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ABSTRACT

In response to the increasing demand for tackling out-of-domain (OOD) scenarios,
test-time adaptation (TTA) has garnered significant research attention in recent
years. To adapt a source pre-trained model to target samples without getting access
to their labels, existing approaches have typically employed entropy minimization
(EM) loss as a primary objective function. In this paper, we propose an adaptive
energy alignment (AEA) solution that achieves fast online TTA. We start from the
re-interpretation of the EM loss by decomposing it into two energy-based terms
with conflicting roles, showing that the EM loss can potentially hinder the assertive
model adaptation. Our AEA addresses this challenge by strategically reducing
the energy gap between the source and target domains during TTA, aiming to
effectively align the target domain with the source domains and thus to accelerate
adaptation. We specifically propose two novel strategies, each contributing a
necessary component for TTA: (i) aligning the energy level of each target sample
with the energy zone of the source domain that the pre-trained model is already
familiar with, and (ii) precisely guiding the direction of the energy alignment by
matching the class-wise correlations between the source and target domains. Our
approach demonstrates its effectiveness on various domain shift datasets including
CIFAR10-C, CIFAR100-C, and TinyImageNet-C.

1 INTRODUCTION

Despite the huge success of deep neural networks (DNNs) in various fields (Mikolov et al., 2013;
Krizhevsky et al., 2017), the randomness and dynamic nature of test samples encountered during
inference still pose limitations to the application of DNNs. Particularly, the performance of DNNs
significantly degrades in out-of-domain (OOD) scenarios (Hendrycks & Gimpel, 2017), where
domain distributions of train data and test data are different. This remains a substantial challenge
from the perspectives of robustness and practicality of DNNs.

As a promising direction to address the OOD problem, test-time adaptation (TTA) has been actively
studied in recent years. TTA is a paradigm that involves adapting a pre-trained model (pre-trained on
source domains) using unlabeled OOD samples (from the target domain) during test-time. Source
domains are typically not available during TTA due to memory and privacy issues (Wang et al., 2023;
Liang et al., 2023). This assumption of the source-free property has played a pivotal role in the
growing interest in TTA.

The main focus of TTA is to adapt the pre-trained model on the given target samples to improve the
performance at test-time. To tackle real-world scenarios where target samples arrive sequentially in a
batch-wise manner, online TTA settings have become increasingly important in recent years (Wang
et al., 2023). For instance, in autonomous systems (e.g., self-driving vehicles) with dynamically
evolving environments (e.g., weather, lighting), the model needs to continuously make predictions on
OOD samples in an online manner. In such scenarios, the key is to sequentially adapt the model on
streaming target samples to accumulate knowledge of all past data during test-time, so that the model
can make more reliable predictions for future target samples. However, while many TTA methods
have been proposed, they still exhibit limited performance in online adaptation settings. Particularly,
they often require a large number of adaptation batches for the model to achieve a satisfactory
performance, leading to suboptimal early-stage performance (e.g., on the first few batches). Our goal
is to thoroughly investigate the rationale behind this phenomenon and address this issue.
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(a) No adaptation (b) AEA (ours) (c) Cls. error & Energy gap

Figure 1: (a-b) Sample-wise logit (x, y-axes) and energy (z-axis) distribution in the early stage of adaptation
batches. (a) Without adaptation, target samples (CIFAR10-C) are mixed up in the high-energy region, while
source samples (CIFAR10) have low energies and are clearly separated. (b) Our AEA successfully reduces
the energy gap ∆ by accurately guiding the direction of energy alignment. As a result, (c) our approach can
accelerate test-time model adaptation and achieve remarkable performance even in a few adaptation batches.

Motivation. To overcome the aforementioned challenges, we propose a new TTA method by
leveraging the idea of energy-based models (EBMs) (LeCun et al., 2006), which have proven to be
effective in addressing distribution shift problems (Liu et al., 2020; Xie et al., 2022; Xiao et al., 2023;
Herath et al., 2023). Their findings suggest that energy scores can serve as expressive indicators for
detecting OOD samples. We start with Fig. 1a, where we visualize sample-wise logits and energy
distributions of source/target samples in our TTA scenario. From Fig. 1a, we see that a source
pre-trained model yields higher energies for the domain-shifted target samples and lower energies
for the source samples, resulting in a notable energy gap. Our objective is to reduce this energy gap,
aiming to alleviate domain disparity by aligning the feature representation of the target domain with
that of the source domain and achieve performance improvements.

However, one key aspect that needs to be considered during the energy gap reduction is the energy
alignment direction: In order to mitigate the domain discrepancy in a class-wise manner (in Fig. 1a),
each target sample should be aligned in a distinct direction based on its class information. Addressing
these energy gap and alignment issues is crucial in many TTA scenarios due to the significant domain
disparity between the source and target datasets, particularly in the early stage of batch arrival.
Although Yuan et al. (2024) recently introduced an energy-based TTA method, it does not consider
the directional aspects of energy alignment, which limits its adaptation performance. To the best
of our knowledge, these aspects have been largely overlooked in existing TTA research and remain
unresolved. We thus aim to fill this gap by answering the following research question:

Under the TTA setting where no knowledge of the source domain is available, how can we effectively
align the energies between source and domain-shifted target samples while considering their class
information, to accelerate performance enhancements?

