minimal) and the method from Ha [30] both perform policy-gradient
optimization of a single set of design parameters together with the control policy jointly using RL.
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Success CutoutFailure Train

(a) Initialization ranges and zero-shot per-
formance when cutting out 60% of the area
of the entire possible training region.

(b) Returns for policies
trained with varying relative
cutout region area.

(c) Fine-tuning performance
compared to learning from
scratch across 4 target goals.

Figure 6: We find that our policies can solve instances of the fetch cube task unseen at training time either
zero-shot or by rapid finetuning. In (a), we plot the goal regions along with zero-shot policy performance. Areas
within the dotted yellow borders and outside the teal region are unseen during training. The region within the
teal border (but outside cutout regions) is the training region. Training curves are averaged over 3 seeds; shaded
regions show standard error.

• Single-trajectory CMA-ES baseline: We optimize a set of design and control actions for an
episode independent of the goal or starting task state, demonstrating the required policy reactivity.

• Ours (shared arch.): An ablation of our framework that uses a single policy network with design
and control heads, demonstrating the importance of separate designer and controller architectures.

Figure 5: Tool designs outputted by a single
learned designer policy for the push task as the
goal position, in green, varies. The range of out-
putted designs enable the agent to push the ball in
the desired direction.

In Figure 4, we compare the learning curves of our
method and demonstrate results for all six tasks. Our
method strongly outperforms the prior methods and
baselines, achieving superior final performance in
fewer samples. It does so by producing specialized
tools to solve each task instance, while the other
methods optimize for a single design across all task
variations. The ablation shows the importance of
learning separate designer and controller policies.

We present qualitative examples of tool designs out-
putted for different goals on the push task in Fig-
ure 5. The designer policy outputs a range of tools
depending on the goal location.

5.2 Generalization to unseen task variations

In simulation, agents can experience millions of trials for a range of task variations. However, when
deployed to the real world, designer and controller policies cannot be pre-trained on all possible
future manipulation scenarios. In this section, we test the ability of our policies to generalize to
task variations unseen during training. For these experiments, we focus on the fetch cube task
because it has an initial pose space that can be manipulated in a semantically meaningful way. We
train policies using our framework on a subset of initial poses from the entire initial pose space
by removing a region of the space, which we call the “cutout” region. (see Figure 6a). Then,
we evaluate the generalization performance of learned policies on the initial poses from the cutout
region and outside the training region in two scenarios.

Zero-shot performance. In the first scenario, we test the ability of the designer and controller
policy to tackle a previously unseen initial pose directly. Using a policy trained on the initial pose
space with a cutout region removed, we evaluate the zero-shot performance on unseen initial poses.

In Figure 6a, we visualize the zero-shot performance of our design and control policies on initial
poses across the entire environment plane, finding that our policies are able to solve even task varia-
tions outside the training region boundaries. We also analyze how decreasing the number of possible
training poses affects generalization performance. In Figure 6b, we show the returns over the train-
ing region, cutout region, and the regions outside of the training region, as the size of the cutout
region for training poses varies.
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Figure 8: Real world rollouts for the fetch cube (top) and lift cup (bottom) tasks. For fetch cube, we
show the task success threshold in green and the volume covered by the overhang in yellow. The design policy
generates specialized tools, and the control policy adjusts its strategy to use the tool to complete each task.

When the cutout region is very small, the performance of our learned policies on seen and unseen
poses is similar. As the area of the cutout region increases, the performance on unseen goals degrades
gracefully and can still solve a significant portion of unseen tasks.

(a) Control/Design ratio
with different α.

α = 0.3

α = 0.7α = 1.0

α = 0.0

α = 1.0 α = 0.7

α = 0.3 α = 0.0

(b) Tools produced at dif-
ferent α values.

Figure 7: Examples of tools generated by varying the
tradeoff parameter α. As α increases, the created tools
have shorter links at the sides to decrease material us-
age. With lower α, large tools reduce the control pol-
icy’s required movement.

Fine-tuning performance. Sometimes, new
task variations cannot be achieved zero-shot by
designer and controller policies. In this section,
we test whether our design policies and con-
troller policies can still serve as good instantia-
tions for achieving these variations. We test this
by pre-training policies with our framework on
the entire training region and fine-tuning them
to solve initial poses outside that region.

In Figure 6c, we show the results of the fine-
tuning experiment. We find that even for poses
that are far away from the initial training region,
our policies are able to learn to solve the task
within a handful of gradient steps, and is much
more effective than learning from scratch.

