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Abstract

Recent advances in Scientific Machine Learning have shown that second-order
methods can enhance the training of Physics-Informed Neural Networks (PINNs),
making them a suitable alternative to traditional numerical methods for Partial
Differential Equations (PDEs). However, second-order methods induce large
memory requirements, making them scale poorly with the model size. In this paper,
we define a local Mixture of Experts (MoE) combining the parameter-efficiency
of ensemble models and sparse coding to enable the use of second-order training.
Our model – PINN BALLS – also features a fully learnable domain decomposition
structure, achieved through the use of Adversarial Adaptive Sampling (AAS),
which adapts the DD to the PDE and its domain. PINN BALLS achieves better
accuracy than the state-of-the-art in scientific machine learning, while maintaining
invaluable scalability properties and drawing from a sound theoretical background.

1 Introduction

Obtaining accurate solutions to partial differential equations (PDEs) is a ubiquitous problem in
countless engineering applications, as it enables reliable simulations of real-world scenarios. While
discretization-based methods for solving PDEs offer convergence guarantees as well as a solid theo-
retical underpinning, their implementation and runtime can be resource intensive. Novel techniques
developed within the domain of Scientific Machine Learning (SciML) strike a highly sought-after
balance between accuracy and runtime, which has led to a rapid growth of the field in recent years
[7]. A milestone SciML architecture is the Physics-Informed Neural Network (PINN), which was
theorized in the 90s [9] and gained the interest of the research community following the publication
that coined its name [28]. The salient aspect of PINNs is the inclusion of physical laws in the
loss function, computed via automatic differentiation. While their training process is not simple,
researchers proposed alternatives to fix pertinent issues of the PINN architecture, such as the complex
loss landscape generated by the PDE residuals [36], unbalanced optimization of the components of
the loss functions [17], and the spectral bias intrinsic to neural networks [29]. The combination of
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those with second-order optimizers has proven to be an invaluable approach to surpass the limitations
of PINNs [4, 24]. Second-order methods are a crucial step to enable highly accurate solutions, which
can be a strict requirement in some applications. However, these methods scale poorly with an
increasing number of parameters.

Scaling to large number of parameters is a crucial component for PINN architectures as the majority
of problems simulated in industrial scenarios typically feature highly complex solutions and arbitrarily
large domains. The majority of approaches in the literature rely on domain decomposition (DD),
which is a common approach adopted by traditional PDE solvers. DD divides the task of predicting
the PDE solution into different subdomains, which are routed to different submodels. In the machine
learning community, architectures that combine multiple models are regarded as ensemble models.
A widely known example of an ensemble model is the Mixture of Expert (MoE) [22], which
approximates a function as a linear combination of submodels (or experts) driven by a – possibly
learnable – weighting factor, which is referred to as a “gating mechanism”. This allows the MoE
to scale well to larger problems and often to parallelize the training of the submodels [32], strongly
limiting the computational overhead when several models are combined [31]. While a natural choice
for scalability in the field of PDEs, the use of DD involves several challenges. A major issue appears
when equations contain non-local quantities – eg. the pressure in incompressible Navier-Stokes
equations – that cannot be easily inferred from local information. This approach is therefore typically
complemented by the addition of a loss component at the interface of neighboring models. However,
these interface conditions can strongly hinder the training of the model and force the predicted
solution to oscillate between local minima. Furthermore, there are several ways of defining interface
conditions for ensemble models; the choice is typically problem-dependent and can not be defined a
priori [21].

An additional complexity introduced by DD is intrinsic to the decomposition itself. Since real-world
scenarios typically include multi-scale and finely detailed domains, it is imperative to be able to adapt
the decomposition to the underlying domain and PDE. Indeed, problems in the field of fluid dynamics
are typically inhomogeneous and they require adaptive meshes for both stability and scalability.
Therefore, the DD can not always be decided a priori. It has to be learned alongside the PDE solution,
and possibly be adapted both to the geometry of the problem and to the nature of the PDE that is
being solved. However, most of the literature works combining DD and PINNs do not instantiate
such a domain decomposition. In most cases, the DD is not trainable but rather fixed beforehand. To
address this issue we adopt the Adversarial Adaptive Sampling framework (AAS) proposed in [33],
which provides a solid theoretical framework for dynamic sampling that supports the training process
and guides the DD.

Related Work The synergy between PINNs and DD has already been explored for example by
Extended-PINNs (XPINN) [16], which relies on non-overlapping subdomains and interface conditions
to match the prediction of neighboring submodels. Another well-known example is the Finite-Basis
PINN (FBPINN) [23], which adopts predefined overlapping sub-domains and leverages the sparsity of
the model’s output to compute parameter updates without relying on interface conditions. This model
has been extended to Extreme Learning Machines [2] with the goal of achieving highly accurate
solutions. A few additional works also propose to include a trainable domain decomposition, such as
the Augmented PINN [14], which represents an extension of the XPINN to a soft pre-trained domain
decomposition. Similarly, the MoE PINN [3], which takes advantage of the ensemble structure and
the agreement of the submodels as a natural approach for uncertainty quantification. We refer to [13]
for a non-exhaustive overview of existing methods.

Motivation and Goal In our research, we propose to combine the benefits of DD, second-order
training methods and Adversarial Adaptive Sampling (AAS). Indeed, the paradigm of ensemble
models for DD synergizes with the use of second-order methods: while the resource efficiency of
second-order methods scales poorly with the number of parameters, ensemble models are parameter-
efficient and their structure allows for parallel evaluation of the model and its gradients [23]. Moreover,
we propose to base the DD on overlapping radial basis functions to emphasize locality, hence
restricting the prediction of each submodel to a ball within the PDE domain. This approach ensures
that the Jacobian matrix required for computing the update step of the second-order method is sparse,
relieving the memory-intensive nature of second-order optimizers as Natural Gradient Descents [24]
and Levenberg-Marquardt [4]. Last but not least, we leverage the theoretical backbone of AAS [33]
to train the DD alongside the ensemble model, which requires no a priori knowledge of the features
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Table 1: Difference in features between PINN BALLS, the APINN [14] and the FBPINN [23].
APINN FBPINN PINN BALLS

Sparse ✓ ✓
No interface loss ✓ ✓
Trainable DD ✓ ✓
Adaptive Sampling ✓
Second-order training ✓

of the PDE solution or the computational domain. This allows the DD to direct its attention to PDE
features that are harder to compute, enhancing the accuracy and robustness of the method.

The paper is structured as follows: Section 2 introduces the notation for PINNs and DD. Section 3
introduces AAS, showcasing our theoretical advancements in 3.1. The complete PINN BALLS model
is presented in Section 4, and its scalability with respect to the number of parameters of the models is
discussed in 4.1. The full training pipeline is then highlighted in Section 4.2, and its performance
is evaluated in Section 5. Limitation are discussed in Section 5.3 and the paper is concluded with
Section 6. Our contributions are gathered in Table 1. To summarize:

• To the best of our knowledge, we are the first to combine second-order training methods
with domain decomposition on PINNs, including scaling to large parameters;

• We adopt AAS to introduce a highly adaptable framework to train the domain decomposition;
• We advance the mathematical foundation of AAS, ensuring robustness of the model.

