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Abstract

To address the hallucination challenge in zero-001
shot LLMs without extensive task-specific002
prompt engineering, we introduce a lightweight003
Question-Attended Span Extraction (QASE)004
module during the fine-tuning of LLMs. Our005
experiments demonstrate that QASE empowers006
smaller models to outperform SOTA LLMs on007
reading comprehension tasks, notably achiev-008
ing up to a 32.6% improvement over GPT-4’s009
F1 score on SQuAD, all without increasing010
computational costs.1011

1 Introduction012

The rapid progress of large language models013

(LLMs) like GPT-4 (OpenAI, 2023), Llama 2 (Tou-014

vron et al., 2023), and PaLM 2 (Anil et al., 2023)015

has garnered much attention. Yet these powerful016

models face the challenge of hallucination (Ji et al.,017

2023; Bang et al., 2023), where incorrect or fab-018

ricated information is generated. Techniques like019

prompt engineering can mitigate this to some ex-020

tent, but more work is needed for broader appli-021

cability (White et al., 2023). Fine-tuning these022

models for downstream tasks is costly due to their023

size, although efforts like Alpaca-LoRA (Hu et al.,024

2021) attempt to reduce computational costs.025

In this paper, we address hallucination in026

pre-trained LLMs (PLMs) using a lightweight027

Question-Attended Span Extraction (QASE) mod-028

ule. We conduct experiments on reading compre-029

hension datasets to evaluate its effectiveness in en-030

hancing LLMs to generate context-grounded an-031

swers. Our contributions include:032

1. Developing QASE, a lightweight module, en-033

abling smaller models to outperform SOTA034

LLMs on MRC tasks, notably surpassing GPT-035

4 on SQuAD by up to 32.6% on F1 score.036

1Our code is available at this anonymous repo link.

2. QASE boosts performance without increasing 037

computational costs, aiding researchers with 038

limited resources. 039

2 Related Work 040

Machine Reading Comprehension (MRC) is 041

a notable challenge in NLP. In recent years, 042

many MRC benchmark datasets have been cre- 043

ated, including typical question/answer corpora 044

like SQuAD (Rajpurkar et al., 2016), and more 045

complex question/multi-span answer corpora such 046

as Quoref (Dasigi et al., 2019) and MultiSpanQA 047

(Li et al., 2022). 048

Most current studies approach the MRC task 049

by predicting the start and end positions of the 050

answer spans from a given context (Ohsugi et al., 051

2019; Lan et al., 2019; Bachina et al., 2021). To 052

handle the multi-span setting, some studies frame 053

the problem as a sequence tagging task (Hu et al., 054

2019; Segal et al., 2020), while others explore ways 055

to combine models with different tasks (Lee et al., 056

2023; Zhang et al., 2023). 057

Work most similar to ours focuses on using the 058

power of generative-based language models (Yang 059

et al., 2020; Li et al., 2021; Su et al., 2022). How- 060

ever, there is little research on using the emerging 061

abilities of LLMs for MRC tasks. 062

3 Method 063

3.1 Question-Attended Span Extraction 064

To address the hallucination problem in genera- 065

tive models, we incorporate our question-attended 066

span extraction mechanism, QASE, during the fine- 067

tuning of the models. This mechanism ensures 068

that generated answers are grounded in the origi- 069

nal provided context. We cast span extraction as a 070

sequence tagging problem and employ the Inside- 071

Outside (IO) tagging schema, where each token in 072

the sequence is tagged as ’inside’ (I) if it is part of 073

a relevant span, or ’outside’ (O) if it is not. This 074
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schema generalizes well to both single- and multi-075