Key idea. In this paper, we propose adaptive energy alignment (AEA), a new energy-based TTA
method that achieves fast online adaptation. We first show that the conventional entropy minimization
(EM) loss can be decomposed into two energy-based terms with conflicting roles. This hinders the
energy gap reduction when the EM loss is used alone, resulting in limited performance not only in
the early-stage of batch arrivals but also throughout the entire online batches (in Fig. 1c and Sec.
3.2). To address this, we introduce an energy alignment scheme that strategically reduces the energy
gap between the source and target domains during TTA, based on the following ideas: (i) aligning
the overall energy levels (i.e., magnitude) of target samples with those of source domain, which
the pre-trained model is already familiar with, and (ii) precisely guiding the direction of energy
alignment by considering the structural relations between different classes, a facet that has been less
configured in previous works. As depicted in Fig. 1b-1c, by leveraging well-trained knowledge of
source domain in the pre-trained model, our approach robustly reduces the energy gap within a few
adaptation batches (i.e., fast adaptation) while maintaining class-wise correlations between the source
and target domain.

Summary of contributions. Overall, our AEA is equipped with advanced optimization losses with
two distinct roles for energy alignment during TTA. We summarize our contributions as follows:
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• Based on the energy-based re-interpretation of EM loss, we propose a source-free energy align-
ment (SFEA) loss for fast TTA. The key idea is to strategically align the overall energy magnitudes
between source and target domains, aiming to effectively reduce the energy gap during adaptation.

• To guide the energy alignment direction of each target sample in the logit space, we introduce
a logit cosine similarity (LCS) loss as a key component. By taking advantage of a well-trained
classifier’s weight matrix, our LCS loss ensures that the class-wise correlation of the target domain
aligns well with that of the source domain during energy alignment.

Consequently, our AEA is able to reduce the energy levels between target and source samples (SFEA
loss) while considering each test sample’s energy alignment direction (LCS loss). Since AEA only
modifies the loss function, it introduces merely negligible extra delay/resources, as demonstrated in
Sec. B.8. Our approach demonstrates remarkable performance across various domain shift datasets,
including CIFAR10-C, CIFAR100-C, and TinyImageNet-C.

2 RELATED WORKS

Test-time adaptation (TTA). To tackle the TTA problem, several works (Liang et al., 2020; Wang
et al., 2022) have employed pseudo-labeling techniques, where the most probable labels for unlabeled
target samples are used for supervised model adaptation. Sun et al. (2020) have incorporated
self-supervised learning schemes for pre-training the model. Afterwards, these auxiliary tasks are
leveraged for model adaptation at test-time. Also, normalization calibration methods (Schneider
et al., 2020; Wang et al., 2021; Niu et al., 2023) have been suggested to adapt normalization layers
(e.g., batch/instance/group normalization) which encode distribution-specific knowledge. Other
methods such as consistency regularization within augmentations (Zhang et al., 2022) and class
prototype-based approaches (Iwasawa & Matsuo, 2021) have been also proposed. Regarding TTA
settings, online test-time adaptation (OTTA) (Wang et al., 2023) has received attention motivated by
many practical scenarios in which target samples arrive sequentially in a batch-wise manner. The
goal is to continuously adapt the model to the target samples in an online fashion.

As a fundamental line of works, researchers have typically employed entropy minimization (EM)
(Liang et al., 2020; Wang et al., 2021; Niu et al., 2022; Zhang et al., 2022; Niu et al., 2023) as a
primary objective function to adapt the model using unlabeled target samples. While the EM loss is
effective in TTA, our energy-based re-interpretation of the EM loss (in Sec. 3.2) reveals its potential
hindrance to the model’s assertive adaptation. Specifically in OTTA scenarios, existing works exhibit
sub-optimal early-stage performance, resulting from the insufficient adaptation to the target domain.
In contrast, our AEA improves both the early-stage and overall performance in OTTA by explicitly
reducing the energy gap between the source and target domains.

Energy-based models (EBMs). EBMs (LeCun et al., 2006) adopted a score-based learning approach,
allowing them to model various types of distributions in a flexible way. Such effectiveness in modeling
distribution has enabled the utilization of EBMs in complex tasks such as image generation (Du &
Mordatch, 2019; Du et al., 2020) and generative classifiers (Larochelle & Bengio, 2008; Yang & Ji,
2021) in a high-dimensional space. Also, some researchers have realized that modern discriminate
models can be interpreted as EBMs as well (LeCun et al., 2006; Grathwohl et al., 2020; Liu et al.,
2020). EBMs have been also utilized to address various distribution shift problems such as out-of
distribution detection (Liu et al., 2020), anomaly detection (Du et al., 2022), domain adaptation
(Zou et al., 2021; Xie et al., 2022; Herath et al., 2023) and domain generalization (Du et al., 2022;
Xiao et al., 2023). Recently, Yuan et al. (2024) have suggested an energy-based TTA approach
that decreases the target energies within the model’s distribution to improve model generalizability.
However, it focuses solely on reducing the overall energy level without considering the energy
alignment direction and requires multiple iterations to generate negative samples during adaptation.
This potentially limits its performance and practicality, as demonstrated in Sec. 4 and Sec. B.8.

