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Abstract

Previous work has suggested that preprocessing images through lossy compression
can defend against adversarial perturbations, but comprehensive attack evaluations
have been lacking. In this paper, we construct strong white-box and adaptive attacks
against various compression models and identify a critical challenge for attack-
ers: high realism in reconstructed images significantly increases attack difficulty.
Through rigorous evaluation across multiple attack scenarios, we demonstrate that
compression models capable of producing realistic, high-fidelity reconstructions
are substantially more resistant to our attacks. In contrast, low-realism compres-
sion models can be broken. Our analysis reveals that this is not due to gradient
masking. Rather, realistic reconstructions maintaining distributional alignment
with natural images seem to offer inherent robustness. This work highlights a
significant obstacle for future adversarial attacks and suggests that developing
more effective techniques to overcome realism represents an essential challenge
for comprehensive security evaluation.

1 Introduction
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Figure 1: Decrease in robust accuracy when
employing a compression defense with reduced
realism under different perturbation budgets. In-
corporating realism substantially increases the
difficulty of successful attacks.

Adversarial attacks on image classification mod-
els involve making small perturbations to an im-
age such that the classifier’s output changes–even
though the image appears semantically unchanged
to a human observer. A model can be trained to
be robust against such adversarial examples, for ex-
ample, by augmenting the training data with noise
or showing the model adversarial examples during
training. Another strategy is applying a transforma-
tion to the input image that preserves its semantic
content while altering it to render the adversarial
noise ineffective. This approach has the advantage
of being able to be used for any classification model
without requiring retraining.

Lossy image compression often discards details
deemed perceptually unimportant, which may in-
clude the subtle perturbations introduced by ad-
versarial attacks. Early work argued that standard
codecs like JPEG yield modest robustness gains [1], though they often introduce compression artifacts
that push images outside the classifier’s training distribution. More recently, learned compression
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Figure 2: Overview of compression-based adversarial defense. An input image (potentially containing
adversarial perturbations) is first processed by the defense module, which consists of an encoder-
decoder architecture that compresses and reconstructs the image. This reconstructed image is then
passed to a classifier, which outputs class probabilities. The defense aims to indirectly, through the
compression process, remove adversarial noise while preserving the semantic content needed for
correct classification.

models have promised to bridge this gap by generating visually plausible reconstructions that may
also remove stronger adversarial noise [2].

However, many proposed defenses—especially preprocessing-based ones—have been criticized for
relying on gradient masking; they make general gradient-based attacks harder without genuinely
increasing robustness [3]. When attackers adapt to circumvent gradient obfuscation (e.g., by approxi-
mating or smoothing gradients), many defenses fail [4–7]. This raises two critical questions:
(1) Do robustness gains from image compression persist under rigorous, adaptive attacks?
(2) If so, what underlying mechanism contributes to this robustness?

We argue that realism in reconstructed images is a key factor underpinning the robustness. Our
results show that only compression models capable of producing high-fidelity, realistic images offer
meaningful robustness against strong adaptive adversarial attacks, while other compression models
can be broken. Realism aids robustness in two ways: It avoids unnatural artifacts that shift images
off-distribution, and by hallucinating in semantically plausible details that obscure adversarial noise.

A highly realistic compression model reconstructs images close to the original and free from per-
ceptible signs of compression. Classifier models often perform poorly on out-of-distribution inputs;
ensuring realism in reconstructed images helps keep them within the distribution of natural images.
High realism can be achieved by hallucinating in plausible details. For example, while the exact
texture of tree leaves may be removed during compression, a realistic model will hallucinate plausible
leaf-like textures. These added details can help obscure adversarial noise, making it more difficult for
an attacker to craft successful perturbations.

In this paper, we systematically evaluate the robustness of compression-based defenses and isolate
the role of realism. Our analysis builds on the findings in [2], where it was argued that human-aligned
compression contributes to robustness. We re-evaluate their claims under rigorous adversarial threat
models and identify shortcomings in their evaluation protocol. We show that their observed robustness
stemmed not merely from compression, but specifically from realism. We reinforce this conclusion
through extensive evaluation across a broader and newer set of learned compression models.

2 Background and Related Works

Our work lies at the intersection of two big fields, and we aim to give complete overviews of both.
However, due to the page limit, we had to move the complete related work to Appendix B.

2.1 Adversarial Robustness

Shortly after the success of AlexNet [8], it was found that neural networks are very susceptible to
adversarial attacks [9, 10]. Here, an adversary adds (usually) small and imperceptible perturbations
to an image such that a model mislabels it.

Attacks Many attacks have been developed over the years with various benefits and drawbacks.
Some of the most noteworthy are FGSM (Fast Gradient Sign Method) [10], iterated FGSM or iFGSM
[11], CW [12], and PGD (Projected Gradient Descent) [13]. These attacks fall into two categories:
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FGSM, iFGSM, and PGD are l∞-bounded attacks, and CW is an l2-bounded attack. We refer the
reader to the original papers for specific details, but include some details in Appendix C. The TLDR
is: PGD has a perturbation budget ϵ and an iteration budget n. PGD does projected gradient descent
for n iterations to find an adversarial example at most ϵ distance in l∞ from the original image.

When the defense includes randomness, a common attack augmentation is EoT (Expectation over
Transformation), where gradients are averaged over multiple backward passes [14, 7]. If the defense
causes gradient masking, Athalye et al. [14] suggested Backward Pass Differentiable Approximation
(BPDA), where the defense is used during the forward pass, but a differentiable approximation is used
during the backward pass. The simplest is to use the identity function, while more advanced methods
might train a differentiable surrogate model g′ that emulates the defense g; i.e., g(x) ≈ g′(x).

Lastly, often the best attack results are found using adaptive attacks [4–7]. Here, the attacks, for
instance, the optimization objective, are adjusted to the defense. This work focuses on adaptive
attacks with PGD as the underlying optimization method.

Defenses Given the prevalence of adversarial attacks, many researchers have explored how to
defend against them. We broadly view this in three groups: Architecture improvements [15–17],
adversarial training [9, 10, 13, 18, 17], and adversarial purification [19–21, 2]. The architecture
branch focuses on making the models more robust by design, for instance, by taking inspiration from
biology to mimic the human eye when training a ResNet model [17]. Adversarial training consists
of showing adversarial examples during training to ensure correct classifications. This has yielded
positive results [9, 13], but models can be broken [7].

Adversarial purification aims to remove the adversarial noise in images before passing the cleaned
images to pretrained classification models. It is motivated by the work of Ilyas et al. [22], hinting that
adversarial examples perturb brittle features in the model. These methods should work independently
of any robustness applied to the classifier through adversarial training or robust architectures.

Diffusion models have been proposed as a way to remove adversarial noise from input images
[19, 23]. These approaches are conceptually similar to compression-based defenses with realism:
both aim to project adversarial examples back onto the manifold of natural images to restore classifier
performance. However, prior work on diffusion-based purification has not explicitly investigated
the role of realism as a contributing factor to robustness. One major drawback of diffusion-based
defenses is their computational cost [24, 25]. But simply making gradients difficult to compute does
not equate to genuine robustness. The purification method proposed by Nie et al. [19] was later
defeated by Lee and Kim [23]. However, the latter only evaluated their improved defense under the
attack that broke the former. They did not develop new adaptive attacks tailored to their defense—a
strategy that past research suggests would likely reduce the effectiveness of the defense. The history
of adversarial robustness research shows that defenses that are not tested under strong, tailored attacks
often overstate their robustness [14, 4, 5].