span extraction settings, achieving comparable or076

even better performance than the well-known BIO077

tagging format (Huang et al., 2015), as shown by078

Segal et al. (2020).079

Figure 1: Overview of Our Model

The overall architecture of our proposed model080

is shown in Figure 1. Given input context C and081

question Q, we first concatenate these together082

with a separator for delineation and then feed them083

into the generative language model. The hidden084

states from the language model are then passed085

through projection layers to produce embeddings086

zi = ReLU(Wprojvi + bproj), where hi ∈ Rd is087

the output hidden state of the language model for088

the ith token.089

To learn representations of each context token090

based on specific questions, we employ a multi-091

head attention mechanism (MHA). Each head in092

MHA attends to different aspects of the context093

in relation to the question, utilizing question em-094

beddings as the query and context embeddings as095

the key and the value. This mechanism enhances096

the model’s understanding and response generation097

by grounding the context token representations in098

the specifics of the queried question. The projected099

embeddings zi of the ith are passed through the100

multi-head attention component, and subsequently101

channeled through a linear layer and a softmax102

layer to compute the probability:103

pi = softmax(Wlin ·MHA(zi) + blin) (1)104

which denotes the probability of the ith token being105

inside the answer spans. We then compute the106

sequence tagging loss using the cross entropy loss: 107

LQASE = − 1

N

N∑
i=1

1∑
j=0

yijlog(pij) (2) 108

where j ∈ 0, 1 corresponds to class O and class I, 109

and yij is a binary value indicating whether the ith 110

token belongs to class j. 111

3.2 Joint MLM Fine-Tuning 112

We fine-tune PLMs using multi-task learning, train- 113

ing concurrently on both the masked language 114

modeling loss and sequence tagging loss: L = 115

LMLM + βLQASE , where β is a hyper-parameter 116

that controls the weight of the span extraction task. 117

This approach refines the PLMs to become adept 118

at generating answers that are grounded in the orig- 119

inal context, effectively targeting the hallucination 120

issue which has been common in recent LLMs. 121

4 Experiments 122

4.1 Datasets and Metrics 123

Given our objective of generating context- 124

grounded answers, we utilize the following three 125

datasets. 126

MultiSpanQA (Li et al., 2022): This read- 127

ing comprehension dataset consists of over 6.5k 128

question-answer pairs. Unlike most existing single- 129

span answer MRC datasets, MultiSpanQA focuses 130

on multi-span answers. 131

SQuAD (Rajpurkar et al., 2016): A bench- 132

mark reading comprehension dataset consisting of 133

100K+ questions with single-span answers. We use 134

SQuAD v1.1. Since the official evaluation on v1.1 135

has long been terminated, we report our results on 136

the official v1.1 development set. 137

Quoref (Dasigi et al., 2019): A benchmark read- 138

ing comprehension dataset containing more than 139

24K questions, with the majority of answers being 140

single-span, and approximately 10% being multi- 141

span. 142

For MultiSpanQA, we employ the exact match 143

(EM) and partial match (Overlap) F1 scores as met- 144

rics, following the conventions of its official leader- 145

board. For SQuAD and Quoref, we use the exact 146

match percentage and macro-averaged F1 score as 147

metrics. 148

4.2 Experimental Setup 149

To evaluate the effectiveness of our QASE compo- 150

nent independent of any specific language model, 151
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we experiment with multiple open-source LLMs.152

These include both decoder-only LLMs, such as153

Llama 2 (Touvron et al., 2023) and Alpaca (Taori154

et al., 2023), and an encoder-decoder model, Flan-155

T5 (Chung et al., 2022).156

For Llama 2, we fine-tune the pre-trained 7B ver-157

sion using LoRA (Hu et al., 2021) and instruction-158

tuning. During fine-tuning, both with and without159

QASE, we incorporate instructions into the prompt160

to explicitly instruct the model to generate answers161

"with exact phrases from the context and avoid ex-162

planations." The same setup is used for fine-tuning163

the pre-trained Alpaca model. For the family of164

Flan-T5 models, we fine-tune the small, the base,165

and the large versions. The number of trainable166

parameters for each model is provided in Table 1.167

Trainable Params
Llama 2/Alpaca LoRA 4,194,304
Flan-T5-Small 76,961,152
Flan-T5-Base 247,577,856
Flan-T5-Large 783,094,784
QASE 1,314,306 ∼ 3,149,314

Table 1: Trainable parameters of experimented models.

