
What’s the Plan?
Evaluating and Developing Planning-Aware Techniques for LLMs

Anonymous ACL submission

Abstract

Planning is a fundamental task in artificial in-001
telligence that involves finding a sequence of002
actions that achieve a specified goal in a given003
environment. Large language models (LLMs)004
are increasingly used for applications that re-005
quire planning capabilities, such as web or006
embodied agents. In line with recent studies,007
we demonstrate through experimentation that008
LLMs lack necessary skills required for plan-009
ning. Based on these observations, we advocate010
for the potential of a hybrid approach that com-011
bines LLMs with classical planning methodol-012
ogy. Then, we introduce SimPlan, a novel013
hybrid-method, and evaluate its performance in014
a new challenging setup. Our extensive experi-015
ments across various planning domains demon-016
strate that SimPlan significantly outperforms017
existing LLM-based planners.018

1 Introduction019

Planning is a crucial aspect of artificial intelligence,020

which involves finding a sequence of actions that021

can achieve a specific goal in a given environment.022

Traditionally, planning problems are solved with023

graph-search heuristics which are based on solving024

relaxed problems (Blum and Furst, 1997; Hoff-025

mann, 2001) or creating sub-goals by backtracking026

from the desired end-goals (Hoffmann et al., 2004;027

Helmert and Domshlak, 2009).028

With the success of LLMs in various natural029

language processing tasks, there has been an in-030

creasing interest in utilizing them for applications031

that involve planning and reasoning, such as web032

agents (Yang et al., 2023; Yin et al., 2023; Huang033

et al., 2022), embodied agents (Huang et al., 2022;034

Song et al., 2023; Ahn et al., 2022) or open-world035

games (Wu et al., 2023; Wang et al., 2023). A com-036

pelling advantage of using Large Language Models037

(LLMs) for planning tasks lies in their ability to038

handle problems in natural language. This elimi-039

Initial State

(1) board c1 loc1

loc1 loc2

loc1 loc2

c1 c2

c2 c1

loc1 loc2
c1

(2) sail loc1 loc2

loc1 loc2

c1 c2

loc1 loc2
c1

(6) debark c2 loc1

loc1 loc2
c2

c1

Goals

(4) board c2 loc2

loc1 loc2
c2

c1

(5) sail loc2 loc1

c1 c2c2

loc1 loc2

c2 c1

Input Problem Instance

Output Plan

(3) debark c1 loc2

Figure 1: In the Ferry planning domain, an example of
a problem instance involves an initial state comprising
the location of a ferry and several cars, with specified
goals for placing the cars in specific locations (top). The
ferry is capable of boarding a car and transporting it
between locations. The planning task entails generating
a sequence of actions (i.e., a plan) such that executing
them leads to reaching a goal state (bottom).

nates the need for formalizing them in strict lan- 040

guages like the Planning Domain Definition Lan- 041

guage (PDDL; Malik Ghallab et al., 1998). How- 042

ever, LLMs have been found to lack the ability 043

to solve classic planning tasks (Liu et al., 2023; 044

Valmeekam et al., 2023a,b), and the magnitude of 045

their failure in such tasks highlights the need for 046

alternative approaches that can enhance their plan- 047

ning capabilities. 048

In our work, we start by examining whether 049

LLMs possess capabilities that we deem as nec- 050

1

essary for planning. We expand on the analyses051

of LLMs as planners done by Valmeekam et al.052

(2023b) and Silver et al. (2022), by focusing on053

specific capabilities that test their ability to com-054

prehend diverse domains. Our analysis reveals lim-055

itations in the ability of LLMs to effectively model056

past actions and their subsequent impact on the057

current state. Additionally, the models struggle to058

identify the full spectrum of applicable actions and059

lack the capacity to prioritize sub-goals effectively,060

considering both necessary and optimal ordering.061

These findings highlight potential shortcomings in062

the planning and decision-making mechanisms em-063

ployed by these models.064

Motivated by our findings, we advocate for065

a hybrid methodology that integrates traditional066

planning algorithms with LLMs. We propose067

a similarity-based planner, SimPlan, a method068

which combines an action-ranking model with a069

greedy best-first search algorithm. This approach,070

as discussed in Section 4, addresses the shortcom-071

ings of LLMs described above and enhance the072

exploration of the state space. We evaluate our073

approach across various planning domains, com-074

paring its efficacy with that of existing LLM-based075

planning strategies. The experiments reveal that076

our hybrid model surpasses traditional methods, un-077

derscoring the viability of combining LLMs with078

conventional planning techniques. We can summa-079

rize the contributions of our paper as follows:080

• We evaluate LLMs shortcomings in reason-081

ing about planning problems, underlying key082

missing capabilities.083

• We introduce a new hybrid LLM-based plan-084

ner that integrates classic planning algo-085

rithms and tools to overcome these limitations,086

SimPlan1.087

• We propose a novel generalized planning088

setup and demonstrate significant perfor-089

mance gains over prior work. However, the090

setup presents ongoing challenges.091

The following sections are organized as follows.092

In Section 2, we provide a necessary overview of093

classic planning. Section 3 assesses the planning094

and reasoning capabilities of LLMs, evaluating095

their performance on various tasks. In Section 4,096

we introduce our novel approach, which leverages097

the strengths of traditional planning techniques to098

1Dataset and code will be released upon publication.

improve the efficiency of planning. Finally, in Sec- 099

tion 5 we conduct experiments on several diverse 100

planning domains, demonstrating the benefits of 101

our hybrid approach. 102

2 Classical Planning 103

The core objective of a planning task is to construct 104

a sequence of actions (i.e., a plan) that transitions 105

from the initial state to a desired goal state. In clas- 106

sical planning, this process relies on a formal repre- 107

sentation of the planning domain and the problem 108

instance, encompassing the state space, actions, 109

their preconditions and effects, and the desired 110

goals. A widely used representation is the Plan- 111

ning Domain Definition Language (PDDL; Malik 112

Ghallab et al., 1998). See Appendix A for more 113

details about PDDL. 114

We now move to describe a problem instance 115

within the Ferry planning domain as illustrated in 116

Figure 1. This instance features a ferry and two 117

cars, car1 and car2, initially positioned at sepa- 118

rate docks, loc1 and loc2 respectively. The goal 119

state is that car1 will be at loc2 and car2 will 120

be at loc1. Each state is defined by the locations 121

of the ferry and the cars (e.g., ferry is at loc1, 122

car1 is at loc1, car2 is at loc2). Actions pos- 123

sess preconditions, outlining the state requirements 124

for their execution, and effects, altering the state 125

upon execution. For instance, the “board car1 126

loc1” action requires the ferry and car1 to be at 127

loc1, and its execution results in car1 being on 128

the ferry. The visualized plan involves six actions. 129

Initially, “board car1 loc1” loads car1 onto the 130

ferry. Then, “sail loc1 loc2” navigates the ferry 131

to loc2. Subsequently, “debark car1” unloads 132

car1 at loc2. Next, “board car2 loc2” loads 133

car2, followed by “sail loc2 loc1” returning 134

to loc1. Finally, “debark car2 loc1” unloads 135

car2, achieving the goal. 136

Traditionally, classic planning problems have 137

been solved using informed graph-search algo- 138

rithms, such as greedy-best first search and the 139

seminal A* algorithm (Doran and Michie, 1966; 140

Richter and Westphal, 2010). To guide their search 141

towards the goal state, these algorithms leverage 142

several heuristics. Two prominent examples in- 143

clude the FF heuristic, known for its efficiency 144

and scalability (Blum and Furst, 1997; Hoffmann, 145

2001), and the landmarks heuristic, which focuses 146

on identifying critical states on the path to the goal 147

(Hoffmann et al., 2004; Helmert and Domshlak, 148

2

MODEL GRIPPERS DEPOTS FERRY MINIGRID BLOCKS

FALCON-180B .11 .07 .45 .00 .24
MISTRAL-7B .00 .07 .31 .39 .16
MIXTRAL-8X7B .04 .14 .22 .35 .26
LLAMA-2-70B .60 .44 .50 .26 .52
CODELLAMA-34B .01 .04 .43 .28 .14
GPT-4 TURBO .42 .26 .35 .59 .31

Table 1: Success rates for describing the current state
given an initial state and a sequence of executed actions.

MODEL GRIPPERS DEPOTS FERRY MINIGRID BLOCKS

FALCON-180B .63 .66 .68 .32 .57
MISTRAL-7B .30 .24 .41 .26 .18
MIXTRAL-8X7B .48 .51 .62 .41 .72
LLAMA-2-70B .60 .44 .50 .26 .52
CODELLAMA-34B .64 .51 .61 .67 .43
GPT-4 TURBO .87 .84 .88 .86 .91

Table 2: Success rates for predicting the applicable
actions given a state.

2009).149

Building on this, our work leverages generalized150

planning, a subfield of classical planning, as it of-151

fers a more apt framework for evaluating LLM ca-152

pabilities. Within this paradigm, we learn a heuris-153

tic from training examples and subsequently as-154

sess its performance on a distinct set of instances,155

following the methodologies established by Yang156

et al. (2022); Silver et al. (2023). As detailed in Sec-157

tion 5, our evaluation hinges on a specific variant of158

generalized planning where the test set comprises159

problem instances exhibiting greater complexity160

compared to those in the training set.161

3 The Shortcomings of LLMs as Planners162

Several recent studies (Valmeekam et al., 2023a,b;163

Stein and Koller, 2023) have demonstrated limita-164

tions in the planning capabilities of LLMs. This165

section delves into these shortcomings, focusing166

on a targeted analysis of specific cognitive skills167

considered essential for successful planning. We168

start our evaluation by assessing the model’s capac-169

ity to grasp the operating principles governing the170

specific domain under consideration. These prin-171

ciples can be reasoned from the preconditions and172

effects associated with various actions. Next, we173

test the ability of LLMs to prioritize interim states174

required for achieving the goal states.175

We evaluate the performance of various LLMs176

on these skills using an In-Context Learning ap-177

proach (ICL). In particular, we test the following178

models: FALCON-180B (Almazrouei et al., 2023),179

LLAMA-2-70B (Touvron et al., 2023), CODE-180

LLAMA-34B (Rozière et al., 2024), MISTRAL-7B181

Figure 2: The maximum success rate across the different
LLMs in inferring the new state, as a function of the
number of actions taken.