2.2 Realism in Image Compression

Image compression algorithms are traditionally evaluated using distortion metrics, which measure
the distance between a restored image x̂ and its reference x. Formally, distortion is defined as:

D := E(x,x̂)∼(pX ,pX̂)[∆(x, x̂)], (1)

where ∆(·, ·) is a pointwise distortion measure (e.g., ℓ2 distance), and pX , pX̂ denote the distributions
of ground truth and reconstructed images. Distortion is considered a full-reference metric, requiring
access to the original image x to compare it to the reconstructed version x̂.

However, metrics such as PSNR, MS-SSIM [26], or LPIPS [27] correlate poorly with human
perception, and directly quantifying perceptual distortion remains a challenging problem. Instead
of a perceptual distortion metric, one can measure both distortion and realism and optimize the
compression model for both. Realism can be formally defined as:

R := −d(pX̂ , pX), (2)

where d(·, ·) is a divergence measure, such as Kullback-Leibler. Unlike distortion, realism is a
no-reference metric, requiring only the generated image distribution to match that of natural images.
Although measuring realism remains challenging [28], a widely used proxy is the Fréchet Inception
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Distance (FID) [29], which compares the distributions extracted by a pretrained Inception network.
FID has gained popularity for capturing both fidelity and diversity in generated samples.

Compression models are typically trained with the following loss function:

L = LRATE + λD − βR, (3)

where LRATE represents the estimated rate, or in other words, the number of bits required to represent
the image after it has been compressed, λ controls the level of distortion, and β the level of realism.
Since the information is not transmitted through an explicit information bottleneck in our approach,
the rate term LRATE does not play a critical role in this context.

Compression models can be broadly categorized into those optimized for distortion (e.g., JPEG
[30], Hyperprior [31], ELIC [32]) and those explicitly trained to maximize realism (e.g., HiFiC [33],
PO-ELIC [34], WD [35], ConHa [36]). More recent approaches, such as MRIC [37] and CRDR [38],
provide control over the realism–distortion tradeoff within a single network by conditioning on λ and
β. This controllability enables direct investigation of how realism influences adversarial robustness.

Our work builds on this foundation, exploring the intersection of realistic compression and adversarial
robustness. We extend the existing literature by providing experimental evidence that realism, rather
than distortion, makes image-compression models (partially) robust against adversarial examples.

2.3 Compression as Adversarial Defense

Using compression as a defense for neural networks is not a new idea. It has been explored for
almost a decade [1, 39–42] where some authors also explored using iterated compression and
decompression cycles [42, 2]. Two key works in this area are by Guo et al. [1] and Shin and Song
[3]; the former argued that JPEG compression as a preprocessing step is a very effective adversarial
defense while the latter showed that, by making JPEG differentiable, this defense could be bypassed
entirely–highlighting the necessity of properly evaluating a defense.

3 Methodology

Our work evaluates the compression models’ robustness; thus, we focus on the ImageNet classifi-
cation benchmark, a well-established benchmark with high-resolution images. This gives us many
options for pretrained models, allowing a more exhaustive model evaluation. If otherwise not stated,
we use the full validation split of the ImageNet dataset (50000 images). We used two different
classification models, ResNet50 [43] and ViT B 16 [44]. For PyTorch models, we use the improved
weights IMAGENET1K_V2 for ResNet50 and the default weights IMAGENET1K_V1 for ViT B 16. For
TensorFlow models, we use the default ResNet50 pretrained weights imagenet. Certain ablations
are only done for ResNet to reduce the compute load; the results have only minor differences to ViT.

3.1 Defenses

In the evaluated defense strategy, we integrate a compression and decompression step into the image
classification pipeline (cf. Figure 2). The image compression model acts as a preprocessing step,
transforming the image before classification. The transformation discards certain information from
the image by employing lossy compression techniques. This process can mitigate the effect of
adversarial perturbation on the classifier’s predictions, thereby enhancing the model’s robustness.

As we demonstrate later, realism plays a crucial role in the robustness of this pipeline. Therefore, we
focus our experiments on models that either explicitly control the level of realism or exist in both
standard and enhanced realism variants. In particular, MRIC [37] and CRDR [38] offer variable
realism settings, and we denote their low- and high-realism variants as MRIC LR, MRIC HR, CRDR
LR, and CRDR HR, respectively. We also consider models available in both standard rate-distortion
and rate-distortion-realism versions, such as Hyperprior [45] and HiFiC [33]. To further validate the
importance of realism, we include JPEG [30] and ELIC [32] (noting that the high-realism version,
PO-ELIC [34], does not have publicly available pretrained weights), and show that these consistently
underperform compared to high-realism compression models. For white-box attacks, we require
access to gradients; for learned compression models, gradient computation is natively supported,
while for JPEG, we employ a continuous relaxation approach [3]. We focus on VAE-based methods
as diffusion or INR-based approaches are prohibitively expensive to evaluate at scale [19, 23].
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3.2 Threat models

We define our own threat models that encompass the prior experiments from Räber et al. [2] to ensure
proper evaluation [46, 4, 47]. The threat models follow standard formulations from Biggio et al.
[48], Carlini and Wagner [46], Pang et al. [49]. Specifically, we consider l∞ untargeted attacks with
perturbation budget ϵ, i.e., for an original image x and perturbed image x′, we have ∥x− x′∥∞ ≤ ϵ.

Our primary focus is on PGD attacks, widely regarded as among the strongest given sufficient
objective formulation and computational resources (see Appendix C). We also include adaptive attacks,
where the adversary, aware of the defense mechanism, tailors the attack accordingly. Adaptation in
this context means the adversary can specialize the attack by studying the defense and looking for
ways to defeat it [5]. These adaptive attacks still use PGD (see Section 3.3 for details). If otherwise
not stated, we use 10 PGD iterations.

Lastly, we consider three adversary knowledge levels as described in Carlini and Wagner [46].
Black-box (BB): The adversary does not know the defense or its existence. The attacker can create
adversarial perturbations with respect to the gradients of the classifier or the outputs of the classifier.
Gray-box (GB): The adversary knows the defense is present and can use it for the forward pass only;
they cannot compute gradients through the defense. This threat variant is used for adaptive attacks.
White-box (WB): The adversary has complete knowledge and access to the defense. The gradients
of the defense and the output of the combined defense and classifier pipeline are used in the attack.

3.3 Adaptive Attacks Against Compression Defenses

A common pitfall in adversarial robustness papers is the lack of honest effort in implementing proper
attacks against one’s own defense [4–6]. In our evaluation, we conduct adaptive attacks on all
compression models, which means the attacks are tailored to exploit the target model’s weaknesses.
This section reviews the adaptive attacks used against the compression defenses. We use the following
notation: f is the image classifier, g is a compression defense (compression and decompression), and
h = f ◦ g. x is an image with label y, and L is a loss function. We use cross-entropy as the loss
function for all our experiments (except ACM). ∇xf is the gradient of f(x) with respect to x.

ST BPDA For the first adaptive attack, we use BPDA with the straight through (ST) approximation;
this assumes g(x) ≈ x. For the forward pass, the defense is used, but the straight-through (ST)
estimator is applied in the backward pass, replacing the compression model’s gradient with the
identity function. Thus, ∇xh := ∇xf(x)|x=g(x).

U-Net BPDA In the second adaptive attack, we use BPDA with a standard U-Net [50] trained
to approximate the compression defense g (see training details in Appendix F). The idea is that if
g primarily causes gradient masking, then replacing it with a differentiable proxy g′ should yield
meaningful gradients for the attack. During the forward pass, we use the actual defense, h(x) =
f(g(x)), while the backward pass substitutes g with g′, yielding gradients ∇xh := ∇x(f ◦ g′)(x).