Our numerical results show outstanding performance on benchmark PDEs, demonstrating a consistent
behavior of the parameter efficiency and global accuracy with respect to the size of the ensemble
model. This also holds for cases such as the Navier-Stokes equations, which involves particular
challenges for DD due to the aforementioned non-local features.

2 Physics-Informed Neural Networks and Domain Decomposition

The PINN architecture leverages the power of neural networks as functional approximators to address
classical PDE solution instances on a bounded domain Ω ⊂ Rdin . Without loss of generality, consider
the problem of finding a function u : Ω → Rdout which satisfies the following equations:

Ru(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(1)

where the underlying PDE is fully defined by the differential operator R, and boundary and initial
conditions are collected in a known function g. PINNs aim to approximate the solution of the
aforementioned PDE through a neural network uθ : Ω → Rdout with L layers, defined as:

u(x; θ) := WL−1 · σ(· · ·σ(W0x+ b0) + · · · ) + bL−1. (2)

where Wi ∈ Rhi×hi−1 and bi ∈ Rhi denote respectively the weights matrix and bias vector of the
i-th hidden layer with dimension hi. For the sake of compactness, θ represents the collection of all
the trainable parameters of the network, i.e. θ = {Wi, bi}L−1

i=0 . The activation function σ : R → R is
a smooth coordinate-wise function, such as the hyperbolic tangent, or the sine function which are
common choices for PINNs. The “Physics-Informed” nature of the neural network uθ lies in the
choice of the loss function chosen for minimization, which is typically given by

L(θ) :=
∫
Ω

|Ru(x; θ)− f(x)|2dx+

∫
∂Ω

|u(x; θ)− g(x)|2dω(x). (3)

In the above formulation, dx and dω represent infinitesimal volume and surface element respectively.
The integrals in (3) are typically approximated as:

L(θ) :=
1

|NΩ|

NΩ∑
i=1

|Ru(xi; θ)− f(xi)|2 +
1

|N∂Ω|

N∂Ω∑
k=1

|u(x̂k; θ)− g(x̂k)|2, (4)

where NΩ represents the number of collocation points {xi}NΩ
i=1 in Ω to minimize the PDE residuals

and N∂Ω the number of points {x̂k}N∂Ω

k=1 used to fit the initial and/or boundary conditions at ∂Ω.
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2.1 Domain Decomposition

The concept of domain decomposition is ubiquitous in the field of numerical solution of PDEs and it
has been seamlessly used in order to tackle the scalability of PINNs. The rationale is to divide the
PDE domain Ω into M — possibly overlapping — subdomains {Ωj}Mj=1, such that

⋃M
j=1 Ωj = Ω.

Each subdomain can be associated with a local solution or, in the case of PINNs, with a local neural
network Uj(x) := U(x, θj) parameterized by a subset of θ denoted by θj . The aforementioned
splitting allows parallelizable training routines, which are beneficial in terms of scalability [31] with
respect to the number of parameters and domain size, and in the effectiveness and accuracy of the
model [10]. Therefore, the overall model uθ is obtained as a combination of the local models:

uθ(x) =

M∑
j=1

λj(x)Uj(x) s.t.
M∑
j=1

λj(x) = 1, λj(x) ≥ 0 ∀j = 1, ...,M, ∀x ∈ Ω. (5)

Here, λ(x) := (λ1(x), . . . , λM (x)) may be interpreted as a vector of weighting factors indicating
which submodel has more impact in the prediction of uθ at x, and is commonly referred to as the
gating function. The latter property of λ is typically enforced to impose a proper partition of unity.

The most popular works on domain decomposition in PINNs [16, 19] also rely on the introduction
of interface conditions to align the prediction of submodels between subdomains. Choosing the
correct interface condition is a nontrivial, domain-dependent task [21]. Typical interface conditions
require to evaluate the difference between each pair of overlapping bases Uj and Ui. While this step
can be computed efficiently through parallelization, interface conditions require an additional loss
component. As the nuanced interplay between loss components is known to introduce unfavorable
complexity in the training of PINNs [20], we advocate for a global optimization step, which can still
be computed efficiently due to the locality of each submodel [23].

3 Adversarial Adaptive Sampling

Adversarial Adaptive Sampling was introduced in [33] as a technique to enhance the training of
PINNs. Its core idea is to sample the collocation points from a probability density p ∈ P(Ω) to
be learned simultaneously with the PINN, following the blueprint of generative adversarial neural
networks. This corresponds to the minimax problem:

min
θ

max
pϕ∈P(Ω)

J (θ, pϕ), with J (θ, pϕ) :=

∫
Ω

|Ru(x; θ)− f(x)|2pϕ(x)dx− βG(pϕ), (6)

where pϕ is a parameterized version of p and G is a regularizing term that prevents the collapse of pϕ
to a Dirac delta. The intuition is that pϕ should emphasize regions where the residuals are difficult
to minimize, while ensuring full coverage of the PDE domain. The founding paper [33] shows
existence of solutions for the minimax problem (6) with G chosen to constrain the Lipschitz constant
of pϕ. Nevertheless, [33] employs in the numerical examples the more practical regularization∫
Ω
|∇pϕ(x)|2dx, for which a convergence proof is not provided. We bridge this gap in Section 3.1.

3.1 Convergence Result

To lay down a sound theoretical framework, we extend the theoretical results in [33] to practical
regularization functionals for the probability distribution p. In particular we complete the rigor-
ous treatment of the regularization term

∫
Ω
|∇p(x)|2dx proposed by [33], as well as an entropic

regularization term motivated by the field of optimal transport [8]:
Theorem 3.1. Assume one of the following settings:

1. G is the Dirichlet energy GD(p) :=
∫
Ω
|∇p(x)|2dx, and infθ ∥(Ruθ − f)2∥2 = 0, or

2. G is the negative entropy GE(p) :=
∫
Ω
p(x) log p(x), and infθ ∥(Ruθ − f)2∥C(Ω) = 0.

Then the optimal value of the minimax problem (6) is 0. In particular, for any sequence {θn}n
converging to the infimum assumed above, there exists a sequence of probability measures {pn}n
(with pn maximizing J (θn, ·) such that

lim
n→∞

J (θn, pn) = 0. (7)
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Moreover, the probability density functions {pn}n converge to the uniform distribution on Ω.

