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ABSTRACT

Diffusion models for graph generation present transformative capabilities in gen-
erating graphs for various downstream applications. However, controlling the
properties of the generated graphs remains a challenging task for these methods.
Few approaches tackling this challenge focus on the ability to control for a soft
differentiable property using conditional graph generation, leading to an uninter-
pretable control. However, in real-world applications like drug discovery, it is vital
to have precise control over the generated outputs for specific features (e.g. the
number of bonds in a molecule). Current diffusion models fail to support such
hard non-differentiable constraints over the generated samples. To address this
limitation, we propose PRODIGY (PROjected DIffusion for generating constrained
Graphs), a novel plug-and-play approach to sample graphs from any pre-trained
diffusion model such that they satisfy precise constraints. We formalize the prob-
lem of controllable graph generation and identify a class of constraints applicable
to practical graph generation tasks. PRODIGY operates by controlling the samples
at each diffusion timestep using a projection operator onto the specified constrained
space. Through extensive experiments on generic and molecular graphs, we demon-
strate that PRODIGY1 enhances the ability of pre-trained diffusion models to
satisfy specified hard constraints, while staying close to the data distribution. For
generic graphs, it improves constraint satisfaction performance by up to 100%, and
for molecular graphs, it achieves up to 60% boost under a variety of constraints.2

1 INTRODUCTION

Deep generative models serve as an effective approach to learn the underlying distribution of graph-
structured data (You et al., 2018; Jo et al., 2022; Martinkus et al., 2022; Liu et al., 2019). Recently,
diffusion-based models (Niu et al., 2020; Vignac et al., 2022; Jo et al., 2022; 2023) have shown
impressive performance in generating graphs in an efficient manner and achieving distributional
realism that outperforms most of its contemporary autoregressive and adversarial learning frameworks.
The ultimate objective of the graph generation research field is to enable large-scale simulation of
realistic networks that can help make tangible progress in domains such as network optimization (Xie
et al., 2019), social network analysis (Grover et al., 2019), and drug design (Yang et al., 2022).

However, even with their impressive performance on benchmark datasets, current diffusion-based ap-
proaches have several limitations that keep them away from use in practice: A major limitation stems
from their inability to support meaningful controllable generation. Existing methods sporadically sup-
port controllable generation (often termed conditional generation) by approximating the conditional
probability distribution with the property. This approach requires the property (or its approximation)
to be differentiable and it influences the sampling process in an obscure and uninterpretable manner.
In real-world applications like drug discovery, precise control over the generated outputs for specific
features (e.g., number of atoms in a molecule or the presence of functional groups) is crucial for a
generative algorithm. Such controls are not differentiable and no method exists that can control the
generation for these properties without relying on curating additional labeled datasets or retaining
the entire generative model. This limitation severely restricts the applicability of these methods

1Codes have been provided as part of this submission and will be open sourced upon publication.
2Rebuttal updates are highlighted in purple.
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in graph-related applications where there are several specific structural properties that need to be
controlled when generating from the pre-trained models.

In this work, we fill this gap by investigating the problem of controllable graph generation to generate
graphs from an underlying distribution while satisfying certain user-defined hard constraints on its
structure or properties. Specifically, we propose PRODIGY (PROjected DIffusion for generating
constrained Graphs), a plug-and-play controllable generation method. Inspired by theoretical works
on Projected Langevin sampling (Bubeck et al., 2018), we propose a novel sampling process that
augments the denoising step with a (weighted) projection step onto the given constrained space.
In this vein, we present a novel framework to devise various graph constraints and find efficient
projection operators for them. Through experiments on different generic graphs, we show superior
controllability of our sampling under constraints on a variety of graph properties such as edge count,
triangle count, and others. PRODIGY also showcases its impressive performance in controlling
molecular graph generation for constraints on a variety of properties such as valencies, atom counts,
and molecular weight. This performance is further extended to 3D molecule generation, thereby
demonstrating the ability of our approach to effectively handle complex structures. Finally, we
conduct efficiency, sensitivity, and qualitative study to demonstrate its versatile applicability

2 BACKGROUND & RELATED WORK

Suppose G = (X,A) denotes an undirected graph with the attribute matrix X ∈ Rn×F and the
adjacency matrix A ∈ Rn×n, where n = |V| is the number of nodes. Furthermore, a 3D structure
can be defined as a point cloud G = (X,S) with S ∈ Rn×3 denoting the positions of each node in
the 3-dimensional space. Let G denote the set of all possible graphs (with continuous edge weights)
and point clouds (for the 3D case). All vectors and matrices are represented using bold lowercase
and uppercase characters. We also use 1 and 0 to denote an all-ones and an all-zeros vector with the
appropriate size for the usage, e.g., in A1, 1 denotes a n-dimensional vector.

Diffusion Models For Graphs. Continuous-time diffusion models have demonstrated significant
success in generating graphs for various purposes (Niu et al., 2020; Jo et al., 2022; 2023). These
models are based on the idea of smoothly diffusing an unknown target distribution towards a fixed
noise distribution (typically Gaussian) so that one can reverse it back to sample true data from noise.
Given a graph G(0) ∼ p0, the method follows a ‘forward SDE’ to gradually convert the graph into
Gaussian noise, i.e., G(T ) ∼ pT = N (µ,Σ), for a fixed µ,Σ.

dG = f(G, t)dt+ g(t)dw, (1)

where f : G × t→ G is the drift coefficient, g : R→ R is the diffusion coefficient, and w(t) ∈ G is a
standard Wiener process. In order to generate samples from the unknown data distribution p0, the
forward process is reversed so that samples from the prior distribution can be converted to the target
distribution. Anderson (1982) shows that the reverse process can be given as:

dG = [f(G, t)− g(t)2∇G log pt(G)]dt+ g(t)dw̄, (2)

where w̄ is a reverse-time standard Wiener process and pt denotes the marginal distribution of Gt at
time-step t. ∇G log pt(G) is called the score function at time t.

Since the time-conditional score function is not available for an unknown distribution p0, one estimates
it with a parameterized neural network sθ(G, t) ≈ ∇G log pt(G) by minimizing a score-matching
objective across multiple time steps and training samples. EDP-GNN (Niu et al., 2020) ignores
the diffusion process of X and samples directly from the prior distribution of X. GDSS (Jo et al.,
2022) considers a system of SDEs to efficiently estimate score functions for X and A separately.
DruM (Jo et al., 2023) models the graph topology by conditioning the process on the destination
data distribution using a mixture of Ornstein-Uhlenbeck processes. These models have also been
proposed to predict structures in the 3-dimensional space by generating the positions S and types of
each node in the 3D space (Hoogeboom et al., 2022; Xu et al., 2023).

An alternative set of approaches (Vignac et al., 2022; Chen et al., 2023) focus on extending discrete
diffusion models (Austin et al., 2021) for the graph generation. Specifically, these models sample a
discrete graph Gt from a noisy probability distribution at each timestep t. These approaches attempt
to alleviate the following drawbacks that continuous-time models may encounter when performing
graph generation: the destruction of graph sparsity and extension to arbitrarily many atom types.
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However, in doing so, they lose the ability to facilitate interpretable control during generation due
to the combinatorial explosion of the discrete space that satisfies a constraint and the lack of the
gradient information, that is available in the continuous space. Further, most recent advancements
in continuous-time models (Jo et al., 2023) have been shown to significantly outperform existing
discrete approaches. For these reasons, this work focuses on providing interpretable control for
continuous-time diffusion models and leaves its extension to discrete approaches for future studies.

Controlled Generation. In real-world settings, it is often crucial for practitioners to have control
over the properties of the generated graph, for instance, constraining the number of atoms of a certain
type or the total molecular weight. This is an open and challenging problem with two possible types
of controlled generation: (i) Condition-based Control (Soft) and (ii) Constraint-based Control (Hard).
Below we discuss the properties and usefulness of each type through existing works.

1. Condition-based Control (Soft). The generated outputs are controlled by approximating a con-
ditional probability distribution p(G|c) := p(G|c(G, y)). Typically, the condition c(G, y) =
1{yc(G) = y}, i.e., c(G, y) = 1 if yc(G) = y and 0 otherwise. Note that this does not guarantee
that c(G, y) will hold true for the generated output G. To the best of our knowledge, there have been
sporadic attempts to support control with diffusion models of graph generation, and all existing works
in this space fall under this category of soft control. Conditional denoising models (Hoogeboom
et al., 2022; Xu et al., 2023) learn a conditional score function sθ(G, c) ≈ ∇ log p(G|c). Thus,
each condition type demands a unique model and cannot be used in a plug-and-play manner for
an unconditional model as it requires retraining the model for a new control. On the other hand,
guidance-based diffusion methods (Vignac et al., 2022; Graikos et al., 2022; Lee et al., 2023; Li et al.,
2022) infer p(G|c) from p(c|G) by using the fact that ∇ log p(G|c) ≈ sθ(G) +∇ log p(c|G). This
allows for plug-and-play conditional control on pre-trained diffusion models sθ(G) as long as we can
approximate∇ log p(c|G). When c(·) is not known, it is approximated by a classifier ŷc while when
it is known, the property c is assumed to be a differentiable function of G and y. Classifier-based
guidance requires labeled data along with capabilities to train a classifier for every new control.