To address the shortcomings of existing works, we propose a new AEA scheme that not only aligns
energy levels (i.e., magnitudes) between source/target domains but also considers energy alignment
direction to further improve adaptation performance. Drawing insight from revisiting the EM loss,
our scheme introduces two key loss functions that accelerate TTA in a challenging source-free TTA
setup where the source domains are not available at test-time. Our approach introduces negligible
computational costs during adaptation, enhancing its practicality in a wide range of applications.
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3 AEA: ENERGY-LEVEL ALIGNMENT FOR TTA

3.1 PROBLEM SETUP AND PRELIMINARY

Settings. Let DS = {XS ,YS} be the source data sampled from the source domain distribution
PS(x, y), and DT = {XT ,YT } be the target data from the target domain distribution PT (x, y),
where PS(x, y) ̸= PT (x, y) but they have common label sets. Each pair (xi, yi) ∈ X ×Y of samples
xi and labels yi from the source/target domains follow the joint distribution PS(x, y) /PT (x, y),
respectively. Given a discriminate model fS pre-trained on the source data DS , TTA aims to adapt
the model to the target domain PT (x, y). In our online settings, it is required to perform adaptation (i)
without access to source data and (ii) using unlabeled target samples (or batches), which are incoming
in a sequential manner. Specifically, for current test time step i, the model fS adapts to mini-batch
Bi = {xj}|B|

j=1, consisting of domain-shifted, unlabeled target samples xj ∼ PT (x) with the size
of |B|. To make predictions for the next batch B(i+1), the model needs to persistently adapt in an
online manner by accumulating knowledge from past batches (i.e., B1, B2, ..., Bi).

Energy-based models (EBMs). By defining an energy function Eθ(x) : RD 7→ R that maps
input x ∈ RD to non-probabilistic scalar called the energy, one can design energy-based models
(EBMs) (LeCun et al., 2006) with neural networks parameterized by θ. Following the energy-
based interpretation of discriminate models (Grathwohl et al., 2020; Liu et al., 2020), we consider
a neural network fθ(x) modeling a categorical distribution with a softmax function pθ(y|x) =

exp(fθ(x)[y])∑
y′ exp(fθ(x)[y′]) , where fθ(x)[y

′] denotes the network output (i.e., logit) for input x and class y′.

Also, we can define the energy function Eθ(x) (also known as the free energy) with a log partition
function as

Eθ(x) = − log
∑
y

exp(fθ(x)[y]). (1)

Detailed derivations can be found in Appendix. The energy score Eθ(x) is well-known to serve as
a representative indicator for distinguishing between in- and out-of-distribution samples (Liu et al.,
2020; Xie et al., 2022; Du et al., 2022; Herath et al., 2023). Since most modern discriminate models
have employed negative log-likelihood (NLL) as a supervised loss, this turns out to push down the
energy for in-distribution samples, while those for out-of-distribution samples remain relatively high.

3.2 OBSERVATIONS AND MOTIVATIONS

As shown in Fig. 1a, an energy disparity between the source and the target domains is also observed
in TTA. Even in online TTA where the model is sequentially adapted, this occurrence still becomes
pronounced in the early-stage of batch arrival since the model is less adapted to the target domain
with a few batches. Recently, several works (Xie et al., 2022; Xiao et al., 2023; Herath et al., 2023)
have discovered that reducing the energy gap enables rapid and effective adaptation to the target
domains, serving as a key factor in mitigating domain gaps. However, in TTA, it is challenging to
reduce the energy gap by using only a small number of unlabeled target samples without any source
data at test time. Furthermore, we notice that the conventional loss function, entropy minimization
(EM), has limitation in sufficiently aligning the energy, resulting in unsatisfactory performance. We
further discuss this issue in the following section.

Revisiting entropy minimization. We provide an energy-based re-interpretation of entropy min-
imization (EM) loss to substantiate the validity of our core idea, the energy alignment. The EM
loss, denoted by LEM (x; θ), has been widely utilized in TTA works (Liang et al., 2020; Wang
et al., 2021; Niu et al., 2022; Zhang et al., 2022; Niu et al., 2023), where the expected Shan-
non entropy H(x; θ) for sample x from a target domain pT is employed as a loss function, i.e.,
LEM (x; θ) := H(x; θ) = −

∑K
j=1 pθ(yj |x) log pθ(yj |x). Also, this can be decomposed into two

contrastive energy-based terms from a definition of softmax function and Eqn. (10) as

H(x; θ) = −
K∑
j=1

pθ(yj |x)
(
fθ(x)[yj ]− log

K∑
i=1

efθ(x)[yi]
)

=

K∑
j=1

pθ(yj |x)Eθ(x, yj)− Eθ(x),

(2)
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where Eθ(x, yj) = −fθ(x)[yj ] and K is the number of classes. As the last term in the first line
of Eqn. (2) is not dependent on j, the sum of the outer probabilities is equal to 1, resulting in
factoring out the energy term Eθ(x). The first term encourages minimizing the energy Eθ(x, yj)
with proportional to the predictive probability for the corresponding class yj . This makes confident
predictions even more confident by increasing the logit of each class in proportion to its confidence.
In contrast, the second term, the free energy Eθ(x), aims to increase the ensemble of energies, which
can be considered as a penalization term that reduces the overall scales of the logits for all classes.

Figure 2: (left) Energy gap vs batch index; (right) Ac-
curacy vs batch index. We carry out the online TTA on
CIFAR10-C (Gaussian noise) with four different meth-
ods: (1) BnAdapt: Only BN parameters are updated, (2)
Oracle: Energy alignment assuming knowledge of the
source domain, (3) EM loss, (4) Ours: A combination
of EM loss and our SFEA loss explained in Sec. 3.3.

