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ABSTRACT

Protein design, a grand challenge of the day, involves optimization on a fitness
landscape, and leading methods adopt a model-based approach where a model is
trained on a training set (protein sequences and fitness) and proposes candidates to
explore next. These methods are challenged by sparsity of high-fitness samples
in the training set, a problem that has been in the literature. A less recognized
but equally important problem stems from the distribution of training samples
in the design space: leading methods are not designed for scenarios where the
desired optimum is in a region that is not only poorly represented in training data,
but also relatively far from the highly represented low-fitness regions. We show
that this problem of “separation” in the design space is a significant bottleneck
in existing model-based optimization tools and propose a new approach that uses
a novel VAE as its search model to overcome the problem. We demonstrate its
advantage over prior methods in robustly finding improved samples, regardless of
the imbalance and separation between low- and high-fitness training samples. Our
comprehensive benchmark on real and semi-synthetic protein datasets as well as
solution design for physics-informed neural networks, showcases the generality
of our approach in discrete and continuous design spaces. Our implementation is
available at https://github.com/sabagh1994/PGVAE.

1 INTRODUCTION

Protein engineering is the problem of designing novel protein sequences with desired quantifiable
properties, e.g., enzymatic activity, fluorescence intensity, for a variety of applications in chemistry
and bioengineering (Fox et al., 2007; Lagassé et al., 2017; Biswas et al., 2021). Protein engineering is
approached by optimization over the protein fitness landscape which specifies the mapping between
protein sequences and their measurable property, i.e., fitness. It is believed that the protein fitness
landscape is extremely sparse, i.e., only a minuscule fraction of sequences have non-zero fitness,
and rugged, i.e., peaks of “fit” sequences are narrow and separated from each other by deep valleys
(Romero & Arnold, 2009), which greatly complicates the problem of protein design. Directed
evolution is the most widely adopted technique for sequence design in laboratory environment (Arnold,
1998). In this greedy local search approach, first a set of variants of a naturally occurring ("wild
type") sequence are tested for the desired property, then the variants with improved property form
the starting points of the next round of mutations (selected uniformly at random) and thus the next
round of sequences to be tested. This process is repeated until an adequately high level of desired
property is achieved. Despite advances, this strategy remains costly and laborious, prompting the
development of model-guided searching schemes that support more efficient exploration of the
sequence space (Biswas et al., 2018; Brookes & Listgarten, 2018; Gómez-Bombarelli et al., 2018;
Brookes et al., 2019; Angermueller et al., 2019; Sinai et al., 2020; Ren et al., 2022). In particular,
there is emerging agreement that optimization schemes that utilize ML models of the sequence-fitness
relationship, learned from training sets that grow in size as the optimization progresses, can furnish
better candidates for the next round of testing, and thus accelerate optimization, as compared to
model-free approaches such as Bayesian optimization (Mockus, 2012; Sinai et al., 2020). Our work
belongs to this genre of model-based optimization for sequence-function landscapes.

∗Both authors contributed equally.
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Figure 1: Challenges of imbalance and separation in fitness landscape. Each plot shows a
sequence space (x-y plane) and fitness landscape (red-white-blue gradient), along with training data
composition (white circles and stars). (A-C, left to right) In each of these hypothetical scenarios,
sparsity of high-fitness training samples (white stars) relative to low-fitness samples (white circles),
also called “imbalance” presents a challenge for MBO. Moreover, panel C shows a greater degree
of separation between low- and high-fitness samples, compared to B and A, presenting significant
additional challenge for MBO, above and beyond that due to imbalance. The rightmost panel is the
schematic representation of real-world dataset of enzyme variants designed for an unnatural substrate
(xyz) distinct from the substrate of the wild-type enzyme (xyz). The dataset comprises a few non-zero
fitness variants (stars) that are far from the bulk of training samples, which have zero fitness (white
circles). Hypothetical peaks have been drawn at the rare non-zero fitness variants, to illustrate that the
fitness landscape presents the twin challenges of imbalance and separation, similar to that in panel C.

Intuitively, the success of fitness optimization depends on the extent to which functional proteins
are represented in the experimentally derived data (training set) so that the characteristics of desired
sequences can be inferred from them. Prior work has examined this challenge of “sparsity" in fitness
landscapes, proposing methods that use a combination of “exploration” and “exploitation” to search
in regions of the space less represented in training data (Romero et al., 2013; Gonzalez et al., 2015;
Yang et al., 2019; Hie & Yang, 2022). Optimization success also depends on the distribution of
training samples in the sequence space, in particular on whether the desired functional sequences
are proximal to and easily reachable from the frequent but low-fitness training samples. This second
challenge of “separation” (between the optima and training samples) in fitness landscape is relatively
unexplored in the literature. In particular, it is not known how robust current search methods are
when the optimum is located in a region that is poorly represented in the training set and is located
relatively far (or separated due to rugged landscape) from the highly represented regions Figure 1. A
real-world example of this is the problem of designing an enzyme for an unnatural target substrate,
starting from the wild-type enzyme for a related natural substrate. Most variants of the wild type
enzyme are not functional for the target substrate, thus the training set is sparse in sequences with
non-zero fitness; furthermore, the rare variants that do have non-zero activity (fitness) for the target
substrate are located relatively far from the wild-type and its immediate neighborhood that forms the
bulk of the training set Figure 1 (rightmost panel).

We study the robustness of model-guided search schemes to the twin challenges of imbalance and
separation in fitness landscape. We explore for the first time how search algorithms behave when
training samples of high fitness are rare and separated from the more common, low-fitness training
samples. (Here, separation is in the design or sequence space, not the fitness space.) Furthermore,
given a fixed degree of separation, we investigate how the imbalance between the low- and high-fitness
samples in the training set affect the performance of current methods. A robust algorithm should have
consistent performance under varying separation and imbalance.

To this end, we propose a new model-based optimization (MBO) approach that uses VAE (Kingma &
Welling, 2014) as its search model. The latent space of our VAE is explicitly structured by property
(fitness) values of the samples (sequences) such that more desired samples are prioritized over the
less desired ones and have higher probability of generation. This allows robust exploration of the
regions containing more desired samples, regardless of the extent of their representation in the train
set and of the extent of separation between low- and high-fitness samples in the train set. We refer to
the proposed approach as a “Property-Prioritized Generative Variational Auto-Encoder” (PPGVAE).

