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Abstract

To address the hallucination challenge in zero-
shot LLMs without extensive task-specific
prompt engineering, we introduce a lightweight
Question-Attended Span Extraction (QASE)
module during the fine-tuning of LLMs. Our
experiments demonstrate that QASE empowers
smaller models to outperform SOTA LLMs on
reading comprehension tasks, notably achiev-
ing up to a 32.6% improvement over GPT-4’s
F1 score on SQuAD, all without increasing
computational costs. !

1 Introduction

The rapid progress of large language models
(LLMs) like GPT-4 (OpenAl, 2023), Llama 2 (Tou-
vron et al., 2023), and PalLM 2 (Anil et al., 2023)
has garnered much attention. Yet these powerful
models face the challenge of hallucination (Ji et al.,
2023; Bang et al., 2023), where incorrect or fab-
ricated information is generated. Techniques like
prompt engineering can mitigate this to some ex-
tent, but more work is needed for broader appli-
cability (White et al., 2023). Fine-tuning these
models for downstream tasks is costly due to their
size, although efforts like Alpaca-LoRA (Hu et al.,
2021) attempt to reduce computational costs.

In this paper, we address hallucination in
pre-trained LLMs (PLMs) using a lightweight
Question-Attended Span Extraction (QASE) mod-
ule. We conduct experiments on reading compre-
hension datasets to evaluate its effectiveness in en-
hancing LLMs to generate context-grounded an-
swers. Our contributions include:

1. Developing QASE, a lightweight module, en-
abling smaller models to outperform SOTA
LLMs on MRC tasks, notably surpassing GPT-
4 on SQuUAD by up to 32.6% on F1 score.

'Our code is available at this anonymous repo link.

2. QASE boosts performance without increasing
computational costs, aiding researchers with
limited resources.

2 Related Work

Machine Reading Comprehension (MRC) is
a notable challenge in NLP. In recent years,
many MRC benchmark datasets have been cre-
ated, including typical question/answer corpora
like SQuAD (Rajpurkar et al., 2016), and more
complex question/multi-span answer corpora such
as Quoref (Dasigi et al., 2019) and MultiSpanQA
(Li et al., 2022).

Most current studies approach the MRC task
by predicting the start and end positions of the
answer spans from a given context (Ohsugi et al.,
2019; Lan et al., 2019; Bachina et al., 2021). To
handle the multi-span setting, some studies frame
the problem as a sequence tagging task (Hu et al.,
2019; Segal et al., 2020), while others explore ways
to combine models with different tasks (Lee et al.,
2023; Zhang et al., 2023).

Work most similar to ours focuses on using the
power of generative-based language models (Yang
et al., 2020; Li et al., 2021; Su et al., 2022). How-
ever, there is little research on using the emerging
abilities of LLMs for MRC tasks.

3 Method

3.1 Question-Attended Span Extraction

To address the hallucination problem in genera-
tive models, we incorporate our question-attended
span extraction mechanism, QASE, during the fine-
tuning of the models. This mechanism ensures
that generated answers are grounded in the origi-
nal provided context. We cast span extraction as a
sequence tagging problem and employ the Inside-
Outside (I0) tagging schema, where each token in
the sequence is tagged as ’inside’ (I) if it is part of
a relevant span, or ’outside’ (0) if it is not. This
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schema generalizes well to both single- and multi-
span extraction settings, achieving comparable or
even better performance than the well-known BIO
tagging format (Huang et al., 2015), as shown by
Segal et al. (2020).
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Figure 1: Overview of Our Model

The overall architecture of our proposed model
is shown in Figure 1. Given input context C and
question Q, we first concatenate these together
with a separator for delineation and then feed them
into the generative language model. The hidden
states from the language model are then passed
through projection layers to produce embeddings
2 = ReLU(mejvi + bproj)’ where h; € R%is
the output hidden state of the language model for
the i'" token.

To learn representations of each context token
based on specific questions, we employ a multi-
head attention mechanism ()M H A). Each head in
M H A attends to different aspects of the context
in relation to the question, utilizing question em-
beddings as the query and context embeddings as
the key and the value. This mechanism enhances
the model’s understanding and response generation
by grounding the context token representations in
the specifics of the queried question. The projected
embeddings z; of the i*" are passed through the
multi-head attention component, and subsequently
channeled through a linear layer and a softmax
layer to compute the probability:

pi = softmax(Wi;, - MHA(z) + biin) (1)

which denotes the probability of the i*” token being
inside the answer spans. We then compute the

sequence tagging loss using the cross entropy loss:
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where j € 0,1 corresponds to class O and class 1,
and y;; is a binary value indicating whether the ith
token belongs to class j.