Thus, it is impossible to directly apply condition-based control methods to our setting where we want
plug-and-play control with constraint functions that are known but not differentiable.

2. Constraint-based Control (Hard). Precise control on the generated output can be formulated
in terms of specific well-defined constraints. For example, if C is a user-defined constraint set,
then we have c(G) = 1 if G ∈ C and 0 otherwise. We note that this identity function c(G) is
non-differentiable. Bar-Tal et al. (2023) recently proposed preliminary steps in this direction with
a focus on the task of image generation. This approach supports specific image constraints such
as panorama, aspect ratio, and spatial guiding, by solving an optimization problem to match the
pre-trained sampling process in the constrained space. To the best of our knowledge, no prior work
exists that can support the constrained-based generation of graphs using diffusion models.

The main contribution of our work is to provide an efficient and general (supports arbitrary hard
constraints) method grounded in the projected sampling process to enable constrained generation for
graphs using diffusion models in a plug-and-play manner.

Projected Sampling. In the literature, the theoretical ability of projected/mirrored Langevin sampling
to enable constrained sampling from underlying distribution has been explored (Bubeck et al., 2018;
Hsieh et al., 2018). However, its effectiveness for deep learning-based diffusion models is still
unknown as the underlying distribution is approximated from the training data, which would render
sampling infeasible in uncertain domains. Furthermore, diffusion models employ additional reverse-
SDE dynamics on top of the simple Langevin sampling. Finally, efficient projections for many
graph-level constraints need to be derived for application in this framework. In this work, we address
all these challenges by studying newly proposed variants of projected sampling in the realm of
modern diffusion models under a novel set of graph constraints.

3 PROBLEM SETUP: PLUG-AND-PLAY CONSTRAINED GRAPH GENERATION

Given a set of training graphs Gtr ⊂ G, the problem of graph generation involves learning the
underlying distribution p0 as Gtr and sampling from the learned distribution to generate new graphs
{G} such that they mimic the training distribution p0. In this work, we consider the problem of
constrained graph generation, where the objective is to control the generative process within a given
constrained set. Specifically, we solve the following problem:
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Problem 1. (Plug-and-Play Constrained Graph Generation) Given a constrained set C ⊆ G and
a pre-trained unconditional graph generation model M trained on some training set Gtr ∼ p0,
generate new graphs {G} ∼ p̂0 such that p̂0 ≈ p0 and p̂0 has support C.

Key Assumption: The modelM may not be available for further training nor do we have access
to training set Gtr or the model parameters Θ(M) as these are often not released due to proprietary
reasons (Ramesh et al., 2021; OpenAI, 2023). Thus, the proposed method is required to be flexible to
the choice of the the constraints and the underlying generative model (plug-and-play approach). Next,
we discuss the class of constraints we study in this work.

3.1 CONSTRAINTS

For this work, we consider a wide range of arbitrary constraints with focus on interpretability
and minimal restrictions. Concretely, our approach is able to handle any constraint of the form
C = {G : h1(G) ≤ 0, h2(G) ≤ 0, · · · , hk(G) ≤ 0}, with efficient solutions of simultaneous
equality. As such, a practitioner may be interested in controlling the generation with a variety of
constraints on the structure and the derived properties of the graph, depending on the downstream
applications. To this end, we motivate our approach by instantiating a set of constraints based on
well-studied graph properties in both generic graph structures (with applications to network design
and efficiency) and molecules (with applications to drug design). Below we discuss the key set of
constraints that we instantiate to provide the recipe of our approach and further discuss extensions
towards more complex properties in Appendix B.

Edge
Count

Number of edges |E| = 1
21

TA1
≤ B for a given constant B ≥ 0

Triangle
Count

Number of triangles 1
6 tr(A)

≤ T for a given constant T ≥ 0

Degree Degree of each node is bounded
by a constant, i.e., A1 ≤ δd1

Generic Graphs. A user may want to con-
trol the number of different substructures in the
graph (Tabourier et al., 2011; Ying and Wu, 2009)
since these represent different aspects of real-world
network design (Farahani et al., 2013). We consider
three such constraints (adjoining table) since Edge
Count reflects a budget on the total (unweighted) cost
of roads, while degree and triangle count measure
network efficiency for the load on a node, and local clustering respectively.

Valency Given valencies v, degree is
at most valency3, i.e., A1 ≤ Xv

Atom
Count

Number of atoms of each type is
bounded, i.e., XT1 ≤ c, for counts c

Molecular
Weight

Total weight is bounded, i.e.,
1TXm ≤W , for atomic weights m

Dipole
Moment

Norm of the vector sum of the
atomic charges is bounded, i.e.,

∥STXQ∥2 ∈ [ξ0, ξ1]

Molecular graphs. In the adjoining table, we
have X denoting one-hot encoding of each node
being a certain atom ∈ {1, 2, · · · , F}. It is often
desired that the generated molecule is valid (Vi-
gnac et al., 2022; Jo et al., 2022) and has some
desired properties. Chemical descriptors (Todes-
chini and Consonni, 2008) link molecular struc-
ture to its properties. At a base level, a molecular
structure is comprised of atoms X, their connec-
tions A and 3D positions S ∈ Rn×3.

4 PROPOSED METHOD: PROJECTED DIFFUSION FOR CONSTRAINED GRAPHS

We propose PROjected DIffusion for constrained Graphs (PRODIGY), a plug-and-play sampling
method for constrained graph generation for continuous-time diffusion models. Figure 1 illustrates
our method and how it enables an arbitrary constraint to be satisfied. Following theoretical works
in Mirrored Langevin Dynamics (Bubeck et al., 2018; Hsieh et al., 2018), we extend the idea of
Projected Gradient Descent to constrained sampling by alternate dynamics and projection.{

G̃t−1 ← Reverse(Gt, w̄t, t; f , g, sθ)
Gt−1 ← ΠC(G̃t−1),

(3)

where Reverse is some arbitrary discretization of the reverse process defined in Equation 2 with score
function sθ and ΠC is the projection operator, ΠC(x) = argminz∈C∥z − x∥22. Figure 2 illustrates

3We assume hidden Hydrogen atoms, following Jo et al. (2022); Vignac et al. (2022).

4



Under review as a conference paper at ICLR 2024

Denoise

Diffuse 
noise

Existing sampling (Uncontrollable)

PRODIGY sampling (Controllable)

De
no
ise

Project

Figure 1: Comparison of existing and proposed projected diffusion sampling methods for generating
graphs under the given constrained set C (e.g., number of edges is at most 5).

(a) t = T/10 (b) t = T/2 (c) t = 3T/4 (d) t = T

Figure 2: Sampling process of PRODIGY (red) versus existing methods (Jo et al., 2022) (blue) at
different diffusion timesteps (t) for a constrained generation within an ℓ2 ball centered at the origin
and a radius of 0.1. PRODIGY generates points at the periphery of the constrained set C, closest to
the data density. The original distribution is a Gaussian mixture model of two equally likely normal
distributions with means (1, 1) and (−1,−1) and symmetric covariances of 0.01 and 0.009.

the sampling process of our method as compared to the existing sampling strategies. PRODIGY is
able to sample within the constrained ℓ2 ball while existing strategies fail to do that.

However, we also note that projection to an arbitrary constrained set can destroy the smoothness of
the reverse process. This is because the denoised sample can exist very far from the feasible set and
the projection step might go into a region with low estimated probability at a timestep t. To account
for this, we propose to take only a γt step towards the constrained set from G̃t−1. In particular, we
consider Gt−1 ← (1 − γt) G̃t−1 + γt ΠC(G̃t−1). One can note that a higher γt implies a higher
chance of constraint satisfaction but also a higher distortion to the original sampling process. Thus,
we should select a lower γt when the focus is to approximate the underlying distribution and a
higher γt to satisfy the constraint. We handle this tradeoff by considering a polynomial schedule
w.r.t. the diffusion timestep. Initially, when t ≈ T , approximating the actual distribution is more
important, thus, γt ≈ 0. As t → 0, the graphs are close to the original distribution and we should
focus on constraint satisfaction (thus, γt → 1). Therefore, we consider a smooth polynomial function:
γt = poly(γT , t) = (1 − γT )

(
T−t
T

)r
+ γT , for some γT , r ≥ 0. Next, we discuss the projection

operators ΠC(G) to transform a given graph (G) to its closest counterpart that satisfies a given
constraint from the set of constraints discussed in Section 3.1.