Our approach is designed with the goal of obtaining improved samples in less number of MBO
steps (less sampling budget), as desired in the sequence design problem. Methods that rely on
systematic exploration techniques such as Gaussian processes (Gómez-Bombarelli et al., 2018) may
not converge in small number of rounds (Srinivas et al., 2009); a problem that is exacerbated by higher
dimensionality of the search space (Frazier, 2018; Djolonga et al., 2013). In general, optimization
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Figure 2: Latent space of our PPGVAE vs Vanilla VAE. PPGVAE and vanilla VAE were trained on
a toy MNIST-derived dataset where property values decrease monotonically with digit value (zero has
highest property value). Vanilla VAE (Left) scatters the rare samples of digit zero (blue) and samples
of next-highest property value (digit one, orange) in the latent space, whereas PPGVAE (Middle and
Right) maps digits with higher property values closer to the origin. This results in the classes with
greatest property values having higher probability of generation. PPGVAE was run in two modes,
where the relationship loss was enforced in a strong (Middle) or soft (Right) manner (see text).

with fewer MBO steps can be achieved by either 1) bringing more desired (higher fitness) samples
closer together and prioritizing their exploration over the rest, as done in our approach, or 2) using
higher weights for more desired samples in a weighted optimization setting (Brookes & Listgarten,
2018; Brookes et al., 2019; Gupta & Zou, 2019). Neither of these can be achieved by methods that
condition the generation of samples on the the property values (Kang & Cho, 2018) or encode the
properties as separate latent variables along with the samples (Guo et al., 2020; Chan et al., 2021).
This is the key methodological gap in the state-of-the-art that is addressed by our new VAE technique
for model-based optimization.

Through extensive benchmarking on real and semi-synthetic protein datasets we demonstrate that
MBO with PPGVAE is superior to prior methods in robustly finding improved samples regardless of
1) the imbalance between low- and high-fitness training samples, and 2) the extent of their separation
in the design space. Our approach is general and not limited to protein sequences, i.e., discrete design
spaces. We further investigate MBO with PPGVAE on continuous designs spaces. In an application
to physics-informed neural networks (PINN) (Raissi et al., 2019), we showcase that our method can
consistently find improved high quality solutions, given PINN-derived solution sets overpopulated
with low quality solutions separated from rare higher quality solutions. In section 2, MBO is reviewed.
PPGVAE is explained in section 3 followed by experiments in section 4.

2 BACKGROUND

Model Based Optimization. Given (x, y) pairs as the data points, e.g., protein sequence x and its
associated property y (e.g., pKa value), the goal of MBO is to find x ∈ X that satisfy an objective
S regarding its property with high probability. This objective can be defined as maximizing the
property value y, i.e., S = {y|y > ym} where ym is some threshold. Representing the search model
with pθ(x) (with parameters θ), and the property oracle as pβ(y|x) (with parameters β), MBO is
commonly performed via an iterative process which consists of the following three steps at iteration
t (Fannjiang & Listgarten, 2020):

1. Taking K samples from the search model, ∀i ∈ {1, ...,K} xt
i ∼ pθt(x);

2. Computing sample-specific weights using a monotonic function f which is method-specific:

wi := f(pβ(y
t
i ∈ S|xt

i)); (1)

3. Updating the search model parameters via weighted maximum likelihood estimation (MLE):

θt+1 = argmax
θ

K∑
i=1

wi log(pθ(x
t
i)). (2)

The last step optimizes for a search model that assigns higher probability to the data points satisfying
the property objective S, i.e., where pβ(y ∈ S|x) is high. Prior work by (Brookes & Listgarten,
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Figure 3: Robustness to imbalance and separation in MBO for GMM. A bimodal GMM is used
as the property oracle (top Left), i.e., the fitness (Y ) landscape on a one-dimensional sequence space
(X). Separation is defined as the distance between the means of the two modes (∆µ). Higher values
of ∆µ are associated with higher separation. Train sets were generated by taking N samples from
the less desired mode µ1 and ρN (imbalance ratio ρ ≤ 1) samples from the more desired mode µ2.
For a fixed separation, PPGVAE achieves robust relative improvement of the highest property sample
generated (∆Ymax), regardless of the imbalance ratio (Bottom panels). Performance of PPGVAE,
aggregated over all imbalance ratios, stays robust to increasing separation (top Right). PPGVAE
converges in less number of MBO steps (top Middle).

2018) (DbAS) and (Brookes et al., 2019) (CbAS) have explored variants of weighting schemes for
the optimization in the second step. Reward-weighted regression (RWR) (Peters & Schaal, 2007)
and CEM-PI (Snoek et al., 2012) have additionally been benchmarked by CbAS, each providing a
different weighting scheme. RWR has been used for policy learning in Reinforcement Learning (RL)
and CEM-PI maximizes the probability of improvement over the best current value using the cross
entropy method (Rubinstein, 1997; 1999).

Common to all these methods is that weighted MLE could suffer from reduced effective sample size.
In contrast, our PPGVAE does not use weights. Instead, it assigns higher probability to the high
fitness (more desired) data points by restructuring the latent space. Thus, allowing for the utilization
of all samples in training the generative model (see Appendix A C).

Exploration for Sequence Design. In addition to weighting based generative methods, model-based
RL (Angermueller et al., 2019) (Dyna PPO) and evolutionary greedy approaches (Sinai et al., 2020)
(AdaLead) have been developed to perform search in the sequence space for improving fitness. More
recently, (Ren et al., 2022) (PEX) proposed an evolutionary search that prioritizes variants with
improved property which fall closer to the wild type sequence.

3 PROPERTY-PRIORITIZED GENERATIVE VARIATIONAL AUTO-ENCODER

To prioritize exploration and generation of rare, high-fitness samples, our PPGVAE uses property
(fitness) values to restructure the latent space. The restructuring enforces samples with higher property
to lie closer to the origin than the ones with lower property. As the samples with higher property lie
closer to the origin, their probability of generation is higher under the VAE prior distribution N (0, I).
Representing the encoder and its parameters with Q and θ, the structural constraint on N samples is
imposed by

∀(µi
θ, µ

j
θ), i, j ∈ {1, ..., N} log(Pr(µi

θ))− log(Pr(µj
θ)) = τ(yi − yj), (3)
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Figure 4: Robustness to imbalance and separation in MBO for AAV dataset. PCA plot for
protein sequences in the dataset, colored with their property values (top Left). Blue and red color
spectrum are used for less and more desired samples, respectively. Top middle and right panels show
train sets with low and high separation, respectively, between the abundant less-desired and rare
more-desired samples. PPGVAE achieves robust relative improvements (shown here for the low
separation scenario), regardless of the imbalance ratio ρ (bottom Middle). Its performance also stays
robust to increasing separation (bottom Right). PPGVAE performance is only slightly affected by
reducing its sampling budget per MBO step (Ns) (bottom Left).

where µi
θ = Qθ(xi) and yi are the latent space representation and property value of sample xi,

respectively. The probability of the encoded representation Pr(µi
θ) is computed w.r.t. the VAE prior

distribution N (0, I) over the latent space, i.e., Pr(µi
θ) ∝ exp(

−µi
θ
T
µi
θ

2 ).