3.2 Joint MLLM Fine-Tuning

We fine-tune PLMs using multi-task learning, train-
ing concurrently on both the masked language
modeling loss and sequence tagging loss: L =
Lyiyv + BLgask, where (3 is a hyper-parameter
that controls the weight of the span extraction task.
This approach refines the PLMs to become adept
at generating answers that are grounded in the orig-
inal context, effectively targeting the hallucination
issue which has been common in recent LLMs.

4 Experiments

4.1 Datasets and Metrics

Given our objective of generating context-
grounded answers, we utilize the following three
datasets.

MultiSpanQA (Li et al., 2022): This read-
ing comprehension dataset consists of over 6.5k
question-answer pairs. Unlike most existing single-
span answer MRC datasets, MultiSpanQA focuses
on multi-span answers.

SQuAD (Rajpurkar et al., 2016): A bench-
mark reading comprehension dataset consisting of
100K+ questions with single-span answers. We use
SQuAD vl.1. Since the official evaluation on v1.1
has long been terminated, we report our results on
the official v1.1 development set.

Quoref (Dasigi et al., 2019): A benchmark read-
ing comprehension dataset containing more than
24K questions, with the majority of answers being
single-span, and approximately 10% being multi-
span.

For MultiSpanQA, we employ the exact match
(EM) and partial match (Overlap) F1 scores as met-
rics, following the conventions of its official leader-
board. For SQuAD and Quoref, we use the exact
match percentage and macro-averaged F1 score as
metrics.

4.2 Experimental Setup

To evaluate the effectiveness of our QASE compo-
nent independent of any specific language model,



we experiment with multiple open-source LLMs.
These include both decoder-only LLMs, such as
Llama 2 (Touvron et al., 2023) and Alpaca (Taori
et al., 2023), and an encoder-decoder model, Flan-
TS (Chung et al., 2022).

For Llama 2, we fine-tune the pre-trained 7B ver-
sion using LoRA (Hu et al., 2021) and instruction-
tuning. During fine-tuning, both with and without
QASE, we incorporate instructions into the prompt
to explicitly instruct the model to generate answers
"with exact phrases from the context and avoid ex-
planations." The same setup is used for fine-tuning
the pre-trained Alpaca model. For the family of
Flan-T5 models, we fine-tune the small, the base,
and the large versions. The number of trainable
parameters for each model is provided in Table 1.

[[ Trainable Params

Llama 2/Alpaca LoRA 4,194,304
Flan-T5-Small 76,961,152
Flan-T5-Base 247,577,856
Flan-T5-Large 783,094,784
QASE 1,314,306 ~ 3,149,314

Table 1: Trainable parameters of experimented models.

We train all our models on single GPUs, using
a batch size of 2-4 depending on the VRAM of
the respective GPUs. We use four types of GPUs:
A40, A10, A5500, and A100. Notably, the Flan-
T5-Large model can only be accommodated on the
A100 GPU due to its demanding resources. Models
are trained for 3 epochs or until convergence.

4.3 Model Comparisons

We compare the zero-shot performance of vari-
ous PLMs to that of their corresponding versions
fine-tuned with our proposed QASE component.
The results, presented in Table 6 in Appendix A.2,
show that fine-tuning with QASE improves perfor-
mance across all datasets. Specifically, on the Mul-
tiSpanQA dataset, models using QASE perform up
to 124.4 times better in exact match and 3.4 times
better in F1 score compared to the original models.
On the SQuAD dataset, the exact match improves
by up to 5.6 times, and F1 score by up to 3.0 times.
Similarly, on the Quoref dataset, the exact match
improves by up to 38.4 times, and F1 score by up
to 11.2 times with QASE.

