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ABSTRACT

Despite the promising progress achieved, Large Vision-Language Models (LVLMs)
still suffer from the hallucination problem, i.e., they tend to predict objects and
relations which are non-existent in the target images. These unfaithful outputs
degrade the model performance and greatly harm the user experiences in real-
world applications. Fortunately, traditional small visual models excel at producing
professional and faithful outputs, but they are not adept at interacting with humans.
Therefore, this work explores how small visual models complement the LVLMs
by effectively extracting contextual information from images to generate precise
answers. In particular, we show how such hallucination mitigates naturally in
LVLMs via a simple method called visual evidence prompting, where a few visual
knowledge evidences are provided as contexts in prompting. Experiments on three
large language models show that visual evidence prompting improves performance
on the evaluation of object hallucinations, as well as the new benchmark for
relation hallucinations. We hope our work will not only serve as the minimal
strongest baseline for the challenging hallucination benchmarks, but also highlight
the importance of carefully exploring and analyzing the enormous visual evidence
hidden inside small visual models before crafting finetuning LVLMs.

1 INTRODUCTION

The success of large vision-language models (LVLM) has resulted in significant advancements in
overall comprehension of visual semantics (Chen et al.| 2023bj |Li et al.|[2023a)). Despite the success,
it also introduces a notable issue being their tendency to produce hallucinations. They tend to produce
non-existent objects (there is a “chair” in the image) and relations (dog is “behind” the cup) in the
image (Li et al.|, 2023b} |Gunjal et al.l 2023} [Liu et al.| [2023a). Addressing and mitigating these
hallucinations is crucial to improve the reliability and accuracy of vision-language models in real-life
use cases.

Detecting and dealing with phenomenon proves to be challenging and often needs human supervision.
Prior approaches has given models the ability to generate faithful responses by annotating negative
instructions or unfaithful object descriptions and relations (Gunjal et al., 2023} |Liu et al., 2023a)). It
is costly to create a large set of high quality answers, which is much more complicated than simple
input—output pairs used in normal machine learning. More importantly, during instruction tuning of
large vision-language models, there is a risk of overly optimizing the model to fit a specific problem
or dataset. This tuning approach may lack generalization ability and lead to catastrophic forgetting,
making it incompatible with other models or problems Zhai et al.| (2023)).

Fortunately, traditional small visual models excel at the tasks they are trained for. For instance, in
the task of object detection, small visual models can efficiently identify and locate objects within an
image (Fang et al.l 2021} |Carion et al., [2020). In the task of scene graph generation (SGG) (Zellers
et al., 2018 |Cong et al., 2023), small visual models can generate detailed descriptions of objects
and their relations within a given scene, such as “a person sitting on a chair” or “a car parked next
to a building”. Small visual models are better characterized as narrow experts who focus on the
processing and understanding of visual content, while LVLMs are competent generalists who have
strong semantic understanding and generalization capabilities. Naturally, the small visual models
complement the LVLMs by effectively extracting contextual information from images to generate
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Figure 1: Hallucination in LVLM (QWen-VL-Chat). (a): LVLM produces non-existent objects
(chair, bowl) and relations (cup near the center). (b): small visual models (object detection and scene
graph generation) accurately output the object (cup, dog, newspaper) and relations (dog near cup).
With the output of visual models as contexts in prompting, the fictional chair and bowl diminishes in
the answer, and the relation between dog and cup is precisely described referred to the evidence.

precise answers. Moreover, due to the limited semantic understanding, small visual models are nearly
incapable of producing illusions, which further enhances their ability to complement larger models.

This work explores how the hallucinations of LVLMs can be mitigated by referring to visual evidence
from small visual models. An example is shown in Figure[I] The original LVLM produces the
non-existent objects (“chair”, “bowl*) and relations (“‘cup near the center”) in the answer. At the same
time, small visual models, i.e., object detection and scene graph generation models, output accurate
objects and relations, e.g., “cup (0, 284, 133,424)”, “dog near cup”. Symbolizing the accurate and
faithful output of visual models as context prompts, the non-existent chair and bowl diminished in
the final answer and the relation between dog and cup is precisely described referred to the evidence.
We refer to this approach as visual evidence prompting during the inference.

To the best of our knowledge, we the first to study the visual evidence. Our method is partially
inspired by the knowledge evidence solutions to tackle the hallucination in language models. These
approaches retrieve supporting evidence from the knowledge base or encyclopedia to corrects factual
errors in the output. While the visual knowledge base is infeasible in the vision-language tasks,
the output of visual models is analogous to the knowledge evidence. The difference lies in that
the evidence for large language models is static and consists of common knowledge, whereas the
evidence for vision-language models is dynamic and associated with the content of specific images.

To evaluate the hallucinations of object and relation together, we introduce a new dataset and
benchmark for the relation hallucinations. Our empirical evaluations on two benchmarks show that
visual evidence prompting outperforms standard prompting, sometimes to a striking degree, as well
as the instruction tuning methods. The evaluations also show that current LVLMs are more prone
to encounter relation hallucinations, and our method exhibits greater gains in addressing relation
hallucinations. Furthermore, we also conduct in-depth analysis about the robustness against visual
models capacities, erroneous visual evidence, prompt templates and image domains. We aim for our
work to not only establish a minimal yet robust baseline for the challenging benchmarks, but also
draw attention to the crucial need for thorough exploration and analysis of the vast visual evidence
concealed within small visual models, prior to crafting and fine-tuning LVLMs.

2 RELATED WORKS

2.1 LARGE VISION-LANGUAGE MODELS

Large vision-language models have seen performative advancements in tasks such as generating
text from images and multi-modal in-context learning (Chen et al.| 2023b; |Li et al., [2023a). Recent
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work has focused on utilizing instruction tuning techniques to enhance the zero-shot performance
of instruction-aware LVLMs across different vision-language tasks |[Liu et al.| (2023c)); |Dai et al.
(2023)). Specifically, LLaVA [Liu et al.| (2023c) projects the output of a visual encoder as input to
LLaMA [Touvron et al.|(2023)) and trains both the alignment network and the LLM on synthetic data.
MiniGPT4 |Zhu et al.| (2023)) is built on BLIP-2|Li et al.| (2023a)) but uses Vicuna [Platzer & Puschner
(2021)) as the language decoder. MiniGPT-4 aims to align visual information from a pretrained vision
encoder with an advanced large language model (LLM). mPLUG-OwI (Ye et al.l 2023) incorporates
a visual abstractor to bridge pretrained visual encoder ViT-L/14 and LLM (LLaMA) with a two
stage finetuning procedure. Qwen-VL-Chat consists of two stages of pre-training and a final stage of
instruction tuning training.

2.2 HALLUCINATIONS IN LARGE LANGUAGE MODELS

The extraordinary capabilities of LLMs come with a significant drawback: their potential to generate
unsupported text due to their lack of understanding of what is factual and what is not Maynez
et al.| (2020); [Krishna et al.| (2021)); Longpre et al.|(2021). As a result, there has been a surge of
interest to address LLM hallucination through knowledge-grounded neural language generation. To
address this limitation, various works augment LL.Ms with knowledge consisting of personalized
recommendations (Ghazvininejad et al.[(2017), Wikipedia article and web search [Dinan et al.[(2018));
Shuster et al.|(2022), structured and unstructured knowledge of task-oriented dialog Peng et al.| (2022).
In the LVLMEs, it is infeasible to acquire grounded knowledge from a general knowledge base.

