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Abstract

While existing research on Multilingual CLIP (MCLIP) has prioritized model
architecture design, our work uncovers a critical challenge in practical adaptation:
fine-tuning MCLIP through a single source language risks diminishing its multilin-
gual capabilities in downstream tasks due to cross-linguistic disparities. To bridge
this gap, we systematically investigate the role of token similarity in cross-lingual
transferability for image-text retrieval, establishing it as a key factor governing
fine-tuning efficacy. Building on this insight, we propose two novel strategies to
enhance efficiency while preserving multilinguality: 1) TaPCL dynamically opti-
mizes training by prioritizing linguistically distant language pairs during corpus
sampling, reducing redundant computation, and 2) CiPCL enriches the source
corpus with multilingual key terms, enabling targeted knowledge transfer without
reliance on exhaustive parallel data. By strategically balancing token similarity
and domain-critical information, our methods significantly lower computational
costs and mitigate over-dependence on parallel corpora. Experimental evaluations
across diverse datasets validate the effectiveness and scalability of our framework,
demonstrating robust multilingual retention across languages. This work provides
a principled pathway for adapting MCLIP to real-world scenarios, where com-
putational efficiency and cross-lingual robustness are paramount. Our codes are
available at https://github.com/tiggers23/TaPCL-CiPCL.

1 Introduction

Cross-modal retrieval aims to retrieve the corresponding data across different modalities using a
query from one modality. With the emergence of large numbers of images on social media platforms
such as Twitter and Facebook, accurately retrieving multimedia contents has become a significant
challenge, making research on cross-modal retrieval a hot topic. In recent years, visual-language
pre-training models like CLIP [1] have gained significant attentions. Models such as CLIP effectively
calibrate the visual and language modality representations during the pretraining phase, making them
well-suited for tasks such as image-text cross-modal retrieval. Early research on CLIP primarily
focuses on English. Considering that there are more than 7,000 languages worldwide, recent studies
have extended the multilingual processing capability of the CLIP model to build Multilingual CLIP
(MCLIP) models, which can support image-text retrieval applications in different languages.

However, current studies on MCLIP primarily concentrate on the construction of multilingual
pre-training models, e.g., building multilingual pre-trained CLIP models through joint learning of
multiple languages [2, 13} 14} 5,16, 7} 18} 9], or expanding the multilingual capability of the CLIP model
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Figure 1: A person who has learned new domain-specific knowledge in English can comprehend that
knowledge in French by simply learning the French description for the key terminology about the
corresponding knowledge.

incrementally based on the continual learning framework [[10]. In this work, we further focus on how
to maintain the multilingual capability of the MCLIP model during its adaptation for downstream
applications. In practical applications, MCLIP models are usually fine-tuned via one language
(i.e., source language) to enhance its performance in relevant tasks. Due to inherent differences
between languages, the performance improvements for other languages (i.e., target languages) are
typically inferior compared to the improvement in the source language, leading to a degradation of
the multilingual capability of the MCLIP model on downstream tasks. Therefore, this work will focus
on multilingual generalizable fine-tuning strategies for MCLIP, enabling each language to perform
well in the corresponding downstream tasks.

Similarly to existing cross-lingual learning studies [[11} 12} [13], a common approach is to translate the
source language corpus into target languages, and use the resulting parallel corpus of target languages
alongside the source language corpus to fine-tune MCLIP models. Considering that the MCLIP
model usually involves a large number of target languages, directly incorporating parallel corpora
for fine-tuning will lead to a massive increase of training data for each downstream task-specific
adaptation of the MCLIP model. As a result, this will cause substantial computational overhead,
significantly compromising fine-tuning efficiency, and hindering the flexible deployment of MCLIP
models for downstream applications. Therefore, this work will focus on how to implement efficient
fine-tuning of MCLIP models in downstream tasks, i.e., achieving fine-tuning with reduced
computational time while preventing performance degradation compared to directly utilizing
the parallel corpora.

In general, visual knowledge can be transferred across similar languages. For instance, when learning
a visual knowledge domain through English, a person who is proficient in multiple languages can
easily understand the corresponding visual knowledge via other linguistically similar languages
(e.g., French or Italian), without relearning it via French or Italian. Inspired by this observation,
this work will attempt to investigate what factor can influence the knowledge transferability across
languages and how to leverage the knowledge transferability across languages to reduce excessive
reliance on parallel corpora, thereby lowering the computational cost of fine-tuning MCLIP models
for downstream tasks, and achieving a more efficient fine-tuning.

