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Abstract

Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for
recovering a reward function justifying the behavior demonstrated by an expert
agent. A well-known limitation of IRL is the ambiguity in the choice of the
reward function, due to the existence of multiple rewards that explain the observed
behavior. This limitation has been recently circumvented by formulating IRL as
the problem of estimating the feasible reward set, i.e., the region of the rewards
compatible with the expert’s behavior. In this paper, we make a step towards closing
the theory gap of IRL in the case of finite-horizon problems with a generative
model. We start by formally introducing the problem of estimating the feasible
reward set, the corresponding PAC requirement, and discussing the properties of
particular classes of rewards. Then, we provide the first minimax lower bound
on the sample complexity for the problem of estimating the feasible reward set of
order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

, being S and A the number of states and actions
respectively, H the horizon, ε the desired accuracy, and δ the confidence. We
analyze the sample complexity of a uniform sampling strategy (US-IRL), proving
a matching upper bound up to logarithmic factors. Finally, we outline several open
questions in IRL and propose future research directions.

1 Introduction

Inverse reinforcement learning (IRL) aims at efficiently learning a desired behavior by observing
an expert agent and inferring their intent encoded in a reward function (refer to [26, 3, 2] for recent
surveys on IRL). This abstract setting, which diverges from standard reinforcement learning [RL, 34],
as the reward function has to be learned, arises in a large variety of real-world tasks. In particular,
in a human-in-the-loop [38] scenario, when the expert is represented by a human solving a task,
an explicit specification of the reward function representing the human’s goal is often unavailable.
Experience suggests that humans are uncomfortable when asked to describe their intent and, thus,
the underlying reward; while they are much more comfortable providing demonstrations of what is
believed to be the right behavior. Indeed, human behavior is usually the product of many, possibly
conflicting, objectives.1 Succeeding in retrieving a representation of the expert’s reward has notable

1In RL, the Sutton’s hypothesis [34] conjectures that a scalar reward is an adequate notion of goal.
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implications [33, 40, 11, 39, 18]. First, we obtain explicit information for understanding the motiva-
tions behind the expert’s choices (interpretability). Second, the reward can be employed in RL to
train artificial agents, under shifts in the features of the underlying system (transferability).

Since the beginning, the community recognized that the IRL problem is, per se, ill-posed, as multiple
reward functions are compatible with the expert’s behavior [25]. This ambiguity was heterogeneously
addressed by the algorithmic proposals that have followed over the years, which realized in several
selection criteria, including maximum margin [30], maximum entropy [41], minimum Hessian
eigenvalue [22, 23], and a balance between compatibility and learning efficiency [5]. Some of
these approaches come with theoretical guarantees on the sample complexity, although according to
different performance indices [e.g., 1, 35, 27].

A promising line of research that aspires to overcome the ambiguity issue has been recently inves-
tigated in [24, 19]. These works focus on estimating all the reward functions compatible with the
expert’s demonstrated behavior, namely the feasible rewards. Remarkably, this viewpoint which
focuses on the feasible reward set, rather than on one reward obtained with a specific selection
criterion, as previous works did, circumvents the ambiguity problem, postponing the reward selection
and pointing to the expert’s intent. Although these works provide sample complexity guarantees in
different settings, a rigorous understanding of the inherent complexity of the IRL problem is currently
lacking.

Contributions In this paper, we aim at taking a step toward the theoretical understanding of the IRL
problem. As in [24, 19], we consider the problem of estimating the feasible reward set. We focus on
a generative model setting, where the agent can query the environment and the expert in any state,
and consider finite-horizon decision problems. The contributions of the paper can be summarized as
follows.

• We propose a novel framework to evaluate the accuracy in recovering the feasible reward set, based
on the Hausdorff metric [32]. This tool generalizes existing performance indices. Furthermore,
we show that the feasible reward set enjoys a desirable Lipschitz continuity property w.r.t. the IRL
problem (Section 3).

• We devise a PAC (Probability Approximately Correct) framework for estimating the feasible reward
set, providing the definition of pε, δq-PAC IRL algorithm. Then, we investigate the relationships
between several performance indices based on the Hausdorff metric (Section 4).

• We conceive, based on the provided PAC requirements introduced, a novel sample complexity
lower bound of order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

. This represents the most significant contribution
and, to the best of our knowledge, it is the first lower bound that values the importance of the
relevant features of the IRL problem. From a technical perspective, the lower bound construction
merges new proof ideas with reworks of existing techniques (Section 5).

• We analyze a uniform sampling exploration strategy (UniformSampling-IRL, US-IRL) showing that,
in the generative model setting, it matches the lower bound up to logarithmic factors (Section 6).

The complete proofs of the results presented in the main paper are reported in Appendix B. A
conference version of the present paper appeared in ICML 2023 [21].2

2 Preliminaries

In this section, we provide the background that will be employed in the subsequent sections.

Mathematical Background Let a, b P N with a ď b, we denote with Ja, bK :“ ta, . . . , bu and with
JaK :“ J1, aK. Let X be a set, we denote with ∆X the set of probability measures over X . Let Y be a
set, we denote with ∆X

Y the set of functions with signature Y Ñ ∆X . Let pX , dq be a (pre)metric
space, where X is a set and d : X ˆ X Ñ r0,`8s is a (pre)metric.3 Let Y,Y 1 Ď X be non-empty
sets, we define the Hausdorff (pre)metric [32] Hd : 2X ˆ 2X Ñ r0,`8s between Y and Y 1 induced
by the (pre)metric d as follows:

HdpY,Y 1q :“ max

"

sup
yPY

inf
y1PY 1

dpy, y1q, sup
y1PY 1

inf
yPY

dpy, y1q

*

. (1)

2https://proceedings.mlr.press/v202/metelli23a.html.
3A premetric d satisfies the axioms: dpx, x1q ě 0 and dpx, xq “ 0 for all x, x1 P X . Any metric is clearly a

premetric.
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Markov Decision Processes without Reward A time-inhomogeneous finite-horizon Markov
decision process without reward (MDP\R) is defined as a 4-tuple M “ pS,A, p,Hq where S is a
finite state space (S “ |S|), A is a finite action space (A “ |A|), p “ pphqhPJHK is the transition
model where for every stage h P JHK we have ph P ∆S

SˆA, and H P N is the horizon. An MDP\R is
time-homogeneous if, for every stage h P JH´1K, we have ph “ ph`1 a.s.; in such a case, we denote
the transition model with the symbol p only. A time-inhomogeneous reward function is defined as
r “ prhqhPJHK, where for every stage h P JHK we have rh : S ˆAÑ r´1, 1s.4 A Markov decision
process [MDP, 28] is obtained by pairing an MDP\R M with a reward function r. The agent’s behavior
is modeled with a time-inhomogeneous policy π “ pπhqhPJHK where for every stage h P JHK, we
have πh P ∆A

S . Let f P RS and g P RSˆA, we denote with phfps, aq “
ř

s1PS phps
1|s, aqfps1q and

with πhgpsq “
ř

aPA πhpa|sqgps, aq the expectation operators w.r.t. the transition model and the
policy, respectively.

Value Functions and Optimality Given an MDP\R M, a policy π, and a reward function r, the Q-
function Qπp¨; rq “ pQπhp¨; rqqhPJHK induced by r represents the expected sum of rewards collected
starting from ps, a, hq P S ˆAˆ JHK and following policy π thereafter:

Qπhps, a; rq :“ E
pM,πq

«

H
ÿ

l“h

rlpsl, alq|sh “ s, ah “ a

ff

,

where EpM,πq denotes the expectation w.r.t. M and π, i.e., ah „ πhp¨|shq and sh`1 „ php¨|sh, ahq
for every stage h P Jh,HK. The Q-function fulfills the Bellman equations [28] for every ps, a, hq P
S ˆAˆ JHK:

Qπhps, a; rq “ rhps, aq ` phV
π
h`1ps, a; rq,

V πh ps; rq “ πhQ
π
hps; rq and V πH`1ps; rq “ 0,

where V πp¨; rq “ pV πh p¨; rqqhPJHK is the V-function. The advantage function Aπhps, a; rq “
Qπhps, a; rq ´ V πh ps; rq represents the relative gain of playing action a P A rather than follow-
ing policy π in the state-stage pair ps, hq. A policy π˚ is optimal if it has non-positive advantage
everywhere, i.e., Aπ

˚

h ps, a; rq ď 0 for every ps, a, hq P S ˆAˆ JHK. The Q- and V-functions of an
optimal policy are denoted with Q˚hps, a; rq and V ˚h ps; rq.

Inverse Reinforcement Learning An inverse reinforcement learning problem [IRL, 25] is defined
as a pair pM, πEq, where M is an MDP\R and πE is an expert’s policy. Informally, solving an
IRL problem consists in finding a reward function prhqhPJHK making πE optimal for the MDP\R M
paired with reward function r. Any reward function fulfilling this condition is called feasible and the
set of all such reward functions is called feasible reward set [24, 19], defined as:

RpM,πEq :“
!

prhqhPJHK

∣∣∣@hPJHK :rh :SˆAÑr´1,1s^@ps,a,hqPSˆAˆJHK :Aπ
E

h ps,a;rqď0
)

. (2)

We will omit the subscript pM, πEq whenever clear from the context.

Empirical MDP and Empirical Expert’s Policy Let D“tpsl,al,hl,s1l,a
E
l qulPJtK be a dataset of

tPN tuples, where for every lPJtK, we have s1l„phlp¨|sl,alq and aEl „π
E
hl
p¨|slq. We introduce the

counts for every ps,a,hqPSˆAˆJHK: nthps,a,s
1q:“

řt
l“11tpsl,al,hl,s

1
lq“ps,a,h,s

1qu, nthps,aq:“
ř

s1PSn
t
hps,a,s

1q, nthpsq:“
ř

aPAn
t
hps,aq, and nt,Eh ps,aq:“

řt
l“11tpsl,a

E
l q“ps,aqu. These quan-

tities allow defining the empirical transition model ppt“pppthqhPJHK and empirical expert’s policy
pπt,E“pπt,Eh qhPJHK as follows:

ppthps
1|s, aq :“

#

nthps,a,s
1
q

nthps,aq
if nthps, aq ą 0

1
S otherwise

, pπE,th pa|sq :“

#

nE,th ps,aq

nthpsq
if nthpsq ą 0

1
A otherwise

. (3)

In the time-homogeneous case, we simply merge the samples collected at different stages h P JHK.
We denote with pxMt, pπE,tq the empirical IRL problem, where xMt “ pS,A, ppt, Hq the empirical
MDP\R induced by ppt. Finally, we denote with pRt :“ R

p xMt,pπE,tq
the feasible reward set induced

pxMt, pπE,tq. We will omit the superscript t, whenever clear from the context and write pR.

4For the sake of simplicity and w.l.o.g., we restrict to reward functions bounded by 1 in absolute value.
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3 Lipschitz Framework for IRL

In this section, we analyze the regularity properties of the feasible reward set in terms of the Lipschitz
continuity w.r.t. the IRL problem. To make the idea more concrete, suppose that R is the feasible
reward set obtained from the IRL problem pM, πEq and that pR is obtained with a different IRL
problem pxM, pπEq, which we can think to as an empirical version of pM, πEq, with an estimated
transition model pp replacing the true model p. Intuitively, to have any learning guarantee, “similar”
IRL problems (p « pp and πE « pπE) should lead to “similar” feasible reward sets (R « pR).5

To formally define a Lipschitz framework, we need to select a (pre)metric for evaluating dissimilarities
between feasible reward sets and IRL problems. While we defer the presentation of the (pre)metric
for the IRL problems to Section 3.1, where it will emerge naturally, for the feasible reward sets, we
employ the Hausdorff (pre)metric HdpR, pRq (Equation 1), induced by a (pre)metric dpr, prq used to
evaluate the dissimilarity between individual reward functions r P R and pr P pR. With this choice,
two feasible reward sets are “similar” if every reward r P R is “similar” to some reward pr P pR in
terms of the (pre)metric d. In the next sections, we employ as d the metric induced by the L8-norm
between the reward functions r P R and pr P pR:6

dGpr, prq :“ max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq| , (4)

where G stands for “generative”. In Section 3.1, we prove that the Lipschitz continuity is fulfilled
when no restrictions on the reward function are enforced (besides boundedness in r´1, 1s). In
Appendix B.5, we show that, when further restrictions on the viable rewards are required (e.g.,
state-only reward), such a regularity property no longer holds.

3.1 Lipschitz Continuous Feasible Reward Sets

In order to prove the Lipschitz continuity property, we use the explicit form of the feasible reward
sets introduced in [24] and extended by [19] for the finite-horizon case, that we report below.
Lemma 3.1 (Lemma 4 of [19]). A reward function r “ prhqhPJHK is feasible for the IRL problem
pM, πEq if and only if there exist two functions pAh, VhqhPJHK where for every h P JHK we have
Ah : S ˆA Ñ Rě0, Vh : S Ñ R, and VH`1 “ 0, such that for every ps, a, hq P S ˆA ˆ JHK it
holds that:

rhps,aq“´Ahps,aq1tπEh pa|sq“0u`Vhpsq´phVh`1ps,aq.

Furthermore, if |rhps, aq| ď 1, if follows that |Vhpsq| ď H ´ h` 1 and Ahps, aq ď H ´ h` 1.

A form of regularity of the feasible reward set was already studied in Theorem 3.1 of [24] and in
Theorem 5 of [19], providing an error propagation analysis. These results are based on showing the
existence of a particular reward rr feasible for the IRL problem pxM, pπEq, whose distance from the
original reward function r P R is bounded by a dissimilarity term between pM, πEq and pxM, pπEq.
Unfortunately, such a reward rr is not guaranteed to be bounded in r´1, 1s even when the original
reward r is (and, thus, it might be rr R pR according to Equation 2).7 In Lemma B.1, with a modified
construction, we show the existence of another particular feasible reward pr bounded in r´1, 1s (and,
thus, pr P pR). From this, the Lipschitz continuity of the feasible reward sets follows.

Theorem 3.2 (Lipschitz Continuity). Let R and pR be the feasible reward sets of the IRL problems
pM, πEq and pxM, pπEq, as in Equation (2). Then, it holds that:8

HdGpR, pRq ď 2ρGppM, πEq, pxM, pπEqq

1` ρGppM, πEq, pxM, pπEqq
, (5)

5If not, any arbitrary accurate estimate ppp, pπEq of pp, πEq, may induce feasible sets pR and R with finite
non-zero dissimilarity.