Attacks on the Compression Model (ACM) The third adaptive attack focuses only on attacking
the compression method. Instead of focusing on misclassifications in the classifier through the
cross-entropy loss, the attacker uses the objective function MSE(x, g(x)) for the attack. The goal is
then to cause significant distortions that confuse the classifier.

Adaptive Realism Attack (ARA) The fourth adaptive attack is specific to models with varying
realism. Let gβ be a defense with realism parameter β, the goal of the attack is then for a given β to
find the β′ that gives the lowest model accuracy when we attack f(gβ(x)) with ∇xh := ∇x(f ◦ gβ′).

Considerations for the Attacks All the VAE-based compression defenses are deterministic; thus,
EoT [51] should not be required for these defenses [14].

Adaptive attacks aim to craft adversarial examples explicitly tailored to the defense mechanism—in
our case, the compression model. White-box PGD (WB PGD) and U-Net BPDA perform best in our
evaluated attacks. The primary difference between WB PGD and U-Net BPDA is that U-Net BPDA
approximates the backward pass of the compression model with the gradients of U-Net trained to
mimic the outputs of the compression model, allowing gradients to flow more freely.
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4/255 8/255 16/255
CLASSIFIER DEFENSE LR HR LR HR LR HR

RESNET

HYPERPRIOR 0.98 11.83 0.02 6.65 0.00 1.80
MRIC 26.68 39.00 12.20 21.10 2.90 6.40
CRDR 16.30 34.50 8.60 21.18 4.10 7.98
JPEG 5.19 — 0.24 — 0.01 —
ELIC 16.43 — 4.98 — 0.34 —

VIT

HYPERPRIOR 0.20 10.06 0.00 2.64 0.00 0.16
CRDR 14.44 28.28 6.98 14.90 2.16 2.46
JPEG 0.88 — 0.04 — 0.00 —
ELIC 14.12 — 2.38 — 0.10 —

Table 1: ResNet accuracy under adaptive attacks on compression models for ImageNet. Hyperprior
and HiFiC results are combined to give the low and high realism. JPEG and ELIC do not have a
high realism (HR) version; only low realism (LR) is available. Note, for MRIC, only the PGD attack
was applied. We selected each architecture’s most effective adaptive attack based on evaluations in
Table 3 and Table 6. We see that HR models consistently perform better.

4 Experiments

We present a series of experiments to support our claim that realism makes compression-based
defenses hard to attack. First, we demonstrate that defenses incorporating realism consistently
outperform those that do not (Section 4.1). Next, we verify that the observed robustness does not arise
from gradient masking (Section 4.2). Finally, we construct stronger model-specific adaptive attacks,
showing that even under these conditions, high-realism defenses remain more robust (Section 4.3).

4.1 Role of Realism

Table 1 shows that models incorporating realism into their reconstructions consistently achieve higher
robust accuracy under strong adaptive attacks. These results provide compelling empirical support for
our central hypothesis: realism plays a key role in reducing the effectiveness of adversarial attacks.
ViT models exhibit lower overall robustness than ResNets across the board.

To isolate the impact of realism, we analyze two compression models where realism can be explicitly
controlled. As shown in Figure 6 (Appendix G.2), increasing realism in reconstructed images
monotonically improves robustness. While distortion has been the focus of extensive prior work
[39, 3, 2], realism remains largely unexplored as a factor in defense performance. Our results
highlight a key difference: distortion presents an inherent trade-off. If the distortion is too low,
adversarial noise is preserved. If the distortion is too high, the reconstruction discards critical
semantic information, making the image unrecognizable. In both cases, the defense fails—either by
retaining harmful perturbations or by producing images that are implausible under the natural data
distribution. In contrast, increasing realism consistently improves robustness without the trade-offs
typically associated with distortion. Prior to this work, the role of realism in adversarial defenses had
not been thoroughly investigated.

These findings suggest that compression alone is insufficient as a defense mechanism. Without
realism, compression may eliminate adversarial perturbations but also introduce artifacts that push
reconstructions off the natural data manifold. Such off-distribution reconstructions can make down-
stream classifiers more vulnerable to attack. Realistic reconstructions, by contrast, preserve semantic
content while introducing plausible details, helping keep inputs within the natural data distribution
and more effectively mask adversarial signals.

4.2 Gradient Masking

Modifying the attack budget ϵ does not influence gradient masking as it merely changes the size of
the space in which attacks can search for adversarial examples. Therefore, if the model consistently
fails under higher ϵ values, the robustness observed at smaller ϵ values is more likely to reflect
genuine defense rather than gradient obfuscation. In Table 2, we evaluate CRDR with both low and
high realism settings under a range of ϵ values and PGD iteration counts. Under a 400-step PGD
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ITERATIONS DEFENSE STANDARD 2/255 4/255 8/255 16/255

400

HYPERPRIOR 79.20 79.06 78.92 79.18 77.84
HYPERPRIOR N 79.20 79.10 79.22 78.74 76.58
JPEG 71.02 1.44 0.26 0.02 0.02
CRDR LR 46.14 19.60 7.68 1.52 0.26
CRDR HR 62.02 36.92 19.22 6.46 1.30

200 CRDR LR 46.14 19.52 7.70 1.70 0.28
CRDR HR 62.02 36.70 19.94 7.46 1.84

100 CRDR LR 46.14 20.14 8.24 2.42 0.38
CRDR HR 62.02 37.12 20.84 8.86 2.54

50 CRDR LR 46.14 20.44 9.38 3.12 0.70
CRDR HR 62.02 38.08 23.30 10.86 4.06

10 CRDR LR 46.14 26.40 16.24 8.56 3.84
CRDR HR 62.02 46.08 36.10 24.36 13.86

Table 2: WB PGD attacks with varying numbers of iterations. Only 5000 samples were used due to
the increased computational cost. Hyperprior Noise refers to a defense in which the gradients through
the hyperprior are replaced with a random vector, showing that it suffers from gradient masking.

STRENGTH DEFENSE STANDARD
BB

PGD
WB
PGD

ST
BPDA

U-NET
BPDA ACM ARA

4/255

HYPERPRIOR 78.73 48.76 78.84 10.94 0.98 78.82 —
HIFIC 61.53 59.52 11.83 44.65 24.04 59.20 —
MRIC LR 52.80 51.04 26.68 — — — 26.68
MRIC HR 63.06 59.28 39.00 — — — 39.60
CRDR LR 46.02 44.92 16.30 39.36 28.96 41.28 16.30
CRDR HR 61.72 59.80 35.88 56.36 47.62 55.67 34.50
JPEG 70.30 65.68 8.72 18.70 5.19 68.67 —
ELIC 60.03 58.79 16.43 40.00 17.98 54.48 —

8/255

HYPERPRIOR 78.73 27.16 78.72 3.18 0.02 78.67 —
HIFIC 61.53 56.84 6.65 32.19 7.98 55.37 —
MRIC LR 52.80 49.44 12.20 — — — 12.20
MRIC HR 63.06 57.38 21.98 — — — 21.10
CRDR LR 46.02 44.14 8.60 33.58 12.12 36.96 8.60
CRDR HR 61.72 57.36 23.92 50.77 26.64 49.35 21.18
JPEG 70.30 60.76 5.19 10.01 0.24 64.75 —
ELIC 60.03 57.59 9.01 27.24 4.98 51.63 —

Table 3: Results for ResNet50. “—” denotes values not implemented for MRIC or evaluations invalid
without realism control. Models with strong gradient masking, like Hyperprior, are vulnerable to
adaptive attacks. Realism does not increase gradient obfuscation, so both high-realism models retain
accuracy with minor drops under adaptive attacks. Due to space, the 16/255 are omitted from this
table. See Table 5 for these results.

attack with high ϵ, all models fail except for Hyperprior. To investigate this anomaly, we include a
“Hyperprior Noise” variant, which replaces Hyperprior’s gradient with random noise. Its comparable
performance suggests that Hyperprior’s apparent robustness is attributable to gradient masking. As
the attack budget ϵ is reduced, the resulting accuracy gains reflect genuine robustness rather than
gradient obfuscation. Realism proves critical: at ϵ = 4/255, increasing realism improves CRDR’s
robust accuracy from 7.68% to 19.22%. This sharp gain underscores realism’s essential role in
compression-based adversarial defenses.