(Jiang et al., 2023), MIXTRAL-8X7B (Jiang et al., 182

2024), and GPT-4 TURBO (OpenAI, 2023). The 183

prompts for all the following experiments are pro- 184

vided in Appendix B. The examples for these ex- 185

periments were randomly generated from diverse, 186

well-known planning domains. Further details re- 187

garding the specific domains employed and imple- 188

mentation considerations are provided in Appendix 189

C. 190

3.1 Observation 191

The actions’ effects. The model is given an ini- 192

tial state and a sequence of actions, and is asked 193

to infer the new state after executing the sequence. 194

This experiment was also conducted recently by 195

Valmeekam et al. (2023b), however it was limited 196

to a single domain and to GPT models. 197

The results of this experiment are demonstrated 198

in Table 1. Overall we can observe that LLMs per- 199

form poorly in understanding how a sequence of ac- 200

tions affects the environment. Moreover, the results 201

show that the models’ performance varies signifi- 202

cantly depending on the complexity of the environ- 203

ment. For example, in the Minigrid environment, 204

the Mistral-7B model performs poorly, with an 205

accuracy of 0.14. In contrast, the Falcon-180B 206

model performs much better, with an accuracy of 207

0.21. Moreover, we can observe that GPT-4-Turbo 208

achieves the highest overall performance across all 209

scenarios except Ferry, with percentages ranging 210

from 30% to 58%. Lastly, Figure 2 indicates that 211

LLMs face increasing difficulty in accurately infer- 212

ring the task state as the number of actions taken 213

increases. 214

Applicable actions. In this experiment, we eval- 215

uate the model’s understanding of the actions’ pre- 216

3

conditions. This is done by providing the model217

with a state and a set of four possible actions and218

asking the model which action is applicable.219

Table 2 presents the results of the applicable220

actions experiment. Although this task does not221

require complex reasoning abilities, the only model222

which exhibited consistently high accuracy across223

all evaluated environments is GPT-4 Turbo.224

3.2 Goal Ordering225

Reasonable and necessary ordering. Within226

specific problem-solving domains, like227

Blocksworld and Minigrid, the sequential228

achievement of goals becomes critical due to229

the inherent dependencies between them. This230

necessitates the completion of certain goals prior231

to attempting others. For example, consider the232

Blocksworld domain where blocks are stacked on233

top of one another and at each step we can only234

remove the top block from each stack. Assume235

we are given the following goals: 1 should be236

stacked on 3 and 3 should be stacked on 2 .237

Within this scenario, prioritizing the completion of238

the latter goal would constitute a reasonable order.239

Otherwise, we would have to remove the blocks240

on top of 3 before we can pick it up, and this241

would necessitate the destruction of the previously242

achieved goal.243

Consider now the Minigrid domain, a domain244

where the agent has to pick-up keys and unlock245

doors in order to reach a certain location in a 2D246

map. We can observe that it is necessary to un-247

lock some doors before others, since there are in-248

ner doors we can’t reach until we unlock the outer249

doors that are blocking the way. Accordingly, the250

ability of the model to prioritize goals in a rea-251

sonable and necessary fashion is crucial for plan-252

ning, and has long been the subject of research in253

classical planning (Hoffmann and Koehler, 2000;254

Hoffmann et al., 2004).255

Therefore, in this set of experiments, we present256

the model with two goals and ask it to choose which257

of the goals should be completed first. We choose258

to test this for the Blocksworld and Minigrid do-259

mains, since these domains require a reasonable or260

necessary order between the goals.261

Optimal ordering. In optimal planning, the cur-262

rent state imposes an ordering between the goals263

in order to avoid redundant actions. For example,264

in Figure 1, since the ferry is already at location265

REASON. NECES. OPTIMAL
MODEL BLOCKS MINIGRID FERRY GRIPPERS

FALCON-180B .71 .69 .65 .65
MISTRAL-7B .58 .85 .63 .59
MIXTRAL-8X7B .04 .62 .64 .59
META .21 .69 .63 .59
CODELLAMA-34B .13 .85 .67 .70
GPT-4 TURBO .75 .78 .63 .59

Table 3: Success rate results for the goal planning exper-
iments, testing for the model’s ability to prioritize goals
when imposed with reasonable, necessary or optimal
orderings.

1, it should board car 1 so it can debark it at 266

location 2, before moving to location 2. For 267

this experiment we introduce a scenario where the 268

model is provided with an initial state and a set of 269

goals. The model then has to reason about which 270

goal can be achieved with a lower number of ac- 271

tions. We use the Ferry and Grippers domains, as 272

these domains do not have necessary or reasonable 273

ordering between their goals. As such, the main 274

consideration is the optimality of the plan. 275

The results for the goal planning experiments 276

are presented in Table 3. Overall, Codellama-34B 277

exhibits superior performance over the other mod- 278

els in 3 out-of 4 domains. However, in terms of 279

adhering to optimal goal orderings, the models gen- 280

erally show similar performance, with scores rang- 281

ing from 0.63 to 0.67. These findings suggest that 282

models struggle with goal reasoning. 283

4 SimPlan 284

In this section we present SimPlan, an action- 285

ranking model combined with a greedy best-first 286

search (GBFS) algorithm designed to address the 287

limitations observed in Section 3. First, We de- 288

scribe the data generation and augmentation pro- 289

cess (Section 4.1). Next, we describe the architec- 290

ture and the training process (Section 4.2). Finally, 291

we discuss inference-time decoding (Section 4.3). 292

4.1 Data Generation and Augmentation 293

Planning problems formulation has a symbolic na- 294

ture, which significantly simplifies training data 295

generation2. However, since this formulation uses 296

unique identifiers for objects (e.g., blocks in Block- 297

world denoted as b1-b5), there is a potential bias 298

risk. While seemingly arbitrary, these identifiers 299

can inadvertently lead LLMs to develop prefer- 300

ences based solely on their frequency in the train- 301

2Can be generated using libraries such as PDDL generators
Seipp et al., 2022.

4

MaxSim
MaxSim
MaxSimMaxSim

b3 is on
the table

b1 is on
the table

b3 is on
b2

pick-up
b3

Encoder

Current
State

Goals

Encoder

F F

MaxSim

O
ffl
in
e

b2 is on
b1

Applicable
Actions

unstack
b2 b1

b1 is on
b3

2

1 3 2

3

1

Σ

2
1 3

2

1
3

Scores

(a) The actions ranking model.

Applicable
Actions

Current State

Goals

Actions
Ranking

Prioritized
Queue

Scores

(b) The planning process.

Figure 3: Our proposed SimPlan architecture. Colors green, yellow and orange are used to denote states, goals and
actions, respectively. (a) At each iteration, a bi-encoder is used to generate contextualized token-level representations
for the concatenated current state and goals, as well as for each applicable action. The actions’ representations can
be extracted once in an offline process. Then, the set of applicable actions are ranked based on their similarity with
the state and goals representation, using the late-interaction architecture of ColBERT (Khattab and Zaharia, 2020)
(b) At inference time, the scores are inserted into a prioritized queue for choosing the next state.