4.1 PROJECTION OPERATORS

Consider a constraint of the form C = {Z = (ZX ,ZA) ∈ G : hC(Z) ≤ 0} on the set of graphs.
Then, the projection operator is given as:

ΠC(G) = argmin
(ZX ,ZA)∈G:hC(ZX ,ZA)≤0

ZX∈[Xm,XM ],ZA∈[Am,AM ]

ZT
A=ZA,Diag(ZA)=0

1
2∥ZX −X∥22 + 1

2∥ZA −A∥22, (4)

5



Under review as a conference paper at ICLR 2024

Table 1: Projection Operators for different constraints, given as ΠC(G) = φ0(G) if hC(φ0(G)) ≤ 0
otherwise φµ(G) such that hC(φµ(G)) = 0. See App A for proofs and extensions.

2D structure G = (X,A). X ∈ [0,1], A ∈ [0,1] or ∈ [0,3], AT = A,Diag(A) = 0
Constraint (C) Function (hC) φX

µ φA
µ

Edge Count 1
21

TA1− B X P[0,1](A− µ11T /2 + I/2)
Triangle Count 1

6 tr(A3)− T X P[0,1](A− µA2/2)
Degree A1− δd1 X P[0,1](A− 1

2 (µ1
T + 1µT ) + Diag(µ))

Valency A1−Xv P[0,1](X) P[0,3](A− 1
2 (µ1

T + 1µT ) + Diag(µ))
Atom Count XT1− c P[0,1](X− 1µT ) P[0,3](A)

Molecular Weight 1TXm−W P[0,1](X− µ1mT ) P[0,3](A)

3D structure G = (X,S). Attributes X ∈ [0,1], Positions S ∈ Rn×3

Constraint (C) Function (hC) φX
µ φS

µ

Dipole Moment ξ0 ≤ ∥STXQ∥2 ≤ ξ1 X µS/∥STXQ∥2

which can be solved using the Lagrangian method, L(ZX ,ZA,hC ,λ,µ) =
1
2∥ZX−X∥22+ 1

2∥ZA−
A∥22 +µ0 ·hC(ZX ,ZA) +µ1 · (ZX −Xm) +µ2 · (XM −ZX) +µ3 · (ZA−Am) +µ4 · (AM −
ZA) +

∑
i>j λij(ZA[i, j] − ZA[j, i]) +

∑
i λiZA[i]. We apply the Karush–Kuhn–Tucker (KKT)

conditions (Kuhn and Tucker, 2013) and find closed-form solutions for ZX and ZA. For 3D structures,
we consider the positions S instead of A with no additional constraints on ZS .

Table 1 lists the projection operators for different constraint functions. Please refer to Appendix A for
the complete derivations for each case. We note that for several constraints, hC and µ are scalars.
Thus, we solve for µ in hC(φµ(G)) = 0 using the bisection method (Boyd et al., 2004). When hC
(and thus, µ) are vectors (as in the Degree, Valency, and Atom Count constraints), we split hC into
independent functions h(i)

C and solve for µi such that h(i)
C (φµi(G)) = 0 using the bisection method.

The split is done such that if h(i)
C (φµi

(G)) = 0 for all i ∈ [1,M ], then for µ = (µ1, µ2, · · · , µM ),
hC(φµ(G)) ≤ 0. Thus, the obtained solution would satisfy the constraint. This sampling approach
is highly efficient, which we discuss in detail in Appendix D.2.

5 EXPERIMENTS

To test the efficacy of our method, we ask and investigate the following questions — (1) Can
PRODIGY effectively generate graphs that satisfy hard constraints on their structure and properties?
(2) Can PRODIGY effectively handle more complex structures such as 3D molecules? (3) How does
the PRODIGY sampling process affect the distributional properties learned by the original model?
(4) What is the sensitivity of our approach to tuning parameters and constraint constants? (5) How
efficient is PRODIGY and how does the generated graphs fare qualitatively? We address the first
two questions in positive by quantifying the generation performance under set of constraints on both
generic and molecular graphs (Sec. 5.2, Sec. 5.3). Next, in Sec. 5.4, we consider a setting that would
mimic unconstrained setting while actually satisfying the specified constraint, thereby facilitating to
quantify how well the PRODIGY approach preserves the distribution learned by underlying model.
Sec. 5.5 contains the sensitivity analysis and we report run time analysis and qualitative visualization
of the generated graphs in the Appendices D.2 and D.3 respectively.

5.1 SETUP

Before diving into experimental results, we briefly outline the important details on datasets, con-
straints, baselines and metrics in this section and provide more elaborate details in Appendix C.

Datasets. We consider four generic and two molecular datasets to evaluate the ability of PRODIGY
to generate good-quality constrained graphs. Generic graph datasets include Community-small,
Ego-small, Grid (You et al., 2018), and Enzymes (Jo et al., 2022). In addition, we also consider two
standard molecular datasets: QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012).
For a fair comparison, we follow the standard experimental setup of existing works (You et al., 2018;
Jo et al., 2022; Niu et al., 2020).
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Constraints. As noted in Section 3.1, we consider the constraints of edge count, triangle count,
and degree for non-attributed generic graphs. On the other hand, we evaluate the controllability in
attributed molecular graph generation under valency, atom count, and molecular weight constraints.
Each constraint consists of an extrinsic control parameter that we vary to assess the effectiveness of
our approach for a range of values.

Base models. To evaluate the plug-and-play ability of our method on 2D graph generation, we
evaluate its performance on two baseline continuous-time diffusion models4: (1) EDP-GNN (Niu
et al., 2020), and (2) GDSS (Jo et al., 2022). For 3D graph generation, we use the pre-trained model
of GeoLDM for QM9 (Xu et al., 2023).

Metrics. We assess the performance of our method towards satisfying the given constraint and also
report various distributional metrics. For the former, we consider the proportion of generated graphs
that satisfy the constraint, i.e., VALC(G) := 1

N

∑
i∈N 1[Gi ∈ C], where we generate N different

graphs {Gi}. To evaluate the distributional preservation under our approach, we compared the
distributions of certain graph statistics between generated and test graphs using the maximum mean
discrepancy (MMD) metric (You et al., 2018). For molecules, we use the Fréchet ChemNet Distance
(FCD) (Preuer et al., 2018) and Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa
and De Grave, 2010). In addition, we also consider the validity, uniqueness, and novelty metrics.

5.2 CAN PRODIGY EFFECTIVELY GENERATE GRAPHS THAT SATISFY HARD CONSTRAINTS?

Generic Graphs. We consider a constraint that is satisfied by the least number of graphs in the test
set and generate graphs that satisfy it. For example, for a property P(G), we consider the property of
the generated graph P(G) to follow P(G) ≤ minG∈Gts

{P(G)}. We compare the MMDs and the
constraint validity (VALC) of the generated generic graphs for each of the three constraints on generic
graphs. Table 2 shows the effect of plugging PRODIGY for sampling the two base models under these
constraints for different datasets. We can note that the constraint validity with PRODIGY sampling is
almost always close to 1, i.e., almost all the generated graphs satisfy the constraint, with the minimum
being 65% for GDSS in the Ego-small dataset for the Edge Count constraint. PRODIGY increases
the constraint validity in GDSS by at least 20% and at most 100% across 4 datasets and 3 different
constraints. We also find that the MMDs between the generated graphs and the constraint-filtered
graphs under PRODIGY sampling are similar to the original sampling, with improvements in some
cases. One exception is Grid, where the MMD scores increase under this constrained setting. We do
more analysis of these cases in Appendix D.3 and D.5.

2D Molecular Graphs. Table 3 shows the effect of plugging PRODIGY to generate molecules with
specified properties. For the valency constraint, we consider the valencies C4N5O2F1 in QM9 and
C4N3O2F1P5S2Cl1Br1I1 in ZINC250k. For the Atom Count, we constrained the generated molecule
to only contain C and O for both QM9 and ZINC250k. Lastly, we constrain the molecular weight
of the generated molecules to be within the lower 10-percentile range of the test set. We find that
PRODIGY always improves (or matches) the constraint validity across the two datasets, while not
compromising on the other metrics. PRODIGY improves the constraint validity by at least 1% and
up to 60% for GDSS, while also improving FCD and NSPDK from the constraint-filtered test graphs
by up to 12.92 and 0.13 points respectively. We also see similar gains in performance for EDP-GNN.

5.3 CAN PRODIGY CONSTRAIN 3D MOLECULE GENERATION?

Here, we show the effect of using PRODIGY sampling on 3D molecule generation. We use the
dipole moment (as formulated in Sections 3.1, 4.1) to constrain the molecular graph generation. To
approximate the dipole moment of a molecule, we assume that the induced charge for a particular
atom type is fixed and does not depend on the surrounding structure. We approximate these charges
by learning them from the training set such that Q∗ minimizes the ℓ1 loss between the actual µdm

and the predicted µ̂dm = ∥S(i)TX(i)Q∗∥2. Then, we consider the constraint µ̂dm ∈ [ξ0, ξ1].