We further compare our best performing model,
Flan-T5-Largegasg, with SOTA models, along-
side zero-shot GPT-3.5 and GPT-4. GPT-3.5 is the
most capable and cost-effective model in the Ope-
nAl GPT family, and GPT-4 exhibits even more

advanced reasoning capabilities (Liu et al., 2023b).
Research suggests that both outperform the tradi-
tional fine-tuning method on most logical reasoning
benchmarks (Liu et al., 2023a).

On MultiSpanQA, we compare Flan-T5-
Largegasg with GPT variants and models on the
official MultiSpanQA leaderboard, as referred to in
Appendix A.1. Figure 2 and Table 2 show that Flan-
T5-Largegask outperforms LIQUID (Lee et al.,
2023), which currently ranks #1 on the leaderboard,
with respect to the overlap F1 score. Moreover, it
surpasses GPT-4 by 4.5% on the exact match F1
and 1.5% on the overlap F1.
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Figure 2: Performance of zero-shot PLMs, GPTs, SOTA,
and QASFE fine-tuned PLMs on MultiSpanQA test set.

[ EMF1 Overlap F1 T
Flan-T5-Large 13.907 51.501
Flan-T5-Baseqgask 64.874 81.498
GPT-3.5 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) || 73.130 83.360
Flan-T5-Largegase 66.918 84.221

Table 2: Performance comparison between baselines
and Flan-T5-Largeg 4 sg on the MultiSpanQA test set.

For SQuAD, we compare Flan-T5-Largegase
with GPT variants and models on the official
SQuAD vl1.1 leaderboard, as referred to in Ap-
pendix A.1. Figure 3 and Table 3 show that Flan-
T5-Largegasg surpasses human performance,
equaling the performance of the NLNet model
from Microsoft Research Asia and the original pre-
trained BERT-Large from Google (Devlin et al.,
2019), which are ranked #11 and #13 on the v1.1
leaderboard respectively. Additionally, it surpasses
GPT-4 by 113.8% on the exact match score and
32.6% on F1.

For Quoref, we compare Flan-T5-Largegasre
with GPT variants and models on the official
Quoref leaderboard, as referred to in Appendix
A.1. As shown in Figure 4 and Table 4, Flan-T5-
Largeg ask is comparable to CorefRoberta-Large
(Ye et al., 2020), which ranks #9 on the leaderboard,
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Figure 3: Performance of zero-shot PLMs, GPTs, SOTA,
and QASFE fine-tuned PLMs on SQuAD test set.

[ EM F11
Flan-T5-Large 16.149  37.691
GPT-3.5 36.944  65.637
GPT-4 39.347  69.158
Flan-T5-Basegask 82.204 90.240
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) || 84.328  91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-Largegaske 84.125 91.701

Table 3: Performance comparison between baselines
and Flan-T5-Largeg 45 on the SQuAD dev set.

with a 0.5% higher exact match. Furthermore, it
outperforms GPT-4 by 11.9% on the exact match
and 4.8% on F1.

These results show that, by employing QASE,
generative-based PLMs can be fine-tuned to pro-
duce high-quality, context-grounded answers in
reading comprehension tasks. This fine-tuning
mechanism enables them to match the performance
of SOTA models, which are typically optimized
for span boundary detection or sequence tagging
objectives, especially in the multi-span setting.
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Figure 4: Performance of zero-shot PLMs, GPTs, SOTA,
and Q ASFE fine-tuned PLMs on Quoref test set.

4.4 Ablation Studies

We conducted ablation studies to assess the contri-
bution of the QASE component in fine-tuning the
PLMs. Table 5 reports the F1 scores of models
fine-tuned with and without QASE. Model variants
derived from the same base PLM, fine-tuned both
with and without QASE, share identical configura-
tions including learning rate, weight decay, batch

H EM F11
Flan-T5-Large 1596 24.10
GPT-3.5 50.22 59.51
GPT-4 68.07 78.34
Flan-T5-Basegaske 75.17 81.18
CorefRoberta-Large (Ye et al., 2020) || 75.80 82.81
Flan-T5-Largegase 76.19 82.13

Table 4: Performance comparison between baselines
and Flan-T5-Largeg a5k on the Quoref test set.

size, epoch number, and GPU type. Overall, mod-
els fine-tuned with QASE consistently outperform
their counterparts fine-tuned without QASE. Specif-
ically, on MultiSpanQA, models with QASE exhibit
a performance improvement of up to 3.3% com-
pared to vanilla fine-tuned models. On SQuAD,
the F1 score improves by up to 8.4%. Similarly, on
Quoref, the F1 score is enhanced by up to 16.0%.
The results of the ablation studies demonstrate
that our proposed QASE component is effec-
tive in enhancing the performance of fine-tuned
generative-based PLMs, enabling them to produce
high-quality context-grounded answers.