Limitation of EM loss. Unlike the typical super-
vised NLL loss where the predictive probability
(i.e., pθ(yj |x) in Eqn. (2)) is allocated to the
ground truth class, the EM loss reduces the en-
ergy for each class in a dispersed manner. Also,
the second term even tends to increase the over-
all energy. This results in insufficient reduction
of the energy gap between the source and tar-
get domains, potentially hindering the assertive
model adaptation in TTA. To demonstrate these
effects, in Fig. 2, we compare the energy gap
and accuracy of several methods. The results
reveal that the EM loss, which lacks the ability
to sufficiently reduce the energy gap, exhibits
limited accuracy, especially in the early stage of
batch arrivals. On the other hand, by using our
proposed scheme (denoted as Ours) designed to
strategically reduce the energy gap, the model
adapts to the target domain more quickly, resulting in improved performance throughout all stages
and getting close to the Oracle performance. Based on our conviction that energy alignment is a key
factor in accelerating adaptation and improving performance, in the following sections, we present
our AEA, a new TTA method that strategically reduces the energy gap while precisely guiding the
direction of energy alignment by maintaining class-wise correlations between the source and target
domains. A high-level description of our idea can be found in Fig. 3.

3.3 SOURCE-FREE ENERGY ALIGNMENT (SFEA) LOSS

As aforementioned, there exists an energy disparity between the source and the target domains, and
conventional loss function (i.e., EM loss) for TTA has shown its limitation in reducing this gap. To
accomplish this, we propose source-free energy alignment (SFEA) loss, which explicitly minimizes
target energy, partially offsetting the free-energy maximization term (i.e., Eθ(x)) of the EM loss in
Eqn. (2). This allows to achieve better energy gap reduction compared to using the EM loss alone. If
the gap is sufficiently reduced, we can encourage the model to learn representations of target samples
to become similar to those of the source samples, promoting domain-invariant representation learning.

Formulation of SFEA loss. To make the energy of the target samples closer to the energy of the
source domain, we first estimate the energy of the source domain. One of the challenging aspects here
is that we need to estimate it without access to any source information (e.g., data samples/statistics).
To address this, we employ a source-like sample selection scheme, given that reliable target samples
can be utilized to represent the source domain distribution to some extent (Ma et al., 2021; Du et al.,
2023). Specifically, for each adaptation batch B, we construct a source-like batch B̂, a set of indices
of target samples with low energy scores less than the threshold δB defined for each batch as follows:

Ês =
1

|B̂|

∑
i∈B̂

Eθ(xi), B̂ = {i : E(xi) ≤ δB}, (3)

where Ês is the approximated energy of the source domain and δB is the threshold for sample
selection, corresponding to the bottom α% of target samples within each batch. Subsequently, we
consider the averaged energy of B̂ as the approximated energy Ês for the source domain. In light of
this approximated energy Ês, we introduce our source-free energy alignment (SFEA) loss LSFEA,
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(a) Before adaptation (b) with SFEA (c) with SFEA + LCS

Figure 3: High-level description of our AEA. The x-axis represents the logit (projected), while the y-axis
represents the energy. (a) Before adaptation, there exists the energy gap between the source and target domains,
and the boundary of the two classes is fairly unclear in the target domain. (b) Our AEA sufficiently reduces
the energy gap through the source-free energy alignment (SFEA) loss in Sec. 3.3. (c) Also, our logit cosine
similarity (LCS) loss in Sec. 3.4 adaptively guides the direction of energy alignment in the logit space by
maintaining the class-wise correlations in the target domain to those in the source domain.

which can penalize the target samples with higher energy Eθ(x) than Ês as follows:

LSFEA(x, θ) = log(1 + exp(Eθ(x)− Ês)). (4)

Notably, in Eqn. (4), we employ the softplus function (i.e., log(1 + e(·))) (Glorot et al., 2011; Dugas
et al., 2000), a differentiable and smoothed ReLU function (Agarap, 2018) as our objective. The
rationale behind this choice lies in the assumption that the true energy of the source domain is likely
to be slightly lower than our approximation Ês, given that we approximate it using source-like target
samples. Therefore, we aim to impose a small penalty even on target samples whose estimated energy
Eθ(x) is less than or equal to Ês. By doing so, our loss ultimately adapts the model to make the
energy for each target sample closer to the approximated energy for the source domain. Although our
scheme minimizes the target energy towards an adaptively changing goal (i.e., approximated source
energy) due to infeasibility of the access to source domain, our method turns out to align the energy
of source and target domains as the adaptation progresses as shown in Fig. 1c and Fig. 2. In Sec. 4,
we also demonstrate that our SFEA loss effectively reduces the energy gap and achieves attainable
performance.

Key advantages of SFEA loss. Our LSFEA offers the flexibility to gradually adjust the degree
of penalization throughout the online batch arrivals, considering the evolving domain gap between
the source domain and the target samples. In other words, for the first batches where the domain
gap is particularly pronounced, the energy gap (i.e., Eθ(x)− Ês) is also more significant, resulting
in a stronger penalization effect. This effect steadily decreases as adaptation proceeds, until the
energy gap between the source and target domains is sufficiently reduced. As a result, the model can
be updated more assertively in the initial steps, accelerating adaptation and leading to significant
improvement even in early-stage performance, as confirmed in Fig. 2. Meanwhile, compared to
Yuan et al. (2024), which requires multiple iterations to decrease target energies, our SFEA loss can
efficiently reduce the energy gap with simple computations, requiring negligible additional costs (i.e,
time delay and memory usage) as demonstrated in B.8. Also, we take into account the directional
aspects of energy alignment to achieve robust adaptation, as described in the following subsection.