2.3 HALLUCINATIONS IN LARGE VISION-LANGUAGE MODELS

Despite the success of LVLMs, previous work has revealed that both LLMs and LVLMs suffer from
hallucination. Similar to LLMs, LVLMs tend to generate non-existent objects in a target image. In
the literature of computer vision field Rohrbach et al.|(2018)); Biten et al.|(2021). object hallucination
refers that the model generates descriptions or captions that contain objects which are inconsistent
with or even absent from the target image. In general, object hallucination can be defined at different
semantic levels. The most straightforward way is to define it over the object level. More fine-grained
definitions might be concerned with the relations of objects. In this work, we focus on coarse-grained
object hallucinations and fine-grained relation hallucinations at the same time, other hallucinations
such as the number and attributes of the object are left for future work. In previous works |Li et al.
(2023b), the evaluation metric “POPE” is proposed to evaluate hallucinations in LVLMs by polling
questions about generated text. They observed that current state-of-the-art LVLM (InstructBLIP Dai
et al.| (2023))) has the lowest object hallucination rates among recent LVLMs. |Gunjal et al.| (2023)
created a hallucination dataset and optimized the InstructBLIP over the dataset with variation of
Direct Preference Optimization |Rafailov et al.|(2023)). These studies collectively contribute to the
understanding and mitigation of hallucination-related challenges in LVLMs, by providing evaluation
metrics, datasets, and tuning methods that enhance the reliability and consistency of the generated
answers. Yet, there is a risk of overly optimizing the model to fit a specific problem or dataset, leading
to catastrophic forgetting and lack of generalization ability [Zhai et al.|(2023).

3 VISUAL EVIDENCE PROMPTING

The goal of this paper is to endow large vision-language models with the ability to mitigate
the hallucinations with the help of visual evidence. Generating answer with an input im-
age and query question can be expressed in a probabilistic framework as estimating a condi-
tional distribution p(answer|question,image). The visual evidence prompting is formalized as
p(answer|question, image, evidence), where the evidence is the key contents from the image.

Considering one’s internal process when answering questions based on image content, it is typical
to decompose the problem into two steps. For example, as in Figure 2] there is a question about “Is
the cup near dog in the image”. Firstly identify the key elements in the image as evidence (“dog
at the pixel position of (0, 1,441,417), cup at the position of (0,284, 133, 424), newspaper at the
position of (308, 140, 638, 421), and dog is near the cup, dog is on the table, newspaper is on the
table”). Then, combine the relevant content (“dog is near the cup”) within the evidence to answer the
question. After this process, an answer is generated.
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Figure 2: An overview of Visual Evidence Prompting, which mitigates hallucinations in large vision-
language models for a text passage via researching visual evidence from small visual models. Given
the input image, the small visual models generates visual evidence about different aspects of the
image, e.g., object description, object locations and relations between objects. Then the “visual
evidence” prompts are used to extract the answer from the image and evidence texts.

3.1 TwO-STEP PROMPTING

In this paper, visual models refer to the object detection and scene graph generation models. Other
models such as semantic segmentation and human-object interaction can also be considered as visual
models and may bring potential performance gains, but that is not the priority of this paper.

1st step: visual evidence extraction. The input image of the large vision-language model is fed into
the small visual model, and the output is formulated as predefined formats. For the object detection
models, the output is composed of the object label and the coordinates of the up-left and down-right
point of the bounding box. The visual evidence of object detection is formulated as

{label} ) <xup_lefta Yup_lefts Tdown_rights ydown_7'ight>- (1)

For example, the “cup” at (0, 1,441, 417) is formulated as “cup (0, 1,441, 417). For the scene graph
generation models, the output is composed of the (subject, relation, object) triplets. Each triplet is
firstly formulated as { subject}{relation} {object}. Multiple triplets are joined with the
. For example, (man on surfboard) and (man has hair) are formulated as “man on surfboard, man
has hair”. All the visual evidence are formulated as “there may be evidence in the image too”. This
is one simple and effective formulation of visual evidence. More sophisticated formats may bring
further improvement.

2nd step: visual evidence prompting. In the second step, we use symbolized visual evidence
along with prompted question to extract the final answer from large vision-language model. To be
concrete, we simply concatenate two elements as with “Answer the question referred to the evidence.
Let’s see what is in the image. There are {evidence} in the image. Then answer the question
: {question}? The answer (yes or no) is . The prompt for this step is self-augmented, since
the prompt contains the visual evidence generated by the visual model. Finally, the vision-language
model is fed the prompted text as input to generate final answers.

3.2 DISCUSSION

As a new paradigm, visual evidence prompting has multiple attractive advantages.

1. First, previous work has found that the frequent occurrence of objects in the instruction
datasets are prone to be hallucinated by LVLMs (Li et al., [2023b)). The visual evidence is
produced by independent visual models, making it immune to the biased statistics.

2. Second, since the evidence is written in natural language formats, it provides an interpretable
interface to communicate with large vision-language models (Brown et al., [2020). This
paradigm makes it much easier to incorporate visual knowledge into vision-language models
by changing visual models and the corresponding visual evidences.
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3. Finally, this could not only greatly reduce the computation costs for instruction tuning on new
datasets, but also introduces small visual models to the vision-language-model-as-a-service
(Sun et al.| |2022) and can be easily applied to large-scale real-world tasks.

Moreover, complementing the universal semantic understanding of large vision-language models
with the expertise of small visual models, visual evidence prompting has several appealing properties.

1. First, the effectiveness of this method does not heavily rely on the quality of small visual
models (Gao et al.,2022). It is expected that small model with larger capacity brings more
gains, but a fairly good visual model is enough to bring notable improvement (Sec. {.3.1).

2. Second, benefiting from the strong semantic understanding of the LVLMs, our method
possesses an amount of robustness even provided with erroneous evidence (Chen et al.,

2023a) (Sec. B.3.1).

3. Finally, along with the reasoning-instruction like “referring to the evidence” in the prompt
templates, the visual evidence is able to consistently mitigate the hallucination effect (Kojima

et al.|[2022) (Sec. @d.3.2).

Theses properties are also studied and verified in the following experimantal sections.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

In this study, we introduce a novel dataset for the evaluation of relation hallucination. Additionally,
we employ datasets proposed by (Li et al.l 2023b) to assess object hallucination.

We use the Visual Genome (Krishna et al.,[2017) to generate dataset for assessing relation hallu-
cinations. 1) The 50 relation categories of VG are categorized into two groups, spatial and action
relationships. 2) We select 7 representative spatial relations and 9 head action relations, while the
other tail relations are ignored. 3) For each relation, we randomly select 75 images with questions
whose answers are “Yes” and 75 images questions whose the answer are “No”. Each “Yes” questions
are constructed from annotations. For questions with the answer “No”, the probing relations are
randomly selected within the corresponding group of spatial or action relations. To ensure not to
select synonyms of the ground truth as probing relations, we carefully devise pairs of synonymous
relations as the “blacklist”. In summary, this dataset consists of 2400 triplets of image, question and
answer, in which 1200 are “Yes” and 1200 are “No”. There is no overlap between the datasets used
for training small models and the LVLM hallucination test sets. We use the POPE’s dataset for object
hallucination evaluation which use the validation set of COCO. For relation hallucination we follow
POPE and use the test set of Visual Genome to construct dataset. More details are shown in the

Appendix [B]
4.1.2 EVALUATION METRIC

Following the evaluation metric in POPE (Li et al., |2023b)), we formulates the evaluation of object
and relation hallucination as a binary classification task that prompts LVLMs to output “Yes” or “No”,
e.g., “Is there a chair in this image?” and “Is the cup near the dog in the image?”. If the model’s
response does not include neither “Yes” nor “No”, it will be disregarded in the calculation of metrics.
We report the accuracy, F1 score and “Yes” ratio. Specifically, the accuracy reflects the proportion
of correctly answered questions, while the F1 score combines both results of precision and recall.
Besides, we also report the ratio that LVLMs answer “Yes” as the reference to analyze the model
behaviors. If the proportion of “Yes” is too high (close to 1) or too low (close to 0), it indicates that
the model’s predictions are highly biased towards the “Yes” or “No”.