ing data, To mitigate this issue, we augment the302

training dataset with 100 permutations per instance.303

These permutations involve replacing all objects304

indices with new sampled indices, essentially “de-305

identifying” the objects. This augmentation pro-306

motes LLM impartiality towards object indexing307

and enhances their ability to generalize to unseen308

indices during testing, resulting in a more robust309

and versatile model.310

4.2 Learning to Rank Actions311

This section introduces our action-ranking model,312

a bi-encoder model tasked with ranking applica-313

ble actions based on the current state and desired314

goals, as depicted in Figure 3a. Recognizing the315

inherent challenges faced by LLMs in generating316

applicable actions or even inferring what the ap-317

plicable actions are, as observed in Section 3.1,318

we formulate the task of selecting the next action319

given a state and a goal as a retrieval problem. This320

retrieval-based approach ensures that the model321

only considers applicable actions.322

Leveraging the late interaction architecture in-323

troduced by Khattab and Zaharia (2020), we pro-324

pose an analogous schema wherein the goal and325

state serve as the query, while the action acts as326

the context. As illustrated in Figure 3a (top), this327

schema demonstrably enhanced predictive power328

by computing cosine similarity between individual329

tokens in the query and context, rather than relying330

on pooled representations. For each query token331

the maximum similarity score is selected, and the332

overall similarity score is calculated as the sum of333

these individual maxima. This similarity score can 334

be regarded as the confidence of the model in the 335

current path. 336

To optimize the model, we employ cross-entropy 337

loss, comparing the top ranked action with the gold 338

next action. To prevent the collapse of action repre- 339

sentations where all actions become indistinguish- 340

able from each other, ranking actions based on their 341

similarity requires the inclusion of negative exam- 342

ples during training. We employ two methods for 343

incorporating negative examples to enhance model 344

performance. Firstly, we leverage the in-batch neg- 345

ative sampling approach described by Henderson 346

et al. (2017). Within each training batch containing 347

n action-state pairs, every other pair serves as a 348

negative example for every original pair. Secondly, 349

we create “hard negative” examples using three 350

distinct techniques: (1) action name replacement, 351

where actions are swapped (e.g., changing the ac- 352

tion “debark car1 loc1” to the opposite action 353

“board car1 loc1”); (2) subterm swapping, where 354

the order of subterms is changed (e.g., changing 355

“sail loc1 loc2” to “sail loc2 loc1”); and 356

(3) random subterm sampling, where individual 357

subterms are replaced with random values (e.g., 358

changing “board car2 loc2” to “board car1 359

loc1”). These techniques ensure the generated 360

negatives are syntactically similar to the positive 361

examples, forcing the model to learn finer distinc- 362

tions between actions. 363

5

4.3 Planning364

Our proposed planning approach addresses two365

key challenges described earlier: (1) the negative366

correlation between the number of executed actions367

and the accuracy of describing the current state; and368

(2) the limitations of beam search used by LLMs369

for planning tasks.370

State Updates. In Section 3.1 we demonstrated371

a negative correlation between the number of ac-372

tions taken and the accuracy of a large language373

model (LLM) in describing the current state. To374

circumvent this issue and align with the method-375

ology employed in Hao et al. (2023), we adopt a376

state-update strategy that calculates the new state377

directly from the current state and the chosen ac-378

tion, bypassing the LLM’s potentially inaccurate379

inference.380

Greedy Best-First Search Algorithm. The com-381

mon decoding algorithm used for natural language382

generation is the beam search algorithm, which is a383

local search algorithm that keeps only a fixed num-384

ber k of promising paths as candidates. While ef-385

fective for optimization problems, the beam search386

algorithm has several limitations related to plan-387

ning problems. First, a known issue associated388

with beam search is that it “can suffer from a lack389

of diversity among the k paths-they can quickly be-390

come concentrated in a small region of the search391

space” (Russell and Norvig, 2009). Second, un-392

less they are implemented with backtracking, local393

search algorithms lack the ability to continue from394

an earlier generated path and explore taking alterna-395

tive actions. Drawing inspiration from well-known396

classic planners (e.g., the LAMA planner (Richter397

and Westphal, 2010)), we employ a graph-based398

algorithm to address this limitation. GBFS chooses399

the next node to expand based on a cost function.400

Similar to the implementation of beam search for401

language generation, our cost function is imple-402

mented as an aggregated score of all the probabili-403

ties extracted for actions participating in the path.404

However, to avoid penalizing long sequences, we405

replace the sum log probability with an average log406

probability. Overall, we suggest that GBFS will fa-407

cilitate greater exploration of high-potential paths,408

making it better suited for goal-directed planning.409

We now describe the planning process of our ap-410

proach, as depicted in Figure 3(b). We implement411

the GBFS algorithm using a priority queue, which412

is intended to manage all explored states and priori-413

Initial State Goals Plan

[(unstack b2 b1),
 (putdown b2),
 (pickup b3),
 (stack b3 b2),
 (pickup b1),
 (stack b1 b3)]

si
m
pl
e

co
m
pl
ex

[(unstack b1 b2),
 (putdown b2),
 …
 (pickup b1),
 (stack b1 b22)]

2

1 3 2

3

1

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17

18
19
20

20
21
22
23

10
23
20
9
8
4
11
17

1
22

21
16
2
12
15

3
18
7

12
6
19

5
13

Figure 4: An example of our experimental setting for the
Blocksworld domain. The train and development sets
include problem instances from a simple configuration
(top), and the test set include problem instances from a
complex configuration (bottom), where the difference
between the two configurations is the number of blocks.

tize their subsequent expansion. We limit the queue 414

size to 1000 to avoid incurring memory issues. We 415

start by generating and encoding all applicable ac- 416

tions using the trained bi-encoder and store their 417

representations in memory. Afterwards, the initial 418

state is added to the priority queue. At each step, 419

the state with the highest priority, alongside the 420

goals predicates, is encoded using the trained bi- 421

encoder to extract its latent tokens representation. 422

Similarity scores are extracted by comparing the 423

state’s latent tokens representation with all applica- 424

ble actions, as described in Section 4.2. Using the 425

acquired scores, a heuristic value is calculated for 426

each explored path. This iterative process contin- 427

ues until the desired goal state is reached. 428

5 Experiments 429

To assess the effectiveness of our proposed method, 430

we conduct experiments testing the capability of the 431

SimPlan algorithm to generalize from simplified 432

tasks to more complex scenarios, as demonstrated 433

in Figure 4. The domains used in the experiments 434

were the ones covered in Section 3. 435

5.1 Datasets 436

To systematically evaluate planning model per- 437

formance across varying difficulties, we gener- 438

ated two problem configurations for each domain: 439

simple and complex. The configurations vary 440

in their number of objects. For example, in 441

Blocksworld, simple configurations consists of 2- 442

6

Blocks Ferry Grippers Depots Minigrid
Method S C S C S C S C S C

LLM4PDDL GPT-4 Turbo (no validation) .26 .0 .20 .0 .60 .0 .30 .0 .13 .08
LLM4PDDL CodeLlama-34b-instruct .07 .0 .25 .0 .33 .0 .03 .0 .07 .0
Plansformer CodeLlama-7b-instruct .96 .0 .80 .0 .90 .0 .53 .0 .93 .88

Random .33 .0 .03 .0 .20 .0 .13 .0 .16 .22
Goals Completed Heuristic .25 .0 .63 1.0 .76 .96 .43 .0 .16 .22

SimPlan (ours) 1.0 .56 1.0 1.0 1.0 1.0 1.0 .12 1.0 .86

Table 4: The fraction of test problems solved. We report the results both on a test set of simple problem instances
(S), which have the same configuration as the problems used in the training set, and complex problem instances (C)
with an increased number of objects. The bolded results are significant (paired student’s t-test, p < 0.05).

5 blocks, while complex configurations featured443

11-25 blocks. Each instance includes a plan gener-444

ated by the LAMA planner (Richter and Westphal,445

2010) for training purposes.446

This manipulation impacts plan length in two447

key ways: (1) More objects introduce more goals,448

and (2) new objects can act as obstacles, requir-449

ing further actions for removal. For example, in450

Blocksworld (Figure 4), stacking a new 4 atop 2451

require two additional actions to remove it before452

unstacking 2 from 1 . In addition, a new goal453

can be added, such as placing 4 on top of 1 ,454

which would require two additional steps to pick455

it up and stack it, totaling in increasing the plan456

length by four actions. Consequently, simple prob-457

lems had an average plan length of 13.5 actions,458

while complex problems had a significantly higher459

average of 357.2 actions. More details about the460

datasets can be found in Appendix C.461

5.2 Baselines462

The baselines used in our experiments can be cate-463

gorized as follows:464

1. In-context Learning: The first baseline utilizes465

vanilla GPT-4 Turbo and directly instructs it466

to generate a plan. The second baseline in-467

corporates CodeLlama-34b-instruct with a468

soft-validation strategy3 to address poorly for-469

matted LLM outputs. Both adhere to the two-470

example few-shot prompt design established471

by LLM4PDDL (Silver et al., 2022).472

2. Fine-tuning: Code-llama-7b-instruct473

model, trained for code instruction tasks, was474

3This strategy leverages a planning tool to identify all ap-
plicable actions at each step and replaces invalid actions with
the most similar valid alternative based on cosine similarity.

fine-tuned using the approach proposed by 475

Plansformer (Pallagani et al., 2022). 476

3. Naive Baselines: We added two naive ap- 477

proaches: (1) Random, samples a subsequent 478

action from a list of applicable actions; and 479

(2) # Goals Completed Heuristic, a GBFS 480

with a heuristic considering the number of ful- 481

filled goals. 482

Experimental Setup. All models are trained us- 483

ing instances from the simple configuration and are 484

then tested separately on unseen instances from the 485

simple and complex configurations. In order to pro- 486

duce comparable results we set a fixed number of 487

next action predictions for each problem instance 488

based on the number of states that a classic plan- 489

ner expanded, further elaborated in Appendix D.2. 490

Following Valmeekam et al. (2023b), we measured 491

the model’s ratio of solved problems instances. 492

5.3 Results 493

The performance of the different baselines and 494

SimPlan is presented in Table 4. First we can 495

observe that SimPlan surpasses all other mod- 496

els across all problems and configurations except 497

for comparable results on the complex configura- 498

tion in Minigrid. Moreover, we can observe that 499

all models struggled in the challenging Depots do- 500

main. This domain necessitates object stacking 501

(akin to Blocksworld) while introducing the re- 502

quirement of object relocation (similar to Ferry). 503

This combination leads to actions with many sub- 504

terms (e.g., unload hoist3 crate14 truck0 505

distributor1) and difficult reasoning challenges. 506

As anticipated and aligned with the expecta- 507

tions established in Section 3, LLM-based base- 508

line planners struggle in tackling complex prob- 509

lem instances. This finding diverges from the re- 510

7

Method Blocks Ferry Minigrid

SimPlan .56 1.0 .86
w/o Hard Negatives .36 1.0 .78
w/o Data Augmentation .0 .0 .56
w/o Updating State .0 .0 .64

Table 5: Ablation results, reporting the fraction of test
problems solved from the complex configuration.