Idea of the proof. The uniform density p̃ = 1/|Ω| constitutes a lower bound for the nested maximiza-
tion step in (6). This fact implies a certain coercivity of the maximization problem, which can be
used to show existence of a maximizer p∗; combining this aspect with a minimizing sequence for the
residuals completes the proof. The detailed proofs can be consulted in Sections A.1 and A.2;

The entropic regularization GE proposed in Theorem 3.1 and the gradient-based loss GD of [33]
share its aim to smooth out p. In addition, the entropic regularization GE features an infinite slope
at the origin that inhibits the probability density from reaching zero anywhere within the domain.
Hence, positivity of pϕ is baked into GE , while it needs to be additionally imposed for GD.
Remark 3.2. As shown by [18, 26], both the gradient flow of the Dirichlet energy with respect to
the L2-topology and the gradient flow of the entropy with respect to the L2-Wasserstein distance
generate the same dynamics: the heat equation. This suggests a compelling interpretation: a gradient
ascent step in (6) may be seen as the application of a heat kernel that smooths out p with respect to
the landscape of the residuals. For more context and implications of this intuition see Section A.3.
Remark 3.3. The novelty of Theorem 3.1 is twofold: on the one hand we extend the convergence
results of [33] to regularization functions that are more practical to implement, since the Lipschitz
constraint considered in [33] is hard to implement in practice. On the other hand we show the
convergence of pn to a uniform distribution along any converging subsequence, which in particular
implies that the sequence of maximizing distributions {pn}n tends to cover the full domain as the
residual of un converges to zero. This result further validates the robustness of our method, ensuring
an adequate generalization to arbitrarily complex PDE domains.

4 Sparse Ensemble of Physics-Informed Neural Networks

A crucial step in the proposed model is the usage of Radial Basis Functions (RBFs) to identify the
domain decomposition. In particular, we opt for quartic basis functions as in Equation 8 – instead of
the more traditional Gaussian RBF – to emphasize locality of the submodels.

λj(x) =
ϕj(x)∑M
l=1 ϕl(x)

where ϕj(x) =


(
1− |x−cj |2

s2j

)2

if |x−cj |
sj

≤ 1

0 elsewhere
(8)

The centers and radii of each ball ϕj are indicated respectively as cj and sj , and identifies the trainable
parameters of the domain decomposition. We adopt the notation Ωj to indicate the compact support
of the basis function ϕj , i.e. the set {x ∈ Ω s.t. ϕj(x) > 0}. The final gating function λj is
obtained by normalizing ϕj with respect to the total sum of RBFs. This ensures a proper partition of
unity while maintaining the sets Ωj compact and small. Ensuring that

∑M
l=1 ϕl(x) > 0 for all x can

be done by choosing sufficiently large {sj}Mj=1 at initialization.

Connecting Domain Decomposition and Adversarial Adaptive Sampling In order to align
the training of the parameters of each ϕj with the training of the PINN parameters, we devise a
connection between the domain decomposition and the sampling distribution pϕ. In particular, we
opt to approximate pϕ through the combination of the basis ϕj as:

pϕ(x) =
1

M

M∑
k=1

wkϕk(x), (9)

where wk is chosen so that wkϕk is a probability distribution. This parametrization of pϕ enforces the
domain decomposition to focus on areas where the PDE residuals are higher, which typically occurs
in regions of the domain where the PDE solution presents steep gradients and/or high frequency
components. Moreover, it implicitly defines a suitable training proceedure for the DD, given by the
gradient ascent step of the minimax training routine.
Definition 4.1 (PINN BALLS). We define PINN BALLS a tuple of the form (uθ, pϕ), where uθ is
the ensemble model defined in (5), with a domain decomposition structure {λj}Mj=1 given by (8), and
pϕ is the probability distribution of the form (9). The loss function is given by discretizing the AAS
loss (6) on a set of points {xϕ

i } sampled from pϕ:
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J(θ, ϕ) :=
1

NΩ

NΩ∑
i=1

|Ru(xϕ
i ; θ)−f(xϕ

i )|
2+

1

N∂Ω

N∂Ω∑
k=1

|u(x̂k)−g(x̂k)|2−
β

NΩ

NΩ∑
i=1

log pϕ(x
ϕ
i ). (10)

Remark 4.2. Ensemble models of the form 5 are universal approximators. This holds trivially as each
submodel is a universal approximator itself.

4.1 Scalable second-order training of the parameters

To train our model we adopt the Levenberg Marquardt update rule, which is a second-order quasi-
Newton method that represents a stabilized version of the Gauss-Newton method [25].

θk+1 = θk − (DθL
TDθL+ ηI)†∇θL(θ

k). (11)

Here DθL denotes the Jacobian of L with respect to the model parameters, and the superscripts k
and † represent respectively the training iteration and the Moore-Penrose pseudo-inverse. The scalar
value η is determined heuristically during training, balancing the interplay between a gradient descent
step and a second-order update. The latter is necessary to efficiently reach a suitable minimum, whilst
the former is useful in practice at early iterations.

The most prominent drawback of this training routine is given by the storage and inversion of the
matrix DθL

TDθL in GPU memory, which is highly impractical as its size scales quadratically with
the number of parameters of the model. A practical solution to this is to ensure that the aforementioned
matrix can be stored in a sparse format, indicating only a linear growth with respect to the number of
parameters. This can be done by leveraging the locality of the submodels of PINN BALLS, since the
effect of each Uj is restricted to the compact support Ωj .

Indeed, the components of DθL are defined as the partial derivatives of uθ with respect to the
parameters θ. Outside of the compact support Ωj , hence where λj and all its derivatives are identically
0, the jacobian components of Uj vanish. This implies that in the aforementioned region it is not
necessary to backpropagate to obtain the partial derivatives necessary to compute the PDE residuals.

DθL =

[
∂θ

∑M
j=1 λjUj

∂θR
[∑M

j=1 λjUj

]] =

[ ∑M
j=1 λj∂θUj

∂θR
[∑M

j=1 λjUj

]] . (12)

On top of sparsity, the PINN BALLS model also enables parallel implementations for the computation
of DθL. Sparse and parallel implementations combined allows to adopt the exact formulation
of the LM update step by computing DθL

TDθL in a fast and memory efficient fashion. The
inversion remain the ultimate challenging aspect, which can be done through sparse solvers. Another
valuable alternative is to consider matrix-free multiplication methods as conjugate gradient, whose
implementation can benefit from the sparse nature of our Jacobian. This class of methods is however
out of the scope of the present paper, since they are often sensitive to poor conditioning of the
underlying matrix, which is often the case when training PINNs. Finding a viable preconditioning
strategy remains thus an interesting direction of future study.

4.2 Min-max Training Routine

The training of the PINN BALLS model follows the alternating descent-ascent approach proposed
for AAS in [33]. For the parameters θ of each submodel we adopt the Levenberg-Marquardt (LM)
update step defined in (11). When the problem is relatively simple – e.g. linear PDEs – one can also
resort to a more efficient approach of alternating a gradient descent step on θ and a second-order fine
tuning of the parameters of the last layer of the model, which is closely connected to the approach of
Extreme Learning Machines [15] and close to that employed in [2].