Intuitively, if higher values of property y are desired, then yj ≤ yi results in sample i getting mapped
closer to the origin. This results in a higher probability of generating sample i than sample j. The
extent of prioritization between each pair of samples is controlled by the hyper-parameter τ , often
referred to as the temperature. The structural constraint is incorporated into the objective of a vanilla
VAE as a relationship loss that should be minimized. This loss is defined as,

Lr ∝
∑
i,j

||(log(Pr(µi
θ))− log(Pr(µj

θ)))− τ(yi − yj)||22. (4)

Combined with the vanilla VAE, the final objective of PPGVAE to be maximized is,

Ez∼Q(.|x)[log(P (x|z))−DKL(Q(z|x)∥P (z))]− λr

τ2
Lr, (5)

where λr is a hyper-parameter controlling the extent to which the relationship constraint is enforced.
Here, we abused the notation and wrote Q(z|x) for Pr(z|Q(x)). To understand the impact of the
structural constraint on the mapping of samples in the latent space, we define qi := log(Pr(µi

θ))−τyi.
Also, assume that the samples are independent and identically distributed (i.i.d.). Then minimizing
the relationship loss can be rewritten as

Lr ∝ Eqi,qj ((qi − qj)
2) = Eqi,qj (((qi − E(qi))− (qj − E(qj)))2). (6)

Using the i.i.d. assumption this is simplified to,

Lr ∝ 2Var(qi) = 2Var(log(P (µi
θ))− τyi)) = 2Var(−µi

θ
T
µi
θ

2
− τyi). (7)
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Figure 5: Robustness to imbalance and separation in MBO for GB1 dataset. The tSNE plot
for the appended sequences of semi-synthetic GB1 dataset (top Left). Bottom left panel represents
an example of train set for low separation between less and more desired samples, i.e., appended
sequence of length three (see Figure A3 for an example of high separation). For a fixed separation
level, PPGVAE provides robust improvements, regardless of the imbalance ratio (top Middle). It is
also robust to the degree of separation, measured by aggregated performance over all imbalance ratios
(top Right). PPGVAE has faster convergence (bottom Right) and achieves similar improvements
with less sampling budget per MBO step (Ns) (bottom Middle).

Therefore, minimizing Lr is equivalent to minimizing the variance. This is equivalent to setting
the random variable in RHS of Equation 7 to a constant value C; ∀i : µi

θ
T
µi
θ = 2(C − τyi). This

implies the distribution of samples with the same property value to be on the same sphere. The sphere
lies closer to the origin for the samples with higher property values. This ensures that higher property
samples have higher probability of generation under the VAE prior N(0, I), while allowing for all
samples to fully contribute to the optimization.

To demonstrate the impact of relationship loss on the latent space, PPGVAE, with a two-dimensional
latent space, was trained on a toy MNIST dataset (Deng, 2012). The dataset contains synthetic
property values that are monotonically decreasing with the digit class. Also, samples from the digit
zero with the highest property are rarely represented (see Appendix D.3). Strong enforcement of
the relationship loss, using a relatively large constant λr, aligns samples from each class on circles
whose radius increases as the sample property decreases. Soft enforcement of the relationship loss, by
gradually decreasing λr, makes the samples more dispersed, while roughly preserving their relative
distance to the origin (Figure 2).

4 EXPERIMENTS

We will compare the performance of MBO with PPGVAE to the baseline algorithms that use
generative models optimized with weighted MLE (CbAS, RWR, CEM-PI (Brookes et al., 2019))
for search in discrete (e.g., protein sequence) and continuous design spaces. For sequence design
experiments, we additionally included AdaLead as a baseline.

In all optimization tasks, we 1) provide a definition of separation between less and more desired
samples in the design space X , 2) study the impact of varying imbalance between the representation
of low- and high-fitness (property value) samples in the training set, given a fixed separation degree,
and 3) study the impact of increasing separation. The ground truth property oracle was used in all
experiments. The performance is measured by ∆Ymax representing the relative improvement of the
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Figure 6: Robustness to imbalance and separation in MBO for PhoQ dataset. The panels and
their corresponding observation have the same semantics as in Figure 5.

highest property found by the model to the highest property in the train set, i.e., initial set at the
beginning of MBO (see Appendix D for further details).

4.1 GAUSSIAN MIXTURE MODEL

We use a bimodal Gaussian mixture model (GMM) as the property oracle, in which the relationship
between x and property y is defined as, y = α1 exp(−(x− µ1)

2/2σ2
1) + α2 exp(−(x− µ2)

2/2σ2
2).

We choose the second Gaussian as the more desired mode by setting α2 > α1 (Figure 3). Here,
separation is defined as the distance between the means of the two Gaussian modes (∆µ). Larger
values of ∆µ are associated with higher separation. For each separation level, the train sets were
generated by taking N samples from the less desired mode, and taking ρN (imbalance ratio ρ ≤ 1)
samples from the more desired mode (see Appendix D.3).

For a fixed separation level, we compared the performance of PPGVAE and baseline methods
for varying imbalance ratios. The relative improvements achieved by PPGVAE are consistently
higher than all other methods and are robust to the imbalance ratio. Other methods achieve similar
improvements when high-fitness samples constitute a larger portion of the train set (larger ρ). This
happens at a smaller ρ for lower separation levels (smaller ∆µ), indicating that the impact of
imbalance is offset by a smaller separation between the optimum and the dominant region in training
data (see Figure 3, Figure A4).