4DruM (Jo et al., 2023) has recently shown to outperform all existing diffusion models for graph generation
in their reported results. As such, PRODIGY is directly applicable to DruM, but unfortunately we are not able to
report numbers on DruM as its code or pretrained models were not made publicly available by their authors at
the time of submission.
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Table 2: Effect of PRODIGY on constrained generic graph generation.

Community-small Ego-small Enzymes Grid
Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑

Edge
Count

EDP-GNN 0.362 0.366 0.125 0.285 0.23 0.199 0.469 0.036 0.235 0.23 0.117 0.120 0.004 0.080 0.56 1.005 0.033 0.455 0.498 0.75
+PRODIGY 0.083 0.379 0.006 0.156 0.12 0.055 0.006 0.000 0.020 0.62 0.247 0.008 0.000 0.085 0.95 1.854 0.000 0.905 0.92 1.00

GDSS 0.448 0.481 0.077 0.335 0.15 0.187 0.599 0.017 0.268 0.18 0.149 0.411 0.081 0.214 0.05 0.120 0.011 0.047 0.059 0.05
+PRODIGY 0.539 1.096 0.015 0.550 0.90 0.104 0.054 0.001 0.053 0.65 0.616 0.966 0.026 0.536 0.82 1.249 0.002 0.604 0.618 0.95

Triangle
Count

EDP-GNN 0.266 0.220 0.068 0.185 0.70 0.170 0.469 0.024 0.221 0.39 0.099 0.120 0.029 0.083 0.64 1.062 0.033 0.513 0.536 0.38
+PRODIGY 0.179 0.595 0.267 0.347 0.96 1.340 0.000 0.018 0.453 1.00 1.127 0.000 0.047 0.391 1.00 1.996 0.000 0.978 0.991 1.00

GDSS 0.319 0.187 0.049 0.185 0.70 0.160 0.599 0.005 0.255 0.32 0.236 0.222 0.016 0.158 0.03 0.154 0.011 0.050 0.072 0.00
+PRODIGY 0.293 0.183 0.048 0.175 0.90 1.340 0.000 0.018 0.453 1.00 0.056 0.298 0.028 0.127 0.96 1.996 0.000 0.978 0.991 1.00

Degree

EDP-GNN 0.288 0.202 0.079 0.190 0.38 0.156 0.173 0.037 0.122 0.36 0.117 0.120 0.004 0.080 0.52 1.062 0.033 0.513 0.536 0.50
+PRODIGY 0.117 0.726 0.252 0.365 0.44 0.042 0.022 0.000 0.022 0.63 0.242 0.000 0.000 0.081 1.00 1.717 0.000 0.958 0.892 1.00

GDSS 0.350 0.203 0.051 0.201 0.40 0.131 0.238 0.018 0.129 0.32 0.158 0.217 0.037 0.137 0.40 0.154 0.011 0.050 0.072 0.00
+PRODIGY 0.075 0.431 0.097 0.201 1.00 0.116 0.169 0.001 0.095 0.68 0.265 0.802 0.018 0.362 1.00 1.755 0.000 0.972 0.909 1.00

Table 3: Effect of PRODIGY on constrained molecular generation. OOM denotes out-of-memory.

QM9 ZINC250k
Val. (%) ↑ Novel. (%) ↑ NSPDK ↓ FCD ↓ VALC ↑ Val. (%) ↑ Novel. (%) ↑ NSPDK ↓ FCD ↓ VALC ↑

Valency

EDP-GNN 96.95 76.74 0.01 6.15 0.97 OOM OOM OOM OOM OOM
+PRODIGY 96.29 76.68 0.07 6.23 0.96 OOM OOM OOM OOM OOM

GDSS 95.72 81.04 0.00 2.47 0.88 97.01 100.00 0.02 14.04 0.94
+PRODIGY 99.83 82.74 0.00 2.82 0.99 99.88 100.00 0.09 29.79 0.99

Atom
Count

EDP-GNN 96.95 76.74 0.014 8.63 0.37 OOM OOM OOM OOM OOM
+PRODIGY 98.06 54.36 0.018 5.66 1.00 OOM OOM OOM OOM OOM

GDSS 95.72 81.04 0.01 7.28 0.33 97.01 100.00 0.03 16.01 0.13
+PRODIGY 95.02 67.67 0.00 1.60 1.00 96.90 100.00 0.04 12.24 0.99

Molecular
Weight

EDP-GNN 96.95 76.74 0.33 16.86 0.00 OOM OOM OOM OOM OOM
+PRODIGY 79.26 70.05 0.21 3.80 0.17 OOM OOM OOM OOM OOM

GDSS 95.72 81.04 0.31 17.08 0.00 97.01 100.00 0.02 11.15 0.62
+PRODIGY 99.95 81.14 0.18 4.16 0.53 97.66 100.00 0.01 12.15 0.63

Table 4 shows the results for unconditional
and controlled settings by using PRODIGY
on GeoLDM (Xu et al., 2023). For the for-
mer, we choose ξ0, ξ1 as the minimum and
maximum dipole moment in the training set
and find that our sampling method is able to
preserve the stability measures.

Table 4: Results on 3D molecule generation with
the constraint on the predicted dipole moment.

Unconditional Controlled
Atom. Stability (%) ↑ Mol. Stability (%) ↑ MAE µdm ↓

EDM (Hoogeboom et al., 2022) 98.7 82.0 1.11 (0.04)
GeoLDM (Xu et al., 2023) 98.9 89.4 1.10 (0.04)
+PRODIGY 98.9 89.4 0.00 (1.15)

For the controlled setting, we follow existing works and consider constraining the values to lie in
the 2nd half of the training set. In particular, we choose [ξ0, ξ1] to lie in the range of one standard
deviation from the mean of the subset. Table 4 then shows the MAE of the generated molecules
= (1 − VALC) with the bias of the predicted model, i.e. MAE (µ, µ̂dm), in the parentheses. Even
with a highly biased approximation of the dipole moment, we can control the generation within
competitive errors to conditional methods that use more advanced prediction methods.

5.4 HOW PRODIGY AFFECTS THE DISTRIBUTION LEARNED BY THE ORIGINAL MODEL?

We first show that PRODIGY does not affect unconditional generation performance when the
given constraint is chosen in such a manner that the whole test set satisfies it, i.e., Gts ⊆ C. In
particular, for generic graphs, we consider the Edge Count constraint and set the number of edges
to be within [minG∈Gts

|E(G)|,maxG∈Gts
|E(G)|] (see App. B.1). Table 5 shows that PRODIGY

preserves the generation performance of the base models under this constraint, as computed by
the MMD metrics. Thus, we find that our method is able to retrieve the samples close to the
given data distribution when the constraint is chosen to subsume the given test set. We also find a
similar trend in 2D molecule generation, where we constrain the molecular weights to lie within
[minG∈Gts |W (G)|,maxG∈Gts |W (G)|]. Table 6 shows that molecules sampled using PRODIGY
have similar quality as the originally sampled molecules under this constraint.

5.5 HOW SENSITIVE IS OUR APPROACH TO PARAMETERS AND CONSTRAINT CONSTANTS?

Our method allows for an arbitrary constraint satisfaction (i.e. for any constraint parameter) and
an interpretable tuning hyperparameter γt. Figure 3 compares the original GDSS sampling with
PRODIGY for a range of budgets of edge count and a range of γt values. This shows that our method
is able to support a wide range of constraint parameters with appropriate tuning of the γt values.
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Table 5: Effect of PRODIGY on unconditional generation of generic graphs. We highlight the better
of the original and PRODIGY sampling while comparing against other standard baselines.

Community-small Ego-small Enzymes Grid

Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓
Deep-GMG (Li et al., 2018)4 0.220 0.950 0.400 0.523 0.040 0.100 0.020 0.053 - - - - - - - -
Graph-RNN (You et al., 2018)4 0.080 0.120 0.040 0.080 0.090 0.220 0.003 0.104 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
Graph-VAE (Simonovsky and Komodakis, 2018)4 0.350 0.980 0.540 0.623 0.130 0.170 0.050 0.117 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF (Liu et al., 2019)4 0.200 0.200 0.110 0.170 0.030 0.100 0.001 0.044 - - - - - - - -

EDP-GNN (Niu et al., 2020)5 0.120 0.071 0.046 0.079 0.020 0.043 0.006 0.023 1.011 0.791 0.239 0.681 1.062 0.033 0.513 0.536
+PRODIGY 0.091 0.094 0.041 0.075 0.019 0.028 0.004 0.017 1.067 0.815 0.234 0.705 1.014 0.126 0.541 0.560

GDSS (Jo et al., 2022)5 0.170 0.090 0.079 0.113 0.023 0.010 0.013 0.015 0.034 0.078 0.003 0.038 0.154 0.011 0.050 0.072
+PRODIGY 0.132 0.077 0.044 0.084 0.028 0.030 0.013 0.024 0.033 0.078 0.003 0.038 0.154 0.010 0.050 0.072

Table 6: Effect of PRODIGY on unconditional generation of 2D molecules. We bold the best sampling
strategy for diffusion models and compare against other baselines. OOM denotes out-of-memory.