To complement our quantitative evaluations, in Figure 3 we visualize the loss landscapes for the
classifier, CRDR with low realism, and CRDR with high realism, following the implementation
described by Zhang et al. [7]. CRDR with low realism exhibits some level of gradient masking, as
reflected in the spiky and irregular structure of its loss landscape. Importantly, increasing realism
does not increase this effect—the loss landscape remains similarly smooth, suggesting that both
low- and high-realism models exhibit comparable levels of gradient masking. This observation is
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Figure 3: Loss landscapes under successful 100-step PGD attacks on a ResNet with CRDR defense.
Left: Attacking the classifier directly. Middle: Attacking with low realism defense. Right: Attacking
high realism defense. The standard deviations of the loss surfaces are 0.0544, 0.3343, and 0.3156,
respectively. Increasing realism does not make the loss landscape spikier, indicating that it does not
contribute to gradient masking.

supported quantitatively: the standard deviations of the loss surfaces for the classifier, low-realism,
and high-realism models are 0.0544, 0.3343, and 0.3156, respectively. Despite this, CRDR with high
realism consistently outperforms its low-realism counterpart. The loss landscape analysis further
supports this conclusion: while both models may exhibit some degree of gradient masking, increased
realism does not exacerbate it and plays a direct role in enhancing robustness.

4.3 Adaptive Attacks

Many defenses rely on gradient masking, hiding gradients to appear robust rather than truly resisting
attacks. This raises the question: Is realism just gradient masking or genuinely robust? To address
this, we perform extensive adaptive attacks designed to overcome gradient obfuscation. Results are
presented in Table 3 for ResNet and Table 6 in Appendix D for ViT.

The Hyperprior model illustrates classic gradient masking behavior. It performs well against attacks
relying on gradients computed through the defense, but fails under black-box attacks or gray-box
attacks with techniques like U-Net BPDA or ST BPDA. In those settings, its robust accuracy collapses.

In contrast, CRDR HR shows strong robustness across attacks. WB PGD, using true gradients, is
the most effective or close second, indicating CRDR isn’t just masking gradients. However, at high
perturbations (ϵ = 16

255 ), U-Net BPDA sometimes outperforms WB PGD, suggesting that out-of-
distribution inputs reduce true gradient effectiveness and increase gradient masking. In such cases,
surrogate-based gradients like U-Net BPDA yield stronger attacks.

4.4 Comparison to Diffusion-Based Defenses

As noted earlier, diffusion models can purify adversarial noise; however, they are computationally
expensive. For example, Lee and Kim [23] takes over 60 minutes to process 100 images on an RTX
3090, while CRDR needs only 1.5 seconds. With the ResNet classifier taking 0.5 seconds, CRDR
increases inference time 4×, compared to over 7200× for the diffusion method. Nevertheless, we
compare CRDR HR to diffusion models due to their high realism. As shown in Table 4, VAE-based
models like CRDR HR offer comparable robustness at much lower cost, making them a more practical
choice for attack evaluations while maintaining strong defensive performance.

We also conduct our own small-scale test (in terms of the number of data samples) to assess the
robustness of the diffusion models. Due to space, the results are in the Appendix, but show that a
PGD 8/255 attack can get an ASR around 72%, giving a model accuracy around 20% for the diffusion
model by Lee and Kim [23].

4.5 Highlight of Extra Results in the Appendix

Due to space constraints, additional results are provided in the appendix for interested readers.
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DEFENSE METHOD STANDARD PGD 4/255

ENGSTROM ET AL. [52] 62.42 33.20
WONG ET AL. [53] 53.83 28.04
NIE ET AL. [19] 75.48 38.71
LEE AND KIM [23] 66.21 42.15

CRDR 61.72 35.88

Table 4: Robust accuracy under PGD 4/255 attack running for ten iterations for diffusion-based
defenses and the CRDR compression-based defense. The robust accuracy numbers of the diffusion-
based models are taken from [23].

The section titled “Attacking Adversarial Purification” demonstrates that while it is computationally
expensive, diffusion models can be attacked.

Instead of evaluating against standard (adversarially weak) classifiers, one can use pretrained robust
classifiers to assess whether realism offers additional benefits in already robust settings. We ran
the compression-based defense on the top 11 models from RobustBench [54, 15, 55–58]. Our
RobustBench results can be seen in Table 11 in Appendix G.3. The results show that applying CRDR
with high quality and realism does not improve performance—in fact, it consistently reduces accuracy
across all tested robust models.

Iterative compression as a defense has shown promising results [2], but its robustness largely stems
from gradient masking. When attacking the defense using fewer iterations, robust accuracy drops
significantly, revealing the underlying vulnerability once gradient masking is circumvented. See
Appendix G.4 for detailed results.

Interestingly, under a white-box PGD attack, the structure of the adversarial perturbation tends
to follow the image structure, see Appendix G.5. In particular, the perturbation primarily affects
object edges and struggles to inject noise uniformly across the image. Realism amplifies the model’s
tendency to hallucinate details—realistic models generate finer, more structured outputs. These
hallucinated details may change when attacking such models, but the resulting images still appear
realistic to the human eye.

5 Discussion and Future Work

In this work, we systematically evaluated attacks against compression-based adversarial defenses,
identifying what makes specific compression models difficult to break. Our findings reveal a critical
challenge for attackers: high realism in reconstructed images significantly increases attack difficulty.
While most compression-based defenses fail under adaptive attacks, models with high realism
consistently demonstrate greater resistance.

Through rigorous experimentation, we have shown that realism, not gradient masking or other
obfuscation techniques, is the primary obstacle for attackers. When compression models produce
realistic reconstructions, they maintain distributional alignment with natural images while discarding
adversarial perturbations, creating a fundamental asymmetry that favors the defender. Attackers
must find perturbations that survive the compression process and remain effective after high-quality
reconstruction, a significantly more challenging task.

Future work should focus on developing more effective attacks against high-realism compression
models. This includes designing loss functions that better capture realistic reconstruction quality
and crafting attacks that target preserved semantic features rather than merely pixel-level noise.
Efficiently attacking diffusion-based compression methods, which naturally achieve high realism,
also remains a key challenge for thorough security evaluation. The concept of perfect realism,
where reconstructions are indistinguishable from natural data and lie on the data manifold, offers
an ideal defense by projecting inputs onto the natural image distribution and eliminating adversarial
perturbations. Should attacks on these high-realism models, especially diffusion-based approaches,
continue to fail, our findings would mark a promising step toward genuinely robust defenses.
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A Limitations

The primary limitation of our study is the exclusion of diffusion-based compression models, known
to achieve the highest levels of realism. This omission was due to computational constraints but
represents an important direction for future research. Additionally, we did not run experiments across
multiple random seeds to quantify variance. Although the inherent stochasticity of PGD introduces
some variability, incorporating multiple seeds would significantly increase computational costs.