4.1.3 IMPLEMENTATION DETAILS

In order to conduct our experimental analysis, we select three prominent LVLMs as representatives.
These include MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2023) and Qwen-VL-Chat
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(Bai et al.l 2023)). Firstly, we use the corresponding visual small model to process the images in the
evaluation dataset and obtain the corresponding evidence. For the evaluation of object hallucination,
we can obtain the category and coordinates of objects in the image. For the evaluation of relational
hallucination, we can obtain the relationship between objects. Subsequently, the acquired visual
evidence is integrated with the original question using a prompt. Note that in Qwen-VL-Chat, for any
given bounding box, a normalization process is applied (within the range [0, 1000)). For example,
Tinput = Tpigel/ Width x 1000, Yinput = Ypizel/height = 1000. So the scale of the image does not
differentiate any object relations. Finally, we input the combined prompt and image into the model
to obtain the model’s answer. We employed the default parameter settings provided in the official
repository for Qwen-VL-Chat and mPLUG-Owl models. In the case of MiniGPT-4, we observed that
the default temperature coefficient led to an unstable output from the model. To address this issue,
we set the temperature value to 0.1 for all of our experiments.

4.2 RESULTS
4.2.1 EFFECT OF VISUAL EVIDENCE PROMPTING

We evaluate the object and relation hallucination performance of the three baseline models and their
counterparts with visual evidence prompting, as well as a state-of-the-art method using instruction
tuning named LRV-Instruction (Liu et al.}2023b). The evaluation results are presented in Table@

Evaluation | Model Accuracy  F1 Score | Yes (%)
mPLUG-Owl 57.29 68.97 87.47
+ LRV-Instruction 68.08 72.19 64.61
+ Visual Evidence 78.38 78.60 50.96
Object Hallucination MiniGPT-4 ' 70.89 71.01 50.38
+ LRV-Instruction 62.94 71.67 80.77
+ Visual Evidence 80.23 81.77 58.43
Qwen-VL-Chat 81.23 81.46 51.23
+ Visual Evidence 87.70 87.11 45.43
mPLUG-Owl 62.58 71.18 79.83
+ LRV-Instruction 64.07 58.17 35.89
+ Visual Evidence 68.46 73.01 66.88
Relation Hallucination MiniGPT-4 ' 64.55 72.24 77.61
+ LRV-Instruction 65.41 72.71 75.88
+ Visual Evidence 70.11 74.01 64.99
Qwen-VL-Chat 63.62 46.99 18.62
+ Visual Evidence 75.68 76.69 54.40

Table 1: Detailed object and relation hallucination evaluation results using POPE evaluation metrics.
“+ LRV-instruction” denotes the model from (Liu et al., |2023b). “+ Visual Evidence” denotes ours.

Object hallucination The upper part of Table[I6] presents the comparison with baseline and SOTA
results for the evaluation. After incorporating visual evidence prompting, all models enables more
precise discernment of object presence within the image. Notably, the instruction tuning approach
(LRV-Instruction (Liu et al.,|2023b))) outperforms baseline model on mPLUG-OwI, while underper-
forms baseline model on MiniGPT-4. This verifies that the instruction tuning method is prone to
overfitting to specific datasets, tasks, or models, leading to relatively poor generalization ability, the
phenomenon is also studied in (Zhai et al., 2023]).

Relation hallucination As in the lower part of Table[16] our model is also evaluated on the proposed
relation benchmark. Firstly, along with object, our proposed methodology substantiates its efficacy
by inducing diverse degrees of enhancement across all models. Secondly, compared with object
hallucinations, it is evident that the performance of all models is inadequate in terms of relation.
Interestingly, the model Qwen-VL-Chat, which exhibited exceptional performance on the object
evaluation (87.7% accuracy and 87.11 F1 score), displayed significant illusion phenomena on the
relation dataset, achieving an accuracy of 63% and an F1 score of 46. With the help of visual evidence
prompting, the accuracy experienced a notable improvement of 12%, while the F1 score showed
a substantial enhancement of nearly 30. These outcomes strongly validate the effectiveness and
efficacy of our proposed approach. Thirdly, we observe that the improvement for different models is
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directly proportional to their inherent performance. For example, the performance of Qwen-VL-Chat
is from 63.62% to 75.68% (+12.07%), while MiniGPT-4 is from 64.55% to 70.11% (+5.56%). We
attribute this phenomenon to the original abilities of different models for relations comprehension.

4.3 DETAILED ANALYSIS

Model Visual model Performance of LVLMs

Model name mAP | Accuracy F1 Score ‘ Yes (%)

- - 57.29 68.97 87.47

yolos-tiny 28.7 70.23 70.34 50.44

mPLUG-Owl yolos-small 36.1 73.44 73.22 49.23

detr-resnet-50 42.0 76.55 76.72 50.57

detr-resnet-101  43.5 78.38 78.60 50.96

- - 81.23 81.46 51.23

yolos-tiny 28.7 83.73 82.25 41.67

Qwen-VL-Chat yolos-small 36.1 85.47 84.35 39.23

detr-resnet-50 42.0 87.10 86.36 44.57

detr-resnet-101  43.5 87.70 87.11 45.43

Table 2: Object hallucination results of Qwen-VL-Chat and mPLUG-OwI incorporating visual
evidence from different object detection models, i.e. yolos-tiny (Fang et al.| 2021), yolos-small (Fang
et al., [2021)), detr-resnet-50 (Carion et al., [2020) and detr-resnet-101 (Carion et al., 2020). The mAP
on COCO 2017 validation of different visual models is also reported.

4.3.1 VISUAL MODEL

How do LVLMs perform with visual models of different capacities? In this study, we explore the
influence of incorporated visual models with different performance. Specifically, we select Qwen-VL-
Chat and mPLUG-owl as the subjects of our investigation. For the object hallucination evaluation, we
employ three object detection models with different architectures and capacities, namely yolos-tiny
(Fang et al., |2021)), yolos-small, detr-resnet-5S0(Carion et al., 2020), and detr-resnet-101, as our
visual models. The experimental results are presented in Table[2] For the relationship hallucination
evaluation, we utilize three popular scene graph generation models with different architectures,
namely RelTR (Cong et al., 2023), MOTIFS (Zellers et al., [2018)) and OpenPSG (Yang et al.| 2022).
The experimental results are presented in Table[I5]in the appendix.

Noteblely, the results of the object hallucination experiments demonstrate a positive correlation
between the detection abilities of the chosen visual small models and the performance of object
hallucination in LVLMs. As show in the Table[I2]and Table[I3]in the appendix, both the Qwen-VL-
Chat and mPLUG-owl models consistently manifest similar trends across all three object hallucination
datasets. This tread is expected as a good detection model provides high-quality visual evidence,
which enables better mitigation of objects hallucinations. Interestingly, Qwen-VL-Chat demonstrates
comparable performance improvements when employing detr-resnet-101 and detr-resnet-50 as visual
models across three object hallucination datasets. The detr-resnet-101 brings more performance
gains for mPLUG-Owl, with repect to to detr-resnet-50. The reason for this phenomenon is that
performance of Qwen-VL-Chat is saturated with limited room for improvement, while mPLUG-Owl
has relatively lower performance but greater chance for enhancement.

How do LVLMs perform with erroneous visual evidence? Although the small vision model
has attained a commendable level of accuracy within its specific domain, it occasionally exhibits
imperfections, such as instances where the object detection model fails to identify inconspicuous
objects present in the image, or detects objects that do not actually exist in the image. Consequently,
it is neccesary to validate the robustness against the visual evidence.