5.3 Trading off design and control complexity

In this section, we aim to determine whether our introduced tradeoff parameter α (defined in Equa-
tion 1) can actualize preferences in the tradeoff between design material cost and control energy
consumption. For this experiment, we focus on the catch balls task, because the tradeoff has an
intuitive interpretation in this setting: a larger tool can allow the agent to catch objects with mini-
mal movement, while a smaller tool can reduce material cost but requires a longer trajectory with
additional energy costs. We train four agents on catch balls with different values of α.

In Figure 7a, we plot the ratio dused/dmax
cused/cmax

, where d represents the combined length of all tool links and
c is the per-step control velocity. dmax and cmax indicate the maximum tool size and control velocity
allowed by the environment. We find that this ratio indeed correlates with α, which indicates that
agents that are directed to prefer saving either material or energy are doing so, at the cost of the
other. We also visualize the outputted tool designs in Figure 7b.

5.4 Evaluation on a real robot

Next, we provide a demonstration of our pipeline on a real robot by transferring learned policies
in two of the 3D environments, fetch cube and lift cup, directly to the real world. We use a
Franka Panda 7-DoF robot arm equipped with its standard parallel jaw gripper (Figure 11). Five
RealSense D435 RGBD cameras perform object tracking using AprilTags [38].
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Fabricating tools. In order to evaluate our policies in the real world, we fabricate the tools that are
outputted by the design policy via 3D printing. Specifically, based on an initial state observation
and/or goal, we convert tool parameters from design policy outputs into meshes and construct them
from PLA using consumer Ender 3 and Ender 5 fused deposition modeling (FDM) 3D printers. See
Figure 9 for examples of printed tools generated by our policy.

Real robot evaluation. For the fetch cube and lift cup tasks, we evaluate policies on four
initial cube positions and four cup geometries respectively. For each task instance, we fabricate the
designed tool and evaluate control over five trials. We report success rates for each tool in Table 1,
finding that our policies successfully transfer their performance to the real world.

Figure 9: 3D-printed tools for fetch
cube (top) and lift cup (bottom).

Figure 8 shows qualitative examples of real rollouts. In the top
row, the robot designs an ‘L’-shaped hook. Because the end-
effector has a constrained workspace due to the risk of colli-
sion with the overhang, the robot employs a two-stage strategy
– first hooking the block from under the overhang, and then
using the backside of the tool to drag it closer to itself. In the
second row, the robot uses a ‘U’-shaped tool to quickly retrieve
the nearby block and finally pushes it to the goal with the grip-
per fingers when it is within reach. This exemplifies that our
framework flexibly allows an agent to use its original morphol-
ogy in combination with designed tools when needed. Finally,
in the lift cup task, the design policy selects appropriate dis-
tances between the tool arms and an angle of approach to hold
the cup securely when elevated.

Tool number 1 2 3 4

Fetch cube (single init.) 5/5 5/5 5/5 5/5
Fetch cube (grid inits.) 10/12 4/12 6/12 5/12

Lift cup 5/5 5/5 5/5 5/5

Table 1: Real world evaluation performance. “Sin-
gle init” denotes the evaluation of a tool on the initial
environment state it was designed for. “Grid of inits”
evaluates the same tool on a range of initializations.

For fetch cube, we further analyze the
performance of the control policy when
using tools for initial positions that they
were not directly designed for. Specifi-
cally, we take the four generated tools and
evaluate how well the control policy can
use them to solve 12 tasks on a 12cm ×
85.6cm grid of initial cube positions.

The results are presented in Table 1. While the control policy can reuse tools to solve new tasks,
no tool can solve all the tasks. Tool 1 solves the most tasks, but tool 4 solves both tasks that tool
1 cannot. We also find that the policy takes a greater number of timesteps to solve each task with
tool 1 compared to tools specialized for those initializations. These experiments demonstrate that a
diverse set of tools is indeed important for different variations of this task.

6 Conclusion

We have introduced a framework for agents to jointly learn design and control policies, as a step
towards generalist embodied manipulation agents that are unconstrained by their own morphologies.
Because the best type of tool and control strategy can vary depending on the goal, we propose to
learn designer and controller policies to generate useful tools based on the task at hand and then
perform manipulation with them. Our work is a step towards building embodied agents that can
reason about novel tasks and settings and then equip themselves with the required tools to solve
them, without any human supervision. Such systems may lead the way towards autonomous robots
that can perform continuous learning and exploration in real-world settings.