sults reported by LLM4PDDL (Silver et al., 2022),511

which demonstrated strong generalization capabil-512

ities within the Grippers domain. We believe that513

this discrepancy is attributed to the increased com-514

plexity of our Grippers setup, featuring five rooms515

compared to the two employed in LLM4PDDL (see516

Appendix C).517

The Random model’s similar performance across518

simple and complex Minigrid tasks suggests min-519

imal complexity increase, suggesting a possible520

explanation to Plansformer’s performance in this521

domain. The # Goals Completed baseline ex-522

hibits strong performance in Ferry and Grippers523

domains, highlighting the potential benefits of a524

simple goal counting heuristic in specific domains,525

particularly in the domains where the goals are in-526

dependent. Conversely, the Blocksworld domain527

favors the Random baseline over the goal-oriented528

approach, underscoring the critical role of goal or-529

dering in effective planning.530

5.4 Ablations531

We conducted an ablation study analyzing the con-532

tributions of various components in our SimPlan.533

We evaluated the contributions of hard negatives,534

data augmentation and the state updates component.535

See Appendix E for implementation details.536

The results are presented in Table 5. We can537

observe that hard negatives provided a significant538

improvement in the results. Data augmentation,539

however, was crucial for generalization, as its re-540

moval hindered handling previously unseen objects541

indices. Finally, eliminating state updates led to542

poor performance, highlighting the difficulty for543

LLMs to manage state solely through action se-544

quences.545

6 Related work546

Valmeekam et al. (2023b) presented a benchmark547

for evaluating LLM-based planners and concluded548

that such models display subpar performance.549

Follow-up works suggested enriching the planning550

process with multiple reasoning steps inspired by551

Chain-of-Thought and Tree of Thoughts (Wei et al., 552

2022; Yao et al., 2023). Hu et al. (2023); Stein and 553

Koller (2023) prompt the LLM to reason how the 554

goals can be achieved before generating a plan. 555

Hao et al. (2023) prompt the LLM to describe 556

the updated state between each executed action. 557

Valmeekam et al. (2023c) proposed that models 558

will self-critique their own generated plan and fix 559

them, similar to (Madaan et al., 2023). However, 560

many of these works concluded that models tend 561

to struggle with such reasoning tasks. Our analysis 562

in Section 3 is motivated by this line of research, 563

underlying missing reasoning capabilities in LLM- 564

based planners. 565

Recognizing LLMs’ limitations, follow up work 566

explored hybrid approaches of using LLMs along 567

with classic planning tools. Valmeekam et al. 568

(2023c) tested the use of a planning verification 569

tool instead of LLM to provide feedback for gener- 570

ated plans. Silver et al. (2022) also used a planning 571

verification tool to find and fix inapplicable actions, 572

as described in Section 5. Pallagani et al. (2022) 573

used a classic planner to generate a large training 574

dataset of solved problems in order to fine-tune 575

code models for planning. Our work follows this 576

hybrid approach, assuming access to planning tools 577

(Section 4). However, we diverge in the experimen- 578

tal setup (Section 5) by focusing on generalized 579

planning. In other words, we examine how mod- 580

els cope with significantly larger problems than 581

seen during fine-tuning, a novel aspect compared 582

to prior works. 583

7 Conclusions 584

Despite the encouraging outcomes achieved by 585

our approach, a notable gap exists between the 586

efficency of traditional planners and LLM-based 587

planners. We aim to narrow this gap by explor- 588

ing new hybrid techniques, particularly focusing 589

on areas such as goal ordering where the LLM ex- 590

hibited poor performance in our evaluations. In 591

future work, we intend to broaden the scope of 592

our methodology to address real-world planning 593

challenges that deviate from the structured PDDL 594

format, including scenarios relevant to web and em- 595

bodied agents. Through these efforts, we aim not 596

only to refine the efficacy of our methodology but 597

also to extend its utility across a more diverse array 598

of planning tasks. To facilitate these advancements, 599

we advocate for the employment of our dataset as 600

a robust platform for testing planning algorithms. 601

8

8 Limitations602

Classic planning problems have been developed603

for over two decades and include many domains604

and variants of planning, such as numeric plan-605

ning and optimal planning. Our work focuses on606

5 domains which we found interesting, such as607

a navigation task, and a domain which combines608

the challenges from two other domains in our set609

(Depots). However, this work is not an exhaus-610

tive evaluation of LLM-based planners. Regarding611

SimPlan, as described in the paper, we found that612

it degrades in performance as we add more objects613

in Blocksworld, which indicates a weakness when614

adding more blocks with dependencies amongst615

them. In addition, our approach is limited by the616

max sequence length of the LLM, which would617

make it difficult to handle significantly larger prob-618

lems.619

9 Ethics620

This paper presents work whose goal is to advance621

the field of Machine Learning. There are many622

potential societal consequences of our work, none623

which we feel must be specifically highlighted here.624

References625

Michael Ahn, Anthony Brohan, Noah Brown, Yev-626
gen Chebotar, Omar Cortes, Byron David, Chelsea627
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol628
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,629
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,630
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-631
month, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-632
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey633
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-634
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek635
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-636
las Sievers, Clayton Tan, Alexander Toshev, Vincent637
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,638
Mengyuan Yan, and Andy Zeng. 2022. Do As I639
Can, Not As I Say: Grounding Language in Robotic640
Affordances.641

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-642
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,643
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,644
Julien Launay, Quentin Malartic, Daniele Mazzotta,645
Badreddine Noune, Baptiste Pannier, and Guilherme646
Penedo. 2023. The falcon series of open language647
models.648

Avrim L Blum and Merrick L Furst. 1997. Fast Planning649
Through Planning Graph Analysis.650

James E Doran and Donald Michie. 1966. Experiments651
with the graph traverser program. Proceedings of the652

Royal Society of London. Series A. Mathematical and 653
Physical Sciences, 294(1437):235–259. 654

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, 655
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. 656
Reasoning with Language Model is Planning with 657
World Model. 658

Malte Helmert and Carmel Domshlak. 2009. Land- 659
marks, Critical Paths and Abstractions: What’s the 660
Difference Anyway? Proceedings of the Inter- 661
national Conference on Automated Planning and 662
Scheduling, 19:162–169. 663

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun- 664
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku- 665
mar, Balint Miklos, and Ray Kurzweil. 2017. Ef- 666
ficient Natural Language Response Suggestion for 667
Smart Reply. 668

J. Hoffmann and J. Koehler. 2000. On Reasonable and 669
Forced Goal Orderings and their Use in an Agenda- 670
Driven Planning Algorithm. Journal of Artificial 671
Intelligence Research, 12:338–386. 672

J. Hoffmann, J. Porteous, and L. Sebastia. 2004. Or- 673
dered Landmarks in Planning. Journal of Artificial 674
Intelligence Research, 22:215–278. 675

Joerg Hoffmann. 2001. FF: The Fast-Forward Planning 676
System. AI Magazine, 22(3):57–57. 677

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, 678
Wai Lam, and Yue Zhang. 2023. Chain-of-symbol 679
prompting elicits planning in large langauge models. 680

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 681
Igor Mordatch. 2022. Language Models as Zero- 682
Shot Planners: Extracting Actionable Knowledge for 683
Embodied Agents. 684

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 685
sch, Chris Bamford, Devendra Singh Chaplot, Diego 686
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 687
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 688
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 689
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 690
and William El Sayed. 2023. Mistral 7b. 691

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 692
Roux, Arthur Mensch, Blanche Savary, Chris 693
Bamford, Devendra Singh Chaplot, Diego de las 694
Casas, Emma Bou Hanna, Florian Bressand, Gi- 695
anna Lengyel, Guillaume Bour, Guillaume Lam- 696
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie- 697
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 698
Sophia Yang, Szymon Antoniak, Teven Le Scao, 699
Théophile Gervet, Thibaut Lavril, Thomas Wang, 700
Timothée Lacroix, and William El Sayed. 2024. Mix- 701
tral of experts. 702

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi- 703
cient and effective passage search via contextualized 704
late interaction over bert. 705

9

https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2311.16867
https://doi.org/10.48550/arXiv.2305.14992
https://doi.org/10.48550/arXiv.2305.14992
https://doi.org/10.48550/arXiv.2305.14992
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1609/icaps.v19i1.13370
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.1613/jair.715
https://doi.org/10.1613/jair.715
https://doi.org/10.1613/jair.715
https://doi.org/10.1613/jair.715
https://doi.org/10.1613/jair.715
https://doi.org/10.1613/jair.1492
https://doi.org/10.1613/jair.1492
https://doi.org/10.1613/jair.1492
https://doi.org/10.1609/aimag.v22i3.1572
https://doi.org/10.1609/aimag.v22i3.1572
https://doi.org/10.1609/aimag.v22i3.1572
http://arxiv.org/abs/2305.10276
http://arxiv.org/abs/2305.10276
http://arxiv.org/abs/2305.10276
https://doi.org/10.48550/arXiv.2201.07207
https://doi.org/10.48550/arXiv.2201.07207
https://doi.org/10.48550/arXiv.2201.07207
https://doi.org/10.48550/arXiv.2201.07207
https://doi.org/10.48550/arXiv.2201.07207
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,706
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.707
LLM+P: Empowering Large Language Models with708
Optimal Planning Proficiency.709

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler710
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,711
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,712
Shashank Gupta, Bodhisattwa Prasad Majumder,713
Katherine Hermann, Sean Welleck, Amir Yazdan-714
bakhsh, and Peter Clark. 2023. Self-refine: Itera-715
tive refinement with self-feedback. In Thirty-seventh716
Conference on Neural Information Processing Sys-717
tems.718

Malik Ghallab, Adele Howe, Craig Knoblock, Drew719
McDermott, Ashwin Ram, Manuela Veloso, Daniel720
Weld, and David Wilkins. 1998. PDDL - The Plan-721
ning Domain Definition Language.pdf.722

OpenAI. 2023. GPT-4 Technical Report.723

Vishal Pallagani, Bharath Muppasani, Keerthiram Mu-724
rugesan, Francesca Rossi, Lior Horesh, Biplav Sri-725
vastava, Francesco Fabiano, and Andrea Loreggia.726
2022. Plansformer: Generating Symbolic Plans us-727
ing Transformers.728