6We discuss other choices of d in Section 4.
7We illustrate in Fact B.1 an example of this phenomenon.
8This implies the standard Lipschitz continuity, by simply bounding 2ρGppM,πEq,p xM,pπEqq

1`ρGppM,πEq,p xM,pπEqq
ď

2ρG
ppM, πEq, pxM, pπEqq.
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where ρGp¨, ¨q is a (pre)metric between IRL problems, defined as:

ρGppM,πEq,pxM,pπEqq:“ max
ps,a,hqPSˆAˆJHK

pH´h`1q
´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´pphp¨|s,aq}1

¯

.

Some observations are in order. First, the function ρG is indeed a (pre)metric since it is non-
negative and takes value 0 when the IRL problems coincide. Second, as supported by intuition,
ρG is composed of two terms related to the estimation of the expert’s policy and of the transition
model. While for the transition model, the dissimilarity is formalized by the L1-norm distance
}php¨|s, aq ´ pphp¨|s, aq}1, for the policy, the resulting term deserves some comments. Indeed, the
dissimilarity |1tπEh pa|sq“0u ´ 1tpπEh pa|sq“0u| highlights that what matters is whether an action a P A
is played by the expert and not the corresponding probability πEh pa|sq. Indeed, the expert’s policy
plays an action (with any non-zero probability) only if it is an optimal action.

4 PAC Framework for IRL with a Generative Model

In this section, we discuss the PAC (Probably Approximately Correct) requirements for estimating the
feasible reward set with access to a generative model of the environment. We first provide the notion
of a learning algorithm estimating the feasible reward set with a generative model (Section 4.1). Then,
we formally present the PAC requirement for the Hausdorff (pre)metric Hd (Section 4.2). Finally,
we discuss the relationships between the PAC requirements with different choices of (pre)metric d
(Section 4.3).

4.1 Learning Algorithms with a Generative Model

A learning algorithm for estimating the feasible reward set is a pair A “ pµ, τq, where µ “ pµtqtPN
is a sampling strategy defined for every time step t P N as µt P ∆

SˆAˆJHK
Dt´1

with Dt “ pS ˆAˆ
JHK ˆ S ˆ Aqt and τ is a stopping time w.r.t. a suitably defined filtration. At every step t P N,
the learning algorithm query the environment in a triple pst, at, htq, selected based on the sampling
strategy µtp¨|Dt´1q, where Dt´1 “ ppsl, al, hl, s

1
l, a

E
l qq

t´1
l“1 P Dt´1 is the dataset of past samples.

Then, the algorithm observes the next state s1t „ phtp¨|st, atq and expert’s action aEt „ πEhtp¨|stq and
updates the dataset Dt “ Dt´1 ‘ pst, at, ht, s

1
t, a

E
t q. Based on the collected data Dτ , the algorithm

computes the empirical IRL problem pxMτ , pπE,τ q, based on Equation (3) and the empirical feasible
reward set pRτ .

4.2 PAC Requirement

We now introduce a general notion of a PAC requirement for estimating the feasible reward set of an
IRL problem. To this end, we consider the Hausdorff (pre)metric introduced in Section 3 defined in
terms of the reward (pre)metric dpr, prq. We denote with d-IRL the problem of estimating the feasible
reward set under the Hausdorff (pre)metric Hd.
Definition 4.1 (PAC Algorithm for d-IRL). Let ε P p0, 2q and δ P p0, 1q. An algorithm A “ pµ, τq
is pε, δq-PAC for d-IRL if:

P
pM,πEq,A

´

HdpR, pRτ q ď ε
¯

ě 1´ δ,

where PpM,πEq,A denotes the probability measure induced by executing the algorithm A in the
IRL problem pM, πEq and pRτ is the feasible reward set induced by the empirical IRL problem
pxMτ , pπE,τ q estimated with the dataset Dτ . The sample complexity is defined as τ :“ |Dτ |.

In the next section, we show the relationship between PAC requirements defined for notable choices
of d.

4.3 Different Choices of d

So far, we have evaluated the dissimilarity between the feasible reward sets by means of the Hausdorff
induced by dG, i.e., the L8-norm of between individual reward functions. In the literature, other
(pre)metrics d have been proposed [e.g., 24, 19].
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dG
Q˚ -IRL Since the recovered reward functions are often used for performing forward RL, an index

of interest is the dissimilarity between optimal Q-functions obtained with the reward r P R and
pr P pR in the original MDP\R:

dG
Q˚pr, prq :“ max

ps,a,hqPSˆAˆJHK
|Q˚hps, a; rq ´Q˚hps, a; prq| .

dG
V ˚ -IRL We are often interested in not just being accurate in estimating the optimal Q-function,

but rather in the performance of an optimal policy pπ˚, learned with the recovered reward pr P pR,
evaluated under the true reward r P R:

dG
V ˚pr,prq :“ sup

pπ˚PΠ˚pprq

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚h ps;rq´V

pπ˚

h ps;rq
ˇ

ˇ

ˇ
,

where Π˚pprq:“tπ :@ps,a,hqPSˆAˆJHK:Aπhps,a;prqď0u is the set of optimal policies under the
recovered reward pr.

The following result formalizes the relationships between the presented d-IRL problems.
Theorem 4.1 (Relationships between d-IRL problems). Let us introduce the graphical convention
for cą0:

x-IRL y-IRLc

meaning that any pε,δq-PAC x-IRL algorithm is pcε,δq-PAC y-IRL. Then, the following statements
hold:

dG-IRL dG
Q˚ -IRL dG

V ˚ -IRL .

2H

H 2H

Theorem 4.1 shows that any pε,δq-PAC guarantee on dG, implies pε1, δq-PAC guarantees on both dG
Q˚

and dG
V ˚ , where ε1“ΘpHεq is linear in the horizon H . This justifies why focusing on dG-IRL, as in

the following section where sample complexity lower bounds are derived. The lower bound analysis
for dG

Q˚ -IRL and dG
V ˚ -IRL is left to future works.

5 Lower Bounds

In this section, we establish sample complexity lower bounds for the dG-IRL problem based on the
PAC requirement of Definition 4.1 in the generative model setting. We start presenting the general
result (Section 5.1) and, then, we comment on its form and, subsequently, provide a sketch of the
construction of the hard instances for obtaining the lower bound (Section 5.2). For the sake of
presentation, we assume that the expert’s policy πE is known; the extension to the case of unknown
πE is reported in Appendix C.

5.1 Main Result

In this section, we report the main result of the lower bound of the sample complexity of learning the
feasible reward set.
Theorem 5.1 (Lower Bound for dG-IRL). Let A“pµ,τq be an pε,δq-PAC algorithm for dG-IRL.
Then, there exists an IRL problem pM,πEq such that, if εď1{64, δď1{32, Sě9, Aě2, and Hě12,
the expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H3SA

ε2

ˆ

log

ˆ

1

δ

˙

`S

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

`S

˙˙

,
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s˚

s´

s`

a˚

‰a˚

1{2´ε1

1{2

1{2`ε1

1{2

1

1

(a) MDP\R used for the small-δ regime.

s˚

sS

...

s1

s2

a0

aj‰a0

1{S

1{S

1{S

p1`ε1vSq{S

p1`ε1v1q{S

p1`ε1v2q{S

1

1

1

(b) MDP\R used for the large-δ regime.

Figure 1: The MDP\R employed in the constructions of the lower bounds of Section 5. The expert’s
policy is πEpsq“a0. denotes a transition executed for multiple actions.

where EpM,πEq,A denotes the expectation w.r.t. the probability measure PpM,πEq,A.

Some observations are in order. First, the derived lower bound displays a linear dependence on the
number of actions A and dependence on the horizon H raised to a power 2 or 3, which depends
on whether the underlying transition model is time-homogeneous, as common even for forward
RL [e.g., 6, 8]. Second, we identify two different regimes visible inside the parenthesis related to the
dependence on the number of states S and the confidence δ. Specifically, for small values of δ (i.e.,
δ«0), the dominating part is log

`

1
δ

˘

, leading to a sample complexity of order Ω
´

H3SA
ε2 log

`

1
δ

˘

¯

.
Instead, for large δ (i.e., δ«1{32), the most relevant part is the one corresponding to S, leading to
sample complexity of order Ω

´

H3S2A
ε2

¯

(both for the time-inhomogeneous case). An analogous
two-regime behavior has been previously observed in the reward-free exploration setting [12, 14, 20].

5.2 Sketch of the Proof

In this section, we provide a sketch of the construction of the lower bounds of Theorem 5.1. The
idea consists in deriving two separate bounds depending on the regime of δ, which are based on two
building blocks reported in Figure 1. These instances are used to build lower bounds for a single state
s˚ and the extension to multiple states and stages follows standard constructions [e.g., 8].

Small-δ regime Figure 1a reports the instances employed in this regime. The expert’s policy is
πEpsq“a0. From state s˚, all actions bring the system to the absorbing states s` and s´ with equal
probability, except for action a˚‰a0 that increases by ε1ą0 the probability of reaching state s`. The
learner, in order to recover a correct feasible reward set, has to identify which is the action behaving
like a˚ (among the A available ones) to force action a0 to be optimal. Considering ΘpAq instances, in
which action a˚ changes, an application of Bretagnolle-Huber inequality [17, Theorem 14.2] allows
deriving a sample complexity lower bounded by Ω

´

AH2

ε2 log
`

1
δ

˘

¯

.

Large-δ regime Figure 1b depicts the instances used in this regime. The expert’s policy is again
πEpsq“a0. The system, instead, is made of S“ΘpSq next states reachable with equal probability
by playing action a0. All other actions aj‰a0 alter the probability distribution of the next state.
Specifically, by playing the action aj‰a0, the probability of reaching the next state s1k is given by

p1`ε1v
pjq
k q{S, where vpjq Pt´1,1uS is a vector such that

řS
k“1 v

pjq
k “0. By varying vj in a suitable

set, defined by means of novel packing argument based on Hamming coding (Lemma D.6), we obtain
Θp2Sq instances each one separated by a finite dissimilarity, depending on ε1. We obtain the lower
bound by means of an application of the Fano’s inequality [9, Proposition 4] which results in order
Ω
´

pp1´δq´log2qS2AH2

ε2

¯

.

Extension to Multiple States and Stages At the beginning, the system randomly chooses a problem
between Figure 1a and Figure 1b. Then, it transitions to the state in which the system may randomly

7



Input: significance δPp0,1q, ε target accuracy
tÐ0, ε0Ð`8
while εtąε do
tÐ t`SAH
Collect one sample from each ps,a,hqPSˆAˆJHK
Update ppt according with (3)
Update εt“maxps,a,hqPSˆAˆJHK Cthps,aq (resp. rCthps,aq)

end while

Algorithm 1: UniformSampling-IRL (US-IRL) for time-inhomogeneous (resp. time-homogeneous)
transition models.

remain for HăH stages after which it transitions with uniform probability to any of the ΘpSq
states. Our approach allows employing a single construction for both the time-inhomogeneous and
time-homogeneous settings, depending on the value of H . Specifically, we select H“ΘpHq for the
time-inhomogeneous case and H“Op1q for the time-homogeneous case. In any state s˚ and stage
h˚, the agent can face the problems shown in Figure 1. By varying s˚ and h˚ among its possible
HS (resp. S) values, we get the bounds in Theorem 5.1.

Remark 5.1 (Generative vs Forward models). This construction suffices for obtaining a bound
for the generative model, but it can be easily extended to work with the forward model of the
environment (in which the agent interacts via trajectories only) by means of a standard tree-based
construction [12, 8]. In such a case, the resulting PAC guarantee would no longer be expressed via
the L8-norm distance dG between reward, but worst-case over the visitation distributions induced
by the policies: dFpr,prq :“supπEM,πr|rhps,aq´prhps,aq|s.

6 Algorithm

In this section, we analyze the sample complexity of a uniform sampling strategy (UniformSampling-
IRL, US-IRL) for the dG-IRL problem (Algorithm 1). We start presenting the sample complexity
analysis (Section 6.1) and, then, we provide a sketch of the proof (Section 6.2).

6.1 Main Result

The US-IRL algorithm was presented in [24, 19] but analyzed for different IRL formulations (see
Section A). We revise it since it matches our sample complexity lower bounds, provided that more
sophisticated concentration tools w.r.t. those employed in [24, 19]. For the sake of presentation,
we assume that the expert’s policy πE is known; the extension to unknown πE is reported in
Appendix C. At each iteration, the algorithm collects a sample from every ps,a,hqPSˆAˆJHK
and, for time-inhomogeneous models, computes the confidence function:

Cthps,aq :“2
?

2pH´h`1q

d

2β
`

nthps,aq, δ
˘

nthps,aq
, (6)

where β
`

n,δ
˘

:“ logpSAH{δq`pS´1q log
`

ep1`n{pS´1q
˘

.9 The algorithm stops as soon as all
confidence functions fall below the threshold ε. The following theorem provides the sample complex-
ity of US-IRL.

Theorem 6.1 (Sample Complexity of US-IRL). Let εą0 and δPp0,1q, US-IRL is pε,δq-PAC for
dG-IRL and with probability at least 1´δ it stops after τ samples with:

9In the time-homogeneous case, the algorithm merges the samples collected at different hPJHK for the
estimation of the transition model and replaces the confidence function with:

rCthps,aq :“2
?
2pH´h`1q

d

2rβ
`

ntps,aq, δ
˘

ntps,aq
, (7)

where rβ
`

n,δ
˘

:“ logpSA{δq`pS´1q log
`

ep1`n{pS´1q
˘

and ntps,aq“
řH
h“1n

t
hps,aq.

8



• if the transition model p is time-inhomogeneous:

τď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

`pS´1qC

˙

,

where C“1` logp1`p64H4q{pε4pS´1qqˆ
`

logppSAHq{δq`
?
epS´1`

?
S´1qq2

˘

;
• if the transition model p is time-homogeneous:

τď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

`pS´1q rC

˙

,

where rC“1` logp1`p64H4q{pε4pS´1qqˆ
`

logppSAq{δq`
?
epS´1`

?
S´1qq2

˘

.

Thus, time-inhomogeneous (resp. time-homogeneous) transition models, US-IRL suffers a sample
complexity bound of order rO

´

H3SA
ε2

`

log
`

1
δ

˘

`S
˘

¯

(resp. rO
´

H2SA
ε2

`

log
`

1
δ

˘

`S
˘

¯

) matching the
lower bounds of Theorem 5.1 up to logarithmic factors for both regimes of δ.