QM9 ZINC250k
Val. w/o corr. (%) Novel. (%) ↑ NSPDK ↓ FCD ↓ Val. w/o corr. (%) Novel. (%) ↑ NSPDK ↓ FCD ↓

GraphAF (Shi et al., 2020)4 67 88.83 0.020 5.268 68 100.00 0.044 16.289
MoFlow (Zang and Wang, 2020)4 91.36 98.10 0.017 4.467 63.11 100.00 0.046 20.931
GraphEBM (Liu et al., 2021)4 8.22 97.01 0.030 6.143 5.29 100.00 0.212 35.471

EDP-GNN (Niu et al., 2020) 96.95 76.74 0.005 6.151 OOM OOM OOM OOM
+PRODIGY 97.01 77.12 0.005 6.187 OOM OOM OOM OOM

GDSS (Jo et al., 2022) 95.72 86.27 0.003 2.900 97.01 100.00 0.019 14.656
+PRODIGY 95.22 83.62 0.003 2.745 95.61 100.00 0.014 15.298
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Figure 3: Comparison of methods in generating Community graphs with an arbitrary B number of
edges. Lower MMD scores and higher constraint validity VALC are desired. We compare different
values of γt parameter from Section 4. Note that the lack of a data point is when sampling leads to a
trivial solution of zero edges or an empty graph.

As mentioned in Section 4, we can note a trade-off that while increasing γt leads to higher constraint
validity (VALC), it may (slightly) negatively affect the distance of the graphs from the test set (i.e.,
an increase in the MMD scores). This means that one must choose γt that is able to obtain the best
of both worlds, which is provided by our method. We also find that choosing a higher power for
polynomial scheduling reduces the constraint validity as the sampling favors the reverse diffusion
process for the majority of diffusion timesteps except at the end. Refer Appendix D.4 for elaborate
results on other datasets and constraints.

6 DISCUSSION AND CONCLUSION

We proposed PRODIGY, a plug-and play approach to controllable graph generation with diffusion
models. Our work enables precise control of the graph generation process under arbitrary well
specified and hard constraints, thereby making it applicable to wide range of real-world applications
in practice including network design, drug discovery and many more. We hope that this opens future
research avenues for enabling interpretable control in the generative models across different domains.
Future directions include extending our methods for constrained graph generation to discrete diffusion
models and enabling control of more complex non-linear properties of the graphs, e.g. GNN-based
molecular property prediction (we show in App. B that it is non-trivial to extend our current approach
to such non-linear functions).

4The values for these methods are taken directly from their papers or GDSS
5We could not reproduce the results for EDP-GNN and GDSS as reported in their papers.
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APPENDIX

A PROJECTION OPERATORS

In this section, we discuss projection operators for the constraints mentioned in Table 1. We first
solve for φA

µ = Z∗
A and φX

µ = Z∗
X . Then, we propose a way to solve hC(φµ(G)) = 0. Further, we

replace µ0 with µ in the Lagrangian without loss of generality.

KKT conditions. The optimal solution Z∗ for the problem must satisfy the following conditions:

1. Stationarity. ∇ZL|Z∗ = 0 =⇒ Z∗
X −X + µ0∇ZX

hC(Z
∗
X ,Z∗

A) + µ1 − µ2 = 0 such
that Z∗

X ∈ [Xm,XM ] and Z∗
A −A+ µ0∇ZA

hC(Z
∗
X ,Z∗

A) + µ3 − µ4 +Λ = 0 such that
Z∗

A ∈ [Am,AM ] and Λ[i, j] = λij if i > j, λi if i = j, and −λij otherwise. It is hard to
solve this system of equations simultaneously as∇hC can be non-linear so we assume either
∇ZA

hC(Z
∗
X ,Z∗

A) = 0 or ∇ZX
hC(Z

∗
X ,Z∗

A) = 0 depending on the form of hC(X,A).

2. Primal and Dual feasibility. µ0,µ1,µ2,µ3,µ4 ≥ 0, hC(Z
∗
X ,Z∗

A) ≤ 0, Z∗
X ∈ [Xm,XM ],

Z∗
A ∈ [Am,AM ], (Z∗

A)
T = Z∗

A, Diag(Z∗
A) = 0.

3. Complementary Slackness (CS). µ0hC(Z
∗) = 0, µ1(Z

∗
X −Xm) = 0, µ2(XM −Z∗

X) = 0,
µ3(Z

∗
A −Am) = 0, µ4(AM − Z∗

A) = 0.

First, we note that µ0hC(Z
∗) = 0, µ0 ≥ 0, and hC(Z

∗) ≤ 0 imply that if hC(Z
∗(µ0 = 0)) ≤ 0

then µ0 = 0 otherwise we find µ0 ≥ 0 such that hC(Z
∗(µ0)) = 0.

We also note that µ1,2 can be replaced by a clamp operation P[·,·] that clamps Z∗
X within [Xm,XM ].

This is because if a certain entry of Z∗
X is within the range, then, the corresponding µ = 0 (due to

CS), and if not, we add/subtract a µ ≥ 0 such that Z∗
X = Xm or XM (CS). Similarly, we also note

that µ3,4 can be replaced by a clamp operation that clamps Z∗
A within [Am,AM ].

Thus, we can find Z∗
X and Z∗

A as ΠC(G) = φ0(G) if hC(φ0(G)) ≤ 0, otherwise φµ(G) such that
hC(φµ(G)) = 0. Here, φµ = (φX

µ , φA
µ) can be found for the following two cases:

1. ∇ZA
hC(Z

∗
X ,Z∗

A) = 0: We get Z∗
A = P[Am,AM ](A−Λ) such that (Z∗

A)
T = Z∗

A, Diag(Z∗
A) = 0.

We assume that the input A is undirected and has no self-loops, then, Λ = 0 would be feasible.
Thus, we get Z∗

A = φA
µ(G) = P[Am,AM ](A). We can find φX

µ by solving for Z∗
X in the equation

Z∗
X + µ0∇ZX

hC(Z
∗
X ,Z∗

A) = X and then, clamping it within [Xm,XM ].

2. ∇ZX
hC(Z

∗
X ,Z∗

A) = 0: We get Z∗
X = φX

µ (G) = P[Xm,XM ](X). We can find φA
µ by solving for

Z∗
A in the equation Z∗

A + µ0∇ZA
hC(Z

∗
X ,Z∗

A) +Λ = A and then, clamping it within [Am,AM ],
while satisfying (Z∗

A)
T = Z∗

A and Diag(Z∗
A) = 0.

A.1 EDGE COUNT (|E| ≤ B)

Find φµ. We have hC(ZX ,ZA) = hC(ZA) =
1
21

TZA1 − B, ZA ∈ [0,1],Diag(ZA) = 0,ZT
A =

ZA. Then, we can note that∇ZX
hC = 0. Thus, we solve for Z∗

A in Z∗
A + µ∇ZA

hC(Z
∗
A) +Λ = A.

Since ∇ZA
hC = 1

211
T , we get Z∗

A = A − µ
211

T − Λ. Satisfying Diag(Z∗
A) = 0, (Z∗

A)
T
= Z∗

A
(given these conditions hold for A) implies Λii = −1/2 and Λij = Λji = 0. In other words,
Λ = I/2. Thus, Z∗

A = A− µ/211T + µ/2I followed by clamping between [0,1].

Find µ. To find µ, we can do a bisection method between max{0, 2(min(A)− 1)} and 2max(A).
This is because 1

21
TP[0,1](A−(min(A)−1)11T+(min(A)−1))1 =

(|V|
2

)
≥ B and 1

21
TP[0,1](A−

max(A)11T +max(A)I)1 = 1
21

T01 = 0 ≤ B.

Complexity. The bisection method finishes in O(log(max(A) − max{0, (min(A) − 1)})/ξ) =
O(log( 1ξ )) for a tolerance level ξ, since A ∈ [0,1]. Finding Z∗

A involves only matrix operations
(addition) that have been highly optimized in Pytorch with the worst-case time complexity of O(n2).
Thus, we get the time complexity of the projection operator as O(n2 log( 1ξ )).
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A.2 TRIANGLE COUNT (|△| = 1
6 TR(A3) ≤ T )

Find φµ. We have hC(ZX ,ZA) = hC(ZA) =
1
6 tr(Z3

A)−T , ZA ∈ [0,1],Diag(ZA) = 0,ZT
A = ZA.

Then, we can note that ∇ZX
hC = 0. Thus, we solve for Z∗

A in Z∗
A + µ∇ZA

hC(Z
∗
A) + Λ = A.