The training step for the domain decomposition ϕ consists in a gradient ascent step of (10). As
proposed in [33], it is convenient to rewrite (10) using importance sampling:

F (pϕ) :=
1

NΩ

NΩ∑
i=1

|Ru(xϕ
i ; θ)− f(xϕ

i )|
2
pϕ(x

ϕ
i )

pϕ̄(x
ϕ
i )

− β

NΩ

NΩ∑
i=1

pϕ(x
ϕ
i ) log pϕ(x

ϕ
i )

pϕ̄(x
ϕ
i )

. (13)

Here pϕ̄ stands for the current value of pϕ, which is taken to be a constant and therefore does not
enter the computational graph. (13) is evaluated on the same sample points as the θ-update, and the
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boundary points are ignored, since they do not depend on ϕ. The choice of the learning rate for the
parameters of pϕ is important for stabilizing the overall training routine. In particular, we notice that
the LM training shows better performance when pϕ does not strongly vary over training iterations.
However, its fluctuations during training are important to ensure proper convergence of the model.
Hence, we recommend an exponential decay for its learning rate to emphasize variability in early
iterations and favor convergence of the model in late training stages. The complete training pipeline
is summarized in Figure 1.

Figure 1: High-level diagram of the minimax training routine devised for the PINN BALLS model.

5 Numerical Evaluation

We begin by evaluating the behavior of the Levenberg–Marquardt (LM) update step on a simple
supervised problem — approximating the function f(x, y) = sin 4x sin y. For various number of
parameters, we instantiate a standard dense neural network and PINN BALLS architectures with 5,
10, 20, and 50 PINN Balls. The disposition of the centers cj is determined by K-means over the
collocation points, and sj is selected to be the minimum possible to cover all training samples, which
is identified by the standard deviation of each cluster. For each model, we perform a single LM update
and collect statistics on runtime, Jacobian sparsity and memory consumption; results are summarized
in Figure 2. In the case of PINN BALLS, we exploit the sparsity of the Jacobian by constructing it
in Compressed Sparse Row (CSR) format using the scipy.sparse package, solving the resulting
system either in the scipy package [35] via direct dense or sparse solvers depending on the structure.
The statistics shown do not refer to the accuracy of the model nor include the computation of the
matrix DθL

TDθL, respectively discussed in Sections 5.1 and 5.3.

Efficiency of the matrix inversion Although dense solvers generally achieve faster wall-clock times
for moderate problem sizes, models employing a large number of PINN Balls achieve competitive
runtimes. Notably, highly sparse models (50 PINN Balls) present comparable runtimes even in
moderate problem size, which is mainly due to numerical heuristic of sparse matrices: visible
performance improvements are typically noticeable when the nonzero elements of the matrices are
10% or less of the total.

Memory Efficiency From a memory perspective, using a large number of PINN Balls provides
significant gains, which is to be expected due to the sparse nature of the Jacobians. However, the
dense architecture is more memory efficient than the 5-PINN Balls model, whose Jacobian presents
30% of nonzero elements. Indeed, in the sparse formulation the nonzero values are stored alongside
their indices, which results in roughly 3 times the number of nonzero values in the matrix. Notably,
for the simple supervised problem considered, the dense solver reaches an out-of-memory error at
roughly 8000 parameters., while the sparse ones can handle much larger models.

To assess the robustness of these findings, we replicated the experiment across a range of target
functions of varying complexity. Remarkably, the trends observed in Figure 2 persist almost indepen-
dently of the choice of f . While in theory the condition number of DθL could impact the difficulty of
solving the LM update, we observe that the damping effect inherent to the LM formulation sufficiently
regularizes the system, mitigating potential instabilities due to ill-conditioning. Note that PINNs
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Figure 2: Mean value with shaded variance, for different ensemble sizes, of various statistics of
the LM update step on PINN BALLS. From left to right, the runtime in seconds, the percentage of
non-zero elements of DθL, and the CPU memory consumed to invert and store the matrix DθL

TDθL

trained with second-order methods show very strong performance even with few parameters when
compared to larger models trained with first-order methods or LBFGS [4]. Notably, the sparsity
structure of the Jacobian may be altered during training by the DD, due to changes in the basis radii.
However, when preserving high sparsity is critical, the basis radius can be capped or even fixed after
initialization.

5.1 Training on Benchmark PDEs

We now showcase the results obtained by the PINN BALLS model on three well-known test cases
for PINNs: The Helmholtz Equation, Burgers’ Equation and time-dependent, incompressible Navier
Stokes Equations in 2D. We show the relative L2 error achieved during training as the number of
submodels increases, keeping the same architecture for each individual submodel. These results
are collected in Figure 3 and commented below. For the sake of brevity, we gather details of the
PDEs solved and additional results in Appendix B. We do not include comparison with first order
optimization. We refer to [4] for a thorough comparison between first and second order optimization in
general. Combined with the DD settings, tendentially first-order optimization is slower, especially in
a scenario like ours which includes an adversarial minimax formulation. All models are implemented
in JAX [5] using double precision and trained on a single NVIDIA A10 GPU.

Helmholtz Equation The leftmost plot of Figure 3 showcases the training loss achieved on the
Helmholtz equation. Increasing the ensemble size also enhances the fluctuations in the loss function.
This behavior is expected, as increasing the number of basis makes the maximization step in (13)
more accurate. However, the very small relative L2 error achieved shows that the PINN BALLS
model is capable of obtaining extremely accurate solutions. Remarkably, the L2 error with respect to
the ground truth does not present high frequency components, which is a common artifact in PINN
solutions. Moreover, the L2 error in the order of 10−10, which is notably low for a PDE solver in
general. The final distribution of the basis ϕj does not present any noteworthy pattern.

Burgers’ Equation The center plot of Figure 3 showcases the L2 Error achieved during training
on Burgers’ equation. It is possible to notice that strong oscillation in accuracy occurs during early
iterations, which is often due to the higher complexity that can be captured in the maximization step
by pϕ. This behavior proves to be beneficial for the model, as it allow to reach lower L2 errors, up to
the order of 10−4 for a model with 20 PINN Balls.

Navier-Stokes Equations Navier Stokes equations represent a truly challenging scenario for PINNs,
as the traditional implementation fails to converge on the classical benchmark of a fluid flow past
a cylinder in 2D [6]. The behavior of PINN BALLS is shown in the rightmost plot of Figure 3.
Once more, increasing the number of PINN Balls increases the accuracy of the model. This result
is non-trivial for a DD-based approach, due to the strong nonlinearity of Navier Stokes’ equations
and the presence of the pressure, which is a nonlocal quantity. This favorable behavior is due to
the global nature of the LM update, which has the scaling advantages of DD, while keeping the
invaluable benefits of a second-order method, which is crucial for solving nonlinear PDEs with PINNs
[4]. Notably, in our GPU implementation, a global LM update results in an out-of-memory error at
approximately 2000 parameters, which are not sufficient to capture the time-dependency of the whole
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solution. Indeed, capturing phenomena as the vortex shedding in the cylinder wake requires a model
with a consistent number of parameters.
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Figure 3: Median Loss value and minimax range over 10 independent trainings of PINN BALLS with
an increasing number of submodels on Helmholtz (left), Burgers (center) and Navier Stokes’ (right)
equations. Each submodel has 3 hidden layers and 10 neurons per layer.