In this study, we employ the object hallucination results of Qwen-VL-Chat combined with detr-resnet-
101 for analysis. Figure|3|present the ratios of samples which are integrated with erroneous visual
evidence. It is split as four parts based on the original behavior and the behavior after introducing
erroneous evidence. For example, “LVLM wrong answer + wrong evidence — Correct answer”
denotes the samples that were initially answered incorrectly and answer correct after provided with
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wrong evidence. Firstly, the total ratio of erroneous evidence is 6.9%, while the one of correct
evidence is 93.1%. It illustrates that the effect of erroneous evidence is relatively small in current
setting. But this study is still important for the open-set real-world cases. Secondly, after integrating
with the incorrect evidence, most of the samples with wrong original answer remain wrong (the first
and second columns). This observation is expected as erroneous evidence doesn’t provide valuable
information. Thirdly, for a substantial fraction of the samples with original correct answers, the
model continues to provide correct answers, indicating a certain level of robustness in the model.
Additionally, after in-depth analysis of these

cases, we found that whether the model exhibits
consistent adherence to the correct answer is re-
lated to the prominence of the interested object.
If the queried object in the question is relatively

LVLM wrong answer + wrong evidence == Correct answer
LVLM wrong answer + wrong evidence — Wrong answer
OLVLM correct answer + wrong evidence—Correct answer
B LVLM correct answer + wrong evidence—Wrong answer

prominent in the image, the correctness of the
evidence doesn’t effect the final answer. Other-
wise, the model tends to produced answer condi-
tioned on the evidence. If the evidence is wrong,
the response to question is easily to be wrong.
Figure[7)and[8]in the appendix showcases some
examples.

3.50%
3.00%
2.50% r
2.00% r
1.50%
1.00% r
0.50%
0.00%

2.90%
7

2.10%

Sample ratio

4.3.2 How DO LVLMS PERFORM

WITH DIFFERENT PROMPT TEMPLATES? Figure 3: Robustness against correctness of visual

evidence with Qwen-VL-Chat and detr-resnet-101.
For example, “LVLM wrong answer + wrong ev-
idence — Correct answer” denotes the samples
that were initially answered incorrectly and answer
correct after provided with wrong evidence.

To validate the robustness of visual evidence
prompting against input prompts, we evaluate
Qwen-VL-Chat with 4 templates on object and
relation evaluations, respectively. Table [3|and

summarizes performance. The results indi-
cate that the performance is improved if the text
is written in a way that encourages referring the
evidence. The difference in accuracy is signifi-
cant depending on the sentence. In this experiment, the one with more reasoning style achieves the
best results. Interestingly, the 5, template in Table [3]adds a new prompt which tells the LVLMs
that the evidence may be wrong or missing. Compared with the 4, template, the improvement of
0.77% accuracy mainly comes from the addressing the “LVLM correct answer + wrong evidence —
Wrong answer”. In contrast, when we use misleading or irrelevant templates, the performance does
not improve.

Visual Evidence Prompt Templates \ Accuracy  F1 Score

{question} | 8123 81.46
There are {evidence} in the image.\n{question } 87.70 87.11
{evidence} are existing in the image.\n{question} 86.37 85.70
You can see {evidence} in the image.\n{question} 85.80 85.30
The following object are existing in the image: {evidence}.\n{question} 87.10 87.11
The following object are existing in the image: {evidence}.

The evidence might be wrong. Keep your answer if you think the evidence is 87.87 87.31
wrong or evidence is missing. \n{question}

It’s a beautiful day.\n{question} 77.23 72.97
There is nothing in the image.\n{question} 68.37 55.51

Table 3: Robustness study against template measured on the object dataset on Qwen-VL-Chat.

4.3.3 FINE-GRAINED RESULTS OF RELATION HALLUCINATION

In this section, we comprehensively demonstrate and analyze the model’s performance across diverse
relationship categories. In Figure 4, the performance of Qwen-VL-Chat with and without correspond-
ing visual evidence is presented for each relationship category in the relation hallucination dataset,
where spatial relationships are depicted on the left and action relationships on the right. Based on the
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depicted results, it is evident that Qwen-VL-Chat exhibits varying degrees of improvement across
different relationship categories following the integration of visual evidence. Notably, a significant
enhancement is observed in the action relationship category. Overall, the model outperforms the
spatial relationship in the context of action relationships. This discrepancy could be attributed to
the finer-grained nature of spatial relationships within images, which demand a higher level of
comprehension capability.

w/o visual evidence 0w/ visual evidence

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

above at  behind in infront on under carrying eating holding lying on looking riding sitting standing walking
of at on on on

Figure 4: The effect of incorporating visual evidence on the performance of Qwen-VL-Chat across
different relation categories in the proposed relation hallucination dataset has been presented in this
figure.

Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

[ D)

Is there a camera in the image?

s there a flower vase in the image?
- J

x Yes, there is a flower vase in the % x No, there is no camera in the Y.*m
an an

image. image.

You can see cable, cell phone, hand
in the image.
Is there a bed in the image?

You can see flower in the image.
Is there a flower vase in the image?

You can see person, camera, guitar,
cell phone in the image.
Is there a camera in the image?

& -]
[There is no existence of a ﬂower} ‘ﬂ; [Yes, there is a camera in |he] lﬂ;\
V = v ao

vase in the image. image, along with the cell phone.

Figure 5: This figure showcases several instances of object hallucination mitigation of Qwen-VL-Chat
facilitated by our framework. The dialogue above the dashed line depicts scenarios without visual
evidence, whereas the dialogue below the dashed line includes visual evidence. The included images

are sourced from 2023), winoground (Thrush et al.,[2022). and MiniGPT-4
2023)) respectively

4.3.4 HOW DO VISUAL EVIDENCE PERFORMS ON OUT-OF-DOMAIN IMAGES?

As shown in Figure 5] the combination of visual evidence can reduces both object and relation hallu-
cination when testing on out-of-domain image, which demonstrate the robustness and generalization
ability of our method. More cases are shown in the Figure[T3]in the appendix.

5 CONCLUSION

We have explored visual evidence prompting as a simple and broadly applicable method for mitigating
hallucinations in large vision-language models. Through experiments on object and the proposed
relation benchmark, we find that visual evidence is a effective, robust and general cure for large
vision-language models. Broadening the range of visual evidence that will hopefully inspire further
work on external-knowledge-based approaches for mitigating hallucinations.
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A APPENDIX: DISCUSSIONS
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A.1 OUT-OF-DOMAIN DATA

,—'Reviewer 7K, Q2

We also conduct more evaluations on more out-of-domain datasets. Specifcally, we collect 2,540
additional samples from open-world datasets and scenarios to further evaluate the genaliation ability
of our method. We collect 2,540 samples from another two object detection (Object365
[2019)) and scene graph generation (OpenImage (Kuznetsova et al.l[2020)) datasets for quantitative
analysis. The Object365 dataset is a collection of images that aims to provide a comprehensive
representation of objects commonly found in indoor environments. It consists of over 365 object
categories, with each category containing multiple images depicting different instances of the object.
The Openlmage dataset consists of millions of images covering a wide range of categories, including
objects, scenes, and events. It provides valuable annotations for each image, including object
bounding boxes, class labels, and object relationships. Table[d] present the comparison with baseline
results for the evaluation on out-of-domain datasets. The experimental results indicate that in out-of-
domain open scenarios, incorporating visual evidence can still mitigate the hallucination of LVLMs
significantly.

In 20.6% of the images, small model captures incorrect or partial correct object or relation information.
With these visual evidences, only 8% of the false evidence confuse the LVLM and change the response
from collect to wrong. Finally, we would like to point out that the contribution of our method lies
in combining small and large models, utilizing the domain-specific knowledge of small models to
complement the large models. In practical applications, it is possible to customize domain-specific
small models to tailor different domain knowledge.