B Extended Related Work and Background

B.1 Adversarial Robustness

Shortly after the success of AlexNet [8], it was found that neural networks are very susceptible to
adversarial attacks [9, 10]. Here, an adversary makes, usually small and imperceptible, modifications
(perturbations) to, for instance, an image such that a model mislabels it.

Attacks Many attacks have been developed over the years with various benefits and drawbacks.
Some of the most noteworthy are FGSM (Fast Gradient Sign Method) [10], iterated FGSM or iFGSM
[11], CW (Carlini & Wagner) [12], and PGD (Projected Gradient Decent) [13]. Additional attacks
that have often been used are APGD [59], DeepFool [60], and ZOO [61]. We refer the reader to the
original papers for specific details, but we include the necessary details to understand this paper in
Appendix C. The main thing to know is that PGD has a perturbation budget ϵ and number of iteration
it can perform n. PGD then does projected gradient decent for n iterations to find an adversarial
example that is at most ϵ distance in l∞ from the original image.

The above attacks fall into three broad categories: FGSM, iFGSM, PGD, and APGD are l∞-bounded
attacks, CW and DeepFool are l2-bounded attacks, and ZOO is a gradient-free attack using the
predicted confidence scores for each class. PGD can also be implemented as an l2-bounded attack.

When the defense includes randomness, a common attack augmentation is EoT (Expectation over
Transformation), in which gradients are averaged over multiple forward and backward passes [14, 7].
If the defense causes the gradients to be infeasible to compute, Athalye et al. [14] suggested Backward
Pass Differentiable Approximation (BPDA), where the defense is used during the forward pass, but a
differentiable approximation is used during the backward pass. The simplest is to use the identity
function, while more advanced methods might train a differentiable surrogate model g′ that emulates
the defense g; i.e., g(x) ≈ g′(x).

Moosavi-Dezfooli et al. [62] show in their work “Universal adversarial perturbations” that adversarial
perturbations transfer to other data samples and models; Szegedy et al. [9] already hinted at this
years before. Several later studies have explored this [63–65], attempted to explain the effect [66],
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and shown the effect also exists for language models [67]. The transfer effect allows for another
frequently used technique of black box attacks, where perturbations are generated for one model and
applied to a black box model [4]. Another branch of black box attacks looks only at the prediction
labels of a model to generate attacks [68].

However, as highlighted by Sheatsley et al. [6], these are only a small set of all the attacks that
could be considered. The list of possible attacks is heavily dependent on the threat model used
[4, 6], and if one relaxes the often-used imperceptible assumption, then there exists a wide range of
semantic-preserving attacks [69–71], and natural adversarial examples [72, 73].

Lastly, often the best attack results are found using adaptive attacks [4–7]. Here, the attacks, for
instance, the optimization objective, are adjusted to the defense. It is thus vital to consider adaptive
attacks when a defense is resistant to standard gradient-based attacks. This work focuses on adaptive
attacks with PGD as the underlying optimization method.

Defenses Given the prevalence of adversarial attacks, many researchers have explored how to
defend against them. We broadly view this in three groups: Architecture improvements [15–17],
adversarial training [9, 10, 13, 18, 17], and adversarial purification [19–21, 2].

The architecture branch focuses on making the models more robust by design, for instance, by taking
inspiration from biology to mimic the human eye when training a ResNet model [17].

Adversarial training, as formalized by Madry et al. [13], is perhaps the most straightforward method
and consists of showing the model adversarial examples during training to ensure it classifies these
correctly. This method has yielded positive results [9, 13], but models with adversarial training can
be broken [7]. They also experience a drop in clean accuracy (accuracy on images without adversarial
perturbations) [13, 4], and the robustness may not carry over to other attacks [7].

The idea of adversarial purification is to remove the adversarial noise in images before passing
the cleaned images to pretrained classification models. It is motivated by the work of Ilyas et al.
[22], hinting that adversarial examples perturb brittle features in the model. These methods should
work independently of any robustness applied to the classifier through adversarial training or robust
architectures. Two noteworthy works using diffusion-based models to remove the adversarial noise
are Nie et al. [19], Lee and Kim [23].

In the realm of adversarial purification, diffusion models have been proposed as a way to remove ad-
versarial noise from input images [19, 23]. These approaches are conceptually similar to compression-
based defenses with realism: both aim to project adversarial examples back onto the manifold of
natural images to restore classifier performance. However, prior work on diffusion-based purification
has not explicitly investigated the role of realism as a contributing factor to robustness.

One major drawback of diffusion-based defenses is their computational cost. Diffusion models are
typically an order of magnitude more expensive than VAE- or GAN-based learned compression
models, making them impractical for many real-world settings [24, 25]. This high cost limits their
deployment and complicates the evaluation of robustness: mounting effective adversarial attacks
against diffusion models becomes significantly harder due to the computational overhead. However,
simply making gradients difficult to compute does not equate to genuine robustness. A well-designed
adaptive attacker, given sufficient resources, should still be able to circumvent such defenses [4, 23].

Notably, the purification method proposed by Nie et al. [19] was later defeated by Lee and Kim [23].
However, the latter only evaluated their improved defense under the attack that broke the former.
They did not develop new adaptive attacks tailored to their defense—a strategy that past research
suggests would likely reduce the effectiveness of the defense. The history of adversarial robustness
research shows that defenses that are not tested under strong, tailored attacks often overstate their
robustness [14, 4, 5].

RobustBench The considerable interest in adversarial examples has given rise to benchmarks and
leaderboards, one of which is RobustBench [54]. This provides a leaderboard of models that are
supposed to be robust to adversarial examples. However, note that Fort and Lakshminarayanan [17]
claimed their model beat the RobustBench leaderboard, but, using adaptive attacks, Zhang et al. [7]
showed that the model is still very vulnerable to adversarial examples.
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We will use RobustBench as a source of robust models, and thus enable us to test if compression-
based purification would help as claimed in [2]. For this, we take top-performing models from the
leaderboard with open-sourced model weights and test whether the compression-based purification
defenses improve the models’ robustness.

B.2 Realism

Image compression algorithms are traditionally evaluated using distortion metrics such as PSNR
or SSIM, which measure the distance between a restored image x̂ and its reference x. Formally,
distortion is defined as:

D := E(x,x̂)∼(pX ,pX̂)[∆(x, x̂)], (4)

where ∆(·, ·) is a pointwise distortion measure (e.g., ℓ2 distance), and pX , pX̂ denote the distributions
of ground truth and reconstructed images. Distortion is considered a full-reference metric, requiring
access to the original image x to compare it to the reconstructed version x̂.

However, metrics such as PSNR, MS-SSIM [26], or LPIPS [27] correlate poorly with human
perception, and directly quantifying perceptual distortion remains a challenging problem. Instead of
a perceptual distortion metric, one can also measure both distortion and realism and optimize the
compression model for both. Realism can be formally defined as:

R := −d(pX̂ , pX), (5)

where d(·, ·) is a divergence measure, such as Kullback-Leibler. Unlike distortion, realism is a
no-reference metric, requiring only the generated image distribution to match that of natural images.
Although measuring realism remains challenging [28], a widely used proxy is the Fréchet Inception
Distance (FID) [29], which compares the distributions extracted by a pretrained Inception network.
FID has gained popularity for capturing both fidelity and diversity in generated samples.