Limitations. In this work, we focus on rigid, non-articulated tools composed of linked primitive
shapes. A promising direction for future work is to explore other parameterizations. In addition,
we do not address fabrication: we use 3D-printing for prototyping and do not consider the prob-
lem of constructing tools from a set of available objects. Finally, we focus on tool geometry, but
consideration of tool stability and applied forces could lead to improved real-world performance.
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A Environment Details

Here we provide additional details for our simulation environments. An unabridged version of the
description from Section 5 is as follows:

• Push (2D): Push a round puck using the tool such that it stops at the specified goal loca-
tion. The goal space is a subset of 2D final puck locations G ⊂ R2, and the control action
space AC ∈ R2 specifies the x and y tool velocities.

• Catch balls (2D): Use the tool to catch three balls that fall from the sky. The agent’s
goal is to catch all three balls, which start from varying locations on the x-y plane. We use
a 1-dimensional control action space that specifies the x velocity of the tool at each step.

• Scoop (2D): Use the tool to scoop balls out of a reservoir containing 40 total balls. Here
we specify goals of scooping x ∈ {1, 2, ..., 7} balls. The control action space AC ∈ R3

specifies the velocity of the rigid tool in x and y directions, along with its angular velocity.

• Fetch cube (3D): Use the tool to retrieve an object randomly positioned beneath a ver-
tical overhang. This task is additionally challenging because the position of the robot end
effector is restricted to a rectangular region in the x-y plane of dimensions 0.8m × 0.2m to
avoid collision with the overhang. The tool is a three-link chain where each link is a box
parameterized by its width, length, and height. The design space also includes the relative
angle between two connected links, with a total of n = 11 parameters. The control action
space AC ∈ R3 represents a change in end-effector position.

• Lift cup (3D): Use the tool to lift a cup of randomized geometry from the ground into
the air. This task requires careful design of the tool to match cup geometry. The tool is a
four-link fork with two prongs parameterized by the separation, tilt angle, width, length,
and height of the prongs. The same parameters are applied to both prongs to maintain
symmetry. The handle dimensions are fixed. The design space has n = 5 parameters.
AC ∈ R3 represents a change in end-effector position.

• Scoop (3D): A 3D analog of the 2D scoop task. This task has the same goal space as the
2D scoop task, but the tool in 3D is a six-link scoop composed of a rectangular bottom
plate parameterized by its width and length, and four rectangular side plates attached to
each side of the bottom plate. Each side plate is parameterized by its height and relative
angle to the bottom plate. A handle with fixed dimensions is attached to one of the side
plates. There are n = 10 total design parameters. AC ∈ R6 represents a change in end-
effector pose.

Our task selection is motivated by real-world tasks that a robot may need to perform for example in
a home robot setting. Examples include:

• Fetching objects (fetch cube): retrieving fallen or misplaced objects e.g. underneath sofas,
tables, or chairs in homes, or tight spaces like inside cars, enabling scene “resets” from
states where objects are lost for continuous robotic learning settings

• Scooping (scoop 2D, 3D): manipulating granular materials such as rice, beans, cereals or
measuring and transferring liquids for cooking

• Pushing (push): home robotics applications when robots are impeded by obstacles such
as countertops, tables, beds; industrial applications to aligning and grouping objects for
robotic packing

• Lifting objects (lift cup): Transporting objects that are too large for a parallel jaw gripper
or for a suction gripper to stably grasp, for example, pots and pans, garbage cans, kitchen
appliances; or risky to grasp directly, for example, in high temperature industrial welding
and forging
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B Experimental Details

B.1 Training Hyperparameters & Architecture Details for Our Framework

In Tables 5, 6, 7, 8, 9, and 10, we provide detailed hyperparameters for our framework for each
environment. Unless otherwise specified, we use the neural network architectures for the design
policy, control policy, and value function from [7].

Robot arm base

(a) Tool 1

Robot arm base

(b) Tool 2

Robot arm base

(c) Tool 3

Robot arm base

(d) Tool 4

Figure 10: Heatmaps of success and failures for real world fetch cube trials where fixed tools
are used for a range of initializations. Recall that we test the policies on a 3 × 4 grid of initial
positions that span a total dimension of 12cm × 85.6cm, for a total of 12 trials per tool. This means
that evaluations were performed every 6cm along one dimension and 28.53cm along the other. The
grid here is a top-down view of the robot workspace and directly maps to the set of 2D initial cube
locations tested for each tool, where the base of the robot is at the bottom of each diagram. Here
green indicates a success, red indicates failure, and orange indicates a failure where the final cube
position is within 5cm of success.