Existing works [14} [15} [16, 17, [18L [19] primarily focus on studying cross-lingual transferability
in unimodal language models such as mBERT [20] and XLM-RoBERTa [21]], exploring different
similarity factors (e.g., token similarity, syntactic similarity, and phonological similarity) for cross-
lingual transfer in tasks such as document classification [22]], natural language inference [11], and
part-of-speech tagging. This work conducts the pioneer attempt to explore influential similarity
factors for cross-lingual transferability in multimodal scenarios. To this end, according to some
preliminary experiments on the correlation between performance improvement in target languages
and different similarity factors (see Figure [2), we find that token similarity between languages
significantly affects the transfer performance, i.e., target languages with higher token similarity to the
source language exhibit more substantial performance improvements after fine-tuning the MCLIP
model with the source language.

With the above findings, this work proposes two efficient fine-tuning strategies to enhance the
computational efficiency in fine-tuning MCLIP models with parallel corpora. Firstly, we propose the
Transferability-aware Parallel Corpora Learning (TaPCL) mechanism by incorporating the influence



of token similarity factors into the downstream adaptation of MCLIP models. For target languages
that exhibit high token similarity to the source language, knowledge transfer from the source to the
target language is more effective, so that those target languages demonstrate notable performance
improvements after fine-tuning on the source language, which can be equivalent to fine-tuning on
those languages. Consequently, directly utilizing all parallel corpora in target languages during
fine-tuning may introduce training redundancy. Under this consideration, our approach employs
language-specific sampling probabilities for different target languages during fine-tuning, rather than
directly considering all target language parallel corpora. By lowering the sampling probability for
languages with high token similarity to the source language, this strategy mitigates the over-utilization
of parallel corpora and reduces redundant computational costs caused by redundant parallel corpora
in target languages, preliminary experiments demonstrate that TaPCL improves fine-tuning efficiency.

Based on the preliminary success of TaPCL, we propose the Critical-information Parallel Corpora
Learning (CiPCL) to further reduce the reliance on parallel corpora. In general, this method is inspired
by the learning mechanism of humans for foreign language knowledge acquisition. Specifically, as
shown in Figure[I] when a person (who is proficient in both English and French) has learned new
domain-specific knowledge in English, he can also comprehend and articulate that knowledge in
French by simply learning the French description for the key terminology about the corresponding
knowledge, without the need to relearn the entire knowledge through French. Similarly, during
pre-training, MCLIP models have already acquired syntactic structures across languages, while the
primary objective of downstream task learning is to gain domain-specific knowledge. Therefore,
by treating the pre-trained MCLIP model as a person who has multilingual capability, the CiPCL
approach mainly focus on applying the learning principle of humans to MCLIP models. To this end,
CiPCL first recognizes key information in downstream image-text retrieval tasks, and incorporates
their descriptions in target languages as critical prompts in the source language corpus, e.g., "A
kagu (cagou in French) standing on a log in forest". By fine-tuning MCLIP models using the source
language corpus augmented with target language prompts for critical information, CiPCL does
not need to specifically construct complete parallel sentences for target languages, significantly
enhancing computational efficiency during fine-tuning. Similarly to our first strategy, we also employ
language-specific sampling probabilities to add the target language prompts for critical information.
Extensive experiments further demonstrate the effectiveness of CiPCL.

To sum up, our contributions can be summarized as follows: (1) We present an initial exploration
of maintaining the multilingual capability of MCLIP models in downstream tasks. To this end, we
also conduct an initial investigation to explore which similarity factors significantly impact the cross-
lingual transferability in visual-language pretraining models. (2) Based on preliminary experiments
and the learning mechanism of human, we propose two efficient fine-tuning strategies for MCLIP
models to reduce computational time and alleviate reliance on parallel corpora while maintaining the
multilingual capability of MCLIP models. (3) Extensive experiments are conducted to demonstrate
both the effectiveness and scalability of our proposed methods.