Compression models are typically trained with the following loss function:

L = LRATE + λD − βR, (6)

where LRATE represents the estimated rate, or in other words, the number of bits required to represent
the image after it has been compressed, λ controls the level of distortion, and β the level of realism.
Since the information is not transmitted through an explicit information bottleneck in our approach,
the rate term LRATE does not play a critical role in this context.

Blau and Michaeli [74] prove that there exists an inherent tradeoff between distortion D and realism
R. Specifically, reducing one inevitably increases the other, regardless of the choice of distortion or
divergence. This theoretical result underpins the empirical observation that GAN-based methods,
which maximize R through adversarial training, tend to increase D while producing perceptually
convincing outputs.

Our work builds on this foundation, exploring the intersection of realistic compression and adversarial
robustness. We extend the existing literature by providing experimental evidence that realism, rather
than distortion minimization, makes image-compression models (partially) robust against adversarial
examples.

B.3 Compression Models

End-to-End Optimized Image Compression [31] jointly learns analysis and synthesis transforms along
with an entropy model over quantized latents, directly optimizing rate–distortion performance in a
VAE-style framework. The Hyperprior model [45] extends this approach by introducing a secondary
network that predicts spatially adaptive Gaussian scales, better capturing local image statistics. HiFiC
[33] enhances learned compression with GANs to produce realistic reconstructions. By refining
network design and training with perceptual losses, it generates outputs that closely resemble natural
images.

ELIC [32] introduced uneven channel grouping and deeper autoregressive context networks for
more accurate entropy modeling, yielding faster convergence and lower bitrates. PO-ELIC [34] then
augmented this foundation with adversarial fine-tuning and perceptual losses to enrich texture realism
at low bitrates.
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More recent work has shifted toward models that offer explicit, user-controllable trade-offs between
rate, distortion, and realism within a single network. MRIC [37] introduced a conditional generator
that, at a fixed bit rate, lets users interpolate between low-distortion and high-realism reconstructions
by tuning a realism flag β, thereby explicitly navigating the distortion–realism trade-off within
a single model. CRDR [38] built on this by adding a discrete quality-level input q alongside β,
and embedding interpolation channel attention layers in both encoder and generator to yield true
variable-rate compression, allowing joint control over bitrate, distortion, and realism with one
network.

Diffusion models are great at generating images, which is also taken advantage of in image compres-
sion. Models [75–79] that focus on extra low bitrate or extra high realism without worrying about
compute use diffusion. These methods are orders of magnitude more expensive than VAE-based
methods, but achieve great realism.

Reducing computational complexity has also been a focus in compression with the line of work like
Cool-Chic [80] and C3 [81]. These methods overfit a latent, auto-regressive latent model and decoder
to a single image, and send all three over the channel. High realism can be achieved at this level of
complexity [82], but as these models are INRs, computing a gradient through the compression model
is not straightforward, and encoding is computationally expensive.

B.4 Compression as adversarial defense

Using compression as a defense for neural networks is not a new idea. It has been explored for almost
a decade [1, 39–42] where some authors also explored using iterated compression and decompression
cycles [42, 2]. And more recently, using video compression to defend video classifiers [83] and
model quantization to defend general models [84].

Two key works in this area are by Guo et al. [1] and Shin and Song [3]; the former argued that
JPEG compression as a preprocessing step is a very effective adversarial defense while the latter
showed that, by making JPEG differentiable, this defense could be bypassed entirely–highlighting
the necessity of properly evaluating a defense.

C Details on Adversarial Attacks

PGD is a very strong attack, and most defenses in a white-box setting can be broken by it when using
the right objective.1

For the rest of this section, let f be a neural network, L a loss function, x an input with corresponding
output y, and ∇xf(x) the gradient of L(f(x), y) with respect to x.

FGSM computes the gradients of the loss function with respect to the image’s pixel values, takes
the sign of the gradients, and multiplies by ϵ, where ϵ is a small number, usually 4

255 for ImageNet
images and 8

255 for CIFAR-10 images. The attack can be written as:

FGSM(f, x) = x+ ϵ · sign(∇xf(x)).

iFGSM uses two extra parameters α < ϵ and n. iFGSM then takes n FGSM steps, by default n = 10,
of size α ensuring the final perturbation is within the l∞ ball of size ϵ.

iFGSM(f, x) = xn

x0 = x

xi+1 = Clipx,ϵ (xi + ϵ · sign(∇xif(xi)))

where Clipx,ϵ clips xi to be within the l∞ ball of radius ϵ of x.

PGD works almost entirely like iFGSM; however, there are two key changes. 1) It randomly initializes
x0 in the ϵ l∞-ball. 2) With the stochasticity from 1), it includes the option for restarts, and thus
running the optimization again.

1Personal communication with Nicholas Carlini with further evidence in [7].
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STRENGTH DEFENSE STANDARD
BB

PGD
WB
PGD

ST
BPDA

U-NET
BPDA ACM ARA

4/255

HYPERPRIOR 78.73 48.76 78.84 10.94 0.98 78.82 —
HIFIC 61.53 59.52 11.83 44.65 24.04 59.20 —
MRIC LR 52.80 51.04 26.68 — — — 26.68
MRIC HR 63.06 59.28 39.00 — — — 39.60
CRDR LR 46.02 44.92 16.30 39.36 28.96 41.28 16.30
CRDR HR 61.72 59.80 35.88 56.36 47.62 55.67 34.50
JPEG 70.30 65.68 8.72 18.70 5.19 68.67 —
ELIC 60.03 58.79 16.43 40.00 17.98 54.48 —

8/255

HYPERPRIOR 78.73 27.16 78.72 3.18 0.02 78.67 —
HIFIC 61.53 56.84 6.65 32.19 7.98 55.37 —
MRIC LR 52.80 49.44 12.20 — — — 12.20
MRIC HR 63.06 57.38 21.98 — — — 21.10
CRDR LR 46.02 44.14 8.60 33.58 12.12 36.96 8.60
CRDR HR 61.72 57.36 23.92 50.77 26.64 49.35 21.18
JPEG 70.30 60.76 5.19 10.01 0.24 64.75 —
ELIC 60.03 57.59 9.01 27.24 4.98 51.63 —

16/255

HYPERPRIOR 78.73 6.99 76.94 1.96 0.00 76.82 —
HIFIC 61.53 51.67 3.08 25.53 1.80 45.17 —
MRIC LR 52.80 49.40 2.90 — — — 2.90
MRIC HR 63.06 52.90 7.26 — — — 6.40
CRDR LR 46.02 41.40 4.10 30.38 2.96 27.82 4.10
CRDR HR 61.72 52.70 13.93 47.10 7.98 36.68 11.42
JPEG 70.30 49.48 2.86 6.58 0.01 52.99 —
ELIC 60.03 54.68 4.10 20.62 0.34 36.47 —

Table 5: Extended version of Table 3 with the 16/255 results. Results for ResNet50. “—” denotes
values not implemented for MRIC or evaluations invalid without realism control. Models with strong
gradient masking, like Hyperprior, are vulnerable to adaptive attacks. Realism does not increase
gradient obfuscation, so both high-realism models retain accuracy with minor drops under adaptive
attacks.

D Extended adaptive attacks

We show in Table 5 complete results for the adaptive attacks applied to the ResNet model.

We show in Table 6 results for the adaptive attacks applied to the ViT model.

E Hyperparameters

This section includes information about the hyperparameters used during our experiments. Unless
stated otherwise (e.g, number of steps or epsilon as columns/rows of the table), we use the following
in Tables 7 and 8.