3.4 LOGIT COSINE SIMILARITY (LCS) LOSS

Another key aspect we consider in our AEA is the energy alignment direction of each target sample.
This is motivated by the separated decision boundaries among classes in the target domain (see Fig.
3b). Basically, the energy function in Eqn. (10) is estimated for all possible classes, indicating that
LSFEA reduces the energy gap in terms of overall magnitude. In this subsection, we propose our
second key component that supplements LSFEA by considering the energy alignment direction,
depending on each target sample’s class information. To accomplish this, we propose a logit cosine
similarity (LCS) loss, which aims to accurately guide the direction of energy alignment. Our LCS can
maintain class-wise correlations of target samples to those of the source domain in a logit space. We
have confirmed that energy alignment in a direction that preserves class-wise correlation yields better
performance, allowing target samples to be clearly distinguishable in the logit space (as in Fig. 3c).
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Key idea of LCS loss. Specifically, our LCS loss aims to further align the logits of each target
sample with those of source sample for the same class k, i.e., W⊤ztrg is aligned towards with
W⊤zsrc, where W is model’s classifier weight and ztrg and zsrc denote the output features right
before the classifier for the target and source samples, respectively. This process effectively guides
the direction of energy alignment in the logit space. However, the feature of source sample zsrc is
not available at the time of TTA. To get around this, we bring up our idea from previous works

Figure 4: Description of the logit cosine similarity
(LCS) loss calculated from the classifier’s weight W .

(Liang et al., 2020; Iwasawa & Matsuo, 2021;
Jang et al., 2023) that utilize the k-th column vec-
tor of W (denoted by Wk) as an anchor point to
make sample-wise pseudo-labels. In contrast to
them, we directly employ Wk, which corresponds
to the classifier vector of class k, as a surrogate
source feature zsrc to compose our loss function
as described in Fig. 4. Since the source domain
feature of class k is likely to be aligned with Wk

to maximize the k-th logit during pre-training on
the source domain, Wk may serve as a good rep-
resentative feature for zsrc of class k. By taking
advantage of this well-trained classifier’s weight
matrix, our AEA is able to effectively reduce the
energy gap while maintaining class-wise correla-
tions between the source and target domains.

Formulation of LCS loss. We define a function S(x; θ) to consider the similarity of two logits as

S(x; θ) = σcos[fθ(x), f̄ŷ] where f̄ŷ = WTWŷ, (5)

where σcos[·, ·] refers to Cosine Similarity operation, and fθ(x) is the logits given the target sample
x, and f̄ŷ represents a virtual logit, calculated from WTWŷ as described in Fig. 4, and ŷ corresponds
to the most confident class for target sample x. We note that the cosine similarity is used for a
distance metric in that, unlike the feature representation, the weight does not inherently contain
magnitude-related information; thus, the estimated virtual logit has its meaning in terms of direction
rather than magnitude. Now we can formulate our LCS loss as follows:

LLCS(x; θ) = w(x) ·
(
1− S(x; θ)

)
· I{C(x; θ) ≥ C0}, (6)

where I{·} is an indicator function, C(x; θ) is the predictive confidence of sample x, and C0 is
pre-defined confidence threshold. In addition, w(x) is a sample-wise weight, which is defined as
w(x) = exp

(
C(x; θ)− C0

)
. The weight w(x) potentially encourages confident samples to have a

stronger effect on LCS loss. Ultimately, the LCS loss tends to align the class-wise correlation of the
target domain with that of the source domain by bringing the logit fθ(x) of each target sample closer
to the virtual logit f̄ŷ . Consequentially, our approach robustly guides the direction of energy alignment
while maintaining class-wise correlations, thereby providing additional performance improvements.

3.5 OVERALL LOSS OF AEA
To achieve fast adaptation in TTA, the overall AEA loss is defined as a combination of LSFEA, LLCS

with their respective coefficients, along with the standard unsupervised EM loss LEM as follows:

Ltotal = LEM + λ1 · LSFEA + λ2 · LLCS . (7)

Incorporating our newly proposed losses (LSFEA, LLCS) can result in consistently outstanding
performance across multiple benchmark datasets. Also, since our method only introduces the extra
loss functions on top of the EM loss, the additional computational cost incurred in AEA becomes
negligible (as demonstrated in Sec. B.8 of Appendix). As a result, AEA can be successfully applied
to a wide range of real-world scenarios, including resource-constrained applications. In the following
section, we validate the effectiveness and versatility of our AEA on a variety of domain shift datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In this section, we demonstrate the effectiveness of our approach through extensive experiments. We
follow the online TTA setting (Zhao et al., 2023) for experiments. Given a pre-trained model on the
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Table 1: Classification errors (%, ↓) on CIFAR10-C with the highest severity level 5 for ResNet-26. The results
are reproduced following (Zhao et al., 2023), with detailed settings provided in Sec. 4.1. Full results with
standard deviations are provided in Appendix.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 73.1 66.8 69.4 40.2 51.9 37.9 38.1 25.5 39.3 39.4 10.1 55.2 26.7 61.5 31.0 44.4
TENT 32.7 30.2 39.1 15.7 35.9 18.2 16.1 21.8 23.1 19.4 12.7 16.0 26.1 22.3 30.4 24.0