Silvia Richter and Matthias Westphal. 2010. The729
LAMA Planner: Guiding Cost-Based Anytime Plan-730
ning with Landmarks. Journal of Artificial Intelli-731
gence Research, 39:127–177.732

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten733
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,734
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy735
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna736
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron737
Grattafiori, Wenhan Xiong, Alexandre Défossez,738
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-739
tin, Nicolas Usunier, Thomas Scialom, and Gabriel740
Synnaeve. 2024. Code llama: Open foundation mod-741
els for code.742

Stuart Russell and Peter Norvig. 2009. Artificial Intelli-743
gence: A Modern Approach, third edition. Pearson.744

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann.745
2022. PDDL generators. https://doi.org/10.746
5281/zenodo.6382173.747

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B.748
Tenenbaum, Leslie Pack Kaelbling, and Michael749
Katz. 2023. Generalized Planning in PDDL Domains750
with Pretrained Large Language Models.751

Tom Silver, Varun Hariprasad, Reece S. Shuttle-752
worth, Nishanth Kumar, Tomás Lozano-Pérez, and753
Leslie Pack Kaelbling. 2022. PDDL Planning with754
Pretrained Large Language Models.755

Chan Hee Song, Jiaman Wu, Clayton Washington,756
Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023.757
LLM-Planner: Few-Shot Grounded Planning for Em-758
bodied Agents with Large Language Models.759

Katharina Stein and Alexander Koller. 2023. Autoplan- 760
bench: : Automatically generating benchmarks for 761
llm planners from pddl. 762

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 763
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 764
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 765
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 766
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 767
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 768
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 769
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 770
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 771
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 772
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 773
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 774
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 775
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 776
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 777
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 778
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 779
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 780
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 781
Melanie Kambadur, Sharan Narang, Aurelien Ro- 782
driguez, Robert Stojnic, Sergey Edunov, and Thomas 783
Scialom. 2023. Llama 2: Open foundation and fine- 784
tuned chat models. 785

Karthik Valmeekam, Matthew Marquez, and Subbarao 786
Kambhampati. 2023a. Can large language models 787
really improve by self-critiquing their own plans? 788

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, 789
Sarath Sreedharan, and Subbarao Kambhampati. 790
2023b. PlanBench: An Extensible Benchmark for 791
Evaluating Large Language Models on Planning and 792
Reasoning about Change. 793

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar- 794
quez, Alberto Olmo, and Subbarao Kambhampati. 795
2023c. On the Planning Abilities of Large Language 796
Models (A Critical Investigation with a Proposed 797
Benchmark). 798

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 799
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 800
ima Anandkumar. 2023. Voyager: An Open-Ended 801
Embodied Agent with Large Language Models. 802

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 803
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, 804
and Denny Zhou. 2022. Chain of thought prompt- 805
ing elicits reasoning in large language models. In 806
Advances in Neural Information Processing Systems. 807

Yue Wu, Shrimai Prabhumoye, So Yeon Min, Yonatan 808
Bisk, Ruslan Salakhutdinov, Amos Azaria, Tom 809
Mitchell, and Yuanzhi Li. 2023. Spring: Studying 810
the paper and reasoning to play games. 811

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 812
Xiu Li, and Ying Shan. 2023. GPT4Tools: Teach- 813
ing Large Language Model to Use Tools via Self- 814
instruction. 815

10

https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.11477
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2212.08681
https://doi.org/10.48550/arXiv.2212.08681
https://doi.org/10.48550/arXiv.2212.08681
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.48550/arXiv.2305.11014
https://doi.org/10.48550/arXiv.2305.11014
https://doi.org/10.48550/arXiv.2305.11014
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.48550/arXiv.2212.04088
http://arxiv.org/abs/2311.09830
http://arxiv.org/abs/2311.09830
http://arxiv.org/abs/2311.09830
http://arxiv.org/abs/2311.09830
http://arxiv.org/abs/2311.09830
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2310.08118
http://arxiv.org/abs/2310.08118
http://arxiv.org/abs/2310.08118
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
https://doi.org/10.48550/arXiv.2302.06706
https://doi.org/10.48550/arXiv.2302.06706
https://doi.org/10.48550/arXiv.2302.06706
https://doi.org/10.48550/arXiv.2302.06706
https://doi.org/10.48550/arXiv.2302.06706
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2305.15486
http://arxiv.org/abs/2305.15486
http://arxiv.org/abs/2305.15486
https://doi.org/10.48550/arXiv.2305.18752
https://doi.org/10.48550/arXiv.2305.18752
https://doi.org/10.48550/arXiv.2305.18752
https://doi.org/10.48550/arXiv.2305.18752
https://doi.org/10.48550/arXiv.2305.18752

Ryan Yang, Tom Silver, Aidan Curtis, Tomas Lozano-816
Perez, and Leslie Pack Kaelbling. 2022. PG3: Policy-817
Guided Planning for Generalized Policy Generation.818

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,819
Thomas L. Griffiths, Yuan Cao, and Karthik820
Narasimhan. 2023. Tree of thoughts: Deliberate821
problem solving with large language models.822

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-823
athi Chandu, Kai-Wei Chang, Yejin Choi, and824
Bill Yuchen Lin. 2023. Lumos: Learning agents825
with unified data, modular design, and open-source826
llms.827

11

http://arxiv.org/abs/2204.10420
http://arxiv.org/abs/2204.10420
http://arxiv.org/abs/2204.10420
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657

A PDDL828

(define (problem ferry-l3-c2)
(:domain ferry)
(:objects l0 l1 l2 c0 c1)
(:init

(empty-ferry)
(at c0 l1)
(at c1 l2)
(at-ferry l2)

)
(:goal

(and
(at c0 l0)
(at c1 l0)

)
)

)

Figure 5: An example PDDL problem instance defini-
tion for the Ferry domain.

Classical planning is based on the notion that829

the entire planning domain and problem instance830

are described in a formalised, machine-readable831

format. One common format is the Planning Do-832

main Definition Language (PDDL; Malik Ghallab833

et al., 1998). The domain definition (Figure 6) en-834

codes the physics of the world, while the problem835

instance definition (Figure 5) specifies the initial836

state and desired goals, thereby customizing the837

domain to a specific scenario. The planning task838

entails generating a sequence of actions that facili-839

tate a transition from the initial state to a goal state,840

thereby constituting a plan.841

A domain consists of a pair <P,A>, where P842

represents a set of predicates, and A is a set of843

actions. Each predicate p ∈ P includes a name844

and a set of variables denoted by a question mark.845

For instance, at-ferry ?l is a predicate, while846

at-ferry(loc1) is a specific truth-assignment to847

the predicate, indicating the ferry’s presence at848

location 1. Predicates can also be negated (e.g.,849

not(at-ferry(loc1))). An action a ∈ A con-850

sists of a name, a set of variables, a set of effect851

predicates, and a set of precondition predicates. For852

instance, board(?car ?loc) is an action denoting853

the boarding of car ?car on the ferry at location854

?loc. The action’s preconditions include predi-855

cates such as at_ferry(?loc), at(?car,?loc),856

and empty_ferry, signifying that both the ferry857

and the car ?car are at location ?loc, and858

that the ferry is empty. The action’s effects859

include predicates such as not(empty_ferry),860

not(at(?car,?loc)), and on(?car), indicating861

(define (domain ferry)
(:predicates (at-ferry ?l) (at ?c ?l)

(empty-ferry) (on ?c))

(:action sail
:parameters (?from ?to)
:precondition (at-ferry ?from)
:effect (and (at-ferry ?to) (not

(at-ferry ?from))))

(:action board
:parameters (?car ?loc)
:precondition (and (at ?car ?loc)

(at-ferry ?loc) (empty-ferry))
:effect (and (on ?car) (not (at

?car ?loc)) (not
(empty-ferry))))

(:action debark
:parameters (?car ?loc)
:precondition (and (on ?car)

(at-ferry ?loc))
:effect (and (at ?car ?loc)

(empty-ferry) (not (on ?car)))))

Figure 6: The PDDL Ferry domain definition. The
domain definition specifies the predicates and actions,
encapsulating the physics of the domain.

that the ferry is no longer empty, that the car ?car 862

is no longer at location ?loc, and that the car ?car 863

is now on the ferry. 864

A problem is a triple <O,I,G>, where O is a set 865

of objects, I is a set of truth-assigned predicates 866

that are currently true in the world model, and G is 867

a set of truth-assigned predicates designated to be 868

achieved. 869

B Shortcomings of LLMs Experiment 870

Details 871

In Section 3 we described a set of controlled exper- 872

iments which test for specific reasoning abilities of 873

LLM-based planners. Our prompt is constructed 874

as following: for each domain we start by describ- 875

ing the domain, such as exemplified by Figure 7. 876

Then, using the relevant prompt for each experi- 877

ment (Figures 8 to 11), we add 2 example questions 878

which contain an answer, followed by an unsolved 879

example. 880

12

We are dealing with the Blocksworld
problem. In this domain we have 4
possible actions:

1. pickup - (?ob - object)
- Preconditions: The object (?ob) must be

clear, on the table, and the arm must
be empty.

- Effects: After executing the action, the
object is now held, not clear, and
not on the table.

- Example: If you execute (pickup blockA),
it means you pick up "blockA" from
the table.

2. putdown - (?ob - object)
- Preconditions: The object (?ob) must be

currently held.
- Effects: After executing the action, the

object is now clear, the arm is
empty, and the object is on the table.

- Example: If you execute (putdown
blockB), it means you put down
"blockB" on the table.