6.2 Sketch of the Proof

The idea of the proof is to exploit Theorem 3.2 to reduce the Hausdorff distance to the L1-norm
between the transition model }ppthp¨|s,aq´php¨|s,aq}1. It is worth noting this term replaces |pppth´
phqVh| appearing in previous works [24, 19] that was comfortably bounded using Höeffding’s
inequality. In our case, the L1-norm is unavoidable due to the Hausdorff distance that implies a
worst-case choice of the reward function and, thus, of Vh. This term has to be carefully bounded using
the stronger KL-divergence concentration result of [13, Proposition 1] to get the Oplogp1{δq`Sq
rate.10

7 Conclusions and Open Questions

In this paper, we provided contributions to the understanding of the complexity of the IRL problem.
We conceived a lower bound of order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

`S
˘

¯

on the number samples collected
with a generative model in the finite-horizon setting. This result is of relevant interest since it sets, for
the first time, the complexity of the IRL problem, defined as the problem of estimating the feasible
reward set. Furthermore, we showed that a uniform sampling strategy matches the lower bound up to
logarithmic factors. Nevertheless, the IRL problem is far from being closed. In the following, we
outline a road map of open questions, hoping to inspire researchers to work in this appealing area.

Forward Model The most straightforward extension of our findings is moving to the forward model
setting, in which the agent can interact with the environment through trajectories only. As we already
noted, our lower bounds can be comfortably extended to this setting. However, in this case, the PAC
requirement has to be relaxed since controlling the L8-norm between rewards is no longer a viable
option (e.g., for the possible presence of almost unreachable states). Which distance notion should be
used for this setting? Will the Lipschitz regularity of Section 3 still hold?

Problem-Dependent Analysis Our analysis is worst-case in the class of IRL problems. Would it be
possible to obtain a problem-dependent complexity results? Previous problem-dependent analyses
provided results tightly connected to the properties of the specific reward selection procedure [24, 19].
Clearly, a currently open question, in all settings in which reward is missing, including reward-free
exploration [12] and IRL, is how to define a problem-dependent quantity in replacement of the
suboptimality gaps.

Reward Selection Our PAC guarantees concern with the complete feasible reward set. However,
algorithmic solutions to IRL implement a specific criterion for selecting a reward (e.g., maximum
entropy, maximum margin). How the PAC guarantee based on the Hausdorff distance relates to
guarantees on a single reward selected with a specific criterion within R?

Acknowledgements
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10A more naïve application of the L1-concentration of [37] would lead to the worse OpS logp1{δqq rate.
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Appendix
A Related Works

In this appendix, we discuss the related works about sample complexity analysis, lower bounds for
IRL, sample complexity analysis for specific IRL algorithms, and reward-free exploration.

Sample Complexity for Estimating the Feasible Reward Set The notion of feasible reward set R
was introduced in [25] in an implicit form in the infinite-horizon discounted case as a linear feasibility
problem and, subsequently, adapted to the finite-horizon case in [19]. Furthermore, in [24, 19] an
explicit form of the reward functions belonging to the feasible region R was provided. In these works,
the problem of estimating the feasible reward set is studied for the first time considering a “reference”
pair of rewards pr,qrqPRˆ pR against which to compare the rewards inside the recovered sets, leading
to the (pre)metric:

rHdpR,R, r,qrq :“max

"

inf
prP pR

dpr,prq, inf
rPR

dpr,qrq

*

. (8)

Compared to the Hausdorff (pre)metric (Equation 1), in Equation (8) there is no maximization over
the choice of pr,qrq, leading to a simpler problem.11 In [24], a uniform sampling approach (similar
to Algorithm 1) is proved to achieve a sample complexity of order rO

´

γ2SA
p1´γq4ε2

¯

for the index of

Equation (8) with d“dG
Q˚ in the discounted setting with generative model. For the forward model

case, the AceIRL algorithm [19] suffers a sample complexity of order rO
´

H5SA
ε2

¯

for the index of

Equation (8) with d“dF
V ˚ , in the finite-horizon case.12 Unfortunately, the reward recovered by

AceIRL reward function is not guaranteed to be bounded by a predetermined constant (e.g., r´1,1s).
Modified versions of these algorithms allow embedding problem-dependent features under a specific
choice of a reward within the set.

Sample Complexity Lower Bounds in IRL To the best of our knowledge, the only work that
proposes a sample complexity lower bound for IRL is [16]. The authors consider a finite state
and action MDP\R and the IRL algorithm of [25] for β-strict separable IRL problems (i.e., with
suboptimality gap at least β) with state-only rewards in the discounted setting. When only two actions
are available (A“2) and the samples are collected starting in each state with equal probability, by
means of a geometric construction and Fano’s inequality, the authors derive an ΩpS logSq lower
bound on the number of trajectories needed to identify a reward function. Note that this analysis
limits to the identification of a reward function within a finite set, rather than evaluating the accuracy
of recovering the feasible reward set.

Sample Complexity of IRL Algorithms Differently from forward RL, the theoretical understanding
of the IRL problem is largely less established and the sample complexity analysis proposed in the
literature often limit to specific algorithms. In the class of feature expectation approaches, the seminal
work [1] propose IRL algorithms guaranteed to output an ε-optimal policy (made of a mixture of
Markov policies) after rO

´

k
ε2p1´γq2 log

`

1
δ

˘

¯

trajectories (ideally of infinite length). The result holds
in a discounted setting (being γ the discount factor) under the assumption that the true reward function
rpsq“wTφpsq is state-only and linear in some known features φ of dimensionality k. In [35], a
game-theoretic approach to IRL, named MWAL, is proposed improving [1] in terms of computational
complexity and allowing the absence of an expert, preserving similar theoretical guarantees in the
same setting. Modular IRL [36], that integrates supervised learning capabilities in the IRL algorithm,
is guaranteed to produce an ε-optimal policy after rO

´

SA
p1´γq2ε2 log

`

1
δ

˘

¯

trajectories. This class of
algorithms, however, requires, as an inner step, to compute the optimal policy pπ for every candidate
reward function pr. This step (and the corresponding sample complexity) is somehow hidden in
the analysis since they either assume the knowledge of the transition model and apply dynamic

11In this sense, a PAC guarantee according to Definition 4.1, implies a PAC guarantee defined w.r.t. (pre)metric
of Equation (8).

12As discussed in Remark 5.1, in the forward model case, the dissimilarity is in expectation w.r.t. the worst-case
policy.
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programming [e.g., 36] or the access to a black-box RL algorithm [e.g., 1]. In the class of maximum
entropy approaches [42], the Maximum Likelihood IRL [41] converges to a stationary solution
with rOpε´2q trajectories for non-linear reward parametrization (with bounded gradient and Lipschitz
smooth), when the underlying Markov chain is ergodic. Furthermore, the authors prove that, when
the reward is linear in some features, the recovered solution corresponds to Maximum Entropy
IRL [42]. Concerning the gradient-based approaches, [27] and [29] prove finite-sample convergence
guarantee to the expert’s weight under linear parametrization as a function of the accuracy of the
gradient estimation. Surprisingly, a theoretical analysis of the IRL progenitor algorithm of [25] has
been proposed only recently in [15]. A β-strict separability setting is enforced in which the rewards
are assumed to lead to a suboptimality gap of at least βą0 when playing any non-optimal action.
For finite MDPs, known expert’s policy, under the demanding assumption that each state is reachable
in one step with a minimum probability αą0, and focusing on state-only reward, the authors prove
that the algorithm outputs a β-strict separable feasible reward in at most rO

´

1`γ2Ξ2

αβ2p1´γq4 log
`

1
δ

˘

¯

trajectories, where ΞďS is the number of possible successor states. Recently, an approach with
theoretical guarantees has been proposed for continuous states [7].

Reward-Free Exploration Reward-free exploration [RFE, 12, 14, 20] is a setting for pure ex-
ploration in MDPs composed of two phases: exploration and planning. In the exploration phase,
the agent learns an estimated transition model pp without any reward feedback. In the planning
phase, the agent is faced with a reward function r and has to output an estimated optimal policy
pπ˚, using pp since no further interaction with the environment is admitted. In this sense, RFE shares
this two-phase procedure with our IRL problem, but, instead of the planning phase, we face the
computation of the feasible reward set.13 In RFE exploration, the sample complexity is computed
against the performance of the learned policy pπ˚ under the reward r, i.e., V ˚p¨;rq´V pπ˚p¨;rq, whose
lower bound of the sample complexity has order Ω

´

H2SA
ε2

`

H log
`

1
δ

˘

`S
˘

¯

[12, 14]. The best
known algorithm, RF-Express, proposed in [20] archives an almost-matching sample complexity of
order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

`S
˘

¯

. The relevant connection with what we present in this paper is the
fact that the derivation of the lower bounds shares similarity especially in the construction of the
instances. Nevertheless, in the time-inhomogeneous case, we achieve a higher lower bound of order
Ω
´

H3SA
ε2

`

log
`

1
δ

˘

`S
˘

¯

. The connection between IRL and RFE should be investigated in future
works, as also mentioned in [19].

B Proofs

In this appendix, we report the proofs we omitted in the main paper.

B.1 Proofs of Section 3

Lemma B.1. Let r be feasible for the IRL problem pM,πEq bounded in r´1,1s (i.e., rPR) and
defined according to Lemma 3.1 as rhps,aq“´Ahps,aq1tπEh pa|sq“0u`Vhpsq´phVh`1ps,aq. Let

pxM,pπEq be an IRL problem and define for every ps,a,hqPSˆAˆJHK:

εhps,aq :“´Ahps,aq
´

1tπEh pa|sq“0u´1tpπEh pa|sq“0u

¯

`ppph´ pphqVh`1qps,aq.

Then, the reward function pr defined according to Lemma 3.1 as prhps,aq“´ pAhps,aq1tpπEh pa|sq“0u`

pVhpsq´ pph pVh`1ps,aq for every ps,a,hqPSˆAˆJHK with:

pAhps,aq“
Ahps,aq

1`ε
, pVhpsq“

Vhpsq

1`ε
, pVH`1psq“0.

where ε :“maxps,a,hqPSˆAˆJHK |εhps,aq|, is feasible for the IRL problem pxM,pπEq and bounded in
r´1,1s (i.e., prP pR).

13As shown in previous works, the computation of the feasible reward set can be formulated with a linear
feasibility problem [25].
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Proof. Given the reward function rhps,aq“´Ahps,aq1tπEh pa|sq“0u`Vhpsq´phVh`1ps,aq, we de-
fine the reward function:

rrhps,aq“´Ahps,aq1tpπEh pa|sq“0u`Vhpsq´ pphVh`1ps,aq,

that, thanks to Lemma 3.1, makes policy pπE optimal. However, it is not guaranteed that rrP pR since it
can take values larger than 1. Thus, we define the reward:

prhps,aq“
rrhps,aq

1`ε
“´

Ahps,aq

1`ε
1tpπEh pa|sq“0u`

Vh
1`ε

psq´ pph
Vh`1

1`ε
ps,aq,

which simply scales rrh and preserves the optimality of pπE . We now prove that prhps,aq is bounded in
r´1,1s. To do so, we prove that rrhps,aq is bounded in r´p1`εq,p1`εqs:

|rrhps,aq|ď|rhps,aq|`|rrhps,aq´rhps,aq|

“1`
ˇ

ˇ

ˇ
´Ahps,aq1tpπEh pa|sq“0u` pphVh`1psq´

´

´Ahps,aq1tπEh pa|sq“0u`phVh`1psq
¯
ˇ

ˇ

ˇ

“1`|εhps,aq|ď1`ε.

Theorem 3.2 (Lipschitz Continuity). Let R and pR be the feasible reward sets of the IRL problems
pM,πEq and pxM,pπEq, as in Equation (2). Then, it holds that:14

HdGpR, pRqď 2ρGppM,πEq,pxM,pπEqq

1`ρGppM,πEq,pxM,pπEqq
, (5)

where ρGp¨, ¨q is a (pre)metric between IRL problems, defined as:

ρGppM,πEq,pxM,pπEqq:“ max
ps,a,hqPSˆAˆJHK

pH´h`1q
´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´pphp¨|s,aq}1

¯

.

Proof. Let pr as defined in the proof of Lemma B.1. Then, we have:

|rhps,aq´prhps,aq|“

ˇ

ˇ

ˇ

ˇ

rhps,aq´
rrhps,aq

1`ε

ˇ

ˇ

ˇ

ˇ

ď
1

1`ε
p|rhps,aq´rrhps,aq|`ε |rhps,aq|q

ď
2ε

1`ε
.

By recalling that 2ε
1`ε is a non-decreasing function of ε, we bound it by replacing ε with an upper

bound:

ε“ max
ps,a,hqPSˆAˆJHK

|εhps,aq|

ď max
ps,a,hqPSˆAˆJHK

pH´h`1q
”
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´ pphp¨|s,aq}1

ı

“:ρGppM,πEq,pxM,pπEqq,

where we used Hölder’s inequality recalling that |Vh`1psq|ďH´h and |Ahps,aq|ďH´h`1.
Clearly, ρGppM,πEq,pxM,pπEqq is a (pre)metric.

Fact B.1. There exist two MDP\R M and xM with transition models p and pp respectively, an
expert’s policy πE and a reward function rhps,aq“´Ahps,aq1tπEpa|sq“0u`Vhpsq´phVh`1psq

feasible for the IRL problem pM,πEq bounded in r´1,1s (i.e., rPR) such that the reward function
prhps,aq“´Ahps,aq1tπEpa|sq“0u`Vhpsq´ pphVh`1ps,aq is feasible for the IRL problem pxM,πEq
not bounded in r´1,1s.

14This implies the standard Lipschitz continuity, by simply bounding 2ρGppM,πEq,p xM,pπEqq

1`ρGppM,πEq,p xM,pπEqq
ď

2ρG
ppM,πEq,pxM,pπEqq.
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Proof. We consider the MDP\R in Figure 2 with optimal policy and reward function defined for every
hPJHK and H“10 as:

πEh ps1q“a1, π
E
h ps2q“a2,

rhps1,a1q“rhps2,a1q“0, rhps1,a2q“´1, rhps2,a2q“1.

Simple calculations lead to the V-function and advantage function values:

V π
E

h ps1q“0, V π
E

h ps2q“H´h`1,

Aπ
E

h ps1,a1q“0, Aπ
E

h ps1,a2q“´1`pH´hq{10, Aπ
E

h ps2,a1q“´1´pH´hq{10, Aπ
E

h ps2,a2q“0.

We consider as alternative transition model pp“1´p. After tedious calculations we obtain the
alternative reward function:

prhps1,a1q“´pH´hq, prhps1,a2q“1´pH´hq, prhps2,a1q“H´h`2, prhps2,a2q“H´h`1.

