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ABSTRACT

Most of the existing multi-view clustering algorithms are per-
formed in the original feature space, and their performance in
heavily reliant on the quality of the raw data. Besides, some
two-stage strategies cannot achieve ideal results due to the
absence of capturing the correlation between views. In view
of this, we propose Multi-View K-means with Laplacian Em-
bedding (MVKLE), which is capable of clustering multi-view
data in the learned embedding space. Specifically, we employ
local structure-preserving dimensionality reduction to obtain
the underlying representation of each view, and obtain the
clustering results directly through an effective optimization
formulation. Experiments on several common multi-view
datasets demonstrate the superiority of the proposed method.

Index Terms— Multi-view clustering, Nonnegative ma-
trix factorization, Laplacian eigenmaps, Graph Constraints

1. INTRODUCTION

Data mining and analytics are applied in many practical tasks.
Multi-view data may exhibit heterogeneous characteristics
while retaining immanent associations. Now multi-view
learning has emerged as a promising direction of machine
learning. Compared with traditional single-view clustering,
multi-view clustering takes advantage of valuable feature
knowledge from diverse views to improve the performance
of clustering. In the context of multi-view clustering, one
inherent issue that all types of algorithms seek to deal with
is finding a methodology to maximize the quality and com-
plementarity of clusters in each view, while considering the
consistency of clustering across views [1]. The naive ap-
proach either concatenates the features of all views together
into one macro view, or performs clustering on each view
independently. Nevertheless, since the features of each view
have specific statistical significance, both approaches fail to
exploit the complementary information of multiple views and
are prone to overfitting [2].
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The concept of multiple views was first applied to clus-
tering tasks by Bickel et al. [3]. They extended the EM
algorithm to multiple views and applied it to text data. Mod-
els based on various principles have been proposed these
years, including co-training algorithms [4] [5], multi-view
graph clustering [6] [7], multi-view subspace clustering [8]
[9], etc. Although these multi-view clustering algorithms ef-
fectively utilize multi-view information, they still suffer from
some drawbacks. On the one hand, the existing algorithms
usually rely on the original features of each view and are less
capable of mining a unified feature representation of multi-
view data. On the other hand, two-stage multi-view clustering
methods lack the ability to refine components in one coher-
ent optimization framework. In addition, these methods are
susceptible to poor quality raw data, leading to uninspiring
results.

To address the above issues, we propose Multi-View K-
means with Laplacian Embedding (MVKLE). The main con-
tributions of this paper can be summarized as follows:

• We propose a succinct multi-view clustering method
MVKLE, which learns the underlying representation of
each view separately and can effectively retain the local
structure of the original data. MVKLE can be applied
not only to feature data, but also to graph data.

• We put Laplace embedding and k-means into a unified
optimization framework that takes the complementarity
and consistency between views into account. Cluster-
ing in embedding space effectively reduces the reliance
on the original space.

• Suitable optimization methods are employed to obtain
the indicator matrix directly without post-processing.
The experimental results also verify the superiority of
the proposed algorithm.

Notations: Matrices are written in boldface uppercase
throughout the paper. Data matrix of the v-th view is de-
noted as Xv ∈ Rdv×n, where n is the number of samples and
dv represents the dimension of features. The matrix is called
an indicator matrix, if each row of it has one and only one
element equal to 1 indicating the cluster membership and the
rest elements are all 0. Φn×k denotes the set of all indicator



matrices. The transpose, the i-th row, the j-th column, the
(i, j)-th entry, the trace and the Frobenius norm of A are
denoted by AT , Ai·, A·j , Aij , Tr(A),‖A‖F , respectively.

2. MULTI-VIEW K-MEANS WITH LAPLACIAN
EMBEDDING

Formulation of multi-view clustering problems is typically
accomplished by means of Nonnegative Matrix Factorization
(NMF). A brief revisit of it is introduced before our model
formulation. Our model is proposed in this section followed
by optimization and analysis.

2.1. Multi-view Clustering Revisit
The equivalence of NMF with k-means has been demon-
strated in the literature [10]. A number of researchers have
extended it to multi-view clustering, a general framework of
which is

min
Av,B

‖Xv −AvB
T ‖2F s.t. Av ≥ 0,B ∈ Φn×k. (1)

where Av ∈ Rdv×k denote the basis matrix of the v-th view-
point, and B ∈ Rn×k denotes the shared indicator matrix. Liu
et al. [11] introduced consistency between different views at
NMF, i.e., a penalty term