A.2 WHY NOT FINETUNING?

eviewer wls8, Ql

It is a common practice to fine-tune foundation models on specific tasks to enhance task performance
or align the model’s behavior with human expectations. It is well-known that the foundation models
gain speciality to achieve exceptional performance on the fine-tuning task, but it can potentially lose
its generality. This phenomenon is closely associated with the concept of catastrophic forgetting
observed in deep neural networks.
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Evaluation \ Model Accuracy  F1 Score \ Yes (%)
mPLUG-Owl 52.04 66.81 94.52
Object Hallucination (Out-of-domain) Q—I‘-VZrils_li/aIlIECV}ilg::nce gggg gggi’ Zigg
+ Visual Evidence 76.74 75.50 45.01
mPLUG-Owl 58.52 69.06 84.07
Relation Hallucination (Out-of-domain) Q-tv\elrils_lif}l‘_lg‘cxﬁgfnce Zgg; ;?2491 461?3?
+ Visual Evidence 75.98 72.84 38.18

Table 4: Detailed object and relation hallucination evaluation results on out-of-domain datasets
constructed from Object365 (2000 samples) and Openlmage (540 samples).

Previous work Zhati et al.| (2023) has conducted fine-tuning experiments on LLaVA. As the fine-tuning
progresses, LLaVA starts to hallucinate by disregarding the questions and exclusively generating
text based on the examples in the fine-tuning datasets. As in the Table 3 in|Zhai et al.|(2023)), after 1
epoch finetuning LLaVA-7b on MNIST, the accuracy on CIFAR-10 significantly drops from 56.71%
to 9.27%. On the other hand, our prompt-based method does not modify the parameters of the
model, and offer greater controllability, which is advantageous for preserving the model’s original
generalization capability.

A.3 OVERLAP BETWEEN OBJECTS IN EVIDENCE AND QUESTIONS

‘ correct — correct correct — wrong  wrong — correct wrong — wrong

Type A | 139 (46.7%) 8 (2.7%) 110 (36.9%) 41 (13.8%)
Type B | 415 (34.5%) 22 (1.8%) 563 (46.8%) 202 (16.8%)

Table 5: Robustness against the overlap between objects in questions and objects in evaluation
datasets’ questions. For example, “wrong — correct” denotes the samples that were initially answered
incorrectly and answer correct after provided with visual evidence.

We calculate the current stats of the overlap between objects in questions and objects in evaluation
datasets’ questions. In the 3,000 visual evidence prompts, there are 298 prompts that contains object
that are not in the question (Type A), and 1,202 prompts that contain objects that are not in the
questions exclusively (Type B).

Following Figure 3] we calculate the stats of samples which were initally answered corrently/wrongly
and answer correctly/wrongly after provided with Type A/B prompts (Table 5] In the 298 Type
A prompts, 110 of which (36.9%) allievates the hallucination of LVLM with detr-resnet-101 on
Qwen-VL-Chat. In the 1,202 Type B prompts, 563 of which (46.8%) allievates the hallucination of
LVLM.

Model Setting | Accuracy
baseline 57.29%
mPLUG-Owl + visual evidence 78.38%
+ visual evidence to synonyms | 71.54%
baseline 81.23%
Qwen-VL-Chat + visual evidence 87.70%
+ visual evidence to synonyms | 86.53%

Table 6: Robustness against the object labels to synonyms.
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Model | baseline  + object labels  + relation labels

mPLUG-Owl | 63.62% 71.41% 75.68%
Qwen-VL-Chat | 62.58% 66.88% 68.46%

Table 7: Only use object labels as visual evidence for relation hallucination

Model \ Setting | In-domain objects ~ Out-of-domain objects
Baseline 58.68% 48.45%
mPLUG-Owl ‘ + Visual Evidence 65.38% 60.87%
Baseline 74.64% 67.87%
Qwen-VL-Chat ‘ + Visual Evidence 79.77% 75.10%

Table 8: Performance on open-vocabulary objects.

With the help of ChatGPT, we also manually change the object appear in question to its synonyms
respectively. The evaluation of object hallucination slightly decreases from 87.70% to 86.53%
on Qwen-VL-Chat and from 78.38% to 71.54% on mPLUG-Ow]I, but there is still a non-trival
improvement over the baseline especially on mPLUG-Ow, the results are shown in the Table[6]

A.4 ONLY OBJECT LABELS

,—.Reviewer bJ8t, Q1

We conduct validation experiments using the detr-resnet-101 model to provide object labels as
evidence for relation hallucination.

The results in Table [7] show that providing object labels as evidence also has some improvement
although not as effective as relation label. We suppose it is because object labels themselves contain
crucial object information from the image, which leads to mitigating relation hallucination. This
result not only validates the necessity of relation labels but also further verifies that our approach is
orthogonal to the specific task.

A.5 OPEN-VOCABULARY OBJECTS AND FEW-SHOT RELATIONS

,—.Reviewer bJ8t, Q2

We construct a new out-of-domain object hallucination dataset with 2000 samples using the test sets
from Object365 following the construction idea of POPE (2023D). This
dataset is divided into two parts. One part includes 80 objects that defined in COCO, while the other
portion consists of objects that do not appear in COCO. The performance of these two parts are
shown in the Table[8] It can be observed that there is a consistent improvement in performance for
both in-domain and out-of-domain object categories.

We chose the bottom-10 tail relations as defined in [2020) of VG to construct a medium-
sized relation hallucination dataset with 1006 samples. We used OpenPSG as the SGG model and
conducted experiments on Qwen-VL-Chat and mPLUG-Owl. The experiment results are shown in
the table 9] below, and it can be seen that our framework still achieves significant improvements in
few-shot relations.

B APPENDIX: DATASETS

Object hallucination datasets. In POPE(Li et all 2023b)), 500 images are randomly selected from
the validation set of COCO |Vinyals et al.| (2016), with more than three ground-truth objects in
the annotations. For each image, 6 questions are constructed from annotations whose answers are
“Yes”. For questions with the answer “No”, three strategies, i.e., Random, Popular, Adversarial, are
considered to sample their probing objects. The difficult of question increases from Random to
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Model \ Setting | Accuracy (%)
Baseline 61.23%
mPLUG-Owl ‘ + Visual Evidence 67.89%
Baseline 55.67%
Qwen-VL-Chat ‘ + Visual Evidence 68.63%

Table 9: Performance on few-shot relations.

Adversarial. For MSCOCO-Random, objects that do not exist in the image are randomly sampled.
For MSCOCO-Popular, the top-3% most frequent objects in MSCOCO are selected. For MSCOCO-
Adversarial, first rank all the objects according to their co-occurring frequencies with the ground-truth
objects, and then select the top-k most frequent ones that do not exist in the image.

Relation hallucination datasets. Firstly we categorize the all 50 relationships into two groups,
i.e.spatial and action relationships. The spatial relation categories include above, at, behind, in, in
front of, near, on, on back of, over, underand laying on. The spatial relationship categories consist of
carryingcovered incoveringeatingflying ingrowing onhanging from holdinglying onlooking atmounted
onparked on, ridingsitting onstanding on, walking onwalking in, and watching. Subsequently, we
proceed to select 7 spatial relationships, specifically above, at, behind, in, in front of, on, and under,
as well as 9 action relationships, namely carrying, eating, holding, lying on, looking at, riding, sitting
on, standing on, and walking on. For each relation, we randomly select 75 images with questions
whose answers are “Yes” and 75 images questions whose the answer are “No”. Each “Yes” questions
are constructed from annotations. For questions with the answer “No”, the probing relations are
randomly selected within the corresponding group of spatial or action relations with additional added
negative relation, which is shown in the Table[T0] To ensure not select synonyms of the ground truth
as probing relations, we carefully devise several pairs of synonymous relations as the “blacklist” as
shown in the Table[T0] Finally the dataset consists of 2400 triplets of image, question and answer, in
which 1200 are “Yes” and 1200 are “No”. In Figure[6] we show some cases in our dataset.