It is simple to observe that for some ps,a,hq we have |prhps,aq|ą1.

s1 s2a1 a2

a2

a1

9{10

1{10

1{10

9{10

Figure 2: The MDP\R employed in Fact B.1.

B.2 Proofs of Section 4

Theorem 4.1 (Relationships between d-IRL problems). Let us introduce the graphical convention
for cą0:

x-IRL y-IRLc

meaning that any pε,δq-PAC x-IRL algorithm is pcε,δq-PAC y-IRL. Then, the following statements
hold:

dG-IRL dG
Q˚ -IRL dG

V ˚ -IRL .

2H

H 2H

Proof. Let A be an pε,δq-PAC dG-IRL algorithm. This means that with probability at least 1´δ, we
have that for any IRL problem HdGpR, pRτ qďε. We introduce the following visitation distributions,
defined for every s,s1 PS, h, lPJHK with lěh, and a,a1 PA:

ηπs,a,h,lps
1,a1q“ P

M,π

`

sl“s
1,al“a

1|sh“s,ah“a
˘

, ηπs,h,lps
1,a1q“

ÿ

aPA
πhpa|sqη

π
s,a,h,lps

1,a1q.

dG-IRLÑ dG
Q˚ -IRL Let us consider the optimal Q-function difference and let π˚ an optimal policy

under the reward function r, we have:

Q˚hps,a;rq´Q˚hps,a;prqďQπ
˚

h ps,a;rq´Qπ
˚

h ps,a;prq

16



“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1,a1qprlps

1,a1q´prlps
1,a1qq

ď max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|
H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1,a1q

loooooooooooooomoooooooooooooon

“1

“pH´h`1q max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|

ďH max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|.

As a consequence, we have:

HdG
Q˚
pR, pRτ qďHHdGpR, pRτ q.

dG-IRLÑ dG
V ˚ -IRL Let us consider the value functions and let π˚ (resp. pπ˚) be an optimal policy

under reward function r (resp. pr), we have:

V ˚h ps;rq´V
pπ˚

h ps;rq“V π
˚

h ps;rq´V pπ˚

h ps;rq˘V pπ˚

h ps;prq

ďV π
˚

h ps;rq´V π
˚

h ps;prq`V pπ˚

h ps;prq´V pπ˚

h ps;rq

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1,a1qprlps

1,a1q´prlps
1,a1qq

`

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1,a1qpprlps

1,a1q´rlps
1,a1qq

ď max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|

ˆ

¨

˝

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1,a1q`

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1,a1q

˛

‚

“2pH´h`1q max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|

ď2H max
ps,a,h1qPSˆAˆJHK

|rh1ps,aq´prh1ps,aq|.

Thus, it follows that:

HdG
V˚
pR, pRτ qď2HHdGpR, pRτ q.

dG
Q˚ -IRL Ñ dG

V ˚ -IRL To prove this result, we need to introduce further tools. Specifically, we
introduce the Bellman optimal operator and the Bellman expectation operator, defined for a reward
function r, policy π, ps,hqPSˆJHK and function fh :SÑR defined for hPJHK with fH`1“0:

T˚r,hfhpsq“max
aPA

trhps,aq`phfh`1ps,aqu , Tπr,hfhpsq“πh prhps,aq`phfh`1ps,aqq .

We recall the fixed-point properties: Tπr,hV
π
h “V

π
h and T˚r,hV

˚
h “V

˚
h . Let π˚ (resp. pπ˚) be an optimal

policy under reward r (resp. pr). Let us consider the following derivation:

V ˚h ps;rq´V
pπ˚

h ps;rq“T˚r,hV
˚
h ps;rq´T

pπ˚

r,hV
pπ˚

h ps;rq˘Tπ
˚

r,hV
˚
h ps;prq˘T

π˚

pr,hV
˚
h ps;prq˘T

˚
pr,hV

˚
h ps;prq˘T

pπ˚

r,hV
pπ˚

h ps;prq

“Tπ
˚

r,hV
˚
h ps;rq´T

π˚

r,hV
˚
h ps;prq`T

π˚

r,hV
˚
h ps,prq´T

π˚

pr,hV
˚
h ps;prq`T

π˚

pr,hV
˚
h ps;prq´T

˚
pr,hV

˚
h ps;prq

loooooooooooooooomoooooooooooooooon

ď0

`T pπ˚

pr,hV
˚
h ps;prq´T

pπ˚

r,hV
˚
h ps;prq`T

pπ˚

r,hV
˚
h ps;prq´T

pπ˚

r,hV
pπ˚

h ps;rq

ďπ˚hphpV
˚
h`1p¨;rq´V

˚
h`1p¨;prqqpsq`π

˚
hprh´prhqpsq
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`pπ˚hpprh´rhqpsq`pπ˚hphpV
˚
h`1p¨;prq´V

pπ˚

h`1p¨;rqqpsq

“pπ˚h´pπ˚hqpQ
˚
hp¨;rq´Q

˚
hp¨;prqqpsq`pπ˚hphpV

˚
h`1p¨;rq´V

pπ˚

h`1p¨;rqqpsq.

Let us apply the L8-norm over the state space and the triangular inequality, we have:
›

›

›
V ˚h p¨;rq´V

pπ˚

h p¨;rq
›

›

›

8
ď}pπ˚h´pπ˚hqpQ

˚
hp¨;rq´Q

˚
hp¨;prqqp¨q}8`

›

›

›
pπ˚hphpV

˚
h`1p¨;rq´V

pπ˚

h`1p¨;rqqp¨q
›

›

›

8

ď2}Q˚hp¨;rq´Q
˚
hp¨;prqqp¨q}8`

›

›

›
V ˚h`1p¨;rq´V

pπ˚

h`1p¨;rq
›

›

›

8
.

By unfolding the recursion over h, we obtain:

›

›

›
V ˚h p¨;rq´V

pπ˚

h p¨;rq
›

›

›

8
ď2

H
ÿ

l“h

}Q˚l p¨;rq´Q
˚
l p¨;prqqp¨q}8 .

Thus, we have:

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚h ps;rq´V

pπ˚

h ps;rq
ˇ

ˇ

ˇ
ď2H max

ps,a,hqPSˆAˆJHK
|Q˚hps,a;rq´Q˚hps,a;prq| .

Since the derivation is carried out for arbitrary pπ˚, it follows that:

HdG
V˚
pR, pRτ qď2HHdG

Q˚
pR, pRτ q.

B.3 Proofs of Section 5

Theorem 5.1 (Lower Bound for dG-IRL). Let A“pµ,τq be an pε,δq-PAC algorithm for dG-IRL.
Then, there exists an IRL problem pM,πEq such that, if εď1{64, δď1{32, Sě9, Aě2, and Hě12,
the expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H3SA

ε2

ˆ

log

ˆ

1

δ

˙

`S

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

`S

˙˙

,

where EpM,πEq,A denotes the expectation w.r.t. the probability measure PpM,πEq,A.

Proof. We put together the results of Theorem B.2 and Theorem B.3, by recalling that maxta,buě
a`b

2 , or, equivalently, assuming to observe instances like the ones of Theorem B.2 w.p. 1{2 as well as
those of Theorem B.3.

Theorem B.2. Let A“pµ,τq be an pε,δq-PAC algorithm for dG-IRL. Then, there exists an IRL
problem pM,πEq such that, if εď1{2, δă1{16, Sě9, Aě2, and Hě12, the expected sample
complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H3SA

ε2
log

ˆ

1

δ

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ sěΩ

ˆ

H2SA

ε2
log

ˆ

1

δ

˙˙

.
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Proof. Step 1: Instances Construction The construction of the hard MDP\R instances follows
similar steps as the ones presented in the constructions of lower bounds for policy learning [8]
and the hard instances are reported in Figure 3 in a semi-formal way. The state space is given
by S“tsstart,sroot,s´,s`,s1, . . . ,sSu and the action space is given by A“ta0,a1, . . . ,aAu. The
transition model is described below and the horizon is Hě3. We introduce the constant H PJHK,
whose value will be chosen later. Let us observe, for now, that if H“1, the transition model is
time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage hăH ,
then there is probability 1{2 to remain in sstart and a probability 1{2 to transition to sroot. Instead,
if hěH , the state transitions to sroot deterministically. From state sroot, every action has the same
effect and the state transitions with equal probability 1{S to a state si with iPJSK. In all states si,
apart from a specific one, i.e., state s˚, all actions have the same effect, i.e., transitioning to states
s´ and s` with equal probability 1{2. State s˚ behaves as the other ones if the stage h‰h˚, where
h˚ PJHK is a predefined stage. If, instead, h“h˚, all actions aj‰a˚ behave like in the other states,
while for action a˚, we have a 1{2`ε1 probability of reaching s` (and consequently probability
1{2´ε1 of reaching s´), with ε1 Pr0,1{4s. Notice that, having fixed H , the possible values of h˚ are
t3, . . . ,2`Hu. States s` and s´ are absorbing states. The expert’s policy always plays action a0.

Let us consider the base instance M0 in which there is no state behaving like s˚. Additionally, by
varying the triple ` :“ps˚,a˚,h˚qPts1, . . . ,sSuˆta1, . . . ,aAuˆJ3,H`2K“:I, we can construct
the class of instances denoted by M“tM` :`Pt0uYIu.

sstart

sroot

. . . . . .s˚s1 sS

s`s´

hăH w.p. 1
2

w.p. 1
2 or hěH

w.p. 1
S

w.p. 1
S

w.p. 1
S

w.p. 1
2

w.p. 1
2w.p. 1

2

w.p. 1
2

h“h˚ w.p. 1
2`ε

1h“h˚ w.p. 1
2´ε

1

w.p. 1
2w.p. 1

2

Figure 3: Semi-formal representation of the the hard instances MDP\R used in the proof of Theo-
rem B.2.
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Step 2: Feasible Set Computation Let us consider an instance M` PM, we now seek to provide
a lower bound to the Hausdorff distance HdG pRM0 ,RM`

q. To this end, we focus on the triple
`“ps˚,a˚,h˚q and we enforce the convenience of action a0 over action a˚. For the base MDP\R
M0, let r0 PRM0

, we have:

r0
h˚ps˚,a0q`

1

2

H
ÿ

l“h˚`1

`

r0
l ps´q`r

0
l ps`q

˘

ěr0
h˚ps˚,a˚q`

1

2

H
ÿ

l“h`1

`

r0
l ps´q`r

0
l ps`q

˘

ùñ r0
h˚ps˚,a0qěr

0
h˚ps˚,a˚q,

For the alternative MDP\R M`, let r` PRM`
, we have:

r`h˚ps˚,a0q`
1

2

H
ÿ

l“h˚`1

`

r`l ps´q`r
`
l ps`q

˘

ěr`h˚ps˚,a˚q`
H
ÿ

l“h˚`1

ˆˆ

1

2
´ε1

˙

r`l ps´q`

ˆ

1

2
`ε1

˙

r`l ps`q

˙

ùñ r`h˚ps˚,a0qěr
`
h˚ps˚,a˚q´ε

1

H
ÿ

l“h˚`1

`

r`l ps´q´r
`
l ps`q

˘

.

In order to lower bound the Hausdorff distance HdG pRM0 ,RM`
q, we proceed as follows:

HdG pRM0
,RM`

q“max

#

sup
r0PRM0

inf
r`PRM`

dGpr0, r`q, sup
r`PRM`

inf
r0PRM0

dGpr`, r0q

+

ě sup
r`PRM`

inf
r0PRM0

dGpr`, r0q

ě inf
r0PRM0

dGpr`, r0q,

for a specific choice of the reward function r` for M` defined as:

r`l ps´q“´r
`
l ps`q“1, r`h˚ps˚,a˚q“1, r`h˚ps˚,a0q“1´2ε1pH´h˚q,

where we enforce ε1ďminh˚PJ3,H`2K 1{pH´h˚q“1{pH´3qď1{4 (which is guaranteed for Hě
7) to ensure r`h˚ps˚,a0qě´1. Then, for notational convenience, for the MDP\R M0, we set
y :“r0

h˚
ps˚,a0q and x :“r0

h˚
ps˚,a˚q:

HdG pRM0 ,RM`
qě min

x,yPr´1,1s
yěx

max
 

|x´1| ,
ˇ

ˇy´1`2ε1pH´h˚q
ˇ

ˇ

(

“ε1pH´h˚q.

We enforce the following constraint on this quantity:

@h˚ PJ3,H`2K : pH´h˚qε
1ě2εùñ ε1ě max

h˚PJ3,H`2K

2ε

pH´h˚q
“

2ε

pH´H´2q
. (9)

Notice that ε1ď1{4 whenever HěH`10. This latter condition, together with ε1ď1{pH´3q,
implies εď H´H´2

2pH´3q that is satisfied for εď1{2.

Step 3: Lower bounding Probability Let us consider an pε,δq-correct algorithm A that outputs
the estimated feasible set pR. Thus, for every ıPI, we can lower bound the error probability:

δě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ěε
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ěε
¯

ě max
`Pt0,ıu

P
pM`,πq,A

´

HdG

´

RM`
, pR

¯

ěε
¯

.

For every ıPI, let us define the identification function (whose dependence on the estimated feasible
reward set pR is omitted to avoid a too heavy notation):

Ψı :“argmin
`Pt0,ıu

HdG

´

RM`
, pR

¯

.
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Let Pt0, ıu. If Ψı“, then, HdGpRMΨı
,RMq“0. Otherwise, if Ψı‰, we have:

HdG

`

RMΨı
,RM

˘

ďHdG

´

RMΨı
, pR

¯

`HdG

´

pR,RM

¯

ď2HdG

´

pR,RM

¯

,

where the first inequality follows from triangular inequality and the second one from the definition
of identification function Ψı. From Equation (9), we have that HdG

`

RMΨı
,RM

˘

ě2ε. Thus, it

follows that HdG

´

pR,RM

¯

ěε. This implies the following inclusion of events for Pt0, ıu:
!

HdG

´

pR,RM

¯

ěε
)

ĚtΨı‰u .

Thus, we can proceed by lower bounding the probability:

max
`Pt0,ıu

P
pM`,πq,A

´

HdG

´

RM`
, pR

¯

ěε
¯

ě max
`Pt0,ıu

P
pM`,πq,A

pΨı‰`q

ě
1

2

„

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı‰ ıq



“
1

2

„

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı“0q



,

where the second inequality follows from the observation that maxta,buě 1
2 pa`bq and the equality

from observing that Ψı Pt0, ıu. The intuition behind this derivation is that we lower bound the
probability of making a mistake ěε with the probability of failing in identifying the true underlying
problem. We can now apply the Bretagnolle-Huber inequality [17, Theorem 14.2] (also reported in
Theorem D.1 for completeness) with P“PpM0,πq,A, Q“PpM0,πqA, and A“tΨı‰0u:

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı“0qě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.