B.2 Training Hyperparameters & Architecture Details for Baselines

For the CMA-ES baseline, we perform hyperparameter sweeps for a fair comparison with our frame-
work. For the CMA-RL baseline, we use the same set of best performing hyperparameters for the
outer CMA-ES loop. The tested hyperparameter configurations for each baseline are listed in Ta-
ble 2. Except model architecture differences, we use the same optimization hyperparameters for
Ours, Ours(shared arch.), and HWasP-minimal. Note that we control for the number of network
parameters in the “shared arch” ablation – notably, we used MLP policies implemented in Stable
Baselines 3 [39] and ensure that the number of trainable network parameters is either the same or
strictly larger than in our method across all tasks.

B.3 Computational Resources

We train each of our policies using a single GPU (NVIDIA RTX 2080Ti or TITAN RTX)
and 32 CPU cores. The total wall clock training time varies per environment from 2
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Method Hyperparameters Values

CMA-ES

Population Size 10, 24, 100, 1000
Initial Stdev 0.1, 1.0, 10.0
Center Learning Rate 0.01, 0.1, 1.0
Covariance Learning Rate 0.01, 0.1, 1.0
Rank µ Learning Rate 0.01, 0.1, 1.0
Rank One Learning Rate 0.01, 0.1, 1.0

CMA-RL

Poicy Net (256, 256, 256, 256, 256)
Value Net (256, 256, 256, 256, 256)
Learning Rate 3e-4
Batch Size (50000, 20000(3D scoop))
Minibatch Size 2000

Ours(shared
arch.)

Poicy Net (256, 256, 256, 256, 256)
Value Net (256, 256, 256, 256, 256)
Learning Rate 1e-4
Batch Size (50000, 20000(3D scoop))
Minibatch Size 2000

Table 2: We tune over these values for hyperparameters of baseline methods. Bolded values indicate
the best performing settings for CMA-ES, which we use in our comparisons.

hours for the Catch Balls environment to 24 hours for the Scoop(3D) environment. We
detail the training/inference time for our model and baselines on the fetch cube task:

Ours Ours (shared arch) CMA-RL HWasP-minimal/Ha 2018 CMA-ES
Training time 2.12e+2 7.29e+2 1.18e+3 2.98e+2 3.46e+2
Inference time 1.68e-3 5.24e-4 5.32e-4 1.75e-3 N/A

Figure 11: Real world setup. We use a Franka
Panda arm and five RealSense D435 cameras for
tracking. The cube pictured, used for the fetch
cube task has a side length of 5cm.

The training time represents the wall clock time in
minutes needed to train the model for 107 environ-
ment steps. The inference time denotes the wall
clock time in seconds needed to perform one forward
pass through the model. These results are generated
using a NVIDIA Titan RTX GPU and an Intel Xeon
Gold 5220 CPU.

B.4 Generalization
to Unseen Goals Experiment Details

For Fetch cube, the rectangular region of initial
poses is defined by x ∈ [−0.395, 0.395] and y ∈
[0.4, 0.7]. The cutout region corresponds to two
disconnected rectangular patches contained in the
training region defined by x1 ∈ [−0.350,−0.045],
y1 ∈ [0.434, 0.666] and x2 ∈ [0.045, 0.350], y2 ∈ [0.434, 0.666] respectively.

Zero-shot performance. We train six policies using our framework where the cutout region re-
moves a fraction of the total training area equal to 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 respectively.

Fine-tuning performance. For the fine-tuning experiment, we specifically select
four initializations that we find our policies do not complete successfully zero-shot:
{(−0.167, 0.367), (−0.129, 0.357), (0.430, 0.493), (0.415, 0.610)}.

B.5 Trading off Design and Control Complexity Experiment Details

We train four agents independently on catch balls, setting the value of α, the tradeoff reward
parameter defined in Equation 1, to 0, 0.3, 0.7, and 1.0 respectively.
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B.6 Real Robot Experiment Details

For our real-world experiments, we use a Franka Emika Panda arm. We control the robot using an
impedance controller from the Polymetis [40] library.

Tools are 3D printed using polylactic acid (PLA) on commercially available Ender 3 and Ender 5
printers with nozzle diameter 0.4mm. We print using a layer height of 0.3mm and 10% infill. We
perform slicing using the Ultimaker CURA software.

We roll out each policy for 100 environment steps or until a success is detected.

For the fetch cube task, we measure the success based on whether the center of mass of the 5cm
cube is closer than 0.5m from the base of the robot. Please see Table 3 for per-tool details. The tool
images are shown in Figure 9, from left to right: Tools 4, 2, 3, 1 respectively.