2 Related Work

2.1 Multilingual CLIP Models

Models like CLIP [1]] calibrate visual and language modal representations in a shared feature space,
enabling cross-modal retrieval by computing the similarity between image and text representations.
The initial works primarily focus on English, while subsequent works also attempt to construct
CLIP models capable of handling multiple languages. Specifically, Reimers et al. [2] and Carlsson
et al. [4] propose to construct multilingual CLIP by distilling knowledge from the text encoder of
the original CLIP to a multilingual text encoder via parallel corpora. Chen et al. [6]] propose to
further distill knowledge from the vision encoder of the original CLIP to improve the image-text
alignment capability of multilingual CLIP. The above works construct multilingual CLIP primarily
by extending the multilingual capability of the original CLIP. OpenCLIP [3]] also proposes to directly
construct multilingual CLIP via pre-training from multilingual image-text data. Recently, Yang et
al. [10] further propose the continual learning paradigm which enables the continuous integration
of new language processing mechanisms into multilingual CLIP models. However, existing works
on multilingual CLIP mainly focus on the construction of multilingual CLIP. This work will further
consider how to maintain the multilingual capability of MCLIP models during its adaptation for
downstream applications.



2.2 Cross-lingual Transfer

Fine-tuning multilingual models typically requires considering cross-lingual transfer mechanisms
between different languages. Existing works primarily focus on studying cross-lingual transferability
for unimodal language models. Specifically, Wu et al. [14] analyze the relationship between token
similarity and cross-lingual transferability across multiple tasks, including document classification,
natural language inference, named entity recognition, part-of-speech tagging, and dependency parsing.
Ahuja et al. [15] develop a multitask performance prediction framework to analyze the importance
of influential factors, thereby enabling more accurate analysis by leveraging data of other tasks
when dealing with tasks involving limited language quantities. de Vries et al. [16] consider different
multiple languages as the source languages and perform analyzes for POS tasks. Limisiewicz et
al. [17]] consider multiple methods and investigate the effects of tokenizer quality and token similarity
on cross-lingual transferability. To further promote cross-lingual transfer when fine-tuning unimodal
language models, David Schmidt et al. [18]] propose to improve the performance of multilingual
models on downstream tasks by integrating two independent fine-tuning phases into a unified stage,
thus providing multifaceted supervision for the fine-tuning process. To maintain robust cross-lingual
sentence representations with minimal alteration to the model’s output representations during fine-
tuning, Tu et al. 23] leverage a prompt-based structure for model adaptation. Yu et al. [24] propose
leveraging mutual supervision between language models during fine-tuning to enhance cross-lingual
transferability. With the recent advances in machine translation [25. [26] (e.g., language translation
enhanced by LLM), cross-lingual transfer can be enhanced by directly leveraging parallel corpora
translated from the source language during fine-tuning [[11} 12} |13]. However, existing works mainly
focus on single-modal models/tasks. For MCLIP models typically involve numerous target languages,
which requires to construct large-scale parallel corpora and introducing substantial training time. In
this work, we present an initial exploration of cross-lingual transfer for image-text retrieval tasks in
MCLIP models and reduce the high computational time caused by the large-scale parallel corpora.

3 Analysis

In this section, we explore influential similarity factors for cross-lingual transferability in multi-modal
retrieval scenes, including the identification of potential similarity factors, their measurement methods,
and the correlation between these factors and transferability.

3.1 Similarity Factors

We adopt token vocabulary overlap to measure token similarity between languages. The token overlap
degree Or, between the source language S and the target language 7}, is defined as:

_VvEn VT
On = ysuva| W

where V¥ denotes the source language token vocabulary, and V7 represents the target language
token vocabulary. Furthermore, we calculate syntactic similarity (Ss,»), phonological similarity
(Spho), and geographic similarity (S,.,) between the source language and the target language using
the linguistic features of the URIEL project [27], following Lauscher et al. [28].

3.2 Analysis Methodology

We fine-tune the MCLIP model using only the image-text dataset of the source language D. The
model is then directly evaluated on target language image-text datasets to measure cross-lingual
retrieval performance. We calculate the performance change ATy, for each language before and
after fine-tuning and analyze the impact of similarity factors on cross-lingual transferability through
visualization techniques and Pearson correlation. To avoid the influence of other factors such as
the different language capabilities of pre-training models in different languages [15, [16], we only
consider languages which can be well perceived by the pre-trained MCLIP model, resulting in 10
language

"The 10 languages are Greek, Spanish, French, Italian, Polish, Portuguese, Swedish, Ukrainian, Chinese-
Simplified.
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Figure 2: The relationship between the four types of similarity and cross-lingual transferability,
Pearson correlation coefficient and p-value is shown in the box.