Step 4: KL-divergence Computation Let MPM, we denote with PpM,πq,A the joint probability
distribution of all events realized by the execution of the algorithm in the MDP\R (the presence of π
is irrelevant as we assume it known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst,at,ht|Ht´1qphtps
1
t|st,atq.

where ρt is the sampling distribution induced by the algorithm A and Ht´1“

ps1,a1,h1,s
1
1, . . . ,st´1,at´1,ht´1,s

1
t´1q is the history. Let ıPI and denote with p0 and pı

the transition models associated with M0 and Mı. Let us now move to the KL-divergence:

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

log
p0
ht
ps1t|st,atq

pıhtps
1
t|st,atq

ff

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

p0
htp¨|st,atq,p

ı
htp¨|st,atq

˘

ff

ď E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

DKL

´

p0
h˚p¨|s˚,a˚q,p

ı
h˚p¨|s˚,a˚q

¯

ď8pε1q2 E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

.

having observed that the transition models differ in ı“ps˚,a˚,h˚q and defined Nτ
h˚
ps˚,a˚q“

řτ
t“11tpst,at,htq“ps˚,a˚,h˚qu and the last passage is obtained by Lemma D.4 with D“2 (and

ε“2ε1). Putting all together, we have:

δě
1

4
exp

ˆ

´8 E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

pε1q2
˙

ùñ E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

ě
log 1

4δ

8pε1q2
“
pH´H´2q2 log 1

4δ

32ε2
.

Thus, since we have lower bounded the sample complexity considering the pair of MDPs tM0,Mıu,
we can proceed at summing over ps˚,a˚,h˚qPI to obtain:

E
pM0,πq,A

rτ sě
ÿ

ps˚,a˚,h˚qPI

E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı
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“
ÿ

ps˚,a˚,h˚qPI

pH´H´2q2 log 1
4δ

32ε2

“
SAHpH´H´2q2

32ε2
log

1

4δ
.

The number of states is given by S“|S|“S`4, the number of actions is given by A“|A|“A`1.
Let us first consider the time-homogeneous case, i.e., H“1:

E
pM0,πq,A

rτ sě
pS´4qpA´1qpH´3q2

32ε2
log

1

4δ
.

For δă1{16, Sě9, Aě2, Hě10, we obtain:

E
pM0,πq,A

rτ sěΩ

ˆ

SAH2

ε2
log

1

δ

˙

.

For the time-inhomogeneous case, instead, we select H“H{2, to get:

E
pM0,πq,A

rτ sě
pS´4qpA´1qpH{2qpH´H{2´2q2

ε2
log

1

4δ
.

For δă1{16, Sě9, Aě2, Hě12, we obtain:

E
pM0,πq,A

rτ sěΩ

ˆ

SAH3

ε2
log

1

δ

˙

.

Theorem B.3. Let A“pµ,τq be an pε,δq-PAC algorithm for dG-IRL. Then, there exists an IRL
problem pM,πEq such that, if εď1{64, δď1{2, Sě16, Aě2, Hě131, the expected sample
complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ sě
1

5120

S2AH3

ε2
;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ sě
1

2560

S2AH2

ε2
.

Proof. Step 1: Instances Construction The construction of the hard MDP\R instances for this sec-
ond bound follows steps similar to those of reward free exploration [12] and the instances are reported
in Figure 4 in a semi-formal way. The state space is given by S“tsstart,sroot,s1, . . . ,sS ,s

1
1, . . . ,s

1

S
u

and the action space is given by A“ta0,a1, . . . ,aAu. We assume S to be divisible by 16. The
transition model is described below and the horizon is Hě3.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage
hăH (H PJHK, whose value will be chosen later), then there is probability 1{2 to remain in
sstart and a probability 1{2 to transition to sroot. Instead, if hěH , the state transitions to sroot
deterministically. From state sroot, every action has the same effect and the state transitions with equal
probability 1{S to a state si with iPJSK. In every state si and every stage h, action a0 allows reaching
states s11, . . . ,s

1

S
with equal probability 1{S. Instead, by playing the other actions aj with jě1 at

stage h, the probability distribution of the next state is given by phps1k|si,ajq“p1`ε
1v
psi,aj ,hq
k q{S

where the vector vpsi,aj ,hq“pvpsi,aj ,hq1 , . . . ,v
psi,aj ,hq

S
qPV , where V :“tt´1,1uS :

řS
j“1 vj“0u and

ε1 Pr0,1{2s. Notice that, having fixedH , the possible values of h are t3, . . . ,2`Hu. States s11, . . . ,s
1

S
are absorbing states. The expert’s policy always plays action a0.
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sstart

sroot

. . . . . .s1 sS

s11 s12 s1
S

. . .

hăH w.p. 1
2

w.p. 1
2 or hěH

w.p. 1
S

w.p. 1
S

aj w.p. 1`ε1v
ps
S
,aj,hq

1

S

aj w.p. 1`ε1v
ps
S
,aj,hq

2

S
aj w.p.

1`ε1v
ps
S
,aj,hq

S

S
aj w.p. 1`ε1v

ps1,aj,hq

1

S

aj w.p. 1`ε1v
ps1,aj,hq

2

S

aj w.p.
1`ε1v

ps1,aj,hq

S

S

Figure 4: Semi-formal representation of the the hard instances MDP\R used in the proof of Theo-
rem B.3.

Let us introduce the set I :“ts1, . . . ,sSuˆta1, . . . ,aAuˆJ3,H`2K. Let v“pvıqıPI PVI which is
the set of vectors having as components the elements vı determining the probability distribution of
the next state starting from the triple ıPI. We denote with Mv the MDP\R induced by v. We can
construct the class of instances denoted by M“tMv :vPVIu. Moreover, we denote with M

v
ı
Ðw

the instance in which we replace the ı component of v, i.e., vı, with wPV and M
v
ı
Ð0

the instance in
which we replace the ı component of v, i.e., vı, with the zero vector.

Step 2: Feasible Set Computation Thanks to Lemma D.6, we know that there exists a subset VĂV
of cardinality at least |V|ě2S{5 such that for every v,wPV with v‰w we have

řS
j“1 |vj´wj |ě

S{16. Thus, we consider the set VI
ĂVI . The instances will be defined in terms of a vector vPVI

and we will use v,wPV with v‰w to build the alternative instances. Let ıPI, the induced instances
are denoted by M

v
ı
Ðv
,M

v
ı
Ðw
PM.

To lower bound the Hausdorff distance, we focus on the triple ı“ps˚,a˚,h˚q and we enforce the
convenience of action a0 over action a˚. For both MDP\R M

v
ı
Ðv

and M
v
ı
Ðw

, let rv PRM
v
ı
Ðv

and
rw PRM

v
ı
Ðw

, we have:

rvh˚ps˚,a0q`
1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rvl ps
1
jqěr

v
h˚ps˚,a˚q`

H
ÿ

l“h˚`1

S
ÿ

j“1

1`ε1vj

S
rvl ps

1
jq

ùñ rvh˚ps˚,a0qěr
v
h˚ps˚,a˚q`

ε1

S

S
ÿ

j“1

vj

H
ÿ

l“h˚`1

rvl ps
1
jq.

rwh˚ps˚,a0q`
1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rwl ps
1
jqěr

w
h˚ps˚,a˚q`

H
ÿ

l“h˚`1

S
ÿ

j“1

1`ε1wj

S
rwl ps

1
jq

ùñ rwh˚ps˚,a0qěr
w
h˚ps˚,a˚q`

ε1

S

S
ÿ

j“1

wj

H
ÿ

l“h˚`1

rwl ps
1
jq. (10)
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In order to lower bound the Hausdorff distance HdG

`

M
v
ı
Ðv
,M

v
ı
Ðw

˘

, we proceed as in the proof of
Theorem B.2 and we set for M

v
ı
Ðv

:

rvl ps
1
jq“´vj , r

v
h˚ps˚,a˚q“1, rvh˚ps˚,a0q“1´ε1pH´h˚q,

where we enforce ε1ďminh˚PJ3,H`2K 1{pH´h˚q“1{pH´3qď1{4 for Hě7. We now want to
find the closest reward function rw for the instance M

v
ı
Ðw

, recalling that there are at least S{16
components of the vectors v and w that are different. Clearly, we can set rwl ps

1
jq“r

v
l ps

1
jq“´vj for

all j PJSK in which vj“wj since this will not increase the Hausdorff distance and will make the
constraint in Equation (10) less restrictive. For symmetry reasons, we can limit our reasoning to the
case in which vj“´1 and wj“1 for the terms j in which they are different. This way, we have
rvl ps

1
jq“1 and the constraint becomes:

rwh˚ps˚,a0q
looooomooooon

“:y

ěrwh˚ps˚,a˚q
looooomooooon

“:x

´
Nv,w

S
ε1pH´h˚q

`

ˆ

1´
Nv,w

S

˙

ε1pH´h˚q
1

SpH´h˚q
´

1´
Nv,w
S

¯

S
ÿ

j:vj‰wj

H
ÿ

l“h˚`1

rwl ps
1
jq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“:z

,

where Nv,w“
řS
j“11tvj“wju. Notice that zPr´1,1s. Let α“ Nv,w

S
, the Hausdorff distance can

be lower bounded by:
HdG

`

M
v
ı
Ðv
,M

v
ı
Ðw

˘

ě min
x,y,zPr´1,1s

yěx´αε1pH´h˚q`p1´αqε
1
pH´h˚qz

max
 

|x´1|, |y´p1´ε1pH´h˚qq|, |z´1|
(

ě min
x,yPr´1,1s

yěx´αε1pH´h˚q

max
 

|x´1|, |y´p1´ε1pH´h˚qq|
(

“
1

2
p1´αqε1pH´h˚qě

ε1

32
pH´h˚q,

where the first inequality derives from considering the aggregate term z instead of the individual
rewards rwl ps

1
jq (observing that in the base instance M

v
ı
Ðv

the corresponding z term takes value 1),
the second inequality follows from the fact that to have a Hausdorff distance smaller than 1, we must
take zą0 at least and, consequently, we ignore the term |z´1| in the maximum and we take z“0
as the less restrictive case in the constraint involving x and y (being p1´αqε1pH´h˚qě0), and the
third inequality is obtained by recalling that 1´αě 1

16 for the packing argument.

We enforce the following constraint on this quantity:

@h˚ PJ3,H`2K :
ε1

32
pH´h˚qě2εùñ ε1ě max

h˚PJ3,H`2K

64ε

H´h˚
“

64ε

H´H´2
. (11)

Notice that ε1ď1{2 whenever HěH`130. This latter condition, together with ε1ď1{pH´3q,
implies εď H´H´2

64pH´3q that is satisfied for εď1{64.

Step 3: Lower bounding Probability Let us consider an pε,δq-correct algorithm A that outputs the
estimated feasible set pR. Thus, consider ıPI and vPVI

, we can lower bound the error probability:

δě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ěε
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ěε
¯

ěmax
wPV

P
pM

v
ı
Ðw

,πq,A

´

HdG

´

RM
v
ı
Ðw
, pR

¯

ěε
¯

.

For every ıPI and vPVI
, let us define the identification function (whose dependence on the estimated

feasible reward set pR is omitted to avoid a too heavy notation):

Ψı,v :“argmin
wPV

HdG

´

RM
v
ı
Ðw
, pR

¯

.
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Let wPV . If Ψı,v“w, then, HdGpRM
v
ı
ÐΨı,v

,RM
v
ı
Ðw
q“0. Otherwise, if Ψı,v‰w, we have:

HdGpRM
v
ı
ÐΨı,v

,RM
v
ı
Ðw
qďHdGpRM

v
ı
ÐΨı,v

, pRq`HdGp pR,RM
v
ı
Ðw
qď2HdGp pR,RM

v
ı
Ðw
q,

where the first inequality follows from triangular inequality and the second one from the definition
of identification function Ψı,v. From Equation (11), we have that HdGpRM

v
ı
ÐΨı,v

,RM
v
ı
Ðw
qě2ε.

Thus, it follows that HdGp pR,RM
v
ı
Ðw
qěε. This implies the following inclusion of events for wPV:

!

HdGp pR,RM
v
ı
Ðw
qěε

)

ĚtΨı,v‰wu .

Thus, we can proceed by lower bounding the probability:

max
wPV

P
pM

v
ı
Ðw

,πq,A

´

HdG

´

RM
v
ı
Ðw
, pR

¯

ěε
¯

ěmax
wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v‰wq

ě
1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v‰wq ,

where the second inequality follows from bounding the maximum of probability with the average.
We can now apply the Fano’s inequality (Theorem D.2) with reference probability P0“PpM

v
ı
Ð0
,πq,A,

Pw“PpM
v
ı
Ðw

,πq,A, and Aw“tΨı,v‰wu:

1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v‰wqě1´

1

log |V|

¨

˝

1

|V|

ÿ

wPV

DKL

˜

P
pM

v
ı
Ðw

,πq,A
, P
pM

v
ı
Ð0
,πq,A

¸

´ log2

˛

‚.

(12)

Step 4: KL-divergence Computation Let M be an instance, we denote with PpM,πq,A the joint
probability distribution of all events realized by the execution of the algorithm in the MDP\R (the
presence of π is irrelevant as we assume it known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst,at,ht|Ht´1qphtps
1
t|st,atq.

where ρt is the sampling distribution induced by the algorithm A and Ht´1“

ps1,a1,h1,s
1
1, . . . ,st´1,at´1,ht´1,s

1
t´1q is the history up to time t´1. Let ıPI and vPV

and denote with pv
ı
Ð0 and pv

ı
Ðw the transition models associated with M

v
ı
Ð0

and M
v
ı
Ðw

. Let us
now move to the KL-divergence and denoting ı“ps˚,a˚,h˚q: Thus, we have:

DKL

˜

P
pM

v
ı
Ðw

,πq,A
, P
pM

v
ı
Ð0
,πq,A

¸

“ E
pM

v
ı
Ðw

,πq,A

«

τ
ÿ

t“1

DKL

´

pv
ı
Ðw
ht p¨|st,atq,p

v
ı
Ð0
ht p¨|st,atq

¯

ff

ď E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚,a˚q

ı

DKL

´

pv
ı
Ðw
h˚ p¨|s˚,a˚q,p

v
ı
Ð0
h˚ p¨|s˚,a˚q

¯

ď2pε1q2 E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚,a˚q

ı

,

having observed that the transition models differ in ı“ps˚,a˚,h˚q and defined Nτ
h˚
ps˚,a˚q“

řτ
t“11tpst,at,htq“ps˚,a˚,h˚qu and the last passage is obtained by Lemma D.4 with D“S.