We then compared the relative improvement aggregated over all imbalance ratios, as the separation
level increases. All methods perform well for low separation levels. PPGVAE stays robust to the
degree of separation, whereas the performance of others drops by increasing separation (see Figure 3
top right). The difficulties encountered by other generative methods at higher separation levels is due
to the difference between the reconstruction of low- and high-fitness samples. As ∆µ increases, the
more desired (high fitness) samples get mapped to a farther locality than the less desired ones. This
makes the generation of more desired samples less likely under the VAE prior distribution N (0, I).
This is exacerbated when more desired samples are rarely represented (small imbalance ratio) in
the train set. For smaller ∆µ, more desired samples get mapped to a similar locality as less desired
ones, regardless of their extent of representation in the train set. PPGVAE stays robust to the the
imbalance ratio and extent of separation, as it always prioritizes generation and exploration of more
desired samples over the less desired ones by mapping them closer to the latent space origin. Similar
explanation can be provided for the rest of optimization tasks benchmarked in this study.
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Figure 7: Robustness to imbalance and separation in MBO for PINN. The tSNE plot for the
PINN-derived solutions colored with their property values (top Left). Blue and red color spectrum
are used for lower and higher quality solutions, respectively. Top middle and right panels show train
sets with low and high separation between the abundant less-desired and rare more-desired samples.
PPGVAE achieves robust relative improvements, regardless of the imbalance ratio ρ (bottom Left).
Its performance stays robust to increasing separation (bottom Middle). It also converges in less
number of MBO steps compared to other methods (bottom Right).

4.2 REAL PROTEIN DATASET

To study the impact of separation, real protein datasets with property (activity) measurements more
broadly dispersed in the sequence space are needed. Such datasets are rare among the experimental
studies of protein fitness landscape (Johnston et al., 2023), as past efforts have mostly been limited
to optimization around a wild type sequence. We chose the popular AAV (Adeno-associated virus)
dataset (Bryant et al., 2021) in ML-guided design (Sinai et al., 2021; Mikos et al., 2021). This dataset
consists of virus viability (property) measurements for variants of AAV capsid protein, covering the
span of single to 28-site mutations, thus presenting a wide distribution in sequence space.

The property values were normalized to [0, 1] range. Threshold of 0.5 was used to define the set of
low (y < 0.5) and high (y > 0.5) fitness (less and more desired respectively) mutants in the library.
To define a proxy measure of separation, we considered the minimum number of mutated sites s in
the low-fitness training samples. A larger value of s is possible only when the low-fitness samples are
farther from the high-fitness region, i.e., at higher separation (see Figure 4). For a fixed separation s,
the train sets were generated by taking N samples from the low-fitness mutants containing at least
s number of mutations, and ρN (ρ < 1) samples from the high-fitness mutants (regardless of the
number of mutations) (see Appendix D).

Given a fixed separation level, PPGVAE provides robust relative improvements, regardless of the
imbalance ratio (Figure 4, Figure A5). CEM-PI is the most competitive with PPGVAE for low
separation levels, however its performance decays for small imbalance ratios as separation increases
(see Figure A5). The performance of other methods improve as the high-fitness samples represent a
higher portion of the train set.

Next, we compared the performance of methods, aggregated over all imbalance ratios, as the
separation level increases. PPGVAE, is the most robust method to varying separation. CEM-PI is
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the most robust weighting-based generative method. Its performance is similar to PPGVAE for low
separation levels and degrades as separation increases.

As it is desired to achieve improved samples with less sampling budget, we also studied the impact of
varying sample generation budget per MBO step, given a fixed separation level. As expected, the
performance increases by increasing the sampling budget for both CEM-PI and PPGVAE. Further-
more, on average PPGVAE performs better than CEM-PI for all sampling budgets (Figure 4). This is
the direct result of prioritizing the generation and exploration of high-fitness samples relative to the
low-fitness ones in the latent space of PPGVAE.

4.3 SEMI-SYNTHETIC PROTEIN DATASETS

Next, we used two popular protein datasets GB1 (Wu et al., 2016) and PhoQ (Podgornaia & Laub,
2015) with nearly complete fitness measurements on variants of four sites. However, these data sets
exhibit a narrow distribution in sequence space (at most mutations), and are not ideal to study the
effect of separation. We thus transformed the landscape of these proteins to generate a more dispersed
dataset of mutants on which we could control for the separation of less and more desired variants.
In this transformation, first a certain threshold on the property was used to split the dataset into two
sets of low and high fitness mutants (see Appendix D). Second, a specific sequence of length L was
appended to high fitness mutants, while a random sequence of the same length was appended to the
low fitness ones. Here, the length of the appended sequence determines the extent of separation.
Higher separation is achieved by larger values of L and makes the optimization more challenging.
Note that the separation is achieved by changing the distribution of samples in the design space X ,
while keeping the property values unchanged. For each separation level, train sets were generated by
taking N samples from the low fitness mutants and ρN samples from the high fitness mutants (see
Figures 5 6, and Figure A3).

For a fixed separation level, the performance of all methods improve as high fitness samples constitute
a higher portion of the train set, i.e., higher imbalance ratio (Figure 5 6). PPGVAE is more robust to
the variation of imbalance ratio and it is significantly better than others when high fitness samples are
very rare. Same observations hold for all separation levels studied (see Figures A6 A7). Similar as
before, CEM-PI is the most competitive with PPGVAE for low separation; however as the separation
increases its performance decays. Furthermore, the reduction of sampling budget does not affect the
performance of PPGVAE as much as CEM-PI (Figures 5 6).

4.4 IMPROVING PINN-DERIVED SOLUTIONS TO THE POISSON EQUATION

Our method can also be used in continuous design spaces. We define the task of design as finding
improved solutions given a training set overpopulated with low quality PINN-derived solutions.
Details on train set generation and separation definition are covered in Appendix D.3. Similar
conclusions hold for the robustness of PPGVAE to the separation level and imbalance ratio (Figure 7).

Common in all optimization tasks, PPGVAE achieves maximum relative improvement in less number
of MBO steps than others (see Figures A9 A10 A11 A12). Characteristics of the latent space and
sample generation have been studied for PPGVAE, and contrasted with prior generative approaches
including (Gómez-Bombarelli et al., 2018) in Appendix A. Sensitivity of PPGVAE performance to
the temperature is discussed in Appendix E.3 (see Figure A13).

5 CONCLUSION

We proposed a robust approach for design problems, in which more desired regions are rarely explored
and separated from less desired regions with abundant representation to varying degrees. Our method
is inherently designed to prioritize the generation and interpolation of rare more-desired samples
which allows it to achieve improvements in less number of MBO steps and less sampling budget.
As it stands, our approach does not use additional exploratory mechanism to achieve improvements,
however it could become more stronger by incorporating them. It is also important to develop variants
of our approach that are robust to oracle uncertainties, and study the extent to which imposing the
structural constraint can be restrictive in some design problems.