5.1.1 Behavior of the Domain Decomposition

Hereinafter, we highlight the behavior of the DD under the chosen initialization and optimization
pipeline. Under reasonable conditions, model performance is not highly sensitive to the initial
number or placement of basis functions. However, careful initialization is essential for preserving
the sparsity structure of the Jacobian DθL. Excessively many or poorly placed basis functions can
result in significant computational overhead when constructing the matrix DθL

TDθL. Utilizing a
first-order optimizer for the global update generally yields slow convergence for the majority of the
PDE considered. On the other hand, in case of Navier-Stokes equation, convergence is not achieved
as the predicted pressure oscillates during training and oftentimes diverges.

Furthermore, our initialization procedure yields a probability density function pϕ that is approximately
uniform. In relatively simple or linear scenarios, such as the Helmholtz equation, we observe that
the domain decomposition remains mostly unchanged during training, which aligns with theoretical
convergence expectations. However, in nonlinear settings, such as the Navier-Stokes equations, the
AAS paradigm introduces meaningful deviations from the uniform distribution. These deviations
serve to allocate more submodels in regions with higher solution complexity (e.g., steep gradients) and
can be observed in the results in Appendix B. While theoretical convergence to a uniform distribution
assumes that the residuals vanish entirely — a reasonable but idealized assumption — this is rarely
the case in practice. Consequently, the final distribution does not always converge to uniformity, but
this deviation often enhances the model’s accuracy. We view this discrepancy between theory and
practice as an important and interesting topic that merits deeper exploration in future work.

5.2 Comparison with existing approaches

We compare the performance of PINN BALLS with the XPINN and the APINN through the results
reported in the respective publications. We train PINN BALLS of variable ensemble size that
maintain a comparable number of parameters – roughly 5000 each model –. Comparing with existing
architectures, the results in Table 2 clearly highlight the superiority of our model by a large margin in
the Helmholtz equation. Notably, this is achieved with a lower number of parameters with respect
to the two models highlighted. Regarding Burgers equation, we largely outperform the FBPINN
model as they showcase an error on the order of 10−1. The results obtained by PINN BALLS is
comparable to that of the APINN architecture. However, it is important to mention that the models
used for comparison directly instantiate a DD that divides the domain in x = 0, which is where the
shock locates in the solution of Burgers’ equation, and represents a somewhat optimal division of the
domain – as it captures a discontinuity while maintaining continuous submodel predictions–. Our
model, on the other hand, learns the decomposition autonomously. Opposed to the results observed in
Figure 3, larger ensembles do not necessarily outperform smaller ones for a fixed parameter count. In
practice, it is important that each submodel mantains a reasonable number of parameters to capture
the behavior of the target PDE solution in the related subdomain.
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Table 2: Comparison of the relative L2 Error achieved by PINN BALLS, XPINN and APINN models
on Helmholtz and Burgers Equation, for a comparable number of total parameters.

Model Rel. L2 (Burger) Rel. L2 (Helm.)

XPINN 1.3e−1± 7.2e−3 1.2e−3± 1.7e−4
APINN 9.1e−4± 3.6e−4 1.2e−3± 4.7e−4
PINN BALLS (5) 2.3e−4± 3.3e−4 2.8e−9± 1.8e−9
PINN BALLS (20) 1.7e−3± 2.0e−3 1.3e−9± 1.4e−9

5.3 Limitations

While PINN BALLS offer a memory-efficient alternative for second-order training of PINNs, they also
present some limitations. Efficiently computing of the Jacobian matrix remains challenging. While
sparsity accelerates matrix operations at larger scales, the overhead of assemblying and managing the
sparse Jacobian becomes non-negligible at moderate problem size. Therefore, it is crucial to restrict
the application of PINN BALLS to cases where the usage of a large number of model parameters is
a strict requirement. Furthermore, to the best of our knowledge, existing automatic-differentiation
packages do not support backpropagation through sparse matrices. Indeed, the applicability to large
industrial use cases assumes the availability of efficient sparse solvers, which although mature, are
still generally less optimized for GPU than dense linear algebra routines.

Another limitation lies in the optimization dynamics. Although the sparse structure of the Jacobian
improves memory efficiency, it can lead to slow convergence if the individual experts do not have
enough parameters or are poorly initialized. In our experiment, we noticed that the training dynamics
of the DD strongly depends on the initialization. While this may be attributed to the imbalanced
training – first order for the DD and second-order for the PINN BALLS –, properly adapting the DD
to highly complex domains can be crucial in various applications since each PINN Ball is responsible
for a narrow portion of the input space. We noticed that the quality of the LM optimizer largely
bypasses these issues in the DD training. However, further analysis is required to match the quality
of the training step of the DD to the effectiveness of the LM step for the PINN BALLS’ submodels.

6 Conclusion

This paper introduced PINN BALLS, an efficient, scalable, second-order MoE for solving challenging
PDEs in general domains. We achieve favorable scaling properties in the number of parameters using
DD to construct an ensemble of local models. These models are effectively trained using second-order
methods, while the DD partition is updated employing AAS, a framework for which we establish
novel existence and stability theoretical results. PINN BALLS achieves state-of-the-art performance
on challenging PINN benchmarks, showing an improved model accuracy as the number of submodels
increases, and effectively addressing the memory requirements of the second-order methods without
compromising their efficiency. We show that combining several submodels is an effective strategy
to achieve high accuracies when facing model size constraints, either due to hardware or memory
limitations. Our results hint at a trade-off between the number of submodels and their individual
capacity, motivating future research into the dynamical scaling of the number of experts.

Incorporating established PINN enhancements, such as Random Fourier Features [29], Temporal
Causality [36], and Curriculum Training [20], could further boost the expressiveness and efficiency
of the model, particularly given their strong synergy with second-order training methods [4]. Another
critical extension involves exploring anisotropic domain decomposition strategies and alternative
energy penalization schemes, both of which are crucial for high-fidelity fluid dynamics simulations
[30]. Finally, performing the AAS ascent update with respect to the Wasserstein distance may result
in smoother updates [18, 12], improving the convergence of the DD partition scheme in complex
PDE scenarios.