3.3 Analysis Results

As shown in Figure[2] we observe that token similarity significantly impacts cross-lingual transfer-
ability, and the p-value of the Pearson correlation test is much lower than 0.05, indicating a strong
positive correlation between token similarity and cross-lingual transferability. In contrast, syntactic
similarity (Ssy»), phonological similarity (Spn,), and geographic similarity (Sye,) do not exhibit
a significant influence on cross-lingual transferability. This demonstrates that token similarity is a
critical similarity factor that influences cross-lingual transfer performance.

4 Methods

In this section, we present our proposed efficient multilingual cross-modal retrieval fine-tuning
strategies, including the Transferability-aware Parallel Corpora Learning (TaPCL) and the Critical-
information Parallel Corpora Learning (CiPCL) strategies, the overview of our strategies is shown in

Figure[3]

4.1 Problem Formulation

We formulate multilingual cross-modal retrieval as follows. Given a source language .S and M target
languages {7}, } 2L |, we aim to adapt a multilingual vision-language model to downstream tasks using:

manually annotated source language image-text pairs D% = {(v;, s7)}¥,, where v; € V is an image

and S;g € C® is text description and machine-translated target language corpora C7x = {slT’“ W
generated from C = {s¥}¥ . The target language training set is defined as:
M
D" = J D™, )
k=1

where each DT+ = {(v;, SZT’“) N | contains target language parallel corpora and image pairs.

4.2 Transferability-aware Parallel Corpora Learning

Conventional parallel corpora learning approaches [11,[12}[13]] uniformly sample all target language
training data. Given the target language training set DT, each sample (v;, sLT’“) is sampled in mini-
batch with equal probability:

B

N 3)

Pbase((vi7 S?k) € B) =
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Figure 3: Ilustration of our methods: (a) The overview of TaPCL. (b) The overview of CiPCL.

where 5 is the mini-batch and B is the batch size. This uniform treatment assumes equitable
utilization of parallel corpora across languages.

However, as discussed in Section [3.1] languages with high token overlap require less adaptation
effort. To improve fine-tuning efficiency, we propose to reduce the repeated participation of redundant
target language samples that are similar to the source language in training by decreasing their
sampling probabilities. Specifically, based on the token similarity factor O, calculated by Eq.[T} the
Transferability-aware Weighted Sampling (taws) function P,ys is formulated as follows:
B exp(—Or, /T)

N Z]Ail exp(—Or;, /7')’

where 7 is a temperature hyperparameter controlling the sharpness of the probability distribution.

]Dtaws((viv SlTk) S B) = (4)

By replacing Py, With Py, target language data DT+ with fewer overlaps with the source language
will be assigned a higher sampling probability, while those with large overlaps with the source
language will be assigned a lower sampling probability. In this way, our approach encourages the
model to focus more on adapting to low-overlap languages while reducing computational overhead as-
sociated with high-overlap languages, thereby accelerating downstream task adaptation and lowering
the overuse of parallel corpora.

The overall loss combines source and target language objectives through adaptive weighting:

L=Ls+alr, @)

where Lg implements image-text alignment in source language and £ implements weighted sam-
pling fine-tuning in target language. Both terms use the CLIP contrastive loss:

1
[,5' = w Z ENCE(Uz’, S;S)y (6)
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where Lncg denotes the Noise-Contrastive Estimation loss [[29]]. Based on increasing the sampling
probability of samples that are dissimilar from the source language and reducing the sampling
probability of similar samples, our optimization objective pays more attention to difficult samples,
thereby improving the training efficiency.

4.3 Critical-information Parallel Corpora Learning

To further improve fine-tuning efficiency, we discard the full parallel corpus in the target language
and instead use only source-language samples with key prompts in the target language for fine-tuning,



thereby avoiding redundant training on semantically similar samples. Specifically, for a source
language text s°, instead of constructing complete parallel sentences in target languages, we translate
only the critical top-k word keyS identified in s° into target languages key’*. The critical word
selection is based on attention weights between the [cls] token and other tokens in the last transformer
layer:

H
s
key = a/rgmaxti €s,t; !:t[clg] Z az;:[ (t’H t[cls] )) (8)
h=1
where H denotes the number of attention heads, and o} represents the attention weight between

token ¢; and the [cls] token in head h. If the selected keys is a subword unit, we merge it with adjacent
tokens until form a complete word. We construct key information prompts using the template:

Prompt’* = “Key”* in T},”,

where T}, specifies the target language (e.g., Chinese or French). As shown in Figure[3] the prompt is
inserted into the text in the source language, yielding the prompted text s(*>7%) formally,

sPTe) = (¢, coes bposy,, s (Key™* in T3); tpos,, +15 -+ tn)- )