Plugging into Equation (12), we obtain:

δě
1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v‰wq ùñ

1

|V|

ÿ

wPV

E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚,a˚q

ı

ě
p1´δq log |V|´ log2

2pε1q2
.

Since the derivation is carried out for every ıPI and vPVI
, we can perform the summation over ı

and the average over v:
ÿ

ıPI

1

|V||I|
ÿ

vPVI

1

|V|

ÿ

wPV

E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚,a˚q

ı

“
1

|V||I|
ÿ

vPVI

ÿ

ıPI
E

pMv,πq,A

”

Nτ
h˚ps˚,a˚q

ı
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ěSAH
p1´δq log |V|´ log2

2pε1q2
.

Notice that we get a guarantee on a mean under the uniform distribution of the instances of the sample
complexity. Thus, there must exist one vhard PV such that:

E
pMvhard,πq,A

rτ sě
ÿ

ıPI
E

pMvhard,πq,A

”

Nτ
h˚ps˚,a˚q

ı

ěSAH
p1´δq log |V|´ log2

2pε1q2
.

Then, we select δď1{2, recall that |V|ě2S{5, we get:

E
pMvhard,πq,A

rτ sěSAH
S{10´ log2

2pε1q2
“SAH

pH´H´2q2pS{10´ log2q

8192ε2

The number of states is given by S“|S|“2S`2, the number of actions is given by A“|A|“A`1.
Let us first consider the time-homogeneous case, i.e., H“1, for Sě16, Aě2, Hě130, we have:

E
pMvhard,πq,A

rτ sěΩ

ˆ

S2AH2

ε2

˙

.

For the time inhomogeneous case, we select H“H{2, to get, under the same conditions:

E
pMvhard,πq,A

rτ sěΩ

ˆ

S2AH3

ε2

˙

.

B.4 Proofs of Section 6

Theorem 6.1 (Sample Complexity of US-IRL). Let εą0 and δPp0,1q, US-IRL is pε,δq-PAC for
dG-IRL and with probability at least 1´δ it stops after τ samples with:

• if the transition model p is time-inhomogeneous:

τď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

`pS´1qC

˙

,

where C“1` logp1`p64H4q{pε4pS´1qqˆ
`

logppSAHq{δq`
?
epS´1`

?
S´1qq2

˘

;
• if the transition model p is time-homogeneous:

τď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

`pS´1q rC

˙

,

where rC“1` logp1`p64H4q{pε4pS´1qqˆ
`

logppSAq{δq`
?
epS´1`

?
S´1qq2

˘

.

Proof. We start with the case in which the transition model is time-inhomogeneous. In this case, we
introduce the following good event:

E :“

#

@tPN, @ps,a,hqPSˆAˆJHK :DKL

´

ppthp¨|s,aq,php¨|s,aq
¯

ď
β
`

nthps,aq, δ
˘

nthps,aq

+

,

where ph is the true transition model and ppth is its estimate via Equation (3) at time t. Thanks to
Lemma B.4, we have that PpM,πEq,ApEqě1´δ. Thus, under the good event E , we apply Theo-
rem 3.2:

HdGpR, pRτ qď
2ρGppM,πEq,pxMt,pπE,tqq

1`ρGppM,πEq,pxMt,pπE,tqq

ď2ρGppM,πEq,pxMt,pπE,tqq

ď2 max
ps,a,hqPSˆAˆJHK

pH´h`1q
´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπE,th pa|sq“0u

ˇ

ˇ

ˇ
`
›

›php¨|s,aq´ ppthp¨|s,aq
›

›

1

¯
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ď2 max
ps,a,hqPSˆAˆJHK

pH´h`1q
›

›php¨|s,aq´ ppthp¨|s,aq
›

›

1

ď2
?

2 max
ps,a,hqPSˆAˆJHK

pH´h`1q

c

DKL

´

ppthp¨|s,aq,php¨|s,aq
¯

“ max
ps,a,hqPSˆAˆJHK

Cthps,aq,

where we exploited the fact that the expert’s policy is known in the last but one pas-
sage and used Pinsker’s inequality in the last passage. When US-IRL stops we have that
maxps,a,hqPSˆAˆJHK Cthps,aqďε and, consequently, for all ps,a,hqPSˆAˆJHK we have:

max
ps,a,hqPSˆAˆJHK

Cthps,aq“ max
ps,a,hqPSˆAˆJHK

2
?

2pH´h`1q

d

β
`

nthps,aq, δ
˘

nthps,aq
ďε.

Thus, the algorithm stops at the smallest t such that:

ùñ nthps,aqě
8pH´h`1q2β

`

nthps,aq, δ
˘

ε2

“
8pH´h`1q2

ε2
`

logpSAH{δq`pS´1q logpep1`nthps,aq{pS´1qq
˘

.

Thus, by applying Lemma 15 of [14], we obtain:

nτhps,aqď
8pH´h`1q2

ε2

ˆ

log

ˆ

SAH

δ

˙

`pS´1q

ˆ

˜

1` log

˜

1`
64pH´h`1q4

ε4pS´1q

ˆ

log

ˆ

SAH

δ

˙

`
?
epS´1`

?
S´1q

˙2
¸¸¸

.

By recalling that τ“SAHnτhps,aq, and bounding H´h`1ďH , we obtain:

τď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

`pS´1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS´1q

ˆ

log

ˆ

SAH

δ

˙

`
?
epS´1`

?
S´1q

˙2
¸¸¸

.

If the transition model is time-homogeneous, we suppress the subscript h and the algorithm
US-IRL will merge together all the samples collected at different stages h. Let us define
ntps,aq“

řH
h“1n

t
hps,aq and ntps,a,s1q“

řH
h“1n

t
hps,a,s

1q. Now the transition model will be esti-
mated straightforwardly as follows:

pptps1|s,aq :“

#

ntps,a,s1q
ntps,aq if ntps,aqą0

1
S otherwise

.

Let us consider now the following good event:

rE :“

#

@tPN, @ps,aqPSˆA :DKL

´

pptp¨|s,aq,pp¨|s,aq
¯

ď
rβ
`

ntps,aq, δ
˘

ntps,aq

+

.

Thanks to Lemma B.4, we have that PpM,πEq,Ap
rEqě1´δ. Thus, in such a case, thanks to Theo-

rem 3.2, we have:

HdGpR, pRτ qď2
?

2 max
ps,a,hqPSˆAˆJHK

pH´h`1q

c

DKL

´

pptp¨|s,aq,pp¨|s,aq
¯

“ max
ps,a,hqPSˆAˆJHK

rCthps,aq.

The algorithm, therefore, stops as soon as:

max
ps,a,hqPSˆAˆJHK

rCthps,aq“ max
ps,a,hqPSˆAˆJHK

2
?

2pH´h`1q

d

rβ
`

ntps,aq, δ
˘

ntps,aq

“ max
ps,aqPSˆA

2
?

2H

d

rβ
`

ntps,aq, δ
˘

ntps,aq
ďε.
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This allows us to compute the maximum value of nτ ps,aq:

nτ ps,aqďď
8H2

ε2

ˆ

log

ˆ

SA

δ

˙

`pS´1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS´1q

ˆ

log

ˆ

SA

δ

˙

`
?
epS´1`

?
S´1q

˙2
¸¸¸

.

Recalling that τ“SAnτ ps,aq, we obtain:

τď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

`pS´1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS´1q

ˆ

log

ˆ

SA

δ

˙

`
?
epS´1`

?
S´1q

˙2
¸¸¸

.

Lemma B.4. The following statements hold:

• for β
`

n,δ
˘

“ logpSAH{δq`pS´1q log
`

ep1`n{pS´1q
˘

, we have that PpEqě1´δ;

• for rβ
`

n,δ
˘

“ logpSA{δq`pS´1q log
`

ep1`n{pS´1q
˘

, we have that PprEqě1´δ.

Proof. Let us start with the first statement. Similarly to Lemma 10 of [14], we apply first a union
bound and, then, technical Proposition 1 of [13] (also reported as Lemma D.3 for completeness) to
concentrate the KL-divergence:

PpEcq“P

˜

DtPN, Dps,a,hqPSˆAˆJHK :DKL

´

ppthp¨|s,aq,php¨|s,aq
¯

ě
β
`

nthps,aq, δ
˘

nthps,aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

P

˜

DtPN :DKL

´

ppthp¨|s,aq,php¨|s,aq
¯

ě
β
`

nthps,aq, δ
˘

nthps,aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

SAH
“δ.

The proof of the second statement is analogous having simply observed that the union bound has to
be performed over SˆA only.

B.5 Non-Lipschitz Continuous Restricted Feasible Reward Sets

In this section, we illustrate three cases restricted feasible reward sets that turn out not to fulfill the
thesis of Theorem 3.2. These examples, representing strict subsets of the feasible reward functions
of Equation (2), are obtained by enforcing common conditions: state-only reward function rhpsq
(Example B.1), time-homogeneous reward function rps,aq (Example B.2), and β-margin reward
function (Example B.3). We present counter-examples in which in front of ε-close transition models,
the induced feasible sets are far apart by a constant independent of ε. For space reasons, we report
the complete derivation in Appendix ??.

Example B.1 (State-only reward rhpsq). State-only reward functions have been widely considered in
many IRL approaches [e.g., 25, 1, 35, 15]. We formalize the state-only feasible reward set as follows:

Rstate“RXt@ps,a,a1,hq : rhps,aq“rhps,a
1qu.

Consider the MDP\R of Figure 5a with H“2, πEh ps0q“pπEh ps0q“a1 with hPt1,2u. Set
p1ps`|s0,a1q“1{2`ε{4 and pp1ps`|s0,a1q“1{2´ε{4 and, thus, }p1p¨|s0,a1q´ pp1p¨|s0,a1q}1“ε.
Let us set r2ps`q“1 and r2ps´q“´1, which makes πE optimal under p. We observe that
pR is defined by pr2ps´qďpr2ps`q. Recalling that the rewards are bounded in r´1,1s, we have
HdGpRstate, pRstateqě1.
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s0

s´

s`

a1

a2

1{2

1{2

1

1

(a)

s0 s1

a1

a2

1{2

1{2

1

(b)

Figure 5: The MDP\R employed in the examples of Section B.5. denotes a transition executed
for multiple actions.

Proof. For the MDP\R M, in order to make πE1 ps0q“a1 optimal, we have to enforce:

r1ps0q`
2`ε

4
r2ps`q`

2´ε

4
r2ps´qěr1ps0q`

1

2
r2ps`q`

1

2
r2ps´q

ùñ r2ps`qěr2ps´q.

Similarly, to make pπE1 ps0q“a1, we have for xM:

pr1ps0q`
2´ε

4
pr2ps`q`

2`ε

4
pr2ps´qěpr1ps0q`

1

2
pr2ps`q`

1

2
pr2ps´q

ùñ pr2ps`qďpr2ps´q.

Thus, if we set r2ps´q“1 and r2ps`q“´1, we have:

HdGpRstate, pRstateqě min
pr2ps´q,pr2ps`qPr´1,1s

pr2ps`qďpr2ps´q

maxt|1´pr2ps´q|, |´1´pr2ps`q|u“1,

by setting pr2ps´q“pr2ps`q“0.

Example B.2 (Time-homogeneous reward rps,aq). Time-homogeneous reward functions have been
employed in several RL [e.g., 6] and IRL settings [e.g., 19]. We formalize the time-homogeneous
feasible reward set as follows:

Rhom“RXt@ps,a,h,h1q : rhps,aq“rh1ps,aqu.

Consider the MDP\R of Figure 5b with H“2, πE1 ps0q“pπE1 ps0q“a1 and πE2 ps0q“pπE2 ps0q“a2.
For hPt1,2u, we set phps0|s0,a1q“1{2`ε{4 and pphps0|s0,a1q“1{2´ε{4, thus, }php¨|s0,a1q´

pphp¨|s0,a1q}1“ε. We set rps0,a1q“1, rps0,a2q“1´ε{6, and rps1,a1q“rps1,a2q“1{2 making
πE optimal. We can prove that HdGpRhom, pRhomqě1{4.

Proof. Consider the MDP\R M and we set rps0,a1q“1, rps0,a2q“1´ε{12, and rps1,aq“1{2 for
aPta1,a2u. We immediately observe that πE is optimal since for h“2, rps0,a1qěrps0,a2q and for
h“1:

rps0,a2q`
2`ε

4
rps0,a1q`

2´ε

4
rps1,aqěrps0,a1q`

1

2
rps0,a1q`

1

2
rps1,aq

ðñ rps0,a2q`

´ ε

4
´1

¯

rps0,a1q´
ε

4
rps1,aqě0

ðñ 1´
ε

12
`
ε

4
´1´

ε

8
ě0.

Consider now the alternative MDP\R xM, we have to enforce the following two conditions:

prps0,a1qěprps0,a2q, (13)

prps0,a2q`
2´ε

4
prps0,a1q`

2`ε

4
prps1,aqěprps0,a1q`

1

2
prps0,a1q`

1

2
prps1,aq

ðñ prps0,a2q´

´ ε

4
`1

¯

prps0,a1q`
ε

4
prps1,aqě0. (14)
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The way of enforcing Equation (13) that is less constraining for Equation (14) is setting prps0,a1q“

prps0,a2q, to get:

´
ε

4
prps0,a1q`

ε

4
prps1,aqě0ðñ prps1,aqěprps0,a1q.

This implies:

HdGpRhom, pRhomqě min
prps1,aq,prps0,a1qPr´1,1s

prps1,aqěprps0,a1q

max

"

|1´prps0,a1q| ,

ˇ

ˇ

ˇ

ˇ

1

2
´prps1,aq

ˇ

ˇ

ˇ

ˇ

*

ě
1

4
,

by setting prps0,a1q“prps1,aq“1{4.

Example B.3 (β-margin reward). A β-margin reward enforces a suboptimality gap of at least βą0
[25, 15]. We formalize it in the finite-horizon case with a sequence β“pβhqhPJHK, possibly different
for every stage:

Rβ-mar“RXt@ps,a,hq :Aπ
E

h ps,a;rqPt0uYp´8,´βhsu.