9



Published as a conference paper at ICLR 2024

6 ACKNOWLEDGEMENTS

This research was funded by Molecule Maker Lab Institute: an AI research institute program
supported by National Science Foundation under award No. 2019897. This work utilized resources
supported by 1) the National Science Foundation’s Major Research Instrumentation program, grant
No. 1725729 (Kindratenko et al., 2020), and 2) the Delta advanced computing and data resource
which is supported by the National Science Foundation (award OAC 2005572) and the State of
Illinois.

REFERENCES

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International
conference on learning representations, 2019.

Frances H Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131,
1998.

Surojit Biswas, Gleb Kuznetsov, Pierce J Ogden, Nicholas J Conway, Ryan P Adams, and George M
Church. Toward machine-guided design of proteins. BioRxiv, pp. 337154, 2018.

Surojit Biswas, Grigory Khimulya, Ethan C Alley, Kevin M Esvelt, and George M Church. Low-n
protein engineering with data-efficient deep learning. Nature methods, 18(4):389–396, 2021.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

David H Brookes and Jennifer Listgarten. Design by adaptive sampling. arXiv preprint
arXiv:1810.03714, 2018.

Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M
Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an aav capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696, 2021.

Alvin Chan, Ali Madani, Ben Krause, and Nikhil Naik. Deep extrapolation for attribute-enhanced
generation. Advances in Neural Information Processing Systems, 34:14084–14096, 2021.

Christian Dallago, Jody Mou, Kadina E Johnston, Bruce J Wittmann, Nicholas Bhattacharya, Samuel
Goldman, Ali Madani, and Kevin K Yang. Flip: Benchmark tasks in fitness landscape inference
for proteins. bioRxiv, pp. 2021–11, 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian process bandits.
Advances in neural information processing systems, 26, 2013.

Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. Advances in
Neural Information Processing Systems, 33:12945–12956, 2020.

David Firth. Bias reduction of maximum likelihood estimates. Biometrika, 80(1):27–38, 1993.

Richard J Fox, S Christopher Davis, Emily C Mundorff, Lisa M Newman, Vesna Gavrilovic, Steven K
Ma, Loleta M Chung, Charlene Ching, Sarena Tam, Sheela Muley, et al. Improving catalytic
function by prosar-driven enzyme evolution. Nature biotechnology, 25(3):338–344, 2007.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Saba Ghaffari, Ehsan Saleh, David Forsyth, and Yu-Xiong Wang. On the importance of firth bias
reduction in few-shot classification. International Conference on Learning Representations, 2022.

10



Published as a conference paper at ICLR 2024

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Javier Gonzalez, Joseph Longworth, David C James, and Neil D Lawrence. Bayesian optimization
for synthetic gene design. arXiv preprint arXiv:1505.01627, 2015.

Xiaojie Guo, Yuanqi Du, and Liang Zhao. Property controllable variational autoencoder via invertible
mutual dependence. In International Conference on Learning Representations, 2020.

Anvita Gupta and James Zou. Feedback gan for dna optimizes protein functions. Nature Machine
Intelligence, 1(2):105–111, 2019.

Brian L Hie and Kevin K Yang. Adaptive machine learning for protein engineering. Current opinion
in structural biology, 72:145–152, 2022.

Kadina E Johnston, Clara Fannjiang, Bruce J Wittmann, Brian L Hie, Kevin K Yang, and Zachary
Wu. Machine learning for protein engineering. arXiv preprint arXiv:2305.16634, 2023.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models.
Journal of chemical information and modeling, 59(1):43–52, 2018.

Volodymyr Kindratenko, Dawei Mu, Yan Zhan, John Maloney, Sayed Hadi Hashemi, Benjamin Rabe,
Ke Xu, Roy Campbell, Jian Peng, and William Gropp. Hal: Computer system for scalable deep
learning. In Practice and Experience in Advanced Research Computing, PEARC ’20, pp. 41–48,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450366892. doi:
10.1145/3311790.3396649. URL https://doi.org/10.1145/3311790.3396649.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the
International Conference on Learning Representations, 2014.

Leslie Kish and Martin Richard Frankel. Inference from complex samples. Journal of the Royal
Statistical Society: Series B (Methodological), 36(1):1–22, 1974.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Advances
in Neural Information Processing Systems, 33:5126–5137, 2020.

HA Daniel Lagassé, Aikaterini Alexaki, Vijaya L Simhadri, Nobuko H Katagiri, Wojciech Jankowski,
Zuben E Sauna, and Chava Kimchi-Sarfaty. Recent advances in (therapeutic protein) drug develop-
ment. F1000Research, 6, 2017.

Georgios Mikos, Weitong Chen, and Junghae Suh. Machine learning identification of capsid mutations
to improve aav production fitness. bioRxiv, pp. 2021–06, 2021.

J. Mockus. Bayeisan approach to global optimization: theory and applications. Springer Science &
Business Media, volume 37, 2012.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750, 2007.

Anna I Podgornaia and Michael T Laub. Pervasive degeneracy and epistasis in a protein-protein
interface. Science, 347(6222):673–677, 2015.

Yuchi Qiu and Guo-Wei Wei. Clade 2.0: Evolution-driven cluster learning-assisted directed evolution.
Journal of Chemical Information and Modeling, 62(19):4629–4641, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

11

https://doi.org/10.1145/3311790.3396649


Published as a conference paper at ICLR 2024

Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In International Conference on Machine Learning, pp.
18520–18536. PMLR, 2022.

Philip A Romero and Frances H Arnold. Exploring protein fitness landscapes by directed evolution.
Nature reviews Molecular cell biology, 10(12):866–876, 2009.

Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness landscape
with gaussian processes. Proceedings of the National Academy of Sciences, 110(3):E193–E201,
2013.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1:127–190, 1999.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Ehsan Saleh, Saba Ghaffari, Timothy Bretl, Luke Olson, and Matthew West. Learning from integral
losses in physics informed neural networks. arXiv preprint arXiv:2305.17387, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint
arXiv:2010.02141, 2020.

Sam Sinai, Nina Jain, George M Church, and Eric D Kelsic. Generative aav capsid diversification by
latent interpolation. bioRxiv, pp. 2021–04, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for
data-driven offline model-based optimization. In International Conference on Machine Learning,
pp. 21658–21676. PMLR, 2022.

Nicholas C Wu, Lei Dai, C Anders Olson, James O Lloyd-Smith, and Ren Sun. Adaptation in protein
fitness landscapes is facilitated by indirect paths. Elife, 5:e16965, 2016.

Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
protein engineering. Nature methods, 16(8):687–694, 2019.