3. stack - (?ob - object, ?underob - object)
- Preconditions: The object that you want

to stack (?ob) must be held, and the
object underneath (?underob) must be
clear.

- Effects: After executing the action, the
arm is empty, the stacked object
(?ob) is clear, and it is now on top
of the underneath object (?underob).
The underneath object is no longer
clear.

- Example: If you execute (stack blockC
blockD), it means you stack "blockC"
on top of "blockD".

4. unstack - (?ob - object, ?underob -
object)

- Preconditions: The object that you want
to unstack (?ob) must be on top of
another object (?underob), and both
objects must be clear. Additionally,
the arm must be empty.

- Effects: After executing the action, the
object (?ob) is now held, the
underneath object (?underob) is
clear, and the relationship "on"
between (?ob) and (?underob) is
broken. Also, (?ob) and (?underob)
are no longer clear, and the arm is
not empty.

- Example: If you execute (unstack blockC
blockD), it means you unstack
"blockC" from on top of "blockD".

Figure 7: Explanation provided about the Blocksworld
domain before each Blocksworld experiment described
in Section 3.

Given this initial state: <STATE>
and the following actions: <ACTIONS>

What is the new state?
Answer:

Figure 8: Prompt template used for the actions’ effects
experiment.

Given this state: <STATE>

Which one of the following actions can be
performed from the above state?

The possible actions are: <ACTIONS>

Answer:

Figure 9: Prompt template used for the applicable ac-
tions experiment.

Given this state: <STATE>

Which one of the following goals can be
achieved with fewer actions?

The goals are: <GOALS>

Answer:

Figure 10: Prompt template used for the optimal goals
ordering experiment.

Given this state: <STATE>

In order to complete the task both goals
must be accomplished simultaneously.

Which one of the following goals needs to
be achieved first?

The goals are: <GOALS>

Answer:

Figure 11: Prompt template used for the reasonable or
necessary goals ordering experiment.

13

C Generating Problem Instances and881

Plans882

In this section we provide more details about the883

generated problem instances and the plans to solve884

them. We start by generating problem instances885

with the PDDL generators library (Seipp et al.,886

2022), which we use to generate our experiments’887

data, as described in Section 3, as well as the train-888

ing, validation and test datasets, as described in Sec-889

tion 5. When generating problems, the amount of890

objects for each generated problem instance is con-891

trollable. For example, the Grippers domain prob-892

lem generator configuration controls the amount893

of robots, balls and rooms. For each domain, we894

choose one object to tweak its amount, and fix the895

amount of all other objects. For example, in the896

Grippers domain we only change the number of897

balls, and we fix the number of robots to 1 and the898

number of rooms to 5. We then increase the num-899

ber of instances of that object between the simple900

and complex configurations to create longer plans.901

The configurations used are described in Table 6902

and the size of the datasets is described in Table 7.903

An example of the complex configuration plan is904

provided in Figure 18 to illustrate the difficulty of905

the task.906

We then solve the generated problem instances907

with the LAMA planner4 and save the found plans.908

Lastly, we remove problem instances based on the909

following filters:910

• Timeout or search unsolved: Problem in-911

stances that the LAMA planner could not912

solve after a ten-minute timeout or after ex-913

ploring the entire search space were removed.914

If there were many such errors, we tweaked915

the configurations such that the LAMA plan-916

ner can solve the problems, until we reached917

the configurations described in Table 6.918

• Empty plans: Instances where their plans have919

no steps were removed. This can happen in920

cases where the initial state is a goal state.921

• Duplicates: Instances with the same initial922

state and goals are removed.923

C.1 Domains924

Blocksworld. In this domain, the objects are925

blocks and the agent is a robotic arm that can pick926

4To run the LAMA planner, we use the open-source Fast
Downward planning system https://www.fast-downward.
org

them up and put them down on a table. Blocks 927

can be stacked, and only a block that is clear (i.e., 928

doesn’t have a block on top of it) can be picked up. 929

The goal predicates are to stack blocks on top of 930

other blocks. 931

Ferry. In this domain the objects are cars and 932

locations, and the agent is a ferry that can move 933

between locations, board a car in one location or 934

debark it in another location. The ferry can only 935

board one car at a time. The problem requires 936

the ferry to transport the cars to their designated 937

locations. 938

Grippers. In this domain the objects are balls and 939

rooms, and the agent is a robot that can move be- 940

tween rooms, pick-up balls or drop a picked-up ball. 941

The robot can hold two balls simultaneously with 942

its left and right grippers. The problem requires 943

the robot to transport the balls to their designated 944

rooms. 945

Depots. Similar to Blocksworld, the objects are 946

crates and the agent is a hoist that can pick 947

them up or put them down. The difference from 948

Blocksworld is that there are multiple “tables”, 949

which are called pallets, and each pallet has its 950

own hoist. The pallets are located in different loca- 951

tions, called depots and distributors. The truck is 952

another agent that can move the crates between lo- 953

cations. This is similar to Ferry and Grippers. The 954

goal predicates are to stack the crates at specific 955

locations, or on top of other crates. 956

Minigrid. In this grid domain, the objects are 957

walls, keys and doors, and the agent is a robot 958

that can traverse the grid, pick up keys and unlock 959

doors. Doors can be locked, and their locks have 960

certain shapes with keys having matching shapes. 961

Only one key can be picked up at a time, thus the 962

robot must first drop a key in order to pick up a 963

different key. The more number of shapes there are, 964

the more often the robot has to switch the key it is 965

holding. The goal predicate is to reach a certain 966

location in the board. The floor plan that we used 967

for all Minigrid problems is depicted in Figure 12. 968

C.2 Domains Modifications 969

Some domains have a lot of predicates to describe 970

the current state, thus creating a very long prompt 971

for the LLM. This is a problem mostly in the Min- 972

igrid domain, which as seen in Figure 12, has a 973

large 2D map which contains 64 places. This map 974

is meticulously described in the PDDL format. To 975

14

https://www.fast-downward.org
https://www.fast-downward.org

BLOCKS FERRY GRIPPERS DEPOTS MINIGRID

SIMPLE COMPLEX SIMPLE COMPLEX SIMPLE COMPLEX SIMPLE COMPLEX SIMPLE COMPLEX

OBJECTS 2-5 11-25 2-5 11-25 2-5 11-25 2-5 11-15 1-2 3-8
AVG. PLAN

LENGTH
8.3 88.5 11.3 50.2 10.1 52.5 10.4 132.1 19.5 27.3

CHANGED

OBJECT
BLOCKS CARS BALLS CRATES SHAPES

Table 6: Changes in the number of objects and average plan lengths between the simple and complex configurations.

SIMPLE COMPLEX

TRAIN DEV TEST TEST

100 30 30 50

Table 7: The size of the sets generated for each domain.

Figure 12: Minigrid floorplan that we used for gener-
ating problem instances. L represents locked doors, W
represents blocked places which can’t be crossed, and
all other dots represent places where the agent can walk.
In each problem instance, the robot start and end loca-
tion are chosen randomly. The keys are spread around
the map, not depicted in this figure.