[[ MultiSpanQA SQuAD Quoref

Llama2 g 68.140 47.055 52.09
Llama2gaske 70.389 47.686 60.44
Alpacarr 69.099 43.950 -

AlpacaQ ASE 70.008 47.622 -

Flan-T5-Small g1 76.494 85.513 63.30
Flan-T5-Smallgask 77.103 85.901 66.88
Flan-T5-Basepr 81.408 89.558 80.90
Flan-T5-Basegasre 81.498 90.240 81.18
Flan-T5-Large pr 83.094 90.712 80.49
Flan-T5-Largegaske 84.221 91.701 82.13

Table 5: Performance (F1) of fine-tuned (FT) PLMs
without and with QASE.

5 Conclusion

In this study, we address hallucinated text gen-
eration in pre-trained LLMs using QASE, a
lightweight question-attended span extraction mod-
ule, during fine-tuning. QASE enhances smaller
models to outperform GPT-4 on all three MRC
datasets by significant margins in exact match and
F1 scores. Utilizing QASE, Flan-T5-Large models
match the performance of leading non-generative
MRC models optimized for span detection or tag-
ging, even surpassing the top-ranked SOTA model
on the MultiSpanQA leaderboard. Importantly,
QASE improves performance without additional
computational costs, providing an economic solu-
tion for researchers with more limited resources.



Limitations

Due to our limited computational resources, we
have been able to perform our experiments on mod-
els no larger than Flan-T5-Large. This same con-
straint led us to only fine-tuning of Llama 2 and
Alpaca with LoRA. We note that models based on
Llama 2 and Alpaca generally underperform those
based on Flan-T5. Apart from the inherent distinc-
tions between decoder-only and encoder-decoder
models, and their suitability for different tasks (as
seen from the models’ zero-shot performance), a
possible factor could be the number of trainable
parameters during fine-tuning. Specifically, fine-
tuning Llama 2 and Alpaca with LoRA results in
only 4M trainable parameters, while even the small-
est Flan-T5 model provides 76M trainable parame-
ters. We acknowledge that many researchers face
similar computational resource limitations. There-
fore, our research should be very useful, propos-
ing this lightweight module capable of enhanc-
ing smaller models to outperform SOTA LLMs
on MRC tasks like these, achieving a balance of
effectiveness and affordability.
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A Appendix

A.1 Dataset Leaderboard
Below are the official dataset leaderboards we refer

to:

* MultiSpanQA: https://leaderboard.
allenai.org/quoref/submissions/
public

¢ SQuAD: https://rajpurkar.github.io/
SQuAD-explorer/

e Quoref: https://leaderboard.allenai.
org/quoref/submissions/public
A.2 Experiment Results

Below are the complete results from all our experi-
ments:
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MultiSpanQA SQuAD Quoref
EMF1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443 28931 | 5.02 28091
Llama2 g1 50.934 68.140 36.679 47.055 | 45.52  52.09
Llama2gase 51.748 70.389 37.219 47.686 | 54.28 60.44
Alpaca 15.201 42.759 18.259  33.871 - -

Alpacapr 52.730 69.099 27.881 43.950 - -

Alpacagase 52.196 70.008 37.313  47.622 - -

Flan-T5-Small 0.475 22.539 13.878 28.710 | 1.58 5.96
Flan-T5-Small 59.128 76.494 77332 85.513 | 58.21 63.30
Flan-T5-Smallgasge || 59.080 77.103 77.663 85901 | 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 | 27.08 34.38
Flan-T5-Basepr 64.659 81.408 82.090 89.558 | 72.77 80.90
Flan-T5-Basegask 64.874 81.498 82.204 90.240 | 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149 37.691 | 1596 24.10
Flan-T5-Large pr 67.408 83.094 83.159 90.712 | 75.17 80.49
Flan-T5-Largegase 66.918 84.221 84.125 91.701 | 76.19 82.13

Table 6: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.
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