For the Adaptive Realism attack, the realism parameter was chosen amongst the beta values specified
in Table 8. The results of this experiment can be found in Table 9.

We use the 50000 images from the ImageNet validation set for most of our results. Exceptions are the
U-Net BPDA in Table 3 and Table 6, the results in table Table 2 and the results of the ARA ablation
in Table 9

F Training U-Nets for BPDA

The U-Net used to approximate the compression and decompression step in the BPDA attack follows
a standard U-Net architecture [50]. We use two downsampling layers, which transform the input
images from a resolution of (3,224,224) to an intermediate representation of (256,56,56). For each
experiment, we train the U-Net on the whole dataset used in the experiment. The U-Net is trained
for 20 epochs using the L1-loss between the input image (original image with or without adversarial
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STRENGTH DEFENSE STANDARD
BB

PGD
WB
PGD

U-NET
BPDA

ST
BPDA ACM ARA

4/255

HYPERPRIOR 80.38 7.47 80.51 1.72 0.20 80.46
HIFIC 70.76 62.12 10.06 39.78 22.56 69.32
CRDR LR 52.24 49.24 14.44 24.82 33.38 48.64 14.44
CRDR HR 68.82 62.30 28.28 53.22 41.76 63.90 27.28
JPEG 74.80 36.86 2.70 5.54 0.88 73.92
ELIC 68.24 60.44 16.21 27.36 14.12 63.16

8/255

HYPERPRIOR 80.38 0.61 80.25 0.16 0.00 80.38
HIFIC 70.76 56.30 2.64 24.68 4.00 67.12
CRDR LR 52.24 46.14 6.98 13.10 21.12 43.16 6.98
CRDR HR 68.82 57.43 16.68 39.60 14.90 60.44 13.86
JPEG 74.80 15.34 0.94 1.14 0.04 71.50
ELIC 68.24 54.82 6.20 15.22 2.38 59.99

16/255

HYPERPRIOR 80.38 0.01 78.65 0.12 0.00 78.48
HIFIC 70.76 46.24 0.54 14.32 0.16 59.56
CRDR LR 52.24 40.60 2.16 8.74 14.08 32.32 2.16
CRDR HR 68.82 49.48 9.31 28.38 2.46 50.62 6.34
JPEG 74.80 1.66 0.28 0.54 0.00 62.80
ELIC 68.24 43.70 1.00 8.52 0.10 45.94

Table 6: Results for ViT

CRDR LR QUALITY=0 β = 0
CRDR HR QUALITY=0 β = 5.12

MRIC LR WEIGHTS=128 β = 0
MRIC HR WEIGHTS=128 β = 2.56

HYPERPRIOR QUALITY=8

HIFIC WEIGHTS=LOW

ELIC WEIGHTS=0016

JPEG QUALITY=25

Table 7: Hyperparameters used for the compression models. Weights indicate the designation of
the pretrained weights used, quality indicates the quality parameter for compressions with variable
quality, and beta indicates the realism parameter for compressions with variable realism.

noise) and the target image (reconstruction of the input image) using an Adam optimizer with a
learning rate of 0.001 and a learning rate schedule. The learning rate scheduler is StepLR from
PyTorch, configured with a step size of 5 and a gamma of 0.1. During an epoch, each batch is used 4
times, 3 passes with additional noise added to the images to simulate adversarial noise, and one clean
pass with the original images.

G Extended results

G.1 Attacking Adversarial Purification

We ran a limited attack on a diffusion-based adversarial purification defense [23]. Since running (and
attacking) this defense is more computationally expensive compared to the compression models used
in the other results shown in this paper, we focused on a smaller part of the ImageNet dataset.

We ran a U-Net BPDA attack on 100 images. Table 10 shows the accuracy of an attack with epsilon
8/255. The attacked accuracy of 69% shows that the U-Net attack was not able to produce practical
gradients, as the accuracy is higher than the base accuracy. The attack proposed by [23] showed an
accuracy of 42.15% with an even lower epsilon of 4/255. In addition, we apply a very aggressive
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PGD ϵ = 8/255 α = ϵ/4 STEPS= 10 RANDOM START=TRUE

ST BDPA ϵ = 8/255 α = ϵ/4 STEPS= 10

U-NET BDPA ϵ = 8/255 α = ϵ/4 TRAINING EPOCHS= 20 ATTACK STEPS = 100

ACM ϵ = 8/255 LOSS = MSE STEPS= 20

ARA ATTACK=PGD β ∈ {0.0, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12}

Table 8: Hyperparameters used for the different attacks. Epsilon is the maximum perturbation allowed
for an adversarial image, alpha controls the maximum perturbation added per step.

β
MODEL DEFENSE STANDARD 0 0.16 0.32 0.64 1.28 2.56 5.12

RESNET50

CRDR LR 46.02 8.60 14.98 17.30 21.14 23.08 26.72 29.84
CRDR HR 61.72 28.82 22.12 21.70 21.18 21.60 22.90 24.32
MRIC LR 52.80 12.20 22.60 24.60 28.10 30.10 31.40 —
MRIC HR 63.06 31.90 25.20 22.40 21.80 21.10 21.98 —

VIT CRDR LR 52.24 6.98 11.06 12.12 14.68 16.10 19.46 24.50
CRDR HR 68.82 19.12 14.82 13.86 14.20 14.64 15.76 17.02

Table 9: Comparison of different realism values used in the Adaptive Realism Attack at ϵ = 8
255 .

CRDR LR uses β = 0 in the defense, CRDR HR uses β = 5.12. The bold values represent the
strongest atttack an were used in Table 3 and Table 6.

attack with an epsilon of 64/255. However, Table 10 shows that the results are comparable to adding
random noise to the image, showing that the gradients carry no usable signal.

Figure 4: Three different diffusion outputs for the same input image. These showcase the large
differences the diffusion models can introduce and thus what the adversarial noise must be robust to.

We assume that the U-net failed to capture the large variance shown by the diffusion model. Figure 4
shows the large visible variance in diffusion output images. Since the training, especially the creation
of a dataset of diffusion input-output image pairs, was computationally expensive, we did no further
experiments with the U-net attack–we utilized approximately 2,000 additional GPU hours for this
experiment.

We also ran the PGD + EOT attack from [23] for epsilon 8/255 and 100 PGD iterations. The weaker
defnse we attacked used just 9 diffusion steps. This allows us to compute the gradient through the
entire defense. To better evaluate our results, we compute the accuracy of the full defense + classifier
after every PGD iteration. We started the attack with 64 correctly classified images. Figure 5 shows
the decrease in accuracy over 100 PGD iterations. The non-deterministic nature of the diffusion
model leads to a certain variance in the accuracy at higher iterations. We therefore report the average
accuracy of 28.1% over iterations 50 to 100 and the minimal accuracy of 21.9%. The bottom graph
in Figure 5 shows the percentage of images that have never been missclassified up to the current PGD
iteration. Evaluating this metric provides an estimate of worst-case adversarial robustness, which is
14.1% after 100 iterations.
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ACCURACY
ATTACK EPSILON CLEAN ATTACKED

U-NET 8/255 68.0 69.0
U-NET 64/255 63.8 12.0
NOISE 64/255 61.3 27.0
PGD + EOT 4/255 70.7 42.15

Table 10: Accuracy of the U-net attack on adversarial purification. The PGD + EOT are from [23].
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Figure 5: Accuracy of the adversarial purification defense for 100 iterations of PGD. The blue curve
shows the accuracy for every iteration, and the orange curve shows the fraction of images that have
never been misclassified up to that iteration.