sidestep this problem of having extremely long976

prompts, we make several changes to their PDDL977

definition which allow us to create a shorter state978

representation. Firstly, we remove predicates that979

contain typing information of objects. For exam-980

ple, we remove predicates that mention that the ob-981

ject p1 is a place (place p1), that the object key1982

is a key (key key1), and that the object shape1983

is a shape (shape shape1). Given this change,984

it should still be possible to calculate applicable985

actions, as LLMs have different representations986

for each token, and they can infer the type of the987

object from the prefix, context and provided ex-988

amples. In addition, we remove predicates which989

contain information about connected paths, such990

as p1 is connected to p2 (conn p1 p2). Originally,991

this is used in Minigird to represent the locations992

of walls. We remove this only for the fine-tuned993

models which can learn the map during training. 994

Finally, in Minigrid, we remove predicates which 995

indicate that a door is open (e.g., open p3). The 996

predicates already describe which doors are locked 997

(e.g., locked p16), and it should be possible for 998

the LLM to see which places are locked and from 999

it to infer the open doors. 1000

C.3 Goal Planning Experiment 1001

As described in Section 3.2, we devise experiments 1002

in which there is one goal that should reasonably or 1003

necessarily be prioritized over a different goal. To 1004

identify such instances, we employ the landmarks 1005

graph generated by the LAMA planner (Richter 1006

and Westphal, 2010). Landmarks are sub-goals 1007

that the LAMA planner algorithm identified as 1008

necessary to complete in any possible plan that 1009

solves the given problem instance. This graph’s 1010

nodes represent goals or intermediate sub-goals, 1011

with directed edges denoting the order in which 1012

these goals should be approached. The edges are 1013

labeled to indicate the type of ordering, such as 1014

“n” for necessary and “r” for reasonable. Utilizing 1015

these labels, we construct prompts for the language 1016

model that requires prioritizing between 2 distinct 1017

goals, as described in Appendix B. In the context of 1018

the Blocksworld domain, our selection criteria for 1019

goals involve choosing those linked by a minimum 1020

of two edges, ensuring that the same block does 1021

not appear in both goals. 1022

D Training Details 1023

This section provides further details about the train- 1024

ing of our SimPlan model and the baselines. 1025

D.1 Approaches 1026

SimPlan. We start by reporting results for our 1027

similarity-based retrieval model, SimPlan. For 1028

evaluating the retrieval model, we use the met- 1029

ric MAP@100. The performance of the retrieval 1030

15

model on the intrinsic development set (comprised1031

of simple difficulty problems) ranges from 60% to1032

90% between domains. For all domains we used1033

a batch size of 32, except for the Depots and Min-1034

igrid domains which we used a batch size of 16.1035

Then, an extra 2 hard negatives are added per ex-1036

ample in the batch, sampled from the pool of hard1037

negatives which was extracted using the techniques1038

described in Section 4.2. We used one A100 80-1039

GB GPU to train each model for 10 epochs with1040

a training time of 12 hours, and selected the best1041

checkpoint. For hyperparameter tuning we used a1042

grid search with the following parameters: learn-1043

ing rate varied between [4e-5, 4e-4, 4e-3], warmup1044

steps varied between [0, 100, 500] and weight de-1045

cay varied between [0.01, 0.001, 0.0001]. After1046

hyperparameter tuning, we fixed the parameters to1047

a learning rate of 4e-4, warmup steps of 100 and1048

a weight decay of 0.001. Our implementation is1049

based on the sentence transformers library5 adapted1050

with code from the ColBERT library. We imple-1051

mented our own simple planning translator based1052

on the PDDL domains definitions. See Figure 141053

for an example input / output.61054

LLM4PDDL. Our first two baselines are based1055

on the in-context learning approach, for which1056

we follow the few-shot prompt design from1057

LLM4PDDL (Silver et al., 2022) with 2 training ex-1058

amples. See Figure 15 for an example prompt. For1059

GPT-4 Turbo, we use the vanilla strategy where we1060

simply prompt the model to generate a plan with1061

temperature 1.0. For CodeLlama-34b-instruct,1062

we use the soft-validation strategy for dealing with1063

malformed LLM outputs. In the soft-validation1064

strategy, a planning translator is used to find all1065

applicable actions at each step. After each action1066

is generated, it is validated that it is applicable in1067

the current state. If it is not, it is replaced with1068

the closest valid action, based on a cosine simi-1069

larity distance in a pre-trained embedding space1070

of the paraphrase-MiniLM-L6-v2 model. For1071

CodeLlama-34b-instruct, we use a beam size1072

of 1, similar to LLM4PDDL. To allow more explo-1073

ration of the search space, we sample 16 different1074

plans from the LLM with a temperature of 0.5.1075

Plansformer. We fine-tune an LLM on the train-1076

ing set of problem instances from the simple con-1077

figuration. The following fine-tuning settings de-1078

5https://www.sbert.net/
6https://github.com/stanford-futuredata/ColBERT

<INITIAL> the hand is holding b1 <INITIAL>
b24 is clear <INITIAL> b24 is on the
table

<GOAL> b24 is on top of b1

Figure 13: Example SimPlan state parsed and lin-
earized into tokens. During training, for each problem
instance the blocks names are scrambled in order for the
model to train the embeddings of all relevant tokens. In
this example, b2 was converted into b24.

<GOAL> on b2 b1
<INIT> arm-empty , clear b1, on b1 b2,

on-table b2
<ACTION> pickup

<PRE> clear x, on-table x, arm-empty
<EFFECT> holding x, not clear x, not

on-table x, not arm-empty
<ACTION> putdown

<PRE> holding x
<EFFECT> clear x, on-table x,

arm-empty, not holding x
<ACTION> stack

<PRE> clear y, holding x
<EFFECT> arm-empty, clear x, on x y,

not clear y, not holding x
<ACTION> unstack

<PRE> on x y, clear x, arm-empty
<EFFECT> clear y, holding x, not

arm-empty, not clear x, not on x y

Figure 14: Example Plansformer instance.

scribed is based on Pallagani et al. (2022). We use 1079

CodaLlama-7b as the base model, which follows 1080

the intuition by Plansformer to use code models. 1081

The input to the model contains the initial state 1082

and the goals, along with the description of the do- 1083

main’s actions. We add special tokens between the 1084

different parts, such as <GOAL>, <INIT>, <ACTION>, 1085

<PRE>, <EFFECT> to describe the goals, the initial 1086

state, and the actions, along with their precondi- 1087

tions and effects. The gold output is a sequence 1088

of actions which make up a plan. See Figure 13 1089

for an example of an input / output. For early stop- 1090

ping, we use ROUGE-L to compare the gold output 1091

with the predicted output on a development set of 1092

easy problems. During generation, we use a beam 1093

search of 16 to allow for a large exploration of the 1094

state space. 1095

D.2 Inference-time constraints 1096

To produce comparable results between the differ- 1097

ent models, for each model we limit the number 1098

of next actions predictions. For SimPlan and the 1099

random baseline, the number of predictions is sim- 1100

16

Q:
(:objects b1 b2 - object)
(:init (arm-empty) (on b1 b2) (on-table b2) (clear b1))
(:goal (on b2 b1))
A:
(unstack b1 b2) (putdown b1) (pickup b2) (stack b2 b1)

Q:
(:objects b1 b2 b3 b4 b5 - object)
(:init (arm-empty) (on b1 b4) (on-table b2) (on b3 b1) (on-table b4) (on b5 b3) (clear b2)

(clear b5))
(:goal (on b1 b2) (on b2 b3) (on b3 b5) (on b4 b1))
A:
(unstack b5 b3) (putdown b5) (unstack b3 b1) (stack b3 b5) (pickup b2) (stack b2 b3) (unstack

b1 b4) (stack b1 b2) (pickup b4) (stack b4 b1)

Q:
(:objects: b1 b10 b11 b12 b13 b14 b15 b2 b3 b4 b5 b6 b7 b8 b9 - object)
(:init (arm-empty) (on b1 b5) (on b2 b6) (on-table b3) (on b4 b13) (on b5 b15) (on b6 b1) (on

b7 b3) (on-table b8) (on b9 b2) (on b10 b8) (on-table b11) (on-table b12) (on b13 b9) (on
b14 b12) (on-table b15) (clear b4) (clear b7) (clear b10) (clear b11) (clear b14))

(:goal (on b1 b13) (on b2 b10) (on b3 b5) (on b4 b3) (on b8 b12) (on b9 b4) (on b10 b14) (on
b11 b6) (on b12 b15) (on b13 b8) (on b15 b7))

A:

Figure 15: Example LLM4PDDL baseline prompt for a Blocksworld problem instance prepended with two training
examples. This format is based on Silver et al. (2022), where newlines separating the predicates were replaced with
spaces in this figure for the sake of brevity.

ply the count of calls to the model, since we predict1101

one next action in each model call. For LLM4PDDL1102

and Plansformer, after each token is generated,1103

we implemented a check if this token is one of the1104

following tokens: ")" or "),(". If yes, we identify1105

this as a generated action and count this as one1106

prediction. An important aspect of beam search1107

is that each beam generating an action increases1108

this count by one. A stop criteria is applied once1109

the number of predictions exceeds the limitation.1110

We note that this limitation is not implemented for1111

GPT-4, as the amount of beams that GPT-4 uses is1112

not information that we found available.1113

The value of the limit for next action predictions1114

is configured differently per problem instance. We1115

first calculate how many states were expanded by1116

the LAMA planner when solving each problem in-1117

stance. However, since the LAMA planner uses1118

greedy best-first search, it is not limited to sequen-1119

tial exploration like beam search. It is thus possible1120

that this limitation is too harsh for beam-search de-1121

coding algorithms which sequentially extract multi-1122

ple paths, reducing the overall maximum explored1123

plan length. We thus multiply this limitation by 16,1124

which is the beam size we used for beam-search1125

decoding algorithms. Finally, we also set a timeout1126

of 5 minutes for all models.1127

E Ablation Experiment Details 1128

In this section we provide more information about 1129

the ablation experiments in Section 5.4, specifically 1130

about the state updates experiment. As mentioned 1131

in Section 4.3, our SimPlan method involves up- 1132

dating the state at each step, and the history of the 1133

actions taken is not included in the input to the en- 1134

coder. For the state updates experiment, we train a 1135

variant of our model where the input to the model is 1136

fixed to the initial state as defined in the problem in- 1137

stance, the set of goals, and the sequence of actions 1138

taken so far. Special tokens are used to separate 1139

between the state predicates, goal predicates and 1140

the actions. The model is then expected to infer 1141

the current state based on the initial state and the 1142

sequence of actions, similar to the LLM4PDDL 1143

and Plansformer baselines. 1144

F Learned Representation Analysis 1145

We analyze the learned representation of the actions 1146

and the states, described in Section 4, by using the 1147

T-SNE algorithm (Figures 16 and 17).7 Since we 1148

are using a late interaction schema, each individual 1149

state or action representation has multiple token 1150

embeddings. For our analysis, we chose to take the 1151

7Implemented with https://scikit-learn.org

17

https://scikit-learn.org

Figure 16: T-SNE plot of the learned representation of actions in the Ferry domain. The shapes depict the different
action types, and the colors depict the different locations where the ferry is at when taking the action. The visible
clusters of colors indicate that the model learned the concept of applicable actions.