We train all our models on single GPUs, using168

a batch size of 2-4 depending on the VRAM of169

the respective GPUs. We use four types of GPUs:170

A40, A10, A5500, and A100. Notably, the Flan-171

T5-Large model can only be accommodated on the172

A100 GPU due to its demanding resources. Models173

are trained for 3 epochs or until convergence.174

4.3 Model Comparisons175

We compare the zero-shot performance of vari-176

ous PLMs to that of their corresponding versions177

fine-tuned with our proposed QASE component.178

The results, presented in Table 6 in Appendix A.2,179

show that fine-tuning with QASE improves perfor-180

mance across all datasets. Specifically, on the Mul-181

tiSpanQA dataset, models using QASE perform up182

to 124.4 times better in exact match and 3.4 times183

better in F1 score compared to the original models.184

On the SQuAD dataset, the exact match improves185

by up to 5.6 times, and F1 score by up to 3.0 times.186

Similarly, on the Quoref dataset, the exact match187

improves by up to 38.4 times, and F1 score by up188

to 11.2 times with QASE.189

We further compare our best performing model,190

Flan-T5-LargeQASE , with SOTA models, along-191

side zero-shot GPT-3.5 and GPT-4. GPT-3.5 is the192

most capable and cost-effective model in the Ope-193

nAI GPT family, and GPT-4 exhibits even more194

advanced reasoning capabilities (Liu et al., 2023b). 195

Research suggests that both outperform the tradi- 196

tional fine-tuning method on most logical reasoning 197

benchmarks (Liu et al., 2023a). 198

On MultiSpanQA, we compare Flan-T5- 199

LargeQASE with GPT variants and models on the 200

official MultiSpanQA leaderboard, as referred to in 201

Appendix A.1. Figure 2 and Table 2 show that Flan- 202

T5-LargeQASE outperforms LIQUID (Lee et al., 203

2023), which currently ranks #1 on the leaderboard, 204

with respect to the overlap F1 score. Moreover, it 205

surpasses GPT-4 by 4.5% on the exact match F1 206

and 1.5% on the overlap F1. 207

Figure 2: Performance of zero-shot PLMs, GPTs, SOTA,
and QASE fine-tuned PLMs on MultiSpanQA test set.

EM F1 Overlap F1 ↑
Flan-T5-Large 13.907 51.501
Flan-T5-BaseQASE 64.874 81.498
GPT-3.5 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) 73.130 83.360
Flan-T5-LargeQASE 66.918 84.221

Table 2: Performance comparison between baselines
and Flan-T5-LargeQASE on the MultiSpanQA test set.

For SQuAD, we compare Flan-T5-LargeQASE 208

with GPT variants and models on the official 209

SQuAD v1.1 leaderboard, as referred to in Ap- 210

pendix A.1. Figure 3 and Table 3 show that Flan- 211

T5-LargeQASE surpasses human performance, 212

equaling the performance of the NLNet model 213

from Microsoft Research Asia and the original pre- 214

trained BERT-Large from Google (Devlin et al., 215

2019), which are ranked #11 and #13 on the v1.1 216

leaderboard respectively. Additionally, it surpasses 217

GPT-4 by 113.8% on the exact match score and 218

32.6% on F1. 219

For Quoref, we compare Flan-T5-LargeQASE 220

with GPT variants and models on the official 221

Quoref leaderboard, as referred to in Appendix 222

A.1. As shown in Figure 4 and Table 4, Flan-T5- 223

LargeQASE is comparable to CorefRoberta-Large 224

(Ye et al., 2020), which ranks #9 on the leaderboard, 225
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Figure 3: Performance of zero-shot PLMs, GPTs, SOTA,
and QASE fine-tuned PLMs on SQuAD test set.

EM F1 ↑
Flan-T5-Large 16.149 37.691
GPT-3.5 36.944 65.637
GPT-4 39.347 69.158
Flan-T5-BaseQASE 82.204 90.240
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) 84.328 91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-LargeQASE 84.125 91.701

Table 3: Performance comparison between baselines
and Flan-T5-LargeQASE on the SQuAD dev set.

with a 0.5% higher exact match. Furthermore, it226

outperforms GPT-4 by 11.9% on the exact match227

and 4.8% on F1.228

These results show that, by employing QASE,229

generative-based PLMs can be fine-tuned to pro-230

duce high-quality, context-grounded answers in231

reading comprehension tasks. This fine-tuning232

mechanism enables them to match the performance233

of SOTA models, which are typically optimized234

for span boundary detection or sequence tagging235

objectives, especially in the multi-span setting.236

Figure 4: Performance of zero-shot PLMs, GPTs, SOTA,
and QASE fine-tuned PLMs on Quoref test set.

4.4 Ablation Studies237

We conducted ablation studies to assess the contri-238

bution of the QASE component in fine-tuning the239

PLMs. Table 5 reports the F1 scores of models240

fine-tuned with and without QASE. Model variants241

derived from the same base PLM, fine-tuned both242

with and without QASE, share identical configura-243

tions including learning rate, weight decay, batch244

EM F1 ↑
Flan-T5-Large 15.96 24.10
GPT-3.5 50.22 59.51
GPT-4 68.07 78.34
Flan-T5-BaseQASE 75.17 81.18
CorefRoberta-Large (Ye et al., 2020) 75.80 82.81
Flan-T5-LargeQASE 76.19 82.13

Table 4: Performance comparison between baselines
and Flan-T5-LargeQASE on the Quoref test set.