12



Published as a conference paper at ICLR 2024

2

0

2
Z 2

VAE

5.0

2.5

0.0

2.5
PPGVAE (Soft Constraint)

2

1

0

1

2
CbAS

2.5 0.0 2.5 5.0
Z1

2

1

0

1

2

Z 2

RWR

2.5 0.0 2.5 5.0
Z1

1

0

1

2
CEM-PI

2.5 0.0 2.5 5.0
Z1

0

5

10

15

Bombarelli

0 1 2 3 4 5 6 7 8 9

Figure A1: Two-dimensional latent space of our PPGVAE and other methods trained on the toy
MNIST dataset.

A CHARACTERISTICS OF THE LATENT SPACE AND SAMPLE GENERATION

To contrast PPGVAE with prior generative based methods, all methods were trained on the toy
MNIST dataset of Figure 2. In weighting based methods, there is less distinction among the mapping
regions of different classes, as the weighting becomes more extreme (Figure A1). Extreme weighting
makes less samples contribute to the optimization, thus affecting the diversity in sample generation.

CEM-PI, CbAS and RWR have the most to least extreme weighting. In contrast to weighting based
approaches, PPGVAE and Bombarelli have more distinct mapping of classes. Thus, sample generation
using PPGVAE has more diversity. By increasing the standard deviation (σs) of the sampling prior
N (0, σsI), PPGVAE is capable of generating all types of digits, whereas the least extreme weighting
method (RWR) generates three types of digits only (Figure A2).

It is easily seen that the organization of points in the latent space of PPGVAE is significantly
different from Bombarelli’s. PPGVAE enforces the samples with higher properties to lie closer to
the origin, whereas they are just separated by digit and ordered by property in Bombarelli’s. By
design, PPGVAE generates improved samples with higher probability, while exploration mechanisms
need to be carefully designed for Bombarelli’s. Finally, by sampling from VAE prior N (0, I), i.e.,
σs = 1, PPGVAE generates the top two highest property classes as well as their interpolations, more
frequently than others. Optimization over the latent space of Bombarelli’s barely produces samples
from the top two highest property classes.

B RELATED WORK

Machine learning approaches have been developed to improve the design of DNA, molecules and
proteins with certain properties. Early work in ML-assisted design (Gómez-Bombarelli et al., 2018),
structures the samples in the latent space by joint training of a property predictor on the latent
space. However, further systematic exploration mechanisms on the latent space are required to find
improved samples. Variants of weighting based MBO techniques have also been proposed to facilitate
the problem of protein design (Brookes & Listgarten, 2018; Gupta & Zou, 2019; Brookes et al.,
2019). CbAS (Brookes et al., 2019) proposed a weighting scheme which prevents the search model
from exploring regions of the design space for which property oracle predictions are unreliable.
CbAS (Brookes et al., 2019) was built on an adaptive sampling approach (Brookes & Listgarten,
2018) that leverages uncertainty in the property oracle when computing the weights for MBO. Reward
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Figure A2: Samples generated from different methods trained on the toy MNIST dataset
(Figure A1). For all methods except Bombarelli (Gómez-Bombarelli et al., 2018), normal sampling
distribution N (0, σsI) with varying standard deviation σs ∈ {1, 2, 4} was used. For Bombarelli, the
optimization on the latent space was performed with a different starting point for each generated
sample.
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Notation Description

X The design space

xi Sample i from the design space (xi ∈ X )

yi Property value associated with xi

wi Weight associated with xi

Qθ Encoder with parameters θ

µi
θ Encoded representation of xi

Pr(µi
θ) Probability of the encoded representation w.r.t. the VAE pior

Lr Relationship loss

λr Coefficient of the relationship constraint

τ Temperature of relationship constraint

pβ(y|x) Property oracle

pθ(x) Search model with parameters θ

Ns Number of samples generated per MBO step

ρ Relative proportion of more-desired to less-desired samples in train set

Neff Effective sample size in weighted MLE

Table A1: Mathematical notations used in the paper.

Weighted Regression (RWR) (Peters & Schaal, 2007) (benchmarked by CbAS) uses weights that do
not take into account oracle uncertainty. Not requiring a differentiable oracle is common to these
methods. On the other hand, a simple baseline proposed by (Trabucco et al., 2022) requires learning
a differentiable property oracle that is used to find design samples by gradient ascent. In an effort to
avoid failures due to imperfect oracles, (Kumar & Levine, 2020) proposed learning an inverse map
from property space to design space and search for optimal property during optimization instead.
Protein design has also been formulated as sequential decision-making problem (Angermueller et al.,
2019), in which proximal policy optimization (PPO) (Schulman et al., 2017) has been used to search
for design sequences. Recently, an evolutionary greedy approach has been shown to be competitive
with prior algorithms (Brookes & Listgarten, 2018; Brookes et al., 2019; Angermueller et al., 2019).
The latest work on protein design (Ren et al., 2022) (PEX), focuses on exploring the rugged landscape
close to the wild-type sequence, to find high fitness sequences with low mutation counts.

In our benchmark for sequence design, we only included AdaLead as a baseline, selected over
alternatives as it has been demonstrated to have superior performance to Dyna PPO (Angermueller
et al., 2019). PEX (Ren et al., 2022) was not included, as it is specifically designed to perform a
local search starting from the wild type, while our interest in the more challenging scenario of optima
being distal to the wild type.

C EFFECTIVE SAMPLE SIZE IN WEIGHTED MLE

Common to all weighting-based generative methods is that weighted MLE could suffer from reduced
effective sample size, which leads to estimation of parameters θt+1 with higher variance and higher
bias in extreme cases. This is inevitable in train sets with severe imbalance between the abundant
undesired (e.g., zero property) and rare desired (e.g., nonzero property) samples. In contrast, PPGVAE
does not use weights. Instead, it assigns higher probability to the more desired data points by
restructuring the latent space. Thus, allowing for the utilization of all samples in training the
generative model, regardless of the extent of imbalance between less and more desired samples.
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Dataset Encoder Architecture

Protein indim→ 64 → LReLU→ 20

PINN indim→ 64 → LReLU→ 10

MNIST indim→ 512 → ReLU→ 256→ ReLU→ 2

GMM indim→ 64 → LReLU→ 64→ LReLU→ 2

Table A2: VAE architecture used for each benchmark dataset. Encoder and decoder have
symmetrical architecture. All generative based methods share the same architecture

In imbalanced datasets, sample weights (wi) are typically uneven. As an example, assume a dataset
of size 100 with five positive (desired property values), and 95 negative (undesired) samples. One
weighting scheme can assign non-zero weights to the five desired samples and zero weights otherwise.
Therefore, only five out of 100 samples contribute to the objective in Equation 2. This leads to higher
bias and variance in the maximum likelihood estimator θt+1 (MLE). Next, we present the same
argument mathematically.