Relation type | Negative relations | Synonymous pairs
Spatial relation above, at, behind, in, in front of, on, under above: {on}
4 at the left of, at the right of on: {above}

carrying, eating, holding, lying on, looking at, riding, sitting on, standing | walking on: {walking in, stand-
on, walking on ing on}

walking in, watching, cutting, feeding, leaning on, jumping over, hugging, kissing, | looking at: {watching}
pushing, pulling, washing, kicking, draging

Action relation

Table 10: The negative relations candidate set used to contruct negative question are shown here. We
also present the synonymous pairs used to ensure not select synonyms of the ground truth as probing
relations

Positive question: Is the clock Positive question: Is the cap on the Positive question: Is the man Positive question: Is the man looking at

above the door? head? sitting on the bed? the laptop?
Label: yes Label: yes Label: yes Label: yes
Negative question: Is the clock Negative question: Is the cap under Negative question: Is the man Negative question: Is the man holding
behind the door? the head? jumping over the bed? the laptop?
Label: no Label: no Label: no Label: no

Figure 6: Several cases in our proposed relation hallucination dataset are depicted in this figure, with
the two on the left representing spatial relations and the two on the right illustrating action relations.
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C APPENDIX: DETAILED OBJECT HALLUCINATION EVLUATION

C.1 MORE RESULTS ABOUT OBJECT HALLUCINATION

The evaluation results on MSCOCO-Popular and MSCOCO-Random of Qwen-VL-Chat, mPLUG-
Owl, MiniGPT-4 and LRV-instruction are presented in Table@

Object hallucination datasets | Model Accuracy  F1 Score | Yes (%)
mPLUG-Owl 57.96 68.96 85.39
+ LRV-Instruction 71.81 74.48 60.26
+ Visual Evidence 77.63 77.86 50.89
MSCOCO-Popular MiniGPT-4 73.67 73.04 | 47.67
+ LRV-Instruction 66.24 73.57 77.64
+ Visual Evidence 80.77 82.08 57.30
Qwen-VL-Chat 85.53 85.08 47.00
+ Visual Evidence 89.60 88.87 43.40
mPLUG-Owl 62.86 72.11 81.55
+ LRV-Instruction 79.41 80.90 55.64
+ Visual Evidence 81.18 81.22 48.70
MSCOCO-Random MiniGPT-4 80.85 7933 | 41.08
+ LRV-Instruction 69.48 76.08 75.77
+ Visual Evidence 89.69 89.87 50.24
Qwen-VL-Chat 88.17 87.79 45.29
+ Visual Evidence 90.79 90.31 43.51

Table 11: Detailed object hallucination evaluation results of LVLMs on MSCOCO-Popular and
MSCOCO-Random using POPE evaluation pipeline.

D APPENDIX: DIFFERENT VISUAL MODELS AND LVLMS

MORE RESULTS ABOUT THE PERFORMANCE OF LVLMS INCORPORATED WITH VISUAL
MODELS OF DIFFERENT CAPACITIES

D.1

In Figure[T2] Figure[I3]and Figure[T4] we show more results on the MSCOCO-Popular and MSCOCO-
Random about the performance of three LVLMs incorporated with visual models of different capaci-
ties. In Figure[T5] we present the results on VG Relation Hallucination dataset of Qwen-VL-Chat
incorporated with different scene graph generation models. This results demonstrate that different
scene graph generation models (RelITR, MOTIFS and OpenPSG) have comparable improvements on
mPLUG-Owl and Qwen-VL-Chat. For example, RelTR achieves 5.92% and MOTIFS achieves 5.8%
improvement on mPLUG-Owl. RelTR achieves 11.35% and MOTIFS achieves 12.55% improvement
on Qwen-VL-Chat. The gains brought by different scene graph generation models to LVLM are
within a stable range (saturated).

D.2 MORE RESULTS ON DIFFERENT LVLMS AND LARGER DETECTION MODELS

OReViewer bJ8t, Q4

,—.Reviewer wls8, Q4

We have also conducted experiments on LLaVA and LLaVA-1.5 to further validate the effectiveness
of our method.

It is observed that the hallucination evaluation of LLaVA-1.5 is indeed state-of-the-art, with an
accuracy of 84.47% for object hallucination. However, it still exhibits a significant amount of relation
hallucination, with an accuracy of 70.38%. Besides LLaVA, visual evidence prompting further helps
LLaVA-1.5 alleviate both object and relation hallucination capabilities 84.47% — 90.20%, 70.38%
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Datasets Visual model Qwen-VL-Chat
Model name | mAP | Accuracy FI Score | Yes (%)
- - 85.53 85.08 47.00
yolos-tiny 28.7 85.90 84.27 39.63
MSCOCO-Popular yolos-small 36.1 87.37 86.12 41.03
detr-resnet-50 | 42.0 89.10 88.23 42.63
detr-resnet-101 | 43.5 89.60 88.87 43.40
- - 88.17 87.79 45.29
yolos-tiny 28.7 86.74 85.43 39.52
MSCOCO-Random yolos-small 36.1 88.18 87.22 40.96
detr-resnet-50 | 42.0 90.10 89.49 42.61
detr-resnet-101 | 43.5 90.79 90.31 43.51

Table 12: Object hallucination results of Qwen-VL-Chat incorporating visual evidence from different
object detection models, i.e. yolos-tiny |[Fang et al.| (2021)), yolos-small |Fang et al.|(2021), detr-resnet-
50|Carion et al.|(2020) and detr-resnet-101 |Carion et al.| (2020). The mAP on COCO 2017 validation
of different visual models is also reported.

Datasets Visual model mPLUG-Owl
Model name | mAP | Accuracy F1 Score | Yes (%)
- - 57.96 68.96 85.39
yolos-tiny 28.7 70.15 70.74 51.87
MSCOCO-Popular yolos-small 36.1 73.92 73.74 49.33
detr-resnet-50 42.0 76.24 76.67 51.62
detr-resnet-101 | 43.5 77.63 77.86 50.89
- - 62.86 72.11 81.55
yolos-tiny 28.7 73.06 73.03 48.38
MSCOCO-Random yolos-small 36.1 76.61 76.73 49.00
detr-resnet-50 42.0 80.65 80.78 49.01
detr-resnet-101 | 43.5 81.18 81.22 48.70

Table 13: Object hallucination results of mPLUG-Owl incorporating visual evidence from different
object detection models, i.e. yolos-tiny |[Fang et al.| (2021)), yolos-small [Fang et al.|(2021), detr-resnet-
50|Carion et al.|(2020) and detr-resnet-101 (Carion et al.|(2020). The mAP on COCO 2017 validation
of different visual models is also reported.

Datasets Visual model MiniGPT-4
Model name | mAP | Accuracy FI Score | Yes (%)

- - 73.67 73.04 47.67
MSCOCO-Popular | detr-resnet-50 42.0 80.70 81.99 57.17
detr-resnet-101 | 43.5 80.77 82.08 50.89
- - 80.85 79.33 41.08
MSCOCO-Random | detr-resnet-50 42.0 89.55 88.20 49.83
detr-resnet-101 | 43.5 89.69 89.87 50.24

Table 14: Object hallucination results of MiniGPT-4 incorporating visual evidence from different
object detection models, detr-resnet-50 |Carion et al.|(2020) and detr-resnet-101 |Carion et al.|(2020).
The mAP on COCO 2017 validation of different visual models is also reported.
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Model Visual model Performance of LVLMs

Model name mAP | Accuracy F1 Score \ Yes (%)

- - 62.58 71.18 79.83

mPLUG-Owl RelTR 18.9 68.50 73.06 66.92

MOTIFS 20.0 68.38 73.17 67.88

OpenPSG 28.4 68.25 72.82 66.83

- - 63.62 46.99 18.62

Qwen-VL-Chat RelTR 18.9 74.97 75.62 52.70

MOTIFS 20.0 75.80 76.44 52.77

OpenPSG 28.4 76.17 77.00 53.71

Table 15: Relation hallucination results of Qwen-VL-Chat and mPLUG-Owl incorporating visual
evidence from different scene graph generation models, i.e. RelTR (Cong et al., [2023)), MOTIFS
(Zellers et al.| [2018)) and OpenPSG (Yang et al 2022). The Recall@20 on PSG benchmark of
different visual models is also reported.