The numbers reported above are for a subset with 100% clean accuracy (i.e., they correspond to
100%−ASR). Thus, after accounting for the model accuracy of 70.7%, the average accuracy is 19.9%,
placing it only slightly higher in accuracy than CRDR with high realism (cf. Table 2).

The results of this second experiment show that evaluating a diffusion-based defense not only requires
significant computational effort but is also inherently more challenging due to the variance in model
output, as incorrect predictions can occur for otherwise correctly classified images. This makes direct
comparisons of the attack success rate (ASR) to other defenses more challenging.

For the second attack on diffusion-based purification models that was successful, we used two A100s
for two days. Thus, scaling up the attacks will be difficult as this puts the processing rate at 16 images
per day for an A100. Faster diffusion models, such as the model by Lei et al. [85], might make
larger-scale experiments feasible; however, the authors do not provide trained model weights.

G.2 Distortion vs Realism

As shown in Figure 6, robust accuracy increases monotonically with realism. This trend does not
hold for distortion: there exists an optimal level of distortion that balances preserving informative
content from the original image while removing adversarial perturbations. Interestingly, the optimal
distortion level shifts higher as realism increases. This can be attributed to artifacts introduced by
compression—excessive artifacts can act as adversarial perturbations themselves. By incorporating
realism that mitigates such artifacts, stronger compression-based defenses become possible. For
many models, performance gains from increased realism have not yet saturated, although these
models were not originally designed to operate at higher values of the β parameter. While prior work
has established that a certain distortion (or quality) level yields optimal adversarial robustness with
compression, our work is the first to systematically investigate the role of realism. We demonstrate
that defenses lacking realism are significantly easier to attack.
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Figure 6: Impact of realism and distortion on robust accuracy for CRDR and MRIC. Realism and
distortion are measured by the training parameters λ and β, respectively, and normalized to their
minimum and maximum values. Note that for MRIC, pretrained weights are only available at two
distortion levels. Higher realism in reconstructed images improves robustness against adversarial
attacks. However, excessive distortion can degrade accuracy, suggesting the existence of an optimal
distortion level that balances detail preservation and defense effectiveness.

G.3 RobustBench

Instead of evaluating against standard (adversarially weak) classifiers, one can use pretrained robust
classifiers to assess whether realism offers additional benefits in already robust settings. We ran
the compression-based defense on the top 11 models from RobustBench [15, 55–58]. The results
in Table 11 show that applying CRDR with high quality and high realism does not improve per-
formance—in fact, it consistently reduces accuracy across all tested robust models. While CRDR
benefits standard models by projecting inputs back onto the natural image manifold, we see two rea-
sons for these results. 1) The information loss and subtle degradations introduced by compression can
harm standard and robust accuracy when applied to already robust models, as the compression may
discard the specific features these robust models have learned to utilize for classification, explaining
why performance decreases rather than increases. 2) The robustified models have been overfitted
to ImageNet images ([86, 87]) without any noise and images with exactly the type of noise PGD
produces. We leave it for future work to resolve which, if any, of these explanations are correct.

G.4 Iterative Defenses

It was claimed in prior work that applying compression iteratively strengthens adversarial defenses
[2]. However, we show that this effect is primarily due to gradient masking rather than true robustness
(cf. Table 12 in Appendix G.4). When attacking an iterative defense by approximating gradients
using fewer defense iterations, the gradients remain informative, and accuracy can be reduced to
levels comparable to using a single defense iteration.

As shown in Figure 7, the most effective defense configuration for CRDR involves multiple defense
iterations with low compression quality and high realism. Interestingly, the optimal attack against
this configuration uses fewer iterations to approximate the gradients. In contrast, attacks that match
the defense in the number of iterations perform worse. This further indicates that CRDR still exhibits
some gradient masking, which standard PGD attacks fail to overcome fully (cf. Section 4.3).
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STANDARD 4/255 8/255 16/255
MODEL BASE CRDR BASE CRDR BASE CRDR BASE CRDR

AMINI CONVNEXT-L [56] 78.58 76.04 61.98 57.08 43.98 36.20 18.30 11.84
AMINI SWIN-L [56] 78.98 77.10 65.12 60.18 49.42 41.66 25.06 17.28

BAI NUTS [55] 81.48 80.12 70.66 66.76 51.10 46.04 14.28 11.62
LIU CONVNEXT-B [58] 77.16 74.48 58.40 53.34 39.44 33.06 18.34 13.48
LIU CONVNEXT-L [58] 78.62 76.18 60.48 55.26 41.44 34.32 19.80 14.24

LIU SWIN-B [58] 76.78 74.62 59.80 53.80 41.08 34.60 19.80 13.84
LIU SWIN-L [58] 79.00 77.12 61.94 57.04 43.04 36.76 22.24 16.00

SINGH CONVNEXT-B [15] 75.94 73.52 58.00 52.18 38.84 32.62 16.18 12.08
SINGH CONVNEXT-L [15] 77.66 75.16 60.32 54.84 41.86 35.24 19.12 15.02

XU SWIN-B [57] 77.26 74.90 58.58 53.62 39.18 32.88 16.32 12.40
XU SWIN-L [57] 79.40 77.30 62.32 57.00 42.20 35.86 19.06 14.72

Table 11: Accuracy (%) for RobustBench models attacked by PGD and then defended using iterative
CRDR in a white-box setting. Bold highlights better performance between Base and CRDR for
each pair. We take the 11 top-performing models from https://github.com/RobustBench/
robustbench under ImageNet.

ITERATIONS

DEFENCE ATTACK STANDARD PGD

50 50 69.92 67.92
50 25 69.92 65.74
50 10 69.92 58.76
50 5 69.92 43.56
50 1 69.92 7.10

10 10 69.94 58.94
10 5 69.94 43.20
10 1 69.94 7.02

1 1 71.54 5.50

50 25 69.92 65.74
25 25 69.92 65.72
10 25 69.94 65.90

5 25 69.98 66.04
1 25 71.54 68.14
0 25 80.64 78.94

Table 12: Accuracy (%) for iterative JPEG defenses as in [2]. Performing the attack (PGD with
epsilon 8/255) on a defense with just one iteration defeats the iterative version. The robust accuracy
seems connected to the number of iterations in the attack, not the defense.

G.5 Structure of the adversarial noise

As shown in Figure 8, CRDR structures the adversarial noise. The image cannot be altered unstruc-
tured; the compression model ensures that the perturbation follows the image’s inherent structure.
When attacking CRDR with high realism, the attack can also modify the generated texture, compared
to low realism.

H Computational Resources

The experiments were conducted on an internal cluster equipped with RTX 3090s and RTX 2080
TIs. In total, we have logged almost 5000 GPU hours for the experiments and testing. Most of the
compute was spent on exploration and the diffusion experiments, with over 2000 hours being spent
on the latter alone.
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Figure 7: Robust accuracy (%) under iterative defenses and PGD attacks with ϵ 8/255. Rows indicate
the number of attack iterations; columns indicate the number of defense iterations. Darker colors
represent lower robust accuracy. Increasing the number of JPEG defense iterations leads primarily
to gradient masking. In contrast, CRDR shows modest gains from iterative defense under weaker
attacks.
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Figure 8: Comparison of original and attacked images, their differences, and reconstructions. CRDR
with low realism and high realism, original, attacked, adversarial noise, reconstructed, reconstructed
attacked, and the difference between the two reconstructed. For better visualisation, the magnitude of
the adversarial noise and reconstructed difference is multiplied by 10 and 3, respectively. We used
our default PGD attack with ϵ = 8/255 and n = 10 iterations.
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