The training data is sampled through a hybrid strategy:

D = {(vi, )}, (10)
where
. 57 with prob c¢% (an
SEP’T’“) with prob (1 — ¢%) Paws(T%)

To maintain source-language transferability, we randomly retain ¢% of source-language texts without
prompts. The training objective becomes:

1
L=—5 > Lnee(vi5) (12)

|DF| <
(vi,5:)€DF

By fine-tuning without using complete parallel sentences in target languages, we eliminate the depen-
dency on parallel corpora in target languages. This strategy significantly improves computational
efficiency while maintaining multilingual generalization. We use the parameter-efficient learning
approach Adapter [30] to further improve fine-tuning efficiency.

S Experiments

5.1 Experimental Settings

Datasets and Baseline. We evaluate our proposed methods on MSCOCOs¢ [[10] and XM3600 [31]],
both of which are cross-modal retrieval benchmarks involving 36 parallel corpora. The pre-trained
MCLIP models usually have imbalanced abilities across different languages. As shown in [15}16],
the original ability of the pre-trained multilingual language model will affect the performance of
the model in the corresponding language after fine-tuning. As discussed in Section 3] we only
consider 10 languages which can be well perceived by the pre-trained OpenCLIP model in our
experiments (experiments considering all the target langauges are also reported in Table [5] and
Figure [7] of the appendix). For MSCOCOs34 and XM3600, we respectively randomly select 5000
and 2880 samples for training and set English as the source language. For baseline comparisons,
we consider: (1) methods that only use the source language to fine-tune, (2) existing cross-lingual
transfer approaches (prompt-tuning [23]], VME [32]) that do not leverage parallel corpora, and (3)
the recent parallel corpora learning method PCL-base 11,12} [13] which applies uniform sampling
across target languages.

Evaluation Metrics. Our experiments consider both retrieval performance and training efficiency.
To this end, we use rank-based metrics for performance evaluation: Recall@K (RQK) for K =
1,5,10 and RQAvg. Specifically, RQK measures the proportion of samples where the correct



Table 1: Performance comparison of multilingual image-text retrieval and number of iterations on
MSCOCO34 and XM3600.

Method Image-to-Text Text-to-Image R@Avg Iteration Runtime
R@l R@5 R@10 R@1 R@5 R@I10

g Source-only 50.90 80.73 90.70 4930 79.19 89.16 73.33 - -

8 Prompt [23] 5271 81.72 90.54 49.73 78.31 88.68 73.61 - -

© VME [32] 50.75 80.16 8091 5124 79.92 89.83 73.62 - -

8 PCL-base [11J112/[13] 53.02 82.75 91.68 51.71 8148 91.05 75.28 7039 21m02s

= TaPCL (Ours) 54.17 8294 91.66 51.61 81.23 90.72 75.39 4929 14m31s
CiPCL (Ours) 54.17 83.17 91.64 50.68 80.87 90.38 75.15 3519 09m55s
Source-only 75.03 9325 96.66 7129 91.10 94.87 87.03 - -

§ Prompt 23] 75.17 9342 96.81 7146 9125 95.03 87.19 - -

o VME [32] 74.00 9324 96.38 7197 9196 95.78 87.22 - -

E PCL-base [11J112}[13] 76.21 9453 9726 72.86 9249 96.12 88.25 8100 24m42s
TaPCL (Ours) 76.32 9454 9729 7293 9246 96.08 88.27 5680 16m49s
CiPCL (Ours) 76.08 9447 9726 72772 9229 96.11 88.16 4050 12mO05s

Loss Loss

— PCL-base — PCL-base

Step 0.15
0 1k 2% 3K 4K sk 6k 7k 0 2% 4k 6k

(@) (b)

Figure 4: The loss convergence curve on MSCOCO34 and XM3600.

image/text is retrieved within the top- K ranked candidates, while RQAvg is the average of text-to-
image and image-to-text retrieval RQK . Higher values indicate better performance. We report the
average metrics across all languages:

1 M

ROK = l; (RQK)) (13)

where M is the number of languages, and RQK] is the RQK of the [-th language. For training
efficiency, we consider the training iteration number (with each method utilizing the same batch size)
and computation cost until training convergence.