Since ∇ZA
hC = 1

2Z
2
A, we get Z∗

A + µ
2 (Z

∗
A)

2 +Λ = A. Satisfying Diag(Z∗
A) = 0, (Z∗

A)
T
= Z∗

A

(given these hold for A) implies Λ = 0. Thus, Z∗
A + µ

2 (Z
∗
A)

2 = A. Let us assume Z∗
A ≈ A2, i.e.,

the squared values do not change a lot after projection. Then, we get Z∗
A ≈ A− µ

2A
2.

Find µ. We will find for µ using the bisection method here as well. But it is non-trivial to obtain two
points for which 1

6 tr(P[0,1]((A− µ
2A

2)3)− T have opposite signs. Thus, we assume that one such
point is µ = 0 and search for the first point > 0 with an opposite sign using a linear search from µ
with a fixed step size s. Then, we apply the bisection method between 0 and the new point µ1 found
using the linear search.

Complexity. Linear search computes Z∗
A for (µ1 − 0)/s times to compare with value at µ = 0. The

bisection method finishes in O(log(µ1/ξ)) time. Again, finding Z∗
A involves only matrix operations

(addition) that have been highly optimized in Pytorch with the worst-case time complexity of O(n3).
Thus, we get the time complexity of the projection operator as O(n3(µ1/s+ log(µ1/ξ))).

A.3 MAX DEGREE (dMAX = A1 ≤ δd1)

Find φµ. We have hC(ZX ,ZA) = ZA1 − δd1, ZA ∈ [0,1],Diag(ZA) = 0,ZT
A = ZA. Then,

we can note that ∇ZX
hC = 0 and we solve for Z∗

A in Z∗
A + µ · ∇ZA

hC(Z
∗
A) + Λ = A. In

other words, for each row i, we get Z∗
A[i, :] = A[i, :] − µi1 − Λ[i, :] since ∇ZA

h
(i)
C = 1. Due

to symmetricity, we obtain A[i, j] − µi −Λ[i, j] = A[j, i] − µj −Λ[j, i] for all i, j, which gives
us µi + Λ[i, j] = µj + Λ[j, i]. We can thus let Λ[i, j] = 1

2 (µj − µi) for all i ̸= j. For the
diagonal entries, we want Λ[i, i] = −µi so that Z∗

A has no non-zero diagonal entries. Thus, we get
Z∗

A = A− 1
2 (µ1

T + 1µT ) + Diag(µ) followed by clamping between [0,1].

Find µ. Since hC is a vector function, we cannot find its root using the bisection method. Instead, we
divide hC(φµ) = 0 into multiple equations h̃(i)

C (φµi) = 0 that we can solve independently such that
the root µ̃ obtained by concatenating these µ̃is satisfies hC(φµ̃) ≤ 0.

In particular, we can just solve each row µi’s equation separately and add it later to satisfy the
symmetricity. Thus, we have to solve for µ̃i ≥ 0 such that 1TP[0,1](A[i, :]− µ̃i1) = δd. Thus, we
solve for µ̃i for all i and use it to find µ̃ using the bisection method between max{0, 2(min(A[i, :
]) − 1)} and 2max(A[i, :]) (due to the same logic as for Edge Count constraint). Note that if
1TP[0,1](A[i, :] − µ̃i1) = δd, then 1TP[0,1](A[i, :] − (µ̃i + ϵ)1) ≤ δd, for all ϵ ≥ 0, because
(µ̃i + ϵ) ≥ µ̃i and it is a decreasing function. We have ϵi to be µ̃j for different columns j. Thus,
P[0,1](A− 2

2 (µ̃1
T + 1µ̃T ) + 2Diag(µ̃))1 ≤ δd1.

Complexity. We solve n different equations using the bisection method in time O(log( 1ξ )) as
A ∈ [0,1]. Note that this can be done in a parallel manner by using the Pytorch functionalities.
Again, finding Z∗

A involves only matrix addition that has been highly optimized in Pytorch with the
worst-case time complexity of O(n2). Thus, we get the time complexity of the projection operator as
O(n2 · n log(1/ξ)) = O(n3 log(1/ξ)).

A.4 VALENCY (A1 ≤ Xv)

Here, we fix X and let Xv = u denote the weighted valency of each node in the graph. Then,
the constraint becomes similar to the Max Degree constraint and we follow the same steps to find
Z∗

A = A − 1
2 (µ1

T + 1µT ) + Diag(µ) except now, we clamp within [0,3] since it’s a molecular
graph and clamp X within [0,1] as well.

A.5 ATOM COUNT (XT1− c)

Find φµ. We have hC(ZX ,ZA) = ZT
X1 ≤ c, ZX ∈ [0,1]. Then, we can note that

∇ZA
hC(ZX ,ZA) = 0 and for each column or atom type in X, we get Z∗

X [:, j] = X[:, j] − µj1
T

since ∇ZX
hC = 1. Thus, we get Z∗

X = P[0,1](X− 1µT ).
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Find µ. Since h is a vector-valued function, we cannot obtain its root w.r.t. µ directly using the
bisection method. However, we make another observation that allows us to do that. In particular,
hC(φµ) = 0 can be divided into F independent equations such that hj

C satisfies the jth column
(Z∗

X [:, j]− µj1
T )1 = cj . This can be solved independently for each j using the bisection method

between [max{0,mini(Xij) − 1},maxi(Xij)] as
∑

i P[0,1](Xij − maxi(Xij)) = 0 ≤ cj and∑
i P[0,1](Xij −mini(Xij) + 1) = |V| ≥ cj .

Complexity. We solve F different equations using bisection method with log( 1ξ ) steps each, as
X ∈ [0,1]. Further, φX

µ only involves a matrix addition that is almost constant in Pytorch with
worst-case complexity of O(n2). The total complexity thus, becomes O(n2F log( 1ξ )).

A.6 MOLECULAR WEIGHT (1TXm ≤W )

Find φµ. We have hC(ZX ,ZA) = hC(ZX ,ZA) = 1TZXm ≤W , ZX ∈ [0,1]. Then,∇ZA
hC = 0

and∇ZX
hC(ZX ,ZA) = 1mT , which gives us Z∗

X = X− 1µT followed by clamping within [0,1].

Find µ. It is non-trivial to find two end-points between which we can conduct the bisection method
for 1TP[0,1](X− 1µT )m = W . Thus, we assume that one such point is µ = 0 and search for the
first point > 0 with an opposite sign using a linear search from µ with a fixed step size s. Then, we
apply the bisection method between 0 and the new point µ1 found using the linear search.

Complexity. Linear search finds φX
µ for µ1/s different values of µ. This is followed by a bisection

method that finishes in O(log(µ1/ξ)) steps. Computing φX
µ involves just matrix addition that has been

highly optimized in Pytorch with worst-case complexity of O(n2). Thus, the total time-complexity
of the projection operator can be given as O(n2(µ1/s+ log(µ1/ξ))).

A.7 DIPOLE MOMENT (∥STXQ∥2 ∈ [ξ0, ξ1])

A 3D molecular structure can be described as (X,S), where S ∈ Rn×3 denotes the positions of each
atom in the 3-dimensional space from the center-of-mass origin. In addition to this structure, one also
requires other quantitative measures such as atomic charges to calculate molecular properties. Let the
charges in a molecule be given by a vector Q ∈ RF , then the dipole moment vector can be written
as µdm = STXQ ∈ R3. We consider a constraint on its norm as ∥µdm∥2 = ∥STXQ∥2 ∈ [ξ0, ξ1].
We assume no projection with respect to X and project S using the projection vector of the ℓ2-
norm (Parikh et al., 2014) simply as Z∗

S = S if ∥STXQ∥2 ∈ [ξ0, ξ1] otherwise S/∥STXQ∥2 · ξ0 if
∥STXQ∥2 < ξ0 and S/∥STXQ∥2 · ξ1 if ∥STXQ∥2 > ξ1.

However, note that the charges on each atom are unknown and depend upon the given molecular
structure. As an approximation, we learn the charges for each atom Q from the dataset by minimizing
the ℓ1 loss

∑
i∈D

∣∣µdm(i)− ∥S(i)TX(i)Q∥2
∣∣ over the trainable parameters Q ∈ RF .

B EXTENSIONS

In this section, we discuss several extensions and the corresponding recipes to support more complex
constraints and properties including, box constraints and linear and non-linear properties.