Representing the log-likelihood log(pθ(xi)) of the generative model with li, Equation 2 can be
rewritten as maximizing

l =

K∑
i=1

wili. (A8)

Assuming
∑K

i=1 wi = 1 and i.i.d. samples, the effective sample size Neff (Kish & Frankel, 1974) can
be defined such that

Var(l) =
1

Neff
Var(li). (A9)

According to Equation A8, Neff = (
∑K

i=1 w
2
i )

−1. It can be proved that 1 ≤ Neff ≤ K where the
equality for the lower and upper bound holds at

Neff = K, ∀i, wi =
1

K
, and

Neff = 1, wj = 1, wi ̸=j = 0. (A10)

As mentioned earlier, uneven weights are expected in imbalanced datasets. As the weights become
more uneven, Neff approaches its lower bound. Therefore, with imbalanced datasets, Neff tends to
drop and Var(l) increases (Owen, 2013). This in turn increases the estimation bias and variance of of
the MLE θt+1 (Firth, 1993; Ghaffari et al., 2022). Both estimation bias and variance are O(N−1

eff ).

Our search model does not require weighting of the samples to prioritize the generation of some over
the others. Instead, it directly uses the property values to restructure the latent space such that samples
with better properties have a higher chance of being generated and interpolated. For this reason
PPGVAE has Neff = K, which makes it robust to the issues associated with parameter estimation in
weighting-based MBO techniques.

D DETAILS OF THE EXPERIMENTS

D.1 MBO SETTINGS AND IMPLEMENTATION DETAILS

We performed 10 rounds of MBO on the GMM benchmark and 20 rounds of MBO on the rest of
the benchmark datasets. In all experiments temperature (τ ) was set to five for PPGVAE with no
further tuning. We used the implementation and hyper-parameters provided by (Brookes et al., 2019),
for CbAS, Bombarelli, RWR, and CEM-PI methods. The architecture of VAE was the same for
all methods (Table A2). The formula to compute the weights for each weighting-based method are
included in the Appendix of (Brookes et al., 2019).
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Dataset Measured
Property

Separation
Criterion

Separation
Quantities

Imbalance
Ratio (ρ)

GMM Bimodal
Gaussian
function

Distance between
the two modes

(∆µ)

4,6,8,10,12 0.05, 0.1, 0.2,
0.4, 0.8, 1

PINN -log(wMSE) Property
percentile for
more desired

samples

(30, 40),
(40, 50), (50, 60),
(60, 70), (70, 80)

0.05, 0.1, 0.2,
0.4, 0.8

GB1 Folded protein
enrichment

Length of the
appended
sequence

3,4,5,8 0.0125, 0.025,
0.05, 0.1, 0.2,

0.4, 0.8

PhoQ Yellow
fluorescent

protein level

Length of the
appended
sequence

3,4,6,8 0.0125, 0.025,
0.05, 0.1, 0.2,

0.4, 0.8

AAV Capsid viability Minimum
number of

mutations for
samples with less
desired property

(y < 0.5)

6,8,10,12,15 0.0125, 0.025,
0.05, 0.1, 0.2,

0.4, 0.8

Table A3: Settings used in train set generation for each benchmark dataset.

The ground truth property oracle was used in all experiments, which is equivalent to limiting the
search space to the sequences with measured properties in the protein datasets. The performance
∆Ymax is reported with 95% bootstrap confidence interval.

In AdaLead, The oracle query size and the experiment batch size were both set to the number of
samples generated per MBO step (Ns). This was to run AdaLead in a comparable setting to other
weighting-based MBO approaches. Ground-truth oracle was used in all experiments, i.e., the search
space was limited to the samples existing in the dataset.

For each setting of imbalance ratio and separation level, optimization was performed with 20 different
random seeds. In AdaLead, the starting sequence was randomly selected from the initial train set for
each seed. We noticed that AdaLead performance is highly dependant on where its search starts in
the sequence space. This justifies the high variability in its performance. This is a common problem
to all approaches based on evolutionary search, as it may not be known a priori where to start the
search.

D.2 PROTEIN DATASETS

AAV: The dataset contains variants of the protein located in the capsid of AAV virus along with their
viability measurements. It consists of roughly 284K variants with single to 28 sites mutations. The
properties were normalized into range [0, 1]. The dataset was obtained from (Dallago et al., 2021).

GB1: It contains the empirical fitness landscape for the binding of protein G domain B1 to an
antibody. Enrichment of the folded protein bound to the antibody was defined as fitness. Fitness was
measured for 149,361 sequences for variants of amino acids at four sites. The fitness was normalized
to range [0, 1] in this paper. The dataset is overpopulated with low or zero-fitness sequences. The
sequences along with their properties were obtained from (Qiu & Wei, 2022).
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Figure A3: GB1 transformed landscapes and train set examples. Transformed landscapes with
appended sequence of length three and six are shown in top left and top right panels, respectively.
Examples of train sets taken from each landscape are shown in bottom left (low separation) and
bottom right (high separation) panels, respectively.

PhoQ: It is a combinatorial library of four amino acid sites located at the interface between PhoQ
kinase and sensor domains. Signaling of a two-component regulatory system was measured by
yellow fluorescent protein (YFP) levels, i.e., fitness. The fitness landscape contains 140,517 measured
sequences. The dataset is overpopulated with low or zero-fitness sequences. The fitness was
normalized to range [0, 1] in this paper. The sequences along with their properties were obtained
from (Qiu & Wei, 2022).

D.3 GENERATION OF TRAIN SETS WITH VARYING IMBALANCE AND SEPARATION

In each dataset, we specify the definition of less and more desired samples as well as the separation
criterion in the design space X . Table A3 includes the settings used to generate train sets in all
benchmark datasets.

GMM: The property oracle is a bimodal GMM in which the second mode has a higher peak (higher
mode) than the first mode (lower mode). Each mode is represented by a triplet (µi, σi, αi) where αi

determines the peak height and i is the mode index. The triplet was set to (0, 0.25, 1) and (µ2, 1, 2.5)
for the lower and higher modes, respectively. Mean of the second mode is variable as it determines
the separation level.

Train sets consisted of less and more desired samples, which were taken from the two modes. N
samples were taken from the lower mode using N (0, 0.6) distribution. ρN samples representing the
higher mode were taken uniformly from range [µ2 + σ2/2, µ2 + σ2].