Consider the MDP\R in Figure 5a with πEh ps0q“pπEh ps0q“a1 for hPt1,2u. We set p1ps`|s0,a1q“

1{2`ε and pp1ps`|s0,a1q“1{2´ε. We set for MDP\R M the reward function as r1ps0,aq“0
and rhps`,aq“´rhps´,aq“1 for aPta1,a2u and hPJ2,HK. In ps0,1q the suboptimality gap is
β1“2`2εpH´1q. By selecting Hě1`1{ε, the feasible set pRβ-mar is empty.

Proof. Concerning the MDP\R M, we observe that by setting r1ps0,a1q“1, r1ps0,a2q“´1, and
rhps`,aq“´rhps´,aq“1 for aPta1,a2u and hPJ2,HK, the policy πE is optimal. In particular,
in state-stage pair ps0,1q the suboptimality gap is given by β1“2`2εpH´1q. To enforce the
optimality of pπE“πE in the MDP\R xM, we have:

pr1ps0,a1q`

H
ÿ

h“2

1

2
prhps`,a1q`

1

2
prhps´,a1qěpr1ps0,a2q`

H
ÿ

h“2

1

2
prhps`,a1q`

1

2
prhps´,a1q`β1

ðñ pr1ps0,a1q´pr1ps0,a2qěβ1.

Thus, if β1ě2, we have that the feasible set pRβ-sep is empty. Thus, we select Hě1`1{ε to have
β1ě4.

These examples show that some common restrictions of the feasible reward set are not Lipschitz
continuous w.r.t. the transition model and, more in general, w.r.t. the IRL problem. If the Lipschitz
condition is violated, we argue that recovering the restricted feasible reward set efficiently by
estimating the transition model is not possible. This is because as shown in the examples, arbitrary
close transition models lead to restricted feasible reward sets with a finite non-zero distance. This
suggests that the Lipschitz framework captures a structural property of the problem, being tightly
connected to the possibility of learning the feasible reward set under certain restrictions.15 The
generalization of these examples to more abstract conditions for guaranteeing the Lipschitz continuity
of the restricting feasible reward set is beyond the scope of the paper.

C Unknown Expert’s Policy πE

In this appendix, we extend the lower bounds and the algorithm for the case in which the expert’s
policy is unknown. Clearly, if the expert’s policy is deterministic, under the generative model
setting, its estimation is trivial as it suffices to query every state and stage (resp. state) exactly once
for time-inhomogeneous (resp. time-homogeneous) policies, leading to EpM,πEq,A rτ s“HS (resp.
EpM,πEq,A rτ s“S). Thus, we consider a more general setting in which the expert’s policy can be
stochastic (still being optimal). Specifically, we consider the following assumption.

15We remark that this phenomenon can be interpreted as a limitation of the formulation of the IRL problem
as recovering the feasible reward set by estimating the transition model and does not imply that, for instance,
state-only rewards are not learnable in general.
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Assumption C.1. There exists a known constant πmin Pp0,1s such that every action played by the
expert’s policy πE is played with at least probability πmin:

@ps,a,hqPSˆAˆJHK : πEh pa|sqPt0uYrπmin,1s.

Intuitively, Assumption C.1 formalizes a form of identifiability for the policy. As already mentioned
in Section 3, what matters for learning the feasible reward set is whether an action is played by the
agent (not the corresponding probability). Assumption C.1 enforces that every optimal action must
be played with a minimum (known) non-null probability πmin. We shall show that if this assumption
is violated, the problem becomes non-learnable.

C.1 Lower Bound

The following result provides a lower bound for learning the feasible reward set according to the PAC
requirement of Definition 4.1 when the expert’s policy is unknown, but the transition model is known.
Clearly, one can combine this result with the ones of Section 5 to address the setting in which both
the expert’s policy and the transition model are unknown.
Theorem C.1. Let A“pµ,τq be an pε,δq-PAC algorithm for dG-IRL. Then, there exists an IRL
problem pM,πEq where πE fulfills Assumption C.1 such that, if εď1{2, δă1{16, Sě7, Aě2, and
Hě3, the number of samples τ is lower bounded in expectation by:

• if the expert’s policy πE is time-inhomogeneous:

E
pM,πEq,A

rτ sě
SH

8log 1
1´πmin

log

ˆ

1

δ

˙

.

• if the expert’s policy πE is time-homogeneous:

E
pM,πEq,A

rτ sě
S

4log 1
1´πmin

log

ˆ

1

δ

˙

;

Before presenting the proof, let us comment the result. We observe that when Assumption C.1 is
violated, i.e., πminÑ0, the sample complexity lower bound degenerates to infinity, proving that the
problem becomes non-learnable.

Proof. Step 1: Instances Construction The hard MDP\R instances are depicted in Figure 6 in a
semi-formal way. The state space is given by S“tsstart,sroot,s1, . . . ,sS ,ssinku and the action space is
given by A“ta0,a1, . . . ,aAu. The transition model is described below and the horizon is Hě3. We
introduce the constant H PJHK, whose value will be chosen later. Let us observe, for now, that if
H“1, the transition model is time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage hăH ,
then there is probability 1{2 to remain in sstart and a probability 1{2 to transition to sroot. Instead,
if hěH , the state transitions to sroot deterministically. From state sroot, every action has the same
effect and the state transitions with equal probability 1{S to a state si with iPJSK. In all states si,
apart from a specific one, i.e., state s˚, the expert’s policy plays action a0 deterministically, i.e.,
πEh pa0|siq“1 and the state transitions deterministically to ssink. In state s˚ the expert’s policy plays
a0 as the other ones if the stage h‰h˚, where h˚ PJHK is a predefined stage. If, instead, h“h˚,
the expert’s action plays a0 w.p. 1´πmin and a specific action a˚ w.p. πmin Pr0,1{2s. Then, the
transition is deterministic to state ssink. Notice that, having fixed H , the possible values of h˚ are
t3, . . . ,2`Hu. State ssink is an absorbing state.

Let us consider the base instance π0 in which the expert’s policy always plays action a0 determin-
istically.16 Additionally, by varying the pair ` :“ps˚,h˚qPts1, . . . ,sSuˆJ3,H`2K“:J , we can
construct the class of instances denoted by M“tπ` :`Pt0uYJ u.
Step 2: Feasible Set Computation Let us consider an instance π` PM, we now seek to provide a
lower bound to the Hausdorff distance HdG pRπ0

,Rπ`q. To this end, we focus on the pair `“ps˚,h˚q

16In this construction, the MDP\R does not change across the instances, but what changes is the expert’s
policy. Thus, we parametrize the instances through the policy rather than the MDP\R.
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sstart

sroot

. . . . . .s˚s1 sS

ssink

hăH w.p. 1
2

w.p. 1
S

or hěH

w.p. 1
S

w.p. 1
S

regardless the action w.p. 1
S

play a0 w.p. 1play a0 w.p. 1

h“h˚ play a˚ w.p. πminh“h˚ play w.p. 1´πmin

Figure 6: Semi-formal representation of the the hard instances MDP\R used in the proof of Theo-
rem C.1.

and we enforce the convenience of both actions a0 and a˚ over the other actions. Since both actions
are played with non-zero probability by the expert’s policy, their value function must be the same.
Let us denote with r` PRπ` , we must have for all aj Rta0,a˚u:

r`h˚ps˚,a0q`

H
ÿ

l“h˚`1

r`l pssinkqěr
`
h˚ps˚,ajq`

H
ÿ

l“h˚`1

r`l pssinkq

ùñ r`h˚ps˚,a0qěr
`
h˚ps˚,ajq,

r`h˚ps˚,a0q`

H
ÿ

l“h˚`1

r`l pssinkq“r
`
h˚ps˚,a˚q`

H
ÿ

l“h˚`1

r`l pssinkq

ùñ r`h˚ps˚,a0q“r
`
h˚ps˚,a˚q.

Consider now the base instance π0 and denote with r0 PRπ0 . Here we have to enforce the convenience
of action a0 over all the others, including a˚:

r0
h˚ps˚,a0q`

H
ÿ

l“h˚`1

r`l pssinkqěr
0
h˚ps˚,ajq`

H
ÿ

l“h˚`1

r`l pssinkq

ùñ r0
h˚ps˚,a0qěr

0
h˚ps˚,ajq,
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r0
h˚ps˚,a0q`

H
ÿ

l“h˚`1

r0
l pssinkqěr

0
h˚ps˚,a˚q`

H
ÿ

l“h˚`1

r0
l pssinkq

ùñ r0
h˚ps˚,a0qěr

0
h˚ps˚,a˚q.

In order to lower bound the Hausdorff distance, we perform a valid assignment of the rewards for the
base instance:

r0
h˚ps˚,a0q“1, r0

h˚ps˚,a˚q“´1, r0
h˚ps˚,ajq“´1.

Thus, the Hausdorff distance can be bounded as follows, having renamed, for convenience x“
r`h˚ps˚,a0q and y“r`h˚ps˚,a˚q:

HdGpRπ0
,Rπ`qě min

x,yPr´1,1s
x“y

maxt|x´1|, |y`1|u“1.

Step 3: Lower bounding Probability Let us consider an pε,δq-correct algorithm A that outputs
the estimated feasible set pR. Thus, for every ıPJ , we can lower bound the error probability:

δě sup
all M MDP\R and expert policies π

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě sup
πPM

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě max
`Pt0,ıu

P
pM,π`q,A

ˆ

HdG

´

Rπ` ,
pR
¯

ě
1

2

˙

.

For every ıPJ , let us define the identification function (whose dependence on the estimated feasible
reward set pR is omitted to avoid a too heavy notation):

Ψı :“argmin
`Pt0,ıu

HdG

´

Rπ` ,
pR
¯

.

Let Pt0, ıu. If Ψı“, then, HdGpRπΨı
,Rπq“0. Otherwise, if Ψı‰, we have:

HdG

`

RπΨı
,Rπ

˘

ďHdG

´

RπΨı
, pR

¯

`HdG

´

pR,Rπ

¯

ď2HdG

´

pR,Rπ

¯

,

where the first inequality follows from triangular inequality and the second one from the definition of
identification function Ψı. From Equation (11), we have that HdG

`

RπΨı
,Rπ

˘

ě1. Thus, it follows

that HdG

´

pR,Rπ

¯

ě 1
2 . This implies the following inclusion of events for Pt0, ıu:

"

HdG

´

pR,Rπ

¯

ě
1

2

*

ĚtΨı‰u .

Thus, we can proceed by lower bounding the probability:

max
`Pt0,ıu

P
pM`,πq,A

ˆ

HdG

´

Rπ` ,
pR
¯

ě
1

2

˙

ě max
`Pt0,ıu

P
pM`,πq,A

pΨı‰`q

ě
1

2

„

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı‰ ıq



“
1

2

„

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı“0q



,

where the second inequality follows from the observation that maxta,buě 1
2 pa`bq and the equality

from observing that Ψı Pt0, ıu. We can now apply the Bretagnolle-Huber inequality [17, Theorem
14.2] (also reported in Theorem D.1 for completeness) with P“PpM0,πq,A, Q“PpM0,πq,A, and
A“tΨı‰0u:

P
pM0,πq,A

pΨı‰0q` P
pMı,πq,A

pΨı“0qě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.
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Step 4: KL-divergence Computation Let MPM, we denote with PpM,πq,A the joint probability
distribution of all events realized by the execution of the algorithm in the MDP\R (the presence of p
is irrelevant as it does not change across the different instances):

P
pM,πq,A

“

τ
ź

t“1

ρtpst,at,ht|Ht´1qphtps
1
t|st,atqπ

E
htpa

E
t |stq,

where ρt is the sampling distribution induced by the algorithm A and Ht´1“

ps1,a1,h1,s
1
1,a

E
1 , . . . ,st´1,at´1,ht´1,s

1
t´1,a

E
t´1q is the history. Let ıPI. Let us now move

to the KL-divergence between the instances π0 and πı for some ı“ps˚,h˚qPJ :

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

π0
htp¨|stq,π

ı
htp¨|stq

˘

ff

ď E
pM0,πq,A

”

Nτ
h˚ps˚q

ı

DKL

´

π0
h˚p¨|s˚q,π

ı
h˚p¨|s˚q

¯

ď log
1

1´πmin
E

pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

,

having observed that the transition models differ in ı“ps˚,h˚q and defined Nτ
h˚
ps˚q“

řτ
t“11tpst,htq“ps˚,h˚qu and the last passage is obtained by explicitly computing the KL-

divergence:

DKL

´

π0
h˚p¨|s˚q,π

ı
h˚p¨|s˚q

¯

“
ÿ

aPA
π0
h˚pa|s˚q log

˜

π0
h˚
pa|s˚q

πıh˚pa|s˚q

¸

“π0
h˚pa0|s˚q log

˜

π0
h˚
pa0|s˚q

πıh˚pa0|s˚q

¸

“ log
1

1´πmin
.

Putting all together, we have:

δě
1

4
exp

ˆ

´ log
1

1´πmin
E

pM0,πq,A

”

Nτ
h˚ps˚q

ı

˙

ùñ E
pM0,πq,A

”

Nτ
h˚ps˚q

ı

ě
log 1

4δ

log 1
1´πmin

.

Thus, summing over ps˚,a˚qPJ , we have:

E
pM0,πq,A

rτ sě
ÿ

ps˚,a˚qPJ

E
pM0,πq,A

”

Nτ
h˚ps˚,a˚q

ı

“
ÿ

ps˚,a˚,h˚qPI

pH´H´2q2 log 1
4δ

2ε2

“SH
log 1

4δ

log 1
1´πmin

.

The number of states is given by S“|S|“S`3. Let us first consider the time-homogeneous case,
i.e., H“1:

E
pM0,πq,A

rτ sěpS´3q
log 1

4δ

log 1
1´πmin

.

For δă1{16, Sě7, Aě2, Hě2, we obtain:

E
pM0,πq,A

rτ sě
S

4log 1
1´πmin

log
1

δ
.

For the time-inhomogeneous case, instead, we select H“H{2, to get:

E
pM0,πq,A

rτ sě
pS´3qpH{2q

ε2
log 1

4δ

log 1
1´πmin

.

For δă1{16, Sě7, Aě2, Hě2, we obtain:

E
pM0,πq,A

rτ sě
SH

8log 1
1´πmin

log
1

δ
.
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Input: significance δPp0,1q, ε target accuracy
tÐ0, ε0Ð`8
while εtąε do
tÐ t`SAH
Collect one sample from each ps,a,hqPSˆAˆJHK
Update ppt and pπE,t according to (3)

Update εt“maxps,a,hqPSˆAˆJHK C
t
hps,aq (resp. rC

t

hps,aq)
end while

Algorithm 2: UniformSampling-IRL (US-IRL) for time-inhomogeneous (resp. time-homogeneous)
transition models and expert’s policies.