Implementation Details. We adopt the OpenCLIP ViT-B-32-XLM-Roberta-Base model [5] as our
pre-trained multi-lingual CLIP model. For CiPCL, we use M2M100-1.2B [26]] to translate, and we
translate the critical top-1 word (we also report the detailed results with the top-2 and top-3 words
in[A.4]) into target languages. We insert the adapter into the last layer in the model (we also report
the detailed results under different trainable parameter numbers in[A.2]). For the adapter, we set the
up layer output dimension to 256 and the down layer output dimension to 768, and set the dropout
probability of the ReLU activation function to 0.1. The weights of the upper layer are initialized
with a uniform distribution, while the remaining parameters of the adapter are initialized as zero.
The experiments are conducted on Linux with NVIDIA 3090 GPUs, using AdamW optimizer with
cosine learning rate scheduler, and the initial learning rate is 1le—4. We set the batch size to 128 and
a = 0.2, 8 = 0.8. The model is trained for 10 epochs with PCL-base on MSCOCO3¢4, and for 20
epochs on XM3600.

5.2 Main Results

To validate the multilingual image-text retrieval capability of our fine-tuning strategies, we conduct
experiments on MSCOCO3s and XM3600. As shown in Table[I] our fine-tuning strategies achieve
comparable RQK,,, performance to PCL-base, demonstrating equivalent retrieval capabilities.
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Figure 5: The loss convergence curve of ablation study.

In particular, our methods require fewer training iterations than the PCL-base. Specifically, for
MSCOCOj34, TaPCL outperforms PCL-base by 0.11% with reduced training iterations, and CiPCL
shows an acceptable performance degradation of 0.13% compared to PCL-base, offset by 50% fewer
training iterations. And for XM3600, TaPCL outperforms PCL-base by 0.01%, and CiPCL shows less
performance degradation of 0.09%. These results validate that our strategies maintain downstream
task performance while significantly improving training efficiency. We also report the detailed results
on each target language in Table[9]

To verify the training efficiency of our fine-tuning strategies, we plot loss convergence curves of
the three methods on MSCOCO36 and XM3600. As shown in Table[T]and Figure 4] compared to
PCL-base requiring over 7,000 iterations for loss convergence on MSCOCOj3¢ and 8100 iterations
on XM3600, TaPCL reaches loss convergence with only 70% of PCL-base iterations and runtimeﬂ
CiPCL achieves a significantly lower loss than PCL-base with only 50% of its iterations and runtime.
This shows that both proposed strategies can achieve stable loss convergence with fewer training
iterations and runtime, demonstrating their superior capability to adapt to downstream tasks with
reduced computational costs.

5.3 Ablation Study

Ablation Study of TaPCL. For TaPCL, we Table 2: Ablation study of TaPCL on MSCOCO3.
explore whether the improved fine-tuning effi- s, 5., S,o0 Or, R@Avg Iteration Runtime

ciency originates from using token similarity 7528 7039 21m20s
as the primary criterion for adjusting sampling v 75.12 6329 19m12s
probabilities. We fine-tune the model by sepa- v y 730 00 omacs
rately adopting syntactic similarity, geographic v 7539 4929  14m3ls

similarity, and phonological similarity as the al-
ternative primary criterion for adjusting sampling probabilities. As shown in Table[2and Figure [5{a),
we observe that the fine-tuning convergence speeds using other similarity factors as the primary
criterion are significantly slower than TaPCL, which shows that the efficiency improvement of TaPCL
is specifically attributed to using token similarity as the primary criterion.

Ablation Study of CiPCL. For CiPCL, to Table 3: Ablation study of CiPCL on MSCOCOse.
verify the effectiveness of critical information Seym Or, key;, R@Avg Iteration Runtime
prompts, we randomly select words from sam- : : -

75.28 7039 21m20s

ples of the source language and translate them v 7415 3560 10m07s
into target languages as prompts. The modelis v 7443 3594 10m25s
then fine-tuned using samples augmented with v v 75.15 3519 09m55s

these random prompts. As shown in Table [3|and
Figure[5(b), when non-critical information is used as prompts, the retrieval performance decreases sig-
nificantly, indicating that randomly selected prompts fail to facilitate the learning of visual knowledge
for target languages. Similarly to TaPCL, we test CiPCL using syntactic similarity as the primary
criterion for adjusting sampling probabilities. The result shows a significant decline in retrieval
performance, further validating the effectiveness of using token similarity as the primary criterion.