B.1 BOX CONSTRAINT

We note that our formulation allows us to solve a box constraint from the projection operator for
the upper bound constraint. In particular, a box constraint can be defined as C = {G : δlow ≤
b(G) ≤ δupp}. This is equivalent to considering hC : [h1

C , h
2
C ], such that h1

C(G) = δlow − b(G) and
h2
C(G) = b(G)− δupp. Given that δlow ≤ δupp, we can note that both h1

C(G) > 0 and h2
C(G) > 0

cannot hold. Thus, we get

ΠC(G) =


φ0(G) ;h1

C(φ0(G)) ≤ 0, h2
C(φ0(G)) ≤ 0

φµ(G) ;h1
C(φ0(G)) ≤ 0, h2

C(φ0(G)) > 0, h2
C(φµ(G)) = 0

φ−µ(G) ;h2
C(φ0(G)) ≤ 0, h1

C(φ0(G)) > 0, h1
C(φ−µ(G)) = 0

(5)
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B.2 LINEAR PROPERTY APPROXIMATORS (1T ÂkXΘ ≤ p)

Find φµ. We have hC(ZX ,ZA) = hC(ZX ,ZA) = 1T ẐA
k
ZXΘ − p, ZX ∈ [0,1]. We fix A and

thus, assume ZA = P[0,3](A). Let P̂[0,3](A) denote the normalized adjacency matrix corresponding
to P[0,3](A). Then, ∇ZA

hC = 0 and ∇ZX
hC(ZX ,ZA) = (P̂[0,3](A)k)T1ΘT , which gives us

Z∗
X = X− µ(P̂[0,3](A)k)T1ΘT followed by clamping within [0,1].

Find µ. It is non-trivial to find two end-points between which we can conduct the bisection method
for which there is equality on hC . Thus, we assume that one such point is µ = 0 and search for the
first point > 0 with an opposite sign using a linear search from µ with a fixed step size s. Then, we
apply the bisection method between 0 and the new point µ1 found using the linear search.

Complexity. Linear search finds φX
µ for µ1/s different values of µ. This is followed by a bisection

method that finishes in O(log(µ1/ξ)) steps. Computing φX
µ involves just matrix multiplication

that has been highly optimized in Pytorch with worst-case complexity of O(n3). Thus, the total
time-complexity of the projection operator can be given as O(n3(µ1/s+ log(µ1/ξ))).

B.3 NON-LINEAR PROPERTY APPROXIMATORS

Many graph properties are estimated using neural networks with non-linear activation functions.
Constraining these properties implies constraining the output of these networks. Let us consider a
typical single-layer neural network prediction, whose output can be written as wT

2 ReLU(WT
1 u +

b1) + b2. The corresponding constraint would then look like hC(u) = wT
2 ReLU(WT

1 u + b1) +
b2 − ϵ ≤ 0 for some trained parameters W1,w2,b1, b2. We want to find zu such that ∥zu −
u∥22 is minimized such that this constraint is satisfied. The Lagrangian is given as L(zu, λ) =
1
2∥zu − u∥22 + λ(wT

2 ReLU(WT
1 u + b1) + b2 − ϵ) and applying the KKT conditions give us

(z∗u − u) + λwT
2 1{WT

1 z
∗
u + b1 ≥ 0} ⊙WT

1 1 = 0, λ ≥ 0,wT
2 ReLU(WT

1 z
∗
u + b1) + b2 − ϵ ≤

0, λ(wT
2 ReLU(WT

1 z
∗
u + b1) + b2 − ϵ) = 0. If wT

2 ReLU(WT
1 u+ b1) + b2 − ϵ ≤ 0, then z∗ = u

(since λ = 0 otherwise we find a λ ≥ 0 and z∗u such that wT
2 ReLU(WT

1 z
∗
u + b1) + b2 − ϵ = 0 and

(z∗u−u)+λwT
2 1{WT

1 z
∗
u+b1 ≥ 0}⊙WT

1 1 = 0. Solving such a system of equations is hard since
the first equation gives us wT

2 ReLU(WT
1 z

∗
u+b1) = ϵ−b2, which can have infinitely many solutions

for ReLU(WT
1 z

∗
u + b1) and consequently 1{WT

1 z
∗
u + b1 ≥ 0} and z∗u, which can not be directly

substituted in the second equation. Therefore, we do not consider non-linear approximators of graph
properties and leave it for future works to find efficient projections for these general functions.

C ADDITIONAL EXPERIMENT DETAILS

C.1 DATASETS

We consider the following 4 generic graph datasets:

1. Ego-small contains 200 small ego graphs from larger Citeseer network Sen et al. (2008).

2. Community-small consists of 100 randomly generated community graphs.

3. Enzymes has 587 protein graphs of the enzymes from the BRENDA database Schomburg
et al. (2004).

4. Grid is a dataset of 100 standard 2D grids.

We also consider these 2 molecular graph datasets:

1. QM9 consists of 133k small molecules with 1 − 9 atoms as Carbon (C), Nitrogen (N),
Oxygen (O), and Fluorine (F).

2. ZINC250k consists of 250k molecules with 6 − 38 atoms as Carbon (C), Nitrogen (N),
Oxygen (O), Fluorine (F), Phosphorus (P), Chlorine (Cl), Bromine (Br), and Iodine (I).
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Table 7: PRODIGY parameters for each setting for the GDSS in the generic graph datasets

Constraint Community-small Ego-small Enzymes Grid

Edge Count poly(0.1, 1) poly(0.1, 5) poly(0, 1) poly(0, 5)
Triangle Count poly(0, 1) poly(0.1, 5) poly(0.1, 5) poly(0.1, 5)

Degree poly(0, 1) poly(0.1, 5) poly(0, 1) poly(0.1, 5)

C.2 HYPERPARAMETERS AND SAMPLING SETUP

For constrained generation (Section 5.2) with EDP-GNN, we just use a fixed γt = 1 as it only consists
of a Langevin corrector and an identity predictor in the sampling stage Niu et al. (2020); Jo et al.
(2022); Song et al. (2020). Since there is no predictor step, each diffusion timestep is independent
and is not iterative. Thus, projecting at each step has no effect on the dynamics. For GDSS, the
parameters that we used for the minimal constraint generation are provided in Table 7. On the other
hand, for unconditional generation (Section 5.4), we needed a much slowly growing γt for GDSS
and a low fixed value for EDP-GNN. In particular, we chose γt = poly(0, 100) for GDSS. Note that
this becomes equivalent to doing projection only at the end, not in the intermediate timesteps. For
EDP-GNN, we chose a low γt = 0.01.

Standard Deviations. We run our sampling for 3 different random seeds and find standard devia-
tions of at most 0.05 for all the MMD metrics and up to 0.00 for the constraint validity metric (for a
given set of parameters for the PRODIGY sampling).

Discretization. To obtain a discrete graph from the continuous graph at the end, we use a simple
rounding scheme following existing works (Jo et al., 2022; 2023; Hoogeboom et al., 2021). In
particular, we do ⌊A0⌋ for each element to obtain the discrete adjacency matrix and argmaxi X0[i]
for attribute of each node i.

Additional Evaluation Metric Detail. We only use the test graphs that satisfy the given constraint
for such computation. For generic graphs, we used degree (Deg.), clustering coefficient (Clus.), and
the number of occurrences of orbits with 4 nodes (Orb.)

D ADDITIONAL RESULTS

D.1 HOW DOES PRODIGY COMPARE TO STATE-OF-ART CONDITIONAL (SOFT-CONTROL)
GENERATION APPROACHES?

To answer this question, we compare our results with that of DiGress Vignac et al. (2022), that
considers a soft constraint on the molecular properties which our approach also supports (but with
the ability to apply hard interpretable constraint).

Molecular Property. Here, we use PRODIGY to gen-
erate molecules with a specified molecular property. We
follow the framework of DiGress Vignac et al. (2022)
and constrain the dipole moment (µ) and the highest
occupied molecular orbit (HOMO) of the generated
molecules to be close to a certain set of values. These
properties cannot be written easily in terms of the molec-
ular graph (X, A), as required by our framework.

Table 8: MAE in Molecular Property con-
strained generation.

µ HOMO

DiGress (Unconditional) 1.71± .04 0.93± .01
DiGress+Guidance 0.81± .04 0.56± .01
GDSS 2.09± .01 0.30± .02
GDSS+PRODIGY 1.09± .02 0.29± .10

Hence, we train a simple graph convolutional network Wu et al. (2019), as described in Section 3.1,
to act as a proxy for the molecular property. We then constrain the predicted property to lie within a
range of the given value. Following the conditional generation of Digress, we consider minimizing
the mean absolute error (MAE) between the generated molecules and the first hundred molecules of
QM9. We thus use the median of these values to constrain the predicted property. Table 8 shows the
performance of our sampling technique (on top of a pre-trained GDSS) model against the DiGress
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baseline. We can see that even after using a simple linear model for property estimation, we can
generate molecules with competitive µ and HOMO as DiGress that employs a Graph Transformer as
the proxy.

3D molecule generation. Atomic and molecular stabilities of the generated molecules in the
controlled setting are 69.11% and 61.16% respectively.

D.2 RUNNING TIME

Efficiency. For each constraint, φµ involves matrix multiplication operations that can be efficiently
done by exploiting data batching and parallelization of Pytorch (Paszke et al., 2019). Finding µ is
also efficient as the bisection method converges in logarithmic number of steps and can exploit data
batching strategies, thereby making the entire approach highly efficient.