C.2 Algorithm

In this appendix, we extend US-IRL to the expert’s policy estimation under Assumption C.1. The
pseudocode is reported in Algorithm 2. The interaction protocol follows the same principles of
Algorithm 1, with the only difference that the confidence function, now, must account for the policy
estimation, leading to the following function for every ps,a,hqPSˆAˆJHK:17

C
t

hps,aq :“2pH´h`1q

¨

˝1tnthpsqěmaxt1,ξpnthpsq,δ{2quu
`

d

2β
`

nthps,aq, δ{2
˘

nthps,aq

˛

‚. (16)

where:

ξpn,δq :“
logp2SAHn2{δq

logp1{p1´πminqq
.

It is worth noting that we have distributed the confidence δ equally between the problem estimating
the policy and that of estimating the transition model. The following theorem provides the sample
complexity of US-IRL.
Theorem C.2 (Sample Complexity of US-IRL). Let εą0 and δPp0,1q, under Assumption C.1,
US-IRL is pε,δq-PAC for dG-IRL and with probability at least 1´δ it stops after τ samples with:

• if the transition model p and the expert’s policy πE are time-inhomogeneous:

τď
8H3SA

ε2

ˆ

log

ˆ

2SAH

δ

˙

`pS´1qC1

˙

`SH`
SH

logp1{p1´πminqq

ˆ

log

ˆ

4SAH

δ

˙

`C2

˙

,

where C1“1` logp1`p64H4q{pε4pS´1qqˆ
`

logpp2SAHq{δq`
?
epS´1`

?
S´1qq2

˘

and

C2“4log
´

logp4SAH{δq`2
logp1{p1´πminqq

¯

.

• if the transition model p and the expert’s policy πE are time-homogeneous:

τď
8H2SA

ε2

ˆ

log

ˆ

2SA

δ

˙

`pS´1qrC1

˙

`SH`
S

logp1{p1´πminqq

ˆ

log

ˆ

4SA

δ

˙

`
rC2

˙

,

where rC1“1` logp1`p64H4q{pε4pS´1qqˆ
`

logpp2SAq{δq`
?
epS´1`

?
S´1qq2

˘

and
rC2“4log

´

logp4SA{δq`2
logp1{p1´πminqq

¯

.

17As for the transition model, one can adapt the confidence function for the case of stationary policy in
straightforward way:

rC
t

hps,aq :“2pH´h`1q

¨

˝1tnthpsqěmaxt1,rξpntpsq,δ{2quu`

d

2rβ
`

ntps,aq, δ{2
˘

ntps,aq

˛

‚, (15)

where:

rξpn,δq :“
logp2SAn2

{δq

logp1{p1´πminqq
.

In principle, one can also consider the case of a time-homogeneous transition model and time-inhomogeneous
expert’s policy. We omit it because it adds nothing to the characteristics of the problem and of the algorithms.
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Before moving to the proof, let us observe that the result matches the rate of the lower bound of
Theorem C.1 up to logarithmic terms.

Proof. We make use of the notation of the proof of Theorem 6.1. We start with the case in which
the transition model is time-inhomogeneous. In addition to the good event E related to the transition
model, we introduce the following one:

Eπ :“
!

@tPN, @ps,a,hqPSˆAˆJHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0´1

pπE,th pa|sq“0

ˇ

ˇ

ˇ
ď1tnthpsqěmaxt1,ξpnthpsq,δ{2quu

)

,

where πEh is the true expert’s policy and pπE,t is its estimate via Equation (3) at time t. Thanks to
Lemma B.4 and Lemma C.3, we have that PpEXEπqě1´δ. Thus, under the good event EXEπ , we
apply Theorem 3.2 to obtain HdGpR, pRτ qďmaxps,a,hqPSˆAˆJHK C

t

hps,aq. A sufficient condition to
make this term ďε is to request the following ones:

max
ps,a,hqPSˆAˆJHK

2pH´h`1q1tnthpsqěmaxt1,ξpnthpsq,δ{2quu
“0,

max
ps,a,hqPSˆAˆJHK

2
?

2pH´h`1q

d

β
`

nthps,aq, δ{2
˘

nthps,aq
ďε.

For the first one, we first enforce the condition:

nthpsqěξpn
t
hpsq, δ{2q“

logp4SAHpnthpsqq
2{δq

logp1{p1´πminqq
“

logp4SAH{δq

logp1{p1´πminqq
`

2lognthpsq

logp1{p1´πminqq
.

Using Lemma 15 of [14] and enforcing nthpsqě1, we obtain:

nτhpsqď1`
1

logp1{p1´πminqq

ˆ

logp4SAH{δq`4log

ˆ

logp4SAH{δq`2

logp1{p1´πminqq

˙˙

.

Combining this result with that of Theorem 6.1 for what concerns the transition model, we obtain:

τď
8H3SA

ε2

ˆ

log

ˆ

2SAH

δ

˙

`pS´1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS´1q

ˆ

log

ˆ

2SAH

δ

˙

`
?
epS´1`

?
S´1q

˙2
¸¸¸

`SH`
SH

logp1{p1´πminqq

ˆ

logp4SAH{δq`4log

ˆ

logp4SAH{δq`2

logp1{p1´πminqq

˙˙

.

Analogous derivations can be carried out for the case of time-homogenous policy using the good
event:

rEπ :“
!

@tPN, @ps,aqPSˆA :
ˇ

ˇ1πEpa|sq“0´1pπE,tpa|sq“0

ˇ

ˇď1
tntpsqěmaxt1,rξpntpsq,δ{2quu

)

,

where rξpn,δq :“ logp2SAn2
{δq

logp1{p1´πminqq
. We omit the tedious but straightforward derivation.

Lemma C.3. Under Assumption C.1, the following statements hold:

• for ξpn,δq :“ logp2SAHn2
{δq

logp1{p1´πminqq
, we have that PpEπqě1´δ;

• for rξpn,δq :“ logp2SAn2
{δq

logp1{p1´πminqq
, we have that PprEπqě1´δ.

Proof. Let us start with the first statement. We apply first a union bound and, then, Lemma D.5 to
perform the concentration:

PpEcπq“P

˜

DtPN, Dps,a,hqPSˆAˆJHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0´1

pπE,th pa|sq“0

ˇ

ˇ

ˇ
ď1tnthpsqąmaxt1,ξpnthpsq,δquu

¸

“P

˜

DnPN, Dps,a,hqPSˆAˆJHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0´1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ą1tněmaxt1,ξpn,δquu

¸
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ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně0

P

˜

ˇ

ˇ

ˇ
1πEh pa|sq“0´1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ď1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně1

P

˜

ˇ

ˇ

ˇ
1πEh pa|sq“0´1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ď1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

2SAHn2
“
π2

6

δ

2
ďδ,

where on the first passage we enforced the condition on the time instants in which the policy estimate
changes (i.e., when ps,hq is visited) and we denoted such an estimate as pπE,rnsh . Then, after a union
bound, we apply Lemma D.5. The proof of the second statement is analogous having simply observed
that the union bound has to be performed over SˆA only.

D Technical Lemmas

Theorem D.1. (Bretagnolle-Huber inequality [17, Theorem 14.2]) Let P and Q be probability
measures on the same measurable space pΩ,Fq, and let APF be an arbitrary event. Then,

PpAq`QpAcqě
1

2
expp´DKLpP,Qqq ,

where Ac“ΩzA is the complement of A.
Theorem D.2. (Fano inequality [9, Proposition 4]) Let P0,P1, . . . ,PM be probability measures on
the same measurable space pΩ,Fq, and let A1, . . . ,AM PF be a partition of Ω. Then,

1

M

M
ÿ

i“1

PipAc
i qě1´

1
M

řM
i“1DKLpPi,P0q` log2

logM
,

where Ac“ΩzA is the complement of A.
Lemma D.3. [13, Proposition 1] Let P“pp1, . . . ,pDq be a categorical probability measure on the
support JDK. LetPn“ppp1, . . . , ppDq be the maximum likelihood estimate of P obtained with ně1
independent samples. Then, for every δPp0,1q it holds that:

PpDně1 : nDKL pPn,Pqą logp1{δq`pD´1q log pep1`n{pD´1qqqqďδ.

Lemma D.4. Let εPr0,1{2s and vPt´ε,εuD such that
řD
i“1 vi“0. Consider the two categorical

distributions Q“
`

1
D ,

1
D , . . . ,

1
D

˘

and P“
`

1`v1

D , 1`v2

D , . . . , 1`vD
D

˘

. Then, it holds that:

DKLpP,Qqď2ε2 and DKLpQ,Pqď2ε2.

Proof. First of all we recall that since
řD
i“1 vi“0, we have |tiPJDK :vi“εu|“|tiPJDK :vi“´εu|“

D{2. Let us compute the KL-divergence DKLpP,Qq:

DKLpP,Qq“
D
ÿ

i“1

1`vi
D

log
1`vi
D
1
D

“
ÿ

iPJDK:vi“ε

1`ε

D
logp1`εq`

ÿ

iPJDK:vi“´ε

1´ε

D
logp1´εq

“
1`ε

2
logp1`εq`

1´ε

2
logp1´εq

“
1

2
logp1´ε2q

loooooomoooooon

ď0

`
ε

2
logp1`εq´

ε

2
logp1´εq

“
ε

2
log

ˆ

1`
2ε

1´ε

˙

ď
ε2

1´ε
ď2ε2,
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where we used the inequality logp1`xqďx and exploited that εď 1
2 . Let us now move to the second

KL-divergence DKLpQ,Pq:

DKLpQ,Pq“
D
ÿ

i“1

1

D
log

1
D

1`vi
D

“
ÿ

iPJDK:vi“ε

1

D
log

1

1`ε
`

ÿ

iPJDK:vi“´ε

1

D
log

1

1´ε

“´
1

2
logp1´ε2q

ď
1

2

ˆ

1

1´ε2
´1

˙

“
ε2

2p1´ε2q
ď

2

3
ε2ď2ε2,

where we used the inequality ´ logp1´xqď 1
1´x´1 for 0ăxă1 and observed that εď 1

2 .

Lemma D.5. Let P“pp1, . . . ,pDq be a categorical probability measure on the support JDK. Let
Pn“ppp1, . . . , ppDq be the maximum likelihood estimate of P obtained with ně1 independent samples.
Then, if pi Pt0uYrpmin,1s for some pmin Pp0,1s. Then, for every iPJDK individually, for every
δPp0,1q, it holds that:

ˇ

ˇ1tpi“0u´1tppi“0u

ˇ

ˇď1$
&

%

němax

$

&

%

1,
logp 1

δ q

log

ˆ

1
1´pmin

˙

,

.

-

,

.

-

.

Proof. Let iPJDK such that pią0 and, thus, 1tpi“0u“0. By assumption, it must be that piěpmin.
To make a mistake, we must have that 1tppi“0u“1, and, thus, ppi“0. Thus, we compute the probability
that no sample i is observed among the n ones:

P

¨

˝

č

jPJnK

Xj‰ i

˛

‚“
ź

jPJnK

PpXj‰ iq“PpX1‰ iq
n
“p1´piq

nďp1´pminq
n,

where we exploited the fact that the random variables Xj are i.i.d.. If n“0 the latter expression is 1.
If, instead, ně1, by setting the last expression equal to δ, we get:

p1´pminq
nďδ ùñ ně

log
`

1
δ

˘

log
´

1
1´pmin

¯ .

The result follows.

Lemma D.6. Let V“tvPt´1,1uD :
řD
j“1 vj“0u. Then, the D

16 -packing number of V w.r.t. the

metric dpv,v1q“
řD
j“1 |vj´v

1
j | is lower bounded by 2

D
5 .

Proof. Let us denote the packing number with Mpε;V,dq and the covering number with Npε;V,dq.
It is well known that Npε;V,dqďMpε;V,dq [10]. Thus, a lower bound to the covering number is a
lower bound to the packing number. Let us consider the (pseudo)metric d1pv,v1q“

řD{2
j“1 |vj´v

1
j | that

considers the first half of the components only. Clearly, we have that d1pv,v1qďdpv,v1q. Therefore,
any ε-cover w.r.t. dpv,v1q is an ε-cover w.r.t. d1pv,v1q and, consequently, Npε;V,d1qďNpε;V,dq.
Since the (pseudo)metric d1 considers only the first half of the components, constructing an ε-cover
of V w.r.t. d1 is equivalent to constructing an ε-cover of V 1 w.r.t. d1, where V 1“t´1,1uD{2. V 1
considers the first half of the components of vectors of V , that can be freely chosen, disregarding
the summation constraint.18 Thus, Npε;V,d1q“Npε;V 1,d1q. Notice that d1 is now a proper metric
on V 1“t´1,1uD{2. Now, we reduce the problem to constructing cover on the Hamming space
H“t0,1uD{2. Indeed, we can always map an pε{2q-cover for the Hamming space H to an ε-cover

18From an algebraic perspective, V 1 can be considered the quotient set obtained from V by means of the
equivalence relation v„v1ðñ vj“vj1 for all j PJD{2K.
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for the space V 1. Specifically, let Hε{2 an pε{2q-cover for the Hamming space, we construct the
ε-cover of V 1, denoted by V 1ε, by applying the following transformation (v1 PV 1ε):

v1j“

"

´1 if hj“0

1 if hj“1
@j PJD{2K, @hPHε{2,

or, in more convenient way, v1“2h´1. Let v1 PV 1:

min
v1PV 1ε

d1pv1,v1q“ min
v1PV 1ε

D{2
ÿ

j“1

|v1j´v
1
j |“2 min

hPHε{2

D{2
ÿ

j“1

|hj´hj |ďε.

The covering number of a Hamming space has been lower bounded in [4] for εPJD{2K as:

log2Npε;H,d1qě
D

2
´ log2

ε
ÿ

k“0

ˆ

D{2

k

˙

.

We take ε“D{16, and we use the known bound
řk
i“0

`

n
i

˘

ď
`

en
k

˘k
[31]:

D{16
ÿ

k“0

ˆ

D{2

k

˙

ďp8eqD{16.

From, which, we get:

log2Npε;H,d1qě
D

2
´ log2

ε
ÿ

k“0

ˆ

D{2

k

˙

ě
D

2
´
D

16
log2p8eqě

D

5
.
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