’The initial loss difference is caused by the sampling strategies differ across methods; thus, the first mini-batch
contains different samples, leading to a slight difference in initial losses. By comparing the early-stage slopes of
the loss curves across methods, we can assess the convergence speed.



A person with a shopping cart A woman standing on a tennis A girl with running mascara
on a city street court holding a racquet and a bottle of Bacardi

Figure 6: Sample cases for critical-information selection

5.4 Low-resource Languages Analysis

Based on the analysis in Section [3] we further investigate the factors that influence cross-lingual
transferability on low-resource languages. Following the categorization proposed by Pratik Joshi [33],
we select several low-resource languages and evaluate the Source-only method on them, and calculate
the Pearson correlation between token similarity and performance variation, as shown in Table[d] We
observe that token similarity still has a significant impact on performance gains—Ilanguages with
higher token overlap tend to achieve larger improvements. In addition, token similarity remains
strongly and positively correlated with performance variation.

Table 4: Correlation between token similarity and performance variation in low-resource languages.

Danish Norwegian Romanian Quechua Swahili Indonesian Thai Hebrew Ukrainian

Token similarity 0.19 0.17 0.16 0.16 0.14 0.14 0.03 0.01 0.02
R@Avg variation 1.89 1.77 1.08 0.99 1.05 1.02 0.33 0.23 0.68
Correlation R=0.84,P=0.004

5.5 Critical-information Modeling

Figure [6]shows sample cases for critical-information selection. We can see that the selected critical
information (e.g., the shopping cart) carries the key visual knowledge about the corresponding image,
supporting our claim for our proposed CiPCL method.

6 Conclusion and Limitations

This work focuses on MCLIP models and analyzes the similarity factors that influence cross-lingual
transfer in image-text retrieval tasks. Based on the analysis, we propose two efficient parallel corpus
learning strategies to alleviate the high computational overhead caused by directly incorporating all
parallel corpora. Experiments on two multilingual image-text retrieval datasets demonstrate that the
proposed methods enhance the efficiency of parallel corpus-based fine-tuning for downstream tasks.

TaPCL and CiPCL demonstrate high efficiency when fine-tuning for cross-modal retrieval tasks,
suggesting their potential scalability. In our future work, we will not only focus on coarse-grained
multilingual retrieval tasks but will further investigate the application of TaPCL and CiPCL in
finer-grained vision-language tasks, such as multilingual VQA.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please check the last sentence of the abstract and the last paragraph of Sec.[I}
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please check the second paragraph of Sec. [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please check Sec.[5.11

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Upon acceptance, we will include the links to our data and code in the
camera-ready version of this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please check the "Implementation Details’ section in Sec. [5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: This work does not run experiments multiple times.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please check the *Implementation Details’ section in Sec. [5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work complies with the NeurIPS Code of Ethics in all aspects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work does not present any dataset or benchmark. This work provides
strategies to enhance the efficiency of parallel corpus-based fine-tuning for downstream
tasks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets used in this work are cited in the References.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Results

In this section, we report findings from the following experiments: (1) multilingual fine-tuning
with the expanded language set, (2) multilingual fine-tuning under scalable trainable parameters, (3)
unimodal multilingual model adaptation, and (4) critical information quantity effects in CiPCL. All
experiments are conducted on MSCOCOs5¢.

Loss

— PCL-base

Step

10k

Figure 7: The loss convergence curve on MSCOCOsg in 29 languages.

A.1 Results with All the Target Languages Considered

To further validate the effectiveness of our
method when applied to a wider range of lan-
guages, we expand the number of languages
and exclude languages not involved in the pre-

Table 5: Performance of multilingual image-text
retrieval and number of iterations on MSCOCO3¢
in 29 languages.

- . Method R@Avg Iteration Runtime
training phase of the MCLIP model, resulting
in 29 language{’] As shown in Table [5fand ~ PCL-base ~ 72.73 10940 36m02s
Figure[7] our method maintains strong retrieval ~ TaPCL 73.13 7660 25mlls
performance with fewer training iterations even =~ CiPCL 72.51 5470 17m45s

when scaling to more languages. The conver-
gence speeds of TaPCL and CiPCL are not slowed by the increased number of languages, remaining
faster than the PCL-base. This demonstrates that the effectiveness of our method is not constrained
by language quantity and consistently enhances fine-tuning efficiency when handling multilingual
scenarios.