∑M
v=1 ‖Bv −B∗‖2F is incorporated

to measure the difference in the indicator matrix. Cai et al.
[12] proposed graph regularization NMF to preserve the local
geometric structure, i.e., by adding the smoothness function
J = tr(BLBT ). Zhu et al. [13] proposed one-step multi-
view spectral clustering, and yet the redundant parameter set-
tings limit its application.
2.2. The Proposed Method
Inspired by [8], our approach explores the underlying com-
plementary information from multiple views while finding
the respective underlying representations. We employ Lapla-
cian Eigenmaps (LE), a nonlinear dimensionality reduction
approach, to learn the underlying representation of each view.
LE uses a local perspective to construct relationships between
data. According to the literature [14], the similarity matrix
W of the single-view data can be readily obtained in several
ways, such as through the Gaussian kernel function Wij =
exp(−‖X·i−X·j‖22/(2σ2)). In turn, the diagonal degree ma-
trix Dii =

∑n
j=1 Wij and the regularized Laplace matrix

L = D −W can be derived. The main idea is that if a pair
of data is similar, it should also be close in its reduced dimen-
sional subspace. LE can be formulated as:

min
Y

n∑
i=1

n∑
j=1

‖Y·i −Y·j‖22Wij , (2)

where Y ∈ Rd′×n is the dimensionality-reduced data matrix.
Further a concise form of dimensionality reduction (2) can be
derived:

(2)⇔min
Y

n∑
i=1

DiiY
T
·iY·i −

n∑
i=1

n∑
j=1

WijY
T
·iY·i

⇔min
Y

Tr(YDYT )− Tr(YTYW)

⇔min
Y

Tr(YLYT ).

(3)

Since the solution can degenerate to a single point and can
have an arbitrary scale, adding constraints to this optimization
problem YDYT = I, which meets the normalized cut in
spectral clustering. LE is thus converted into a generalized
eigenvalue problem.

For multi-view clustering problems, many two-step ap-
proaches do not balance complementarity and consistency.
We use a one-step approach for clustering data from multi-
ple views. Consider mapping the original data from different
views to their respective feature spaces by Laplacian Eigen-
maps, i.e., Lv : Xv → Yv , where Yv ∈ Rkv×n. Further,
since the low-dimensional representations of each view are
distinct, the basis matrices of k-means for each view are there-
fore distinct. Then the objective function can be written as:

min
Yv,Av,B,α

M∑
v=1

αpv

(
Tr
(
YvLvYv

T
)
+ λ‖Yv −AvB

T ‖2F
)

s.t. YvDvYv
T = I,B ∈ Φn×k, αT1 = 1, α ≥ 0,

(4)
where λ is a trade-off parameter which controls the balance
betweeen the two items. The base matrix Av varies from view
to view, while the final indicator matrix B is uniform. αpv is
the exponential decay form weight of each view, where p > 1
is a scalar to keep the smooth distribution.

2.3. Optimization
In this section, we employ the alternating optimization ap-
proach to solve Eq. (4).

Step 1 Update Av with Yv , B, α fixed. The optimization
problem becomes simple:

min
Av

M∑
v=1

αpv‖Yv −AvB
T ‖2F . (5)

Since the objective function is convex with respect to Av ,
we force its derivative with respect to Av to be 0. Ignoring
irrelevant terms, we can obtain:

Av = YvB(BTB)−1 (6)
It can be further found that Av represent the centroids in the
v-th view. This is consistent with the idea of k-means. BTB
is a diagonal matrix and its inverse straightforward to obtain.

Step 2 Update B with Yv , Av , α fixed. The optimization
problem can be reduced to

min
B∈Φn×k

M∑
v=1

αpv‖Yv −AvB
T ‖2F

⇔ min
B∈Φn×k

n∑
i=1

M∑
v=1

αpv‖(Yv)·i −AvB
T
i·‖22.

(7)

Since only one element of each row of B is equal to 1 and the
rest are equal to 0, the optimization process of the i-th row of
B is

B
(t)
ij =


1, j = argmin

j

M∑
v=1

αpv‖(Yv)·i − (Av)·j‖22,

0, otherwise.

(8)
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Step 3 Update Yv with Av , B, α fixed. Converting the Frobe-
nius norm form in problem Eq. (4) into trace form, the opti-
mization problems can be rewritten as:

min
Yv

M∑
v=1

αpv

(
Tr
(
YvLvYv

T
)
+ λTr

(
YvY

T
v

)
−λTr

(
YvB(BTB)−1BTYv

T
))

s.t. YvDvYv
T = I,

(9)

where Av is substituted by the solution in Eq. (6). Let Ỹv =

YvD
1
2
v . Since the optimization problem is independent for

each view, Eq (9) can thereby be translated into a concise
form for each of the M views:

min
Ỹv

Tr(ỸvHvỸ
T
v )

s.t. ỸvỸ
T
v = I,

(10)

where Hv = D
1
2
v

(
Lv + λI− λB(BTB)−1BT

)
D

1
2
v denot-

ing a constant matrix for the v-th view. Obviously, this prob-
lem is an eigenvector problem, which is derived by the La-
grange multiplier method. The minimum of (10) is the sum
of the kv smallest eigenvalues of Hv , while the row vectors of
Ỹv are the corresponding orthogonal eigenvectors. In experi-
ments, Hv is not only positive semi-definite but often sparse,
which facilitates the solution.