— 75.08%, thereby providing further evidence of the effectiveness of our method. This indicates
that not only can different small models help alleviate hallucinations in large models, but a single
small model can consistently alleviate hallucinations in large models of different sizes and trained on
different datasets. This result further confirms the complementarity between large and small models
and the necessity of our framework.

We also conduct experiments with larger open-source detection models, DINO (Zhang et al., 2022)),

,—.Reviewer wls8, Q3

which is the top-tier model with 58.0 mAP in COCO 2017 val (detr-resnet-101 has 43.5 mAP).
The results are shown in Table [I7} it can be observed that as the mAP increases, the small model
consistently provides a boost to the large model, though it gradually saturates.

Evaluation | Model | Accuracy
LLaVA 60.23
Object Hallucination Lza\\//f:l_lilSEVidence ‘;471:3
+ Visual Evidence 90.20
LLaVA 64.49
Relation Hallucination Lzazi:l_lilsEVidence Zggg
+ Visual Evidence 75.08

Table 16: Object and relation hallucination evaluation results on LLaVA and LLaVA-1.5.

E APPENDIX: MORE ABLATIONS

E.1 VISUAL RESULTS OF ERRONEOUS EVIDENCE

We show some cases where the model insists on the correct answer when wrong visual evidence is
provided and some cases where the model was misled by the wrong evidence.

E.2 MORE RESULTS ABOUT THE ABLATION OF QUESTION TEMPLATES IN OBJECT AND
RELATION HALLUCINATION EVALUATION

To verify the stability of our method against different question prompt templates,, As shown in Table
[[8]and Table[I9] under different question templates, Qwen-VL-Chat shows consistent performance

gain with low standard deviations in both object hallucination and relation hallucination datasets.

Such results further validate the robustness of our method. We also present the results of robustness
study of visual evidence prompting against different input prompts on relation evaluation.
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Model Visual model Performance of LVLMs
Model name mAP Accuracy
- - 57.29
yolos-tiny 28.7 70.23 (+12.94)
mPLUG-Owl yolos-small 36.1 73.44 (+3.21)
detr-resnet-50 42.0 76.55 (+3.11)
detr-resnet-101 43.5 78.38 (+1.83)
DINO-4scale-swin ~ 58.0 79.44 (+1.06)
- - 81.23
yolos-tiny 28.7 83.73
Qwen-VL-Chat yolos-small 36.1 85.47
detr-resnet-50 42.0 87.10
detr-resnet-101 43.5 87.70
DINO-4scale-swin ~ 58.0 89.17 (+1.46)

Table 17: Object hallucination results of Qwen-VL-Chat and mPLUG-Owl incorporating visual
evidence from larger version object detection model 2022)). The values in parentheses
indicate the performance improvement compared to the previous row’s setting in the table.

Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

H
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& - — - & : - - &
V Yes, there is a backpack in the :ﬂ;}. V I,;S;C }l]hf}l;z lcs;;, k;:fies l:s?:,e 1:2215:; :-;,1 [ Ye;,_lh_ere_ isa clock ul:llhe image, ] ‘gl
image, and the woman is carrying it. . eoup s Tl S T a (1S,
their wedding cake.
2 You can see person, sheep in the 2 You can see person, potted plant
image. tie, cake in the image.
Is there a backpack in the image? Is there a Kknife in the image?
- - -] —
Yes, there is a backpack in the 'm Yes, there is a knife in the image,
V image, and it is on the woman's ao V which the couple is using to cut
back. the cake.
annotation object category: annotation object category: annotation object category:
[person, sheep, backpack] [cake, person, vase, tie, cup, knife] [dining table, cat, clock, chair]
Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

® [ " ]
Is there a dining table in the image?
- £ J

-]
V [ Yes, there is a handbag in the image,] 'm V [ Yes, there is a dining table in the

and it is being held by the woman. = image.
® You can see banana, person in ® You can see cup, pizza in the image. You can see tv. person, car,
- the image. - Is there a knife in the image? backpack, handbag, suitcase
Is there a handbag in the image? in the image.
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&
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Figure 7: Some cases wherein the initial response was correct, and the model persistently produced
correct response despite provided with erroneous visual evidence. The incorrect evidence is underlined
in red font. The annotated object categories is presented below each case.
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Qwen-VL-Chat
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annotation object category:
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people, a dog, and a handbag.

annotation object category:
[person, dog, chair, handbag]

Qwen-VL-Chat

Is there a chair in the image?

Yes, there is a chair in the image,
V located near the table with the
pizza.

You can see cup, person.
pizza in the image.
Is there a chair in the image?

x|

annotation object category:
[cup, person, chair, pizza]

No, there are no chairs in the
image.

Qwen-VL-Chat

[ Is there a cell phone in the image? ]

image, and it is being used by a

Yes, there is a cell phone in the
child.

You can see pizza, person, bottle.
cup. dining table in the image.
Is there a cell phone in the image?

x

No, there is no cell phone in the
image.

annotation object category:
[cell phone, person, pizza, dining table]

Figure 8: Some cases wherein the initial response was correct, and the model produce wrong response
when provided with erroneous visual evidence. The incorrect evidence is underlined in red font. The
annotated object categories is presented below each case.

. Accuracy F1 Score
Question Prompt Templates Baseline Baseline + VE Baseline Baseline + VE
Is there a <object> in the image? 80.93 87.73 81.10 86.63
Does the image contains a <object>? 83.32 87.37 82.46 86.01
Is there any <object> present in the image? 80.53 87.03 80.80 85.76
Can you see a <object> in the image? 80.85 87.17 80.46 85.81
Avg+Std. | 81.41£1.11 87.32+0.26 | 81.20+0.76  86.05+0.35

Table 18: The evaluation results of Qwen-VL-Chat on MSCOCO-Adversarial before and after
incorporating visual evidence across diverse question prompt templates are presented in this table.
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. Accuracy F1 Score
Question Prompt Templates Baseline Baseline + VE Baseline Baseline + VE
Is the <subject> <relation> the <object>? 63.62 74.97 46.99 75.66
Can you see the <subject> <relation> the <object>? 55.58 73.14 21.62 73.35
Is the <subject> <relation> the <object> in the image? 64.96 74.99 51.36 74.86
Can you see the <subject> <relation> the <object> in the image? 57.33 73.15 27.99 72.95
Avg+Std. | 60.374£3.99  74.06+0.92 | 36.99+12.48  74.21£1.10

Table 19: The evaluation results of Qwen-VL-Chat on VG Relation Hallucination dataset before and
after incorporating visual evidence across diverse question prompt templates are presented in this

table.

Visual Evidence Prompt Templates

| Accuracy F1 Score

{question} | 63.62 46.99
Evidence: There are {evidence} in the image.\n 74.48 7534
Let’s refer to the evidence and then answer the following question.\n{question} ’ ’
Evidence: You can see {evidence} in the image.\n 74.97 7566
Let’s consider the evidence and then answer the following question.\n{question} ’ ’
Evidence: You can see {evidence} in the image.\n 7597 73.48
{question} According to the image and evidence, the answer is ’ ’
You can see {evidence} in the image.\n

Then answer the question based on what you see: {question} 75.50 78.52
It’s a beautiful day.\n{question} | 5333 13.85
There is nothing in the image.\n{question} ‘ 55.56 20.68

Table 20: Robustness study of Qwen-VL-Chat against template measured on the VG Relation

Hallucination dataset.