BN adaptation 39.1 36.6 46.1 17.2 41.1 19.8 18.0 25.1 25.5 21.0 14.1 17.6 28.9 26.6 35.5 27.5
SHOT 29.5 26.5 35.4 14.6 33.7 17.0 14.6 19.8 22.2 17.8 11.8 16.2 24.6 20.4 26.9 22.1
T3A 65.3 59.6 65.5 37.0 47.7 34.5 34.0 24.8 36.6 34.6 10.1 50.0 25.1 51.8 29.8 40.4
TTT 24.9 23.0 30.2 13.5 34.6 20.4 15.9 19.3 17.9 14.1 9.4 26.4 23.7 16.0 23.8 20.9

NOTE 48.8 42.5 47.5 25.0 40.9 24.4 23.7 20.3 23.5 22.8 9.1 31.6 24.7 41.9 29.2 30.4
Conjugate PL 32.7 30.1 39.2 15.8 35.8 18.2 16.1 21.8 23.1 19.4 12.7 16.1 26.1 22.3 30.4 24.0

EATA 38.7 36.2 46.0 17.1 40.8 19.8 17.9 24.9 25.4 20.9 14.1 17.6 28.7 26.4 35.3 27.3
SAR 32.9 30.6 39.5 15.9 36.3 18.3 16.3 22.1 23.2 19.3 12.7 16.5 26.2 22.8 30.6 24.2
TEA 27.7 25.5 34.2 15.3 34.8 18.0 15.9 20.0 20.5 17.7 12.4 16.4 25.7 19.2 26.3 22.0

AEA (ours) 24.7 22.7 31.9 13.8 30.8 16.2 13.8 17.5 17.5 15.4 10.8 13.7 23.3 17.4 23.8 19.5

Table 2: Classification errors (%, ↓) on CIFAR100-C with the highest severity level 5 for ResNet-26. The results
are reproduced following (Zhao et al., 2023), with detailed settings provided in Sec. 4.1. Full results with
standard deviations are provided in Appendix.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 89.3 88.3 91.0 67.2 63.5 60.8 59.6 56.1 62.3 67.6 42.7 84.4 50.8 85.5 60.9 68.7
TENT 65.5 64.7 65.1 43.9 58.1 47.0 43.6 56.2 54.1 52.3 42.9 49.5 51.4 50.7 59.6 53.6

BN adaptation 70.5 69.9 68.8 46.6 60.8 48.8 45.9 59.0 56.8 55.1 45.5 51.2 53.5 54.8 62.8 56.7
SHOT 58.6 57.7 58.7 41.4 55.0 44.1 41.3 51.9 49.9 48.6 41.0 48.6 48.9 46.4 56.0 49.9
T3A 89.3 88.4 90.4 64.8 60.9 59.9 57.3 57.2 61.2 65.3 43.2 82.5 50.0 82.9 60.4 67.6
TTT 63.7 63.2 65.1 43.9 57.2 49.9 43.4 54.1 50.8 49.7 38.7 70.2 49.7 45.7 56.1 53.4

NOTE 76.4 74.6 74.5 53.9 57.6 50.7 47.9 52.7 52.3 56.7 38.6 67.4 49.0 70.4 57.8 58.7
Conjugate PL 65.6 64.7 65.1 43.9 58.1 47.0 43.6 56.2 54.1 52.3 42.9 49.5 51.4 50.7 59.6 53.6

EATA 68.0 66.2 71.5 46.0 64.7 49.3 46.0 56.7 57.2 53.8 44.1 51.9 55.4 52.1 62.2 56.3
SAR 65.8 64.9 65.3 44.2 58.2 47.1 43.8 56.4 54.4 52.5 43.0 49.3 51.4 50.8 59.7 53.8
TEA 64.0 63.3 64.2 45.1 59.0 48.4 45.4 56.5 55.1 52.5 43.3 53.4 52.7 50.1 60.0 54.2

AEA (ours) 58.2 58.8 59.0 40.9 55.0 43.9 40.5 51.3 49.0 47.4 39.4 44.1 48.4 44.3 54.8 49.0

source domain, we adapt the model to the incoming batches consisting of samples from the target
domain in an online manner. Specifically, the model is persistently adapted to the target domain by
accumulating knowledge from past batches, to make predictions for the following batches.

Datasets. For the domain shift datasets, we utilize corrupted image datasets: CIFAR10-C, CIFAR100-
C, and TinyImageNet-C. The uncorrupted datasets (i.e., CIFAR10, CIFAR100, TinyImageNet) are
used as the source domain, while corrupted datasets (i.e., CIFAR10-C, CIFAR100-C, TinyImageNet-
C) with the highest severity (i.e., level 5) serve as the target domain. We also evaluate our method on
ImageNet to ImageNet-C dataset in Sec. B.1 of Appendix.

Baselines. To validate the effectiveness of our method, we compare AEA with the following baselines:
SHOT (Liang et al., 2020), TENT (Wang et al., 2021), BN adaptation (Schneider et al., 2020), T3A
(Iwasawa & Matsuo, 2021), TTT (Sun et al., 2020), NOTE (Gong et al., 2022), Conjugate PL (Goyal
et al., 2022), EATA (Niu et al., 2022), SAR (Niu et al., 2023) and TEA (Yuan et al., 2024). These are
chosen to cover the diverse TTA methods described in Sec. 2.