size, epoch number, and GPU type. Overall, mod- 245

els fine-tuned with QASE consistently outperform 246

their counterparts fine-tuned without QASE. Specif- 247

ically, on MultiSpanQA, models with QASE exhibit 248

a performance improvement of up to 3.3% com- 249

pared to vanilla fine-tuned models. On SQuAD, 250

the F1 score improves by up to 8.4%. Similarly, on 251

Quoref, the F1 score is enhanced by up to 16.0%. 252

The results of the ablation studies demonstrate 253

that our proposed QASE component is effec- 254

tive in enhancing the performance of fine-tuned 255

generative-based PLMs, enabling them to produce 256

high-quality context-grounded answers. 257

MultiSpanQA SQuAD Quoref
Llama2FT 68.140 47.055 52.09
Llama2QASE 70.389 47.686 60.44
AlpacaFT 69.099 43.950 -
AlpacaQASE 70.008 47.622 -
Flan-T5-SmallFT 76.494 85.513 63.30
Flan-T5-SmallQASE 77.103 85.901 66.88
Flan-T5-BaseFT 81.408 89.558 80.90
Flan-T5-BaseQASE 81.498 90.240 81.18
Flan-T5-LargeFT 83.094 90.712 80.49
Flan-T5-LargeQASE 84.221 91.701 82.13

Table 5: Performance (F1) of fine-tuned (FT) PLMs
without and with QASE.

5 Conclusion 258

In this study, we address hallucinated text gen- 259

eration in pre-trained LLMs using QASE, a 260

lightweight question-attended span extraction mod- 261

ule, during fine-tuning. QASE enhances smaller 262

models to outperform GPT-4 on all three MRC 263

datasets by significant margins in exact match and 264

F1 scores. Utilizing QASE, Flan-T5-Large models 265

match the performance of leading non-generative 266

MRC models optimized for span detection or tag- 267

ging, even surpassing the top-ranked SOTA model 268

on the MultiSpanQA leaderboard. Importantly, 269

QASE improves performance without additional 270

computational costs, providing an economic solu- 271

tion for researchers with more limited resources. 272
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Limitations273

Due to our limited computational resources, we274

have been able to perform our experiments on mod-275

els no larger than Flan-T5-Large. This same con-276

straint led us to only fine-tuning of Llama 2 and277

Alpaca with LoRA. We note that models based on278

Llama 2 and Alpaca generally underperform those279

based on Flan-T5. Apart from the inherent distinc-280

tions between decoder-only and encoder-decoder281

models, and their suitability for different tasks (as282

seen from the models’ zero-shot performance), a283

possible factor could be the number of trainable284

parameters during fine-tuning. Specifically, fine-285

tuning Llama 2 and Alpaca with LoRA results in286

only 4M trainable parameters, while even the small-287

est Flan-T5 model provides 76M trainable parame-288

ters. We acknowledge that many researchers face289

similar computational resource limitations. There-290

fore, our research should be very useful, propos-291

ing this lightweight module capable of enhanc-292

ing smaller models to outperform SOTA LLMs293

on MRC tasks like these, achieving a balance of294

effectiveness and affordability.295
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A Appendix453

A.1 Dataset Leaderboard454

Below are the official dataset leaderboards we refer455

to:456

• MultiSpanQA: https://leaderboard.457

allenai.org/quoref/submissions/458

public459

• SQuAD: https://rajpurkar.github.io/460

SQuAD-explorer/461

• Quoref: https://leaderboard.allenai.462

org/quoref/submissions/public463

A.2 Experiment Results464

Below are the complete results from all our experi-465

ments:466
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MultiSpanQA SQuAD Quoref
EM F1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443 28.931 5.02 28.91
Llama2FT 50.934 68.140 36.679 47.055 45.52 52.09
Llama2QASE 51.748 70.389 37.219 47.686 54.28 60.44
Alpaca 15.201 42.759 18.259 33.871 - -
AlpacaFT 52.730 69.099 27.881 43.950 - -
AlpacaQASE 52.196 70.008 37.313 47.622 - -
Flan-T5-Small 0.475 22.539 13.878 28.710 1.58 5.96
Flan-T5-SmallFT 59.128 76.494 77.332 85.513 58.21 63.30
Flan-T5-SmallQASE 59.080 77.103 77.663 85.901 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 27.08 34.38
Flan-T5-BaseFT 64.659 81.408 82.090 89.558 72.77 80.90
Flan-T5-BaseQASE 64.874 81.498 82.204 90.240 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149 37.691 15.96 24.10
Flan-T5-LargeFT 67.408 83.094 83.159 90.712 75.17 80.49
Flan-T5-LargeQASE 66.918 84.221 84.125 91.701 76.19 82.13

Table 6: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.
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