Impact Statement The model represented enables second-order training of PINN-styled architec-
tures. Moreover, the theoretical backbone ensures a uniform coverage of the PDE domain through a
fully learnable domain decomposition. This model represents a step towards enabling PINNs as valu-
able alternative to traditional PDE solution methods, and their inclusion into industrial applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper reserves a specific section to discuss limitation of the model
proposed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: All the theoretical results are accompanied with solid proofs which are included
in the appendix, for the sake of brevity, and sketched in the manuscript, in order to provide
an intuition to the reader. The assumptions made for each proof are also fully included (at
times in the appendix).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The technical details used for all the experimental results are fully disclosed
throughout the paper. Moreover, the paper does often rely on existing algorithms and
methods which are properly referenced. Furthermore, the majority of the methods referenced
are also available in common Python packages.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Making the code public is currently in discussion with the partner institutions.
Due to legal reasons, it might not be possible to have it released as open source. However,
we make the code available per request to the corresponding author.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of the training and testing proceedures of all the experimental results
obtained in the paper are provided in the paper and thoroughly discussed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the tests which include variability (such as initialization of the networks)
are obtained for several runs, and are showcased alongside the variability obtained during
training.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experimental set up used to obtain the numerical results provided in the
paper is fully described.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The paper includes an impact statement

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The methods and models discussed in the paper do not pose such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new specific asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extension of the Adversarial Adaptive Scheme

For simplicity in this Section we will assume without loss of generality that Ω ⊂ Rdin is a compact
set with volume |Ω| = 1 and a regular boundary. We also define r(u(x)) := Ru(x)− f(x), and will
ignore the boundary conditions for simplicity.

A.1 Gradient penalization

We consider the problem of this paper in an abstract form: let U be a space of functions Ω → Rdout ,
and let V be the space of probability densities with weak gradient in L2, i.e. V = P(Ω) ∩H1(Ω),
where we identify an absolutely continuous probability measure with its density. Consider the
minimax problem

min
u∈U

max
p∈V

J (u, p), with J (u, p) :=

∫
Ω

r(u(x))2p(x)dx− β

∫
Ω

|∇p(x)|2dx. (14)

Remark A.1. Since we want to consider the case where the optimal solution of (4) can be approximated
by functions in U , it is natural to assume that the infimum of the residuals is zero. Moreover, so that
the integration against the L2 function p in (14) is meaningful, we will assume that this infimum is
meant in the L2 sense. This assumption is weaker than that in the original paper [33], which assumed
r to be a surjection from U to C∞

c (Ω); in the latter case a sequence {un}n can be easily constructed
whose residuals converge to 0 even uniformly.

Theorem A.2. Assume that infu∈U ∥r2(u)∥2 = 0. Then the optimal value of the minimax problem
(6) is 0. In particular, for any sequence {un}n minimizing ∥r2(u)∥2 there exists a corresponding
sequence of probability density functions {pn}n, each maximizing J (un, ·), such that

lim
n→∞

J (un, pn) = 0. (15)

Moreover, the probability density functions {pn}n converge strongly in H1(Ω) to the uniform distri-
bution on Ω.

Remark A.3. Theorem A.2 improves upon previous results in at least two aspects. First, it shows
convergence to solutions of the minimax problem using the H1 regularization, which is much more
widespread and practical than the Lipschitz regularization considered in the theory of [33]. Moreover,
we show that the sequence of marginally optimal probability distributions {pn}n converge to the
uniform distribution. This is a general fact, not depending on the specific minimizing sequence {un}n,
and rules out a concentration of pn on regions with a higher residual as the total error converges to
zero.

Proof of Theorem A.2. To begin with, note that for a given u ∈ U , a natural lower bound for
maxp J (u, p) is given by choosing the uniform density p̃(x) ≡ 1, this is:

max
p∈V

J (u, p) ≥ J (u, p̃) =

∫
Ω

r2(un(x))p̃(x)dx− β

∫
Ω

|∇p̃(x)|2dx =

∫
Ω

r2(un(x))dx. (16)

This shows that (14) must be non-negative. Let now (un)n be a minimizing sequence for ∥r2(u)∥2.
Fix momentarily a given n; we will first show that there exists an optimizer for the maximization
problem maxp∈V J (u, p). Let p ∈ V be a candidate with a higher or equal score than the uniform
density p̃; then, by (16) we must have:∫

Ω

r2(un(x))dx ≤
∫
Ω

r2(un(x))p(x)dx− β

∫
Ω

|∇p(x)|2dx

β

∫
Ω

|∇p(x)|2dx ≤
∫
Ω

r2(un(x)) (p(x)− 1) dx ≤ ∥p− 1∥2∥r2(un)∥2

≤ C∥∇p∥2∥r2(un)∥2,

where C is the constant of Poincaré’s inequality [11] (since p is a probability measure, and Ω has unit
volume, the average value of p is 1; also note that Ω has a regular boundary by assumption). Dividing
by the norm of ∇p then yields:

β∥∇p∥2 ≤ C∥r2(un)∥2, (17)
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and using the Poincaré’s inequality once again on the left-hand side results in an estimate for the
deviation of p with respect to the uniform density:

1
C ∥p− 1∥2 ≤ ∥∇p∥2 ≤ C

β ∥r
2(un)∥2. (18)

We have shown an H1 bound for any probability density that has a higher score than the uniform
density p̃ by J (un, ·). Consequently, the superlevel sets of J (un, ·) are compact for the H1(Ω)
weak convergence, so given a maximizing sequence {pkn}k there exists a (weak) cluster point pn,
which must be a maximizer for J (un, ·) due to the upper-semicontinuity of J (un, ·):

sup
p∈V

J (un, p) = lim sup
k→∞

J (un, p
k
n) ≤ J (un, pn) ≤ sup

p∈V
J (un, p). (19)

Finally, since pn satisfies (18), it holds:

1
C ∥pn − 1∥2 ≤ ∥∇pn∥2 ≤ C

β ∥r
2(un)∥2. (20)

Since r2(un) converges to zero in L2, we obtain both strong L2 convergence of pn to the uniform
distribution p̃ ≡ 1/|Ω| and strong L2 convergence of the gradient ∇pn to zero as n → ∞. Combining
the convergence behavior of {r2(un)}n and {pn}n yields (15).

A.2 Entropy penalization

Although intuitive, the gradient penalization term in (14) assumes that the probability density has
a gradient, which may exclude some interesting cases. Besides, there is no mechanism preventing
p to reach zero, which could imply that the residuals in some regions may not be accounted for
at all. Inspired by the field of optimal transport, and in particular Wasserstein gradient flows (see
Section A.3 for a discussion), we propose an alternative penalization term that solves these issues.
We consider:

min
u∈U

max
p∈P(Ω)

J (u, p), with J (u, p) :=

∫
Ω

r(u(x))2p(x)dx− β

∫
Ω

p(x) log p(x)dx. (21)

An interesting observation is that in this case the optimizer of the nested maximization step can be
given in closed form, given by Lemma A.4. This is an elementary result; we however gather the proof
in Section A.4 for completeness.