Step 4 Update α with Yv , Av , B fixed. The optimization
problem becomes a simple power programming problem:

min
α

M∑
v=1

αpvθv s.t. αT1 = 1, α ≥ 0, (11)

where θv = Tr
(
YvLvYv

T
)
+ λ‖Yv −AvB

T ‖2F denoting
a non-negative constant for the v-th view. To solve this op-
timization problem with constraints, the Lagrangian function
is written as follows:

l(α, µ, ξ) =

M∑
v=1

αpvθv − µ(αT1− 1)− ξTα, (12)

where µ ∈ R and ξ ∈ RM , ξ ≥ 0 are Lagrangian multipli-
ers. According to the complementarity conditions of the KKT
conditions, simplify to get pαp−1v θv − µ = 0. The closed so-
lution of α obtained by eliminating µ with

∑M
v=1 αv = 1,

αv =
θ

1
1−p
v∑M

v=1 θ
1

1−p
v

. (13)

The detailed procedure of the proposed MVKLE is out-
lined in Algorithm 1.

2.4. Theoretical Analysis

Theorem 1 Optimization problem Eq. (10) is convex for Ỹv .

Proof. We first proof that Hv is an n × n semi-positive
definite matrix, which is equivalent to the point where(
Lv + λI− λB(BTB)−1BT

)
is a semi-positive definite

matrix. The semi-positive property of the Laplace matrix Lv

here is well known. For an arbitrary nonzero vector x,
xT
(
I−B(BTB)−1BT

)
x

=

n∑
i=1

x2i −
n∑
i=1

1

|Ct|
xi

∑
xi,xj∈Ct

xj

=

k∑
t=1

1

|Ct|
∑
xi∈Ct

|Ct|x2i − xi ∑
xj∈Ct

xj


=

k∑
t=1

∑
xi,xj∈Ct

(xi − xj)2

|Ct|
≥ 0.

(14)

Ct represents the t-th cluster, satisfying
∑k
t=1 |Ct| = n. In

the above equation, for each pair xi, xj in the same cluster,
there is one and only one quadratic component (xi − xj)2.
That is why the above equation holds. Thus Hv is semi-
positive definite with λ > 0. By matrix differentiation, the
Hessian matrix of Tr(ỸvHvỸ

T
v ) with respect to ỸT

v is 2I⊗
Hv , which is also semi-positive definite. The convexity of the
optimization problem Eq. (10) is consequently proved.

Algorithm 1 Multi-view K-means with Laplacian Embed-
ding

Input: Data of M views, Xv ∈ Rdv×n, v = 1, · · · ,M , the
number of clustering categories k, the power of weight p,
the trade-off parameter λ.

Output: Indicator matrix B ∈ Φn×k.
Initialization: Yv is initialized by LE respectively. The
initial B is the result of k-means in a random view. α =
( 1
M , 1

M , · · · , 1
M ).

repeat
1. Update Av according to Eq. (6).
2. Update B according to Eq. (8).
3. Update Yv according to Eq. (10).
4. Update α according to Eq. (13).

until Yv , Av , B, and α converge.

Convergence Analysis The optimization procedure of
Eq. (4) is divided into four subproblems. The update for
Av and Yv are convex optimization, where the optimal so-
lution is obtained by matrix derivation. The optimization
for B is n independent problems, each of which is solved
directly for the minimum. The closed solution of α is also
optimal. Therefore, by solving the subproblems alternatively,
our proposed algorithm ensures to find the optimal solution to
each subproblem and finally, the overall objective value will
non-increasingly converge to local optimum.

Complexity Analysis The time complexity of MVKLE
mainly comes from the update procedure. For ease of repre-
sentation, we approximate all kv to k, which has a negligible
impact on complexity. The time complexity of single up-
date Av , B, Yv , α is O(Mk2n), O(Mk2n), O(Mkn2),
O(Mk2n + Mkn2) respectively. Moreover, the com-



plexity of the construction of the initial Laplacian matrix
is O(Mdn2). Therefore the overall time complexity of
O
(
Mdn2 + (Mk2n+Mkn2)t

)
, where the number of it-

erations t is experimentally proven to be usually small. Since
M , k, t is usually very small in practice, its complexity is
comparable to the previous similarity-based work.