Figure 17: T-SNE plot of the learned representation of sampled states in the Ferry domain. Colors and shapes
are determined based on the next action to take in this state according to the gold plan. The visible clusters of
color-shape pairs indicate that the model is taking goal-informed decisions when representing the current state.

maximum token embedding. To create states to use1152

for our analysis, we sampled 5 problem instances1153

from our training dataset and extracted a state after1154

the execution of each action in the accompanied1155

plan. In the visualization, each state is assigned an1156

action based on the next action in the plan.1157

The figures in our analysis show that the model1158

learns the concept of applicable actions and next1159

action planning. In our settings of the Ferry do-1160

main, there are overall 5 locations. In the actions1161

representations (Figure 16), the colors represent1162

the location of the ferry. Since the colors are well-1163

clustered, and the location of the ferry determines1164

the applicable actions, this demonstrates that the 1165

model learned the concept of applicable actions. In 1166

addition, in the states representations visualization 1167

(Figure 17), we can see that different states which 1168

have similar next actions are clustered together. 1169

This demonstrates that the action-ranking model 1170

is taking goal-informed decisions. Interestingly, 1171

in the states representation, the model clusters to- 1172

gether the debark actions (star shape). 1173

18

(lift hoist2 crate11 crate7 distributor0),(lift hoist1 crate14 crate13 depot1),(load hoist1 crate14 truck0 depot1),(lift hoist0 crate12 crate3
depot0),(drive truck0 depot1 depot0),(load hoist0 crate12 truck0 depot0),(drive truck0 depot0 depot1),(unload hoist1 crate12 truck0
depot1),(drive truck0 depot1 distributor0),(load hoist2 crate11 truck0 distributor0),(drive truck0 distributor0 depot0),(unload hoist0
crate14 truck0 depot0),(drive truck0 depot0 depot1),(drive truck0 depot1 distributor0),(lift hoist2 crate7 crate4 distributor0),(load
hoist2 crate7 truck0 distributor0),(lift hoist2 crate4 crate2 distributor0),(load hoist2 crate4 truck0 distributor0),(drive truck0
distributor0 distributor1),(lift hoist2 crate2 crate1 distributor0),(unload hoist3 crate4 truck0 distributor1),(drive truck0 distributor1
distributor0),(load hoist2 crate2 truck0 distributor0),(drive truck0 distributor0 distributor1),(load hoist3 crate4 truck0
distributor1),(unload hoist3 crate2 truck0 distributor1),(drive truck0 distributor1 depot1),(drive truck0 depot1 distributor0),(unload
hoist2 crate7 truck0 distributor0),(drop hoist2 crate7 crate1 distributor0),(drive truck0 distributor0 distributor1),(drop hoist1 crate12
crate13 depot1),(drop hoist3 crate2 crate9 distributor1),(unload hoist3 crate11 truck0 distributor1),(drive truck0 distributor1
distributor0),(lift hoist2 crate7 crate1 distributor0),(load hoist2 crate7 truck0 distributor0),(lift hoist2 crate1 pallet2
distributor0),(drive truck0 distributor0 depot1),(lift hoist1 crate12 crate13 depot1),(load hoist1 crate12 truck0 depot1),(lift hoist1
crate13 crate10 depot1),(load hoist1 crate13 truck0 depot1),(lift hoist1 crate10 crate0 depot1),(load hoist1 crate10 truck0 depot1),(drive
truck0 depot1 distributor0),(lift hoist1 crate0 pallet1 depot1),(drop hoist2 crate1 pallet2 distributor0),(unload hoist2 crate10 truck0
distributor0),(drop hoist2 crate10 crate1 distributor0),(unload hoist2 crate13 truck0 distributor0),(drive truck0 distributor0
depot1),(load hoist1 crate0 truck0 depot1),(unload hoist1 crate12 truck0 depot1),(drive truck0 depot1 distributor1),(drop hoist3 crate11
crate2 distributor1),(unload hoist3 crate4 truck0 distributor1),(drop hoist1 crate12 pallet1 depot1),(drop hoist2 crate13 crate10
distributor0),(drop hoist3 crate4 crate11 distributor1),(unload hoist3 crate7 truck0 distributor1),(drive truck0 distributor1
distributor0),(unload hoist2 crate0 truck0 distributor0),(drop hoist2 crate0 crate13 distributor0),(drive truck0 distributor0
distributor1),(load hoist3 crate7 truck0 distributor1),(lift hoist3 crate4 crate11 distributor1),(load hoist3 crate4 truck0
distributor1),(lift hoist3 crate11 crate2 distributor1),(drive truck0 distributor1 distributor0),(unload hoist2 crate4 truck0
distributor0),(drop hoist2 crate4 crate0 distributor0),(drive truck0 distributor0 depot1),(unload hoist1 crate7 truck0 depot1),(drive
truck0 depot1 distributor0),(drop hoist1 crate7 crate12 depot1),(lift hoist2 crate4 crate0 distributor0),(load hoist2 crate4 truck0
distributor0),(drive truck0 distributor0 depot1),(unload hoist1 crate4 truck0 depot1),(drive truck0 depot1 distributor0),(lift hoist2
crate0 crate13 distributor0),(drop hoist1 crate4 crate7 depot1),(load hoist2 crate0 truck0 distributor0),(lift hoist2 crate13 crate10
distributor0),(drive truck0 distributor0 depot1),(lift hoist1 crate4 crate7 depot1),(load hoist1 crate4 truck0 depot1),(drive truck0
depot1 distributor0),(lift hoist1 crate7 crate12 depot1),(load hoist2 crate13 truck0 distributor0),(drive truck0 distributor0
depot1),(load hoist1 crate7 truck0 depot1),(unload hoist1 crate13 truck0 depot1),(drop hoist1 crate13 crate12 depot1),(unload hoist1
crate0 truck0 depot1),(drop hoist1 crate0 crate13 depot1),(unload hoist1 crate4 truck0 depot1),(drop hoist1 crate4 crate0 depot1),(drive
truck0 depot1 distributor1),(lift hoist2 crate10 crate1 distributor0),(drop hoist3 crate11 crate2 distributor1),(unload hoist3 crate7
truck0 distributor1),(drive truck0 distributor1 distributor0),(load hoist2 crate10 truck0 distributor0),(lift hoist2 crate1 pallet2
distributor0),(drop hoist3 crate7 crate11 distributor1),(load hoist2 crate1 truck0 distributor0),(unload hoist2 crate10 truck0
distributor0),(drive truck0 distributor0 distributor1),(drop hoist2 crate10 pallet2 distributor0),(drive truck0 distributor1
distributor0),(unload hoist2 crate1 truck0 distributor0),(drop hoist2 crate1 crate10 distributor0),(drive truck0 distributor0
distributor1),(lift hoist3 crate7 crate11 distributor1),(load hoist3 crate7 truck0 distributor1),(lift hoist3 crate11 crate2
distributor1),(drive truck0 distributor1 distributor0),(unload hoist2 crate7 truck0 distributor0),(drop hoist2 crate7 crate1
distributor0),(drive truck0 distributor0 depot0),(load hoist0 crate14 truck0 depot0),(lift hoist0 crate3 pallet0 depot0),(load hoist0
crate3 truck0 depot0),(unload hoist0 crate14 truck0 depot0),(drive truck0 depot0 depot1),(drop hoist0 crate14 pallet0 depot0),(drive
truck0 depot1 distributor1),(load hoist3 crate11 truck0 distributor1),(drive truck0 distributor1 depot1),(unload hoist1 crate11 truck0
depot1),(drive truck0 depot1 distributor1),(lift hoist3 crate2 crate9 distributor1),(load hoist3 crate2 truck0 distributor1),(drive truck0
distributor1 depot0),(unload hoist0 crate2 truck0 depot0),(drop hoist0 crate2 crate14 depot0),(drive truck0 depot0 distributor1),(lift
hoist3 crate9 crate8 distributor1),(load hoist3 crate9 truck0 distributor1),(lift hoist3 crate8 crate6 distributor1),(load hoist3 crate8
truck0 distributor1),(lift hoist3 crate6 crate5 distributor1),(drive truck0 distributor1 distributor0),(unload hoist2 crate8 truck0
distributor0),(drive truck0 distributor0 distributor1),(load hoist3 crate6 truck0 distributor1),(lift hoist3 crate5 pallet3
distributor1),(drive truck0 distributor1 distributor0),(load hoist2 crate8 truck0 distributor0),(unload hoist2 crate6 truck0
distributor0),(drop hoist2 crate6 crate7 distributor0),(unload hoist2 crate8 truck0 distributor0),(drive truck0 distributor0 depot0),(lift
hoist0 crate2 crate14 depot0),(load hoist0 crate2 truck0 depot0),(drive truck0 depot0 distributor1),(load hoist3 crate5 truck0
distributor1),(unload hoist3 crate2 truck0 distributor1),(drive truck0 distributor1 depot1),(drop hoist3 crate2 pallet3
distributor1),(drive truck0 depot1 distributor1),(unload hoist3 crate5 truck0 distributor1),(drive truck0 distributor1 distributor0),(load
hoist2 crate8 truck0 distributor0),(drive truck0 distributor0 distributor1),(load hoist3 crate5 truck0 distributor1),(unload hoist3 crate8
truck0 distributor1),(drive truck0 distributor1 depot1),(drop hoist3 crate8 crate2 distributor1),(drive truck0 depot1
distributor1),(unload hoist3 crate9 truck0 distributor1),(drop hoist3 crate9 crate8 distributor1),(unload hoist3 crate5 truck0
distributor1),(drive truck0 distributor1 depot1),(load hoist1 crate11 truck0 depot1),(drive truck0 depot1 distributor1),(load hoist3
crate5 truck0 distributor1),(drive truck0 distributor1 depot1),(unload hoist1 crate5 truck0 depot1),(drop hoist1 crate5 crate4
depot1),(unload hoist1 crate11 truck0 depot1),(drop hoist1 crate11 crate5 depot1)

Figure 18: Example plan with 184 actions for a problem instance from the Depots’ complex configuration.

19

	Introduction
	Classical Planning
	The Shortcomings of LLMs as Planners
	Observation
	Goal Ordering

	SimPlan
	Data Generation and Augmentation
	Learning to Rank Actions
	Planning

	Experiments
	Datasets
	Baselines
	Results
	Ablations

	Related work
	Conclusions
	Limitations
	Ethics
	PDDL
	Shortcomings of LLMs Experiment Details
	Generating Problem Instances and Plans
	Domains
	Domains Modifications
	Goal Planning Experiment

	Training Details
	Approaches
	Inference-time constraints

	Ablation Experiment Details
	Learned Representation Analysis