We report the PRODIGY sampling time for different constraints on different datasets with GDSS.
In particular, Table 9 reports the sampling time taken per diffusion timestep. This shows that the
projection step doesn’t change the scale of the diffusion sampling and the time taken is mostly
minimal as compared to the denoising step. This is in line with the almost logarithmic scaling of
these projection operations with respect to the number of edges.

Table 9: Time taken (in seconds) per diffusion timestep. ∗ denotes the time taken by the original
(unconstrained) GDSS sampling.

Original∗ Edge Count Triangle Count Degree

Community-small 0.47 0.58 0.51 0.57
Ego-small 0.04 0.13 0.07 0.13
Enzymes 0.07 0.41 0.11 0.22

Grid 0.24 0.52 0.24 0.43

D.3 VISUALIZATIONS

Figures 4, 5, 6, 7 compare generations of GDSS with GDSS+PRODIGY sampling on different
datasets given a maximal constraint. On the other hand, generations by our method for minimal
constraint for each dataset are provided in Figures 8, 9, 10, 11. We can observe that the generated
graphs can satisfy the given constraints while being close to the original distribution.

Furthermore, figure 12 shows some molecules that satisfy the atom count constraint. We can note that
these are quite novel structures that are produced due to the constraint of having just C and O. Rings
of larger sizes are also obtained which may not be desirable. Due to the flexibility of our method
to support arbitrary constraints, we believe that ring size can also be controlled. However, it is an
NP-hard problem to find whether a ring would exist or not in a discrete graph structure. Continuous
relaxations of this problem can be studied and then controlled for using our method but leave it as
future work due to the complexity of the ring-finding problem of size larger than 3.

Figure 13 shows some sample molecules that were generated with predicted dipole moment within
the specified range. This shows that we can generate molecules with a large variety in atom types as
we see Oxygen and Nitrogen across different ranges.

D.4 SENSITIVITY OF γt

Figures 14, 15, 16, 17 show an exhaustive analysis for different values of γt and different values
of the constraint parameters for different constraints. We find similar trends as Figure 3 and find a
trade-off for constraint satisfaction and distance on the test set for different γt. We thus choose a
higher power of the exponent to schedule γt for unconditional generation.
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D.5 CAN WE OBTAIN LOWER MMDS FOR MINIMAL CONSTRAINED SETTING?

We find that MMDs of PRODIGY sampling in Table 2 were not very low. We note some of the
issues that may be leading to this result. (1) Our constraint P(G) ≤ minG∈Gts

{P(G)} := Pmin

does not completely match the minimal test set as one can generate a graph such that P(G) < Pmin.
Hence, we now consider the constraint P(G) = Pmin or Pmin ≤ P(G) ≤ Pmin when the test
graphs are more than 10 (following Thompson et al. (2022)) otherwise we consider Pmin ≤ P(G) ≤
Pmin + (Pmax − Pmin)/5. (2) As we see above in Appendix D.4, the parameter γt controls the
tradeoff between constraint satisfaction and distance with respect to certain functions from the held-
out set. In Table 2, we chose this parameter with a low power of at most 5, while we now consider an
extremely slow-growing γt = poly(0, 50).

Table 10 shows these results for different datasets and constraints. We omit the maximum degree
constraint here since it is not clear how to come up with a lower bound since it only constrains the
maximum degree (not the minimum). We see a significant reduction in MMD with the constraint-
filtered set and an increase in constraint validity as compared to the original GDSS. This highlights
the flexibility of our method to satisfy arbitrary constraints with a flexible parameter. A curious case
is the Grid graphs where we don’t do much good, especially on degree and orbit MMDs for triangle
count constraint. It is to be noted however that GDSS generates grids with at least one triangle,
which makes these graphs invalid. On the other hand, while satisfying the triangle count equals zero
constraint, we bring the clustering coefficient MMD exactly zero but this comes at the cost of hurting
the degree distribution. Since GDSS is not able to generate a single valid grid, we believe this is
because GDSS has learned an invalid distribution of grids.

Table 10: Effect of PRODIGY on constrained generic graph generation with both lower and upper
bounds.

Community-small Ego-small Enzymes Grid
Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑

Edge
Count

GDSS 0.448 0.481 0.077 0.335 0.10 0.187 0.599 0.017 0.268 0.15 1.888 1.372 0.267 1.175 0.00 0.139 0.011 0.048 0.066 0.45
+PRODIGY(γt = poly(0, 5)) 0.159 0.752 0.007 0.306 0.20 0.087 0.125 0.001 0.071 0.18 0.047 0.022 0.002 0.024 0.07 1.249 0.002 0.604 0.618 0.00
+PRODIGY(γt = poly(0, 50)) 0.036 0.506 0.002 0.181 0.20 0.046 0.122 0.001 0.056 0.30 0.056 0.069 0.001 0.042 0.04 0.150 0.010 0.052 0.071 0.45

Triangle
Count

GDSS 0.743 0.281 0.293 0.439 0.35 0.160 0.599 0.005 0.255 0.33 1.268 1.372 0.123 0.921 0.00 0.154 0.011 0.050 0.072 0.00
+PRODIGY(γt = poly(0, 5)) 0.839 0.098 0.379 0.438 0.30 1.340 0.000 0.018 0.453 1.00 1.127 0.000 0.047 0.391 1.00 1.996 0.000 0.978 0.991 1.00
+PRODIGY(γt = poly(0, 50)) 0.810 0.144 0.373 0.442 0.50 1.229 0.000 0.017 0.415 1.00 1.127 0.000 0.047 0.391 1.00 1.996 0.000 0.978 0.991 1.00
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(a) GDSS (b) GDSS+PRODIGY

Figure 4: Comparison of unconditional generation on Community-small dataset

(a) GDSS (b) GDSS+PRODIGY

Figure 5: Comparison of unconditional generation on Ego-small dataset

(a) GDSS (b) GDSS+PRODIGY

Figure 6: Comparison of unconditional generation on Enzymes dataset
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(a) GDSS (b) GDSS+PRODIGY

Figure 7: Comparison of maximal constraint generation on Grid dataset

(a) Edge-Count (≤ 21) (b) Triangle-Count (≤ 30) (c) Max-Degree (≤ 5)

Figure 8: GDSS+PRODIGY generations for the minimal constrained setting on Community-small

(a) Edge-Count (≤ 3) (b) Triangle-Count (≤ 0) (c) Max-Degree (≤ 3)

Figure 9: GDSS+PRODIGY generations for the minimal constrained setting on Ego-small.

(a) Edge-Count (≤ 29) (b) Triangle-Count
(≤ 18.67)

(c) Max-Degree (≤ 5.5)

Figure 10: GDSS+PRODIGY generations for the minimal constrained setting on Enzymes
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(a) Edge-Count (≤ 218) (b) Triangle-Count (≤ 0) (c) Max-Degree (≤ 4)

Figure 11: GDSS+PRODIGY generations for the minimal constrained setting on Grid

(a) QM9 (b) ZINC250k

Figure 12: GDSS+PRODIGY generations for the Atom-Count constraint to generate molecules with
only Carbon and Oxygen atoms. We pick the 10 novel molecules (i.e., not in the dataset) with the
maximum Tanimoto similarity with the test dataset.

(a) µdm ≤ 0.96

(b) 0.96 ≤ µdm ≤ 1.68

(c) 1.92 ≤ µdm ≤ 2.40

(d) µdm ≥ 2.40

Figure 13: 3D GeoLDM+PRODIGY generations for Dipole Moment constraint for a range of values.
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Figure 14: Value of different metrics for different γt for Community Small on different constraints as
we vary the parameters (param).
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Figure 15: Value of different metrics for different γt for Ego Small on different constraints as we
vary the parameters (param).
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Figure 16: Value of different metrics for different γt for Enzymes under different constraints as we
vary the parameters (param).

3.8 3.9 4.0 4.1 4.2
0.0

0.5

1.0

1.5

2.0

va
lu

e

Deg. MMD

3.8 3.9 4.0 4.1 4.2

Clus. MMD

3.8 3.9 4.0 4.1 4.2

Orb. MMD

3.8 3.9 4.0 4.1 4.2

Spec. MMD

3.8 3.9 4.0 4.1 4.2

Degree

Val

200 400 600
0.0

0.5

1.0

1.5

2.0

va
lu

e

200 400 600 200 400 600 200 400 600 200 400 600

Edge Count

0.050 0.025 0.000 0.025 0.050
param

0.0

0.5

1.0

1.5

2.0

va
lu

e

0.050 0.025 0.000 0.025 0.050
param

0.050 0.025 0.000 0.025 0.050
param

0.050 0.025 0.000 0.025 0.050
param

0.050 0.025 0.000 0.025 0.050
param

Triangle Count

t=poly(0,1)
t=poly(0,5)
t=poly(0.1,1)
t=poly(0.1,5)
t=1
t=0

Figure 17: Value of different metrics for different γt for Grid under different constraints as we vary
the parameters (param).
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