Tool Initial cube position (x, y, z)
Tool 1 (-0.110, -0.803, 0.025)
Tool 2 (-0.339, -0.588, 0.025)
Tool 3 (0.155, -0.731, 0.025)
Tool 4 (0.211, -0.633, 0.025)

Table 3: Initial cube positions corresponding to tools fabricated in real experiments.

For the lift cup task, we measure success based on whether the cup has been lifted higher than
0.4m off of the plane of the workspace. Please see Table 4 for per-tool details. The tool images are
shown in Figure 9, from left to right: Tools 1, 2, 3, 4.

Tool Cup geometry parameters
(length/width, height)

Tool 1 (0.3, 0.6)
Tool 2 (0.3, 0.9)
Tool 3 (0.5, 0.8)
Tool 4 (0.9, 0.6)

Table 4: Cup geometry parameters corresponding to tools fabricated in real experiments. Note that
the length and width parameters share a single value.

We also present detailed results for the fetch cube experiments using tools generated for a specific
initial position for a range of initializations. Recall that we test the policies on a 3× 4 grid of initial
positions that span a range of 12cm × 85.6cm, for a total of 12 trials per tool. We plot the successes
and failures for each tool according to geometric position in Figure 10. We can see that the control
policy is able to use each tool to solve the task for several initializations, but each tool is specialized
for particular regions.
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Hyperparameter Value
Tool Position Init. (20, 10)
Control Steps Per Action 1
Max Episode Steps 150
Slack Reward -0.001
Tool Length Ratio (-0.5, 0.5)
Tool Length Init. (2.0, 2.0, 2.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 90.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. -1.0
Design Log Std. -2.3
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 1e-4
KL Divergence Threshold 0.005
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 5: Hyperparameters used for our framework on the push task.

Hyperparameter Value
Tool Position Init. (20, 10)
Control Steps Per Action 1
Max Episode Steps 150
Slack Reward -0.001
Tool Length Ratio (-0.5, 2.0)
Tool Length Init. (2.0, 1.0, 1.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 60.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 1e-4
KL Divergence Threshold 0.002
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 6: Hyperparameters used for our framework on the catch balls task.

16



Hyperparameter Value
Tool Position Init. (15, 10)
Control Steps Per Action 5
Max Episode Steps 30
Slack Reward -0.001
Tool Length Ratio (-0.7, 0.2)
Tool Length Init. (6.0, 3.0, 3.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-0.1, 0.7)
Tool Angle Scale 90.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.1
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 7: Hyperparameters used for our framework on the scoop task.

Hyperparameter Value
Tool Position Init. (0.0, 0.5, 0.02)
Control Steps Per Action 10
Max Episode Steps 100
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.005, 0.05, 0.005)
Box Dimensions Max (0.015, 0.1, 0.02)
Tool Angle Min (-90.0, -90.0, -90.0)
Tool Angle Max (90.0, 90.0, 90.0)
Control Action Min (-1.0, -1.0, -1.0, -0.2, -0.2, -0.2)
Control Action Max (1.0, 1.0, 1.0, 0.2, 0.2, 0.2)
Control Action Scale 0.1
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. False
Policy Learning Rate 1e-4
Entropy β 0.0
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 8: Hyperparameters used for our framework on the fetch cube task.
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Hyperparameter Value
Tool Position Init. (0.0, 1.2, 0.05)
Control Steps Per Action 10
Max Episode Steps 150
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.005, 0.02, 0.01)
Box Dimensions Max (0.01, 0.1, 0.03)
Tool Angle Min (-30.0, -30.0, -30.0)
Tool Angle Max (30.0, 30.0, 30.0)
Control Action Min (-1.0, -1.0, -1.0, -1.57, -1.57, -1.57)
Control Action Max (1.0, 1.0, 1.0, 1.57, 1.57, 1.57)
Control Actioin Scale 0.1
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. -1.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 5

Table 9: Hyperparameters used for our framework on the lift cup task.
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Hyperparameter Value
Tool Position Init. (0.0, 0.05, 0.1)
Control Steps Per Action 10
Max Episode Steps 100
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.04, 0.005, 0.02)
Box Dimensions Max (0.08, 0.005, 0.05)
Tool Angle Min (-15.0, -15.0, -15.0)
Tool Angle Max (15.0, 15.0, 15.0)
Control Action Min (-1.0, -1.0, -1.0, -1.57, -1.57, -1.57)
Control Action Max (1.0, 1.0, 1.0, 1.57, 1.57, 1.57)
Control Action Scale 0.05
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. False
Policy Learning Rate 1e-4
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 20000
Minibatch Size 2000
PPO Steps Per Batch 5

Table 10: Hyperparameters used for our framework on the 3D scoop task.
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