Lemma A.4. Assume r(u(x))2 ∈ C(Ω). Then the optimizer of the problem

min
p∈P(Ω)

β

∫
Ω

p(x) log p(x)dx−
∫
Ω

r(u(x))2p(x)dx. (22)

is given by
p∗(x) := C exp

(
r(u(x))2/β

)
, (23)

with C := (
∫
Ω
exp

(
r(u(x))2/β

)
)−1 a normalization constant ensuring p∗ has unit mass.

Note that an assumption on the regularity of r2(u(x)) is necessary in order to obtain existence of
optimizers, though a tighter assumption may in principle be used (e.g. upper lower-semicontinuity
and boundedness).

As in the previous Section, we will need to assume certain regularity of the residuals. Since in
this case the regularization term only requires p to be a probability distribution (which is a rather
weak assumption), we need a stronger setting for r2(u). In this case, the appropriate assumption is
that infu ∥r2(u)∥C(Ω) = 0, this is, along at least some sequence, the residuals are continuous and
converge uniformly to zero. Again, this assumption is weaker than the assumptions in [33], since the
latter implies the existence of some u∗ such that r2(u∗) ≡ 0.
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Theorem A.5. Assume that infu∈U ∥r2(u)∥C(Ω) = 0. Then the optimal value of the minimax
problem (21) is 0. In particular, for any sequence {un}n minimizing ∥r2(u)∥C(Ω) there exists a
corresponding sequence of probability density functions {pn}n, each maximizing J (un, ·), such that

lim
n→∞

J (un, pn) = 0. (24)

Moreover, the probability density functions {pn}n are everywhere positive and converge uniformly to
the uniform distribution on Ω.

Proof. First note that, as in the proof of Theorem A.2, a natural lower bound for maxp J (u, p) is
given by choosing the uniform density p̃(x) ≡ 1. Therefore the optimum of (21) must be non-
negative.

Now consider {un}n a minimizing sequence for ∥r2(u)∥C(Ω). Under the assumptions of the theorem,
by Lemma A.4 each un is associated with the optimal probability distribution given by (23), that we
denote by pn (with a corresponding normalization constant Cn = 1/

∫
Ω
exp(r2(un(x))/β)). Then

the minimax problem becomes:

max
p∈P(Ω)

J (un, p) =

∫
Ω

pn(x)[r
2(un(x))− β log pn(x)]dx

=

∫
Ω

pn(x)[r
2(un(x))− β logCn − r2(un(x))]dx = −β logCn, (25)

where we used that pn has unit mass. Finally let us bound (25): noting that 1 ≤ exp(r2(un(x))/β) ≤
exp(∥r2(un)∥∞/β),

1 =

∫
Ω

1dx ≤

1/Cn︷ ︸︸ ︷∫
Ω

exp(r2(un(x))/β) dx ≤
∫
Ω

exp(∥r2(un)∥∞/β)dx = exp(∥r2(un)∥∞/β),

which after taking the logarithm becomes:

0 ≤ − logCn ≤ ∥r2(un)∥∞
β

. (26)

Plugging this bound into (25) and using that ∥r2(un)∥∞ → 0 concludes that the minimax optimal
value (21) is zero. The associated Cn converges to 1, since r2(un) converges uniformly to zero, and
therefore pn converges likewise uniformly to the uniform density.

A.3 Relation to Wasserstein gradient flows

The theory of gradient flows deals with the generalization of curves of steepest descent of the form

ẋ = −∇F (x) (27)

to general metric spaces, where neither the left-hand side nor the right-hand side may be well defined.
This framework has proven to be extremely fruitful in the field of PDEs, since the founding work of
Jordan, Kinderlehrer and Otto [18, 26] showed that many PDEs of interest can be described as curves
of steepest descent with respect to certain functionals the space of probability measures endowed
with the Wasserstein distance (see e.g. [34, 1] for an overview).

To allow for a general formulation in this abstract framework, it is customary to employ the formalism
of minimizing movements. This is, for a metric space (M,d), a functional F : M 7→ R ∪ {+∞}, an
initial condition x0 ∈ M and a time step τ one considers the discrete trajectory generated by:

x0
τ = x0, xk

τ ∈ arg min
x∈M

1

2τ
d(x, xk−1

τ )2 + F (x), k = 1, 2, ... (28)

When (M,d) is a finite-dimensional Euclidean space, (28) can be shown to reduce to an implicit Euler
scheme approximating (27). But the benefit of this general framework stems from its application to
functional or measure spaces, as well as its ability to handle non-smooth functionals. Then, under
suitable assumptions on F , M and d, the discrete trajectories can be shown to converge to a limit
trajectory, which can then be characterized with tools from the theory of partial differential equations.
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In relation to the matter of this paper, we have considered two regularization terms: the Dirichlet
energy GD(p) =

∫
Ω
|∇p|2dx and the entropy GE(p) =

∫
Ω
p(x) log p(x)dx. The gradient flow of

the Dirichlet energy with respect to the L2(Ω) topology yields the heat equation [18]. The heat
equation tends to homogenize a given initial condition, which is a desired property in the minimax
scheme we studied. Interestingly, the heat equation can be also obtained as the gradient flow of the
entropy GE , in this case on the space of probability measures P(Ω) endowed with the L2-Wasserstein
distance [18]. Subsequently, we can expect both functionals to perform similarly in a gradient-descent
framework, as long as gradients are computed with respect to the right metric (this is, L2 for GD

and L2-Wasserstein for GE). It remains somewhat surprising that in our numerical experiments the
entropy seems to be better behaved even using the importance sampling update rule (13), which has
an L2 flavour. We consider this further proof of the robustness of the method, and plan to investigate
purely Wasserstein updates for the probability mesaure p in future work.

A.4 Additional proofs

Proof of Lemma A.4. For simplicity let us define E(p) := β
∫
Ω
p(x) log p(x) − r2(u(x))p(x). A

minimizer p∗ exists by sheer lower-semicontinuity of E and compactness of P(Ω) with respect to
the weak* topology. Moreover, any minimizer must have a positive density; otherwise the objective
value would be infinite, since the uniform density is a feasible candidate with a finite objective. This
means that by slight abuse of notation we can use p∗ also to refer to its density.