A.2 Scalability under Different Trainable Parameter Numbers

To verify the effectiveness of our method under varying quantities of learnable parameters, we
configure adapters in different transformer layers. We set ¢ = 8, 9, and 10, and insert adapters into the
layer [ where | > 4, followed by model fine-tuning. As shown in Table [6|and Figure[§] our method
consistently improves fine-tuning efficiency across different adapter configurations, demonstrating
that our fine-tuning strategy remains effective regardless of the number of learnable parameters.

Table 6: Performance of multilingual image-text retrieval and number of iterations on MSCOCOj3¢
with different amounts of adapters.

Method Layer >= 10 Layer >=9 Layer >= 8

R@Avg Iteration Runtime R@Avg Iteration Runtime R@Avg Iteration Runtime
PCL-base 74.31 7039 22m25s 74.53 7039 23m27s 74.70 7039 24m31s
TaPCL 74.51 4929 15m22s 74.72 4929 16m06s 74.94 4929 17mO1s
CiPCL 74.39 3519 11mO05s 74.52 3519 11m42s 74.46 3519 12m08s

3The 29 languages are Arabic, Czech, Danish, German, Greek, Spanish, Persian, Finnish, French, Croatian,
Hungarian, Indonesian, Italian, Hebrew, Japanese, Korean, Dutch, Norwegian, Polish, Portuguese, Romanian,
Russian, Swedish, Thai, Turkish, Ukrainian, Vietnamese, Chinese-Simplified.
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Figure 8: The loss convergence curve on MSCOCOs3¢ with different amounts of adapters.
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Figure 9: The loss convergence on XNLI.

A.3 Scalability to Unimodal Multilingual Model

To validate the portability of TaPCL and CiPCL, Table 7: Performance of natural language inference
we apply them to a unimodal fine-tuning sce- and number of iterations on XNLI.

nario. We fine-tune the multilingual pre-trained  Method Accuracy Iteration Runtime

model XLM-RoBERTa-base [21]] on the XNLI

dataset [[11]], which covers 15 languages, with PCL-base 59.97 21874 1h17m
English as the source language and target lan- TE_‘PCL 60.46 15314 0h52m
CiPCL 59.84 10939 Oh38m

guage training sets derived from English transla-

tions. Following Wu et al. [14], we adopted full

fine-tuning while freezing the parameters of the first 6 layers. As shown in Table[7]and Figure O}
our methods significantly improve fine-tuning efficiency when applied to the unimodal multilingual
model, demonstrating their effectiveness even when applied to single-modal scenarios.

Loss
— CiPCL-top3

Step
500 1k 1.5k 2k 2.5k 3k 3.5k

Figure 10: The loss convergence with different quantities of critical information prompts.

A.4 Effects of Critical-information Quantity

This work further investigates the impact of the number of critical information on CiPCL. Specifically,
we select tokens with top-k attention weights relative to the [CLS] token as key words, where k=2,3.
Subsequently, we construct key information prompts using the selected keywords. As presented
in Table [8| and Figure we observe that neither retrieval performance nor fine-tuning efficiency
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improved further despite an increase in the number of key information prompts. We speculate
that when excessive key information prompts are introduced, these prompts may function as noise
relative to the original English samples. This noise effect potentially creates a counterbalance where
the positive influence of key information prompting is offset by the diminishing effectiveness of
cross-lingual transfer.

Table 8: Performance of multilingual image-text retrieval and number of iterations on MSCOCOsg
with different quantities of critical information prompts.

Method R@Avg Iteration Runtime
CiPCL-top-3  75.05 3519 10m46s
CiPCL-top-2  75.01 3519 10m22s

CiPCL-top-1 75.15 3519 09m55s

A.5 Results on Each Target Language

Table O reports the detailed results on each target language. We can see that our proposed approaches
can obtain competitive performance on each target lanagueg compared to the PCL-base model which
directly utilizes the parallel corpus.

Table 9: Performance of multilingual image-text retrieval and number of iterations on MSCOCOj3¢
with different quantities of critical information prompts.

Method English | Greek Spanish French Italian Polish Portuguese Swedish Ukrainian Chinese
Source-only ~ 78.87 | 71.73 73.33 7430 7437 7183 73.88 71.87 70.88 7223
PCL-base 78.63 74.45 76.02 75.92 76.05 7457 75.78 74.72 72.83 73.85
TaPCL 78.70 | 74.63 76.47 7537 7640  75.17 75.93 73.52 73.12 74.58
CiPCL 7943 | 74.13 75.98 7573 7623 7433 75.43 74.00 72.33 73.90
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