3. EXPERIMENTS

3.1. Experiment Setup
In this section, our experiments are conducted on four real-
world datasets, including Yale, SCENE [15], 3Sources [11],
BBCSports [16]. Yale is a widely-used face image dataset
consisting of 165 gray-scale images of 15 subjects, where 3
views are used in our experiments. SCENE contains 2688
outdoor images with 8 categories, and consists of 4 views.
3Sources text dataset includes 169 stories, each with a theme
and 3 views, which are selcted from news articles [17]. BBC-
Sport dataset is from bbcsport news corpora, which consists
of 544 documents with 5 themes.

In order to verify the capability of the proposed algo-
rithm, we select four prominent algorithms to conduct com-
parison experiments with it on the above dataset, including
Robust Multi-view K-means Clustering (RMKMC) [18], Re-
weighted Discriminatively Embedded K-Means (RDEKM)
[19], Multi-view Clustering in Latent Embedding Space
(MCLES) [9], Mixed Embedding Approximation (MEA)
[20]. For comparison, three commonly employed evaluation
matrices are selected to evaluate the clustering performance,
which are Accuracy (ACC), Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI) [21].

To avoid that the diagonal elements of BTB to have 0,
i.e., the corresponding cluster is empty, all (BTB)−1 is re-
placed with (I+BTB)−1 in the experiments, which has neg-
ligible effect on the results. To facilitate the process of tuning
parameters and to conform to the sense of embedding, we set
all kv uniformly to k. There are two hyperparameters p and λ
in our proposed method. A shortcut to determine the hyperpa-
rameters is to select p in the range [2, 3, · · · , 10] and λ in the
range [10−5, 10−4, · · · , 105]. Similar grid parameter-search
manners are adopted in other baseline methods.

3.2. Performance Analysis
The experimental results of MVKLE with four comparison
algorithms are given in Table 1, where each result is the aver-
age of 10 runs after tuning the parameters. The best results for
each metric are marked in bold. Our algorithm achieves op-
timal results in most cases and is applicable to multiple types
of data sets (text, speech, image, etc.). In summary, MVKLE
demonstrates superior performance on real-world datasets.

Fig. 1 (a) shows the convergence curve of Algorithm 1
on BBCSport dataset. In extensive experiments, convergence
speed is quick and the number of iteration steps usually not
exceeding 15. In addition, we experimented with random ini-
tialization for B instead of k-means and considered the conse-

quences on convergence, for which the convergence rate can
still be guaranteed for suitable λ and p. Due to the fast con-
vergence rate, the practical running time of MVKLE is not
significantly slower than those of the linear complexity com-
parison algorithms. Fig. 1 (b) presents the 3-D bar chart of
parameter sensitivity, which depicts the influence of different
settings of the two major parameters p, λ on the clustering
results. When p is too large or too small, the weight of each
view will be over- or under-emphasized. Similarly, if λ is not
set appropriately, the two terms in the objective function are
not sufficiently constrained to each other during the update
and lead to poor performance. It can be seen that the algo-
rithm is effective for a large range of parameters.

Table 1: Comparison on real-world datasets.

Dataset Metric RMKMC RDEKM MCLES MEA MVKLE

Yale
ACC 0.494 0.642 0.662 0.587 0.679
NMI 0.543 0.659 0.677 0.597 0.684
ARI 0.498 0.636 0.641 0.565 0.659

SCENE
ACC 0.423 0.555 0.622 0.603 0.647
NMI 0.347 0.380 0.506 0.504 0.523
ARI 0.219 0.329 0.392 0.391 0.411

3Sources
ACC 0.546 0.588 0.674 0.574 0.686
NMI 0.381 0.529 0.650 0.418 0.663
ARI 0.347 0.520 0.583 0.435 0.586

BBCSport
ACC 0.705 0.844 0.869 0.748 0.885
NMI 0.584 0.751 0.784 0.557 0.814
ARI 0.460 0.718 0.770 0.395 0.792
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Fig. 1: Convergence curve and parameter sensitivity on BBC-
Sport.

4. CONCLUSION

In this paper, we propose a Multi-View K-means with Lapla-
cian Embedding to overcome the shortcomings of the existing
algorithms. The proposed method clusters low-dimensional
features under a unified optimization schema, and the fi-
nal results are obtained directly by a decent optimization
method. Compared with the existing multi-view clustering
algorithms, it has the distinct advantages of fewer parameters,
easy parameter-tuning, stable and fast convergence. MVKLE
is applicable to data with only graphs without features, which
accommodates the proliferation of graph data. Experiments
have been conducted on four benchmark datasets, and the re-
sults demonstrated the effectiveness of our model, compared
to the four excellent clustering methods.
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