Implementation details. For a fair comparison, we follow the official setup of the recent TTA
benchmark in Zhao et al. (2023) and set the hyperparameters for each baseline consistent with
them. Similarly, when obtaining pre-trained models for CIFAR10-C/100-C before the TTA stage,
a self-supervised learning scheme (i.e., the rotation prediction) with an auxiliary head is adopted
to fairly compare with an auxiliary task-based methodology such as TTT (Sun et al., 2020). For
performance metric, we use classification error (%, ↓) averaged over all online batches. We utilize
ResNet-26 (He et al., 2016) backbones for CIFAR10-C/100-C and ResNet-50 for TinyImageNet-C.
Experiments under different backbones (i.e., Vision transformer (Dosovitskiy et al., 2021))) are also
reported in Sec. B.2. During TTA, only the parameters of batch normalization layers are updated.
Other implementation details are described in Sec. C of Appendix.
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Table 3: Classification errors (%, ↓) on TinyImageNet-C with the highest severity level 5 for ResNet-50. The
results are reproduced following (Zhao et al., 2023), with detailed settings provided in Sec. 4.1. Full results with
standard deviations are provided in Appendix.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 96.6 95.1 97.2 92.5 92.2 77.8 78.5 81.9 78.1 89.5 77.8 98.3 69.5 71.9 55.6 83.5
TENT 66.5 64.3 72.9 63.2 75.1 55.5 54.8 63.6 61.9 67.6 57.6 86.2 56.6 51.5 52.5 63.3

BN adaptation 68.8 66.7 75.7 65.0 77.1 56.4 55.8 64.9 63.4 71.0 59.0 86.5 57.7 52.2 53.3 64.9
SHOT 64.5 62.8 70.6 61.9 73.5 54.5 53.8 62.1 61.1 65.2 56.2 89.6 55.4 50.8 51.8 62.2
T3A 96.6 95.0 97.3 92.7 92.1 77.3 78.2 82.3 78.2 89.9 77.1 98.5 68.9 70.3 55.8 83.4

NOTE 83.4 80.4 86.4 81.9 85.7 65.4 64.1 69.6 67.4 79.8 64.2 96.0 61.2 56.0 53.1 73.0
Conjugate PL 67.4 65.3 74.0 63.9 76.1 55.8 55.3 64.3 62.7 68.6 58.1 86.2 57.1 51.8 53.0 64.0

EATA 65.1 63.6 69.7 62.3 74.2 55.3 54.1 61.3 61.0 63.9 55.4 90.8 56.1 51.1 52.2 62.4
SAR 67.2 65.2 73.6 63.9 75.9 55.8 55.2 64.1 62.6 68.4 58.0 86.0 57.1 51.8 52.9 63.8
TEA 66.1 64.6 72.3 63.2 75.1 55.8 54.9 63.1 61.2 65.9 56.9 85.3 56.9 51.8 52.9 63.1

AEA (ours) 63.7 62.1 67.9 60.9 72.8 53.8 52.9 60.1 58.9 61.9 54.2 90.3 54.5 49.8 51.1 61.0

4.2 EXPERIMENTAL RESULTS

Overall performance. In Tables 1-3, we report the classification error (%) for the online TTA on
CIFAR10-C, CIFAR100-C and TinyImageNet-C dataset, respectively. Experiments are conducted
over 3 random trials, and we include the full version with standard deviations in Sec. B.6 of Appendix.
They show that our AEA consistently achieves superior performances than other baselines for most
of corruption types. This supports our claim that reducing the energy gap between the source and
target domains contributes to the improvement of TTA performance. In several cases, TTT (Sun et al.,
2020), which performs a self-supervised learning during the pre-training stage, shows competitive
performances. However, this approach has limitations in a practical usage since it necessarily requires
a pre-trained auxiliary head during TTA. In contrast, our AEA does not need to employ this additional
head at the time of TTA. The results demonstrate that our AEA can effectively adapt models via the
proposed loss functions, improving TTA performance on various domain shift datasets.

Figure 5: Fast adaptation of our AEA. We report the model
accuracy (%, ↑) over adaptation batches on CIFAR10-C and
CIFAR100-C datasets (with Gaussian noise). Our AEA con-
sistently achieves superior performance, particularly in the
early stages of batches.

Fast adaptation of AEA. One of the key
advantages of our AEA is its ability to ac-
celerate model adaptation, enabling fast
TTA with high performance. This can be
done by explicitly reducing the energy gap
through our SFEA loss. Simultaneously,
our LCS loss further contributes to forming
a robust decision boundary in the domain-
invariant latent space to clearly separate
target samples according to their classes.
In Fig. 5, we report the temporal TTA per-
formance over adaptation batches. The re-
sults show that, compared to other compet-
itive TTA baselines, our AEA consistently
achieves superior performance, especially in the early stages of test batches from the target domain.
Furthermore, the significant performance gaps between our AEA and TENT (i.e., only EM loss)
demonstrate the effectiveness of our proposed objective functions (i.e., SFEA loss and LCS loss).

Methods P A C S Avg.

No adapt. 24.67 42.74 48.26 42.18 39.46
TENT 16.55 26.23 29.65 34.25 26.67

BN adapt. 16.72 26.68 30.18 36.57 27.54
T3A 16.46 37.98 33.88 36.05 31.09
SAR 16.63 26.41 29.87 34.98 26.97

AEA (ours) 16.22 24.32 27.22 30.76 24.63

Table 4: Results on style shift dataset (PACS) with 4
different styles: Photo, Art painting, Cartoon and Sketch.