F APPENDIX: CASE STUDY

F.1 MORE CASES ON OUT-OF-DOMAIN IMAGES

More out-of-domain cases are shown here. Following the idea of CLIP (Radford et al.,[2021)), we

,—'Reviewer 7K, Q2

selected 10 out-of-domain datasets from the 27 datasets used to test the zero-shot generalization

performance of CLIP. These 10 datasets are Caltech-101 (Fei-Fei et al,[2004)), OxfordPets (P:

let al12012), Birdsnap (Berg et al.l 2014), Flowers102 (Nilsback & Zissermanl [2008]

CLEVRCounts

(Johnson et all,[2017), Country211 (Radford et al}[2021), Food101 (Bossard et al. 2014), SUN397

Xiao et al.|(2010), HatefulMemes (Kiela et al., [2020), and STL10 (Coates et al.l

2011)). Then, we

randomly selected two images from each dataset, one for evaluating object hallucination and the
other for evaluating relation hallucination. As shown in Figure[TT]and Figure[T2] we can see that even

when providing incorrect visual evidence to the model, it still maintains its original correct answer,

which further verifies the model’s robustness to incorrect evidence in open scenarios.

F.2 SOME CASES ON OBJECT COUNTING AND OCR

In Figure[9]and Figure[T0} we also show some cases that other tasks like object counting and OCR

can also be enhanced by our framework.
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Qwen-VL-Chat Qwen-VL-Chat
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the image. an
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-]
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Figure 9: Some cases of Qwen-VL-Chat on object counting task.
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Figure 10: A case of Qwen-VL-Chat on OCR task.
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wi/o visual evidence w/ false visual evidence

Qwen-VL-Chat

I there a wrench in the image?

Qwen-VL-Chat

You can see scissors in the image.
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No. there are no seissors in the
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wrench.
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Qwen-VL-Chat Qwen-VL-Chat
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shoe above umbrella in the image.
Is the shoes under the umbrella?

Yes, the shoes are under the umbrella, t&

and they are positioned in a way that | @B
they appear to be holding the umbrella.

Images are randomly sampled from Caltech-101.

w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat
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No, there is no cat in the image. %
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Qwen-VL-Chat Qwen-VL-Chat
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person at table in the image.
Is the dog sitting on the chair?

&
o | Yes the dog s siting on the chair. )

®
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&
7 | Yes the dogiis siting on th chair. b

Images are randomly sampled from OxfordPets.

w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat
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2 I there a bird in the image?

Yes, there is a bird in the
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wi/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat

You can see bird flying in water in
the image.
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[ D)
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Images are randomly sampled from Birdsnap.

w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat

I there an insect in the image?
&
7 | T there is a fly in the image. :-‘A

w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat

® (ou can see flower under leaves in
the image

@ | 15 the flower under the leaves?

There is no existence of the flower
V7 [ sy —
description.

Is the flower under the leaves?

‘There is no existence of a flower

g
irfe-

under the leaves in the image
deseription.

Images are randomly sampled from Flowers102.

w/o visual evidence w/ false visual evidence

Qwen-VL-Chat

T You can see cube in the image.
I there a ball in the image?
n = &
Yes, there is a ball in the image | ¢
as well. -

Qwen-VL-Chat

Yes, there is a ball in the

| .

image, floating next to the
gold cube.

wio visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat

You can see cylinder at the left of ball,

ball at right of cube in the image.

® ((Is the cylinder at the left of
the ball?
Is the cylinder at the left of the ball?
No. the cylinder s at theright of | g, N R AR ST
V7 (the ball o= V| the bal,

ot left.

Images are randomly sampled from CLEVRCounts.

Figure 11: Some open-scenario cases from different out-of-domain datasets when LVLM are provided

with false visual evidence.
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w/o visual evidence w/ false visual evidence . w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

You can see building above the sky,
tree besides building in the image.
Is the building under the sky?

® (You can only see mountain in the image
O | [ there a person in the image?

Yes, there is a person in the !a, !&, Yes, the building is under the !& !&,
image. They are climbing up a | Yes, there is a person in the image, | @ sky, which indicates that it is an | Yes, the building is under the sky. an'
rocky mountain. outdoor structure.
Images are randomly sampled from Country111.
wio visual evidence wi false visual evidence wio visual evidence W/ false visual evidence
Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

w

® - You can see fork, plate, bread in ® You can see donut under plate,
Is there a fork in the image? g Is the donut in the plate? g
- the image. - I plate on table in the image.

I there a fork in the image? Is the donut in the plate?
5 & & & &

There is no existence of a fork in | Y - ) @ - @ — @

V| the image description. an Q7 | No, there is no fork in the image. & @ | Yes, the donut is in the plate. p Q| Yes, the donutis in the plate p

Images are randomly sampled from Food101.

w/o visual evidence w/ false visual evidence w/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat

® You can see person, dog, train
. 9 , dog,
@ | 15 there a dog in the image? L es=l

Qwen-VL-Chat Qwen-VL-Chat

@ (T the building at the right You can sce person under tower, building
| o e ower? at the left of tower in the image.
Is there a dog in the image? Is the building at the right of the tower?

Thers is 50 existence ofadogin || g, Thers is 20 existence ofadogin || g,
V| the image. an WV | the image. an

Yes, the building s at e right | Y Yes. the building i at the &
V| of the tower. an V| right of the tower. an

Images are randomly sampled from SUN397.

wi/o visual evidence wi false visual evidence wi/o visual evidence wi false visual evidence

Qwen-VL-Chat Qwen-VL-Chat
usstallnEGeloleake] usstalnEGeloleake]

s !

I there a fork in the image?

Qwen-VL-Chat Qwen-VL-Chat

holocaust jokes are offensive: holocaust jokes are offensive:

j= €

anniEankly aren't
i

You can see man has head, hat under
Is the hat on the head
head, man has nose in the image

Is the hat on the head?

You can only see cake, plate in the

image.
I there a fork in the image?

Ve, there s a fork in the image,) @ & & b
& | placed on the plate with the plic an 7 | Yes, there is a fork in the image. tg,k 7 | Yes. the hat is on the man's head. tg,k 7 | Yes. the hat s on the head. tg,k
of cake.

Images are randomly sampled from HatefulMemes.

wi/o visual evidence wi false visual evidence wi/o visual evidence w/ false visual evidence

Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat Qwen-VL-Chat

»,,,,# =
yYyYs

You can see airplane has engine,
airplane has wing, airplane under
person in the image.

Is the airplane above the person?

[ 1)

® You can sec bird, airplane in the ®
Is there a bird in the image? an see bird,airpla Ts the airplanc above the person?
- & image. [} I L
Is there a bird in the image?

& & & &
| There s no existence of any birds b & | Mo, there are no birds in the image. b 7 | Yes, theairplane is above the person. b Ve inpibane .
in the image information. = V| ihe person. =

Images are randomly sampled from STL10.

Figure 12: Some open-scenario cases from different out-of-domain datasets when LVLM are provided
with false visual evidence.
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Qwen-VL-Chat Qwen-VL-Chat

® — ® A—
Is there a chair in the image? Is there a hat in the image?
- £ - £
-] -]
x [Yes, there is a chair in the image. J v;’n”’* x [Yes, there is a hat in the image. ] tg
") You can see dog, couch in '5) You can see person, grass in

the image.

the image. . X
Is there a hat in the image?

Is there a chair in the image?

-]
No, there is no chair in the image. v'nl V The_re is no existen.ce of a hat in Y'g:\
The dog is sitting on a couch, the image information.
V and there is a Christmas tree in

the background.

MiniGPT-4 MiniGPT-4

>

W . ,
Is the cup under the table? Is the woman standing on the bench?
- P - £

-] ; : -]
x [Yes, e G ol (B (s J !g; x [Yes, the woman is standing on lhej G

bench. an
”) You can see woman wearing jean, a You can see woman wearing jean,
R ‘woman wearing glass, paper on table, R bench behind woman, girl wearing
woman _holding paper, lamp near glove, girl on bench, girl holding cup
woman, cup on table in the image. in the image.
Is the cup under the table? Is the woman standing on the bench?

- b -]
No, the cup is not under the “ﬂ; No, the woman is sitting on the tm
AV table. It is on the table in an V| bench,

front of the woman.

Figure 13: More out-of-domain cases are shown in this figure, the images are from winoground

(Thrush et al.| [2022).
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