Let θ be an arbitrary function in L∞(Ω, p∗) satistying
∫
Ω
θp∗ = 0, and consider the perturbation of

p∗ given by pε := (1 + εθ)p∗. It follows that for small ε, pε remains in P(Ω). Let us compute how
E(p∗) changes under a perturbation:

0 ≤ E(pε)− E(p∗)
ε

= β

∫
Ω

pε(x) log pε(x)− p∗(x) log p∗(x)

ε
dx−

∫
Ω

r2(u(x))θ(x)p∗(x)dx,

which, using the monotonicity of the function s 7→ s log(s), by dominated convergence yields in the
limit ε → 0:

0 ≤
∫
Ω

θ(x)p∗(x)[β log p∗(x)− r2(u(x))]. (29)

Since (29) must hold also by replacing θ by −θ, the inequality turns into an equality. Moreover, since
θp∗ is an arbitrary zero-mean L∞ function, the expression between brackets must be constant. All in
all, parametrizing this constant offset by β logC, with C > 0, yields:

β log p∗(x)− r2(u(x)) = β logC ⇒ p∗ = C exp(r2(u(x))/β). (30)

Thus we identify C as a normalization constant enforcing that p∗ is a probability distribution, i.e.

C =

(∫
Ω

exp(r2(u(x))/β)

)−1

.

The boundedness of r2(u) guarantees that C is finite, and that p∗ is bounded away from zero, while
focusing the attention on the regions with a larger residual. Whenever the residual is uniform, p∗ will
become uniform as well.

B Details of the PDEs

B.1 Helmholtz Equation

The Helmholtz equation is a diffusive-reactive second-order equation similar to the wave equation.
Although linear, the Helmholtz equation represents a challenging PDE instance for PINNs due
to the high-frequency components included in its solution. In our paper, we choose to solve the
bidimensional formulation, which is highlighted in Equation (31) in the domain Ω = [0, 1]2

∆u+ kxkyu = f, x, y ∈ Ω

u(x, y) = 0, x, y ∈ ∂Ω
(31)

with f(x, y) = −kxky sin (kxx) sin (kyy). For our test case we choose kx = 4 and ky = 1,
analogous to that presented in [14] for comparability. Each submodel consists of as little as 2 hidden
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layers with 10 neurons each. Training is performed with Nr = 104 collocation points for training the
PDE residuals, initially sampled with latin hypercube sampling, and Nb = 3 · 103 points for training
the boundary and initial condition in ∂Ω. We train PINN BALLS with 2 hidden layers and 10 neurons
per layer for 2000 iterations, each iterations consists on a single LM step on θ and 20 Adam iterations
on pϕ. Figure 4 showcases the result of the best performing model on Helmholtz equation, alongside
the learnt DD.

Figure 4: Prediction with learnt center and radii of the PINN Balls (left); correct solution (center);
and L2 Error achieved by our best performing model on Helmholtz equation.

B.2 Burgers’ Equation

Burgers’ equation is a 1D version of Navier-Stokes equations without pressure. Its solution at high
times present a discontinuity, which makes it challenging for spectrally biased architectures. The
specific instance chosen in our numerics for Burgers’ equation is the same as in [27]. In particular, we
refer to the exact same data provided by the authors. In particular, given (x, τ) ∈ Ω = [−1, 1]× [0, 1],
we solve for u : Ω → R the following equation:

∂τu+ u∂xu− ν∂2
xu = 0, (x, τ) ∈ Ω,

u(x, 0) = − sin(πx), x ∈ [−1, 1],

u(−1, τ) = u(1, τ) = 0, τ ∈ [0, 1],

(32)

with the diffusivity ν being equal to 0.01
π for this specific instance. The correct solution is provided

publicly by the authors of [27]. Training is performed with Nr = 104 collocation points for training
the PDE residuals, initially sampled with latin hypercube sampling, and Nb = 3 · 103 points for
training the boundary and initial condition in ∂Ω. We train PINN BALLS with 3 hidden layers and 10
neurons per layer for 2000 iterations, each iterations consists on a single LM step on θ and 20 Adam
iterations on pϕ. Figure 5 showcases the result of the best performing model on Burgers’ equation,
alongside the learnt DD.

B.3 Navier-Stokes Equation

The last and most crucial PDE instance considered is given by the incompressible Navier-Stokes
equations. In particular, solve the fluid flow past a 2D cilinder presented in [17]. We consider the same
instance proposed in the aforementioned paper, given by (x, y, t) ∈ Ω = [−2.5, 7.5]× [−2.5, 2.5]×
[0, 16] with the goal of finding u⃗ : Ω → R3, defined as u⃗(x, y, t) = [u(x, y, t), v(x, y, t), p(x, y, t)]T .
In this formulation u and v represents respectively the horizontal and vertical components of the fluid
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Figure 5: Prediction with learnt center and radii of the PINN Balls (left); correct solution (center);
and L2 Error achieved by our best performing model on Burgers’ equation.

velocity; and p the pressure. Navier-Stokes equations are expressed in vectorized form as follows:

∂tu+ u∂xu+ v∂yu− 1

Re

(
∂2
xu+ ∂2

yu
)
+ ∂xp = 0, (x, y, t) ∈ Ω,

∂tv + u∂xv + v∂yv −
1

Re

(
∂2
xv + ∂2

yv
)
+ ∂yp = 0, (x, y, t) ∈ Ω,

∂xu+ ∂yv = 0, (x, y, t) ∈ Ω,

u(x, y, 0) = gu0
(x, y), (x, y) ∈ [−2.5, 7.5]× [−2.5, 2.5],

v(x, y, 0) = gv0(x, y), (x, y) ∈ [−2.5, 7.5]× [−2.5, 2.5],

u(2.5, y, t) = 1, (y, t) ∈ [−2.5, 2.5]× [0, 16],

v(2.5, y, t) = 0, (y, t) ∈ [−2.5, 2.5]× [0, 16],

(33)

where Re is the Reynolds’ number, which is an adimensional quantity defined by the problem and is
set to 100 for our case. The initial conditions (gu0 , gv0) can be found in the repository of [27], as well
as an high fidelity solution which is used as ground truth. At x = −2.5 the fluid velocity at the inlet is
imposed. Further conditions are given by the presence of a cylinder centered in (x, y) = (0, 0) with
radius 0.25. Furthermore, an additional condition appears at the borders, namely where y = ±2.5,
where the no-slip condition can be chosen (u = v = 0) or the correct solution can be given as
boundary condition. Since the simulation provided in [27] refers to a free-flow stream, we use the
correct solution at the boundaries.

To train our PINNs, we use Nr = 5 · 105 collocation points for training the PDE residuals, sampled
with latin hypercube sampling, and Nb = 2 · 104 points for training the boundary and initial condition
in ∂Ω. Morever, at every iteration, we minimize the loss on random batches of the training data,
respectively 104 points for the residuals and 5 · 103 for boundary and initial condition. Figure 6
showcases the result of the best performing model on Navier-Stokes’ equations, alongside the learnt
DD. Notice that we do not normalize the pressure predicted by the model, but we do compute the
absolute error by comparing the normalized pressures.
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Figure 6: Prediction with learnt center and radii of the PINN Balls (left); correct solution (center);
and Absolute Error achieved by our best performing model on Navier Stokes’ equations. The top row
refers to the horizontal velocity u, the central row to the vertical velocity v, and the bottom row to the
pressure p.
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