The separation in the design space was defined as the difference between the means of two modes
∆µ. Higher ∆µ is associated with higher separation.

AAV: The entire AAV dataset consists of 284K samples (Bryant et al., 2021), which are split into two
sets of "sampled" and "designed" variants (Dallago et al., 2021). We only used the sampled variants
in this study. Threshold of 0.5 on the viability scores was used to define the set of more desired
(> 0.5) and less desired (< 0.5) variants.

Train sets consisting of less and more-desired samples were generated by, taking N samples from
the less-desired variants, whose mutation count was more than a specified threshold, and taking ρN
samples from the more-desired variants, whose properties fall in the (5,10) percentile of the property
values.
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The separation is determined by the minimum number of mutations present in the less-desired
samples. The separation of less and more-desired samples in the train set increases as the minimum
number of mutations increases.

GB1: To study the impact of separation, the sequences of GB1 dataset were transformed to have
a more dispersed coverage of the landscape in the design space. First, the property values were
normalized into range [0, 1]. Threshold of 0.001 on the property was used to define the set of less
desired (< 0.001) and more-desired variants (> 0.001). Then, the sequences of less-desired variants
were appended with random sequence of length L, whereas more-desired variants were appended
with a specific sequence of the same length. Here, the length of the appended sequence specifies the
degree of separation. Larger length is associated with higher separation.

Train sets were generated by sampling N samples from the less-desired and ρN samples from the
more-desired variants. The transformed landscape of GB1 associated with low and high separation,
along with examples of its train sets are shown in Figure A3.

PhoQ: The same procedure as GB1 was used to generate the train sets.

PINN: We used a dataset of PINN-derived solutions to the Poisson equation for the potential of three
point charges located diagonally on a 2D plane (Saleh et al., 2023). The solutions were pooled from a
batch of PINNs trained with different seeds at different training epochs. Negative log weighted MSE
(wMSE) between the PINN-derived solution and the analytical solution was used as the property
value. Note that in practice, the exact average loss can be a proxy of the solution quality without the
analytical solution. Higher quality solutions have higher properties.

In generating the train sets, N low fitness samples were taken from (0, 15) percentile of the property
values, whereas ρN high fitness samples were taken from a specified range of property percentiles
(P1, P2) | P1 ≥ 30. Higher values of P1 are associated with higher separation levels. Note that in
this case, separation of samples by property values is concordant with their separation in the design
space X . See Table A3 for the values of (P1, P2) that have been tested.

In practice, as accurate solutions can be sporadic with stochastic optimizers, PPGVAE can interpolate
higher-quality solutions given imbalanced sets of solutions.

Toy MNIST: This dataset was used to demonstrate the latent space of PPGVAE and other methods,
as well as their sampling generation characteristics. The dataset has rare representation of zero digits
relative to the other digits (imbalance ratio ρ = 0.01). Samples belonging to the digit class C have
property values distributed as N (10− C, 0.01).
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E ADDITIONAL PLOTS

E.1 STUDYING THE IMPACT OF IMBALANCE RATIO PER SEPARATION LEVEL

For a given separation, the performance improves as the imbalance ratio increases. This is expected
as the more-desired samples constitute a higher portion of the train set. As separation level increases,
the task of optimization becomes harder. Therefore, other methods become mostly ineffective for
low imbalance ratios, and only show improvements for higher imbalance ratios. This behavior is
consistently seen in all benchmark tasks.
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Figure A4: Performance vs imbalance ratio for each separation level in the GMM benchmark.

0
0.01
0.03

0.1
0.3

1

Y m
ax

Lowest Separation Low Separation Medium Separation

0.01 0.03 0.1 0.3 1
0

0.01
0.03

0.1
0.3

1

Y m
ax

High Separation

0.01 0.03 0.1 0.3 1

Highest Separation
PPGVAE
AdaLead
CbAS
CEM-PI
RWR

Figure A5: Performance vs imbalance ratio for each separation level in the AAV benchmark.
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Figure A6: Performance vs imbalance ratio for each separation level in the GB1 benchmark.
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Figure A7: Performance vs imbalance ratio for each separation level in the PhoQ benchmark.
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Figure A8: Performance vs imbalance ratio for each separation level in the PINN benchmark.
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E.2 STUDYING THE CONVERGENCE RATE FOR DIFFERENT IMBALANCE RATIOS

For each benchmark task, we looked at the progress of each method as number of MBO steps
increases. For higher imbalance ratios, all methods have faster convergence relative to the low
imbalance ratios. Furthermore, our PPGVAE consistently has the highest convergence rate to the
highest improvement. This is expected, as PPGVAE prioritizes the interpolation and generation of
more desired samples, regardless of the extent of their representation in the train set.
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Figure A9: Performance vs the number of MBO steps for different imbalance ratios in GMM
benchmark. Separation level is set to medium.
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Figure A10: Performance vs the number of MBO steps for different imbalance ratios in AAV
benchmark. Separation level is set to low.
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Figure A11: Performance vs the number of MBO steps for different imbalance ratios in GB1
benchmark. Separation level is set to low. CEM-PI is the most competitive with PPGVAE for
higher imbalance ratios.
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Figure A12: Performance vs the number of MBO steps for different imbalance ratios in PhoQ
benchmark. Separation level is set to low. CEM-PI is the most competitive with PPGVAE for
higher imbalance ratios.
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E.3 TEMPERATURE SENSITIVITY AND TRAINING ON HIGH FITNESS SAMPLES

To study the sensitivity of PPGVAE performance to the temperature, the GMM experiments with the
lowest imbalance ratio and the highest separation (most challenging scenario) were performed with
varying temperatures (τ ) Figure A13. The performance is almost the same for log10(τ) ∈ [−1, 1].
Also, the sensitivity to temperature decreases as the number of MBO steps increases.

We also repeated the AAV experiments for CEM-PI in which only high fitness samples were used as
the initial train set (CEM-PI/High) Figure A13. Aggregated performance over all imbalance ratios
for PPGVAE is better than both CEM-PI and CEM-PI/High. This demonstrates the importance
of including all samples in the training using PPGVAE. Furthermore, CEM-PI/High has better
performance than CEM-PI for higher separation, showing that filtering the samples might be beneficial
for weighting based approaches as the optimization task gets harder by separation criterion.
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Figure A13: Impact of varying temperature in GMM benchmark (Left) and performance
comparison between training on all vs high fitness samples for CEM-PI (Right).
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