Result for style shift dataset. In Table 4, we
report the results on the style shift dataset, PACS
(Li et al., 2017) for ResNet-50. Each column
represents the the averaged classification error
for the corresponding target domain when the
others are used as source domains independently.
Our AEA consistently achieves superior perfor-
mance, confirming the effectiveness of our ap-
proach across various types of domain shifts.
Thus, our AEA can be utilized in various do-
main shift scenarios.
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4.3 FURTHER STUDIES ON AEA

Methods CIFAR10-C CIFAR100-C

No adaptation 44.4 68.7
EM 24.0 53.6
+ SFEA 20.7 51.8
+ SFEA + LCS 19.5 49.0

Table 5: Effect of each component in our AEA.

Effect of each component. In Table 5, we conduct
an ablation study on our AEA, and demonstrate that
each of the proposed loss functions (i.e., LSFEA,
LLCS) individually contributes to the performance
improvement. Compared to simply applying the
EM loss, the SFEA loss provides significant TTA
performance gains by accelerating adaptation, while
the LCS loss makes that process more robust, resulting in additional performance improvements.

Figure 6: Ablation on varying hyperparameters for our
AEA. We compare our method with competitive base-
lines through the average accuracy on the CIFAR10-C.

Effect of hyperparameters. We conduct an ab-
lation on hyperparameters introduced in AEA,
including λ1, λ2, α, and C0, to verify the robust-
ness of our method to varying hyperparameters
as in Fig. 6. Each subfigure represents a per-
formance of our method, AEA, within specified
range of each hyperparameter while fixing the
remaining ones to their default values. As can
be seen, our method consistently outperforms
other baselines with a notable margin across a range of hyperparameters. This not only confirms the
robustness of our method to a wide range of hyperparameters but also demonstrates its superiority.

Figure 7: TSNE visualization of features for three methods: no adaptation
(left), EM loss (center) and AEA (right).

Why does energy alignment
lead to better adaptation?
We figure out that our energy
alignment can alleviate domain
disparity by promoting feature
alignment between the source
and target domains, which is
well-known to be beneficial
for better adaptation (Yang
et al., 2022; Lu et al., 2022).
Specifically, our implementa-
tion freezes the classifier of the source pre-trained model while updating BN parameters of the feature
extractor before the classifier. This classifier retains fine-grained knowledge of the source domain,
facilitating OOD predictions by aligning the target domain’s representation with the source hypothesis
Liang et al. (2020). In this context, our energy alignment encourages a reduction of target energies,
which updates the model parameters to ensure that target features align with the classifier’s weights
(i.e., source hypothesis). Consequently, this leads to the feature alignment between the source and
target domains, resulting in improved TTA performance with acceleration. To verify this, in Fig. 7,
we provide visualizations of features for source/target samples in the early adaptation step. Each
color denotes different classes and the green and yellow stars indicate the class-wise feature means
for the target and source domains, respectively. As can be seen, our AEA (right) effectively aligns
features between the source and target domains, leading to improved performance, which is not the
case in situations without adaptation (left) and with only EM loss (center). The reason for this is that
our energy alignment encourages the model to reduce the energies of target samples to match those
of source samples, which intrinsically aligns their feature representations as well. A more in-depth
discussion can be found in Sec. A.8 of Appendix.

5 CONCLUSION

In this work, we introduced an adaptive energy alignment (AEA) scheme to handle OOD samples
in TTA setups. Based on our insight that aligning the energy levels between the source and target
domains enables rapid and effective adaptation to the target domains, our AEA strategically reduces
the energy gap to enhance TTA performance. By revisiting EM loss, we discovered its limitations
in reducing the energy gap. To overcome this, we introduce 1) the SFEA loss, which effectively
minimizes the energy gap without access to the source domain, and 2) the LCS loss, which guides the
direction of energy alignment by considering class-wise correlations. Our approach can be applied in
various scenarios due to its ability to accelerate model adaptation, leading to improved performance.
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REPRODUCIBILITY STATEMENT

For the purpose of reproducibility, we present our implementation details and setup in Sec. 4 and
Sec. C. In particular, experimental settings such as implementation benchmark, hyperparameters and
computing resources are outlined and our source codes are included in supplementary material.
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APPENDIX

A ADDITIONAL ANALYSIS

A.1 DETAILED DERIVATION OF ENERGY FUNCTION

As discussed in 3.1, by defining an energy function Eθ(x) : RD 7→ R, one can design energy-based
models (EBMs) (LeCun et al., 2006) with neural networks parameterized by θ. From the defined
Eθ(x) and the Gibbs distribution, the probability density function pθ(x) can be derived as

pθ(x) =
exp(−Eθ(x))

Z(θ)
, ∀ x ∈ RD, (8)
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where Z(θ) =
∫
x
exp(−Eθ(x))dx denotes the partition function. Following the energy-based

interpretation of discriminate models (LeCun et al., 2006; Grathwohl et al., 2020; Liu et al., 2020),
we consider a neural network fθ(x) modeling a categorical distribution with a softmax function
pθ(y|x) = exp(fθ(x)[y])∑

y′ exp(fθ(x)[y′]) , where fθ(x)[y
′] denotes the network output (i.e., logit) for input x and

class y′. Without changing the model fθ, we can represent the joint distribution pθ(x, y) and density
pθ(x) marginalized over y as

pθ(x, y) =
exp(fθ(x)[y])

Z(θ)
, pθ(x) =

∑
y exp(fθ(x)[y])

Z(θ)
, (9)

where Z(θ) is the partition function and Eθ(x, y) = −fθ(x)[y]. By combining Eqns. (8)-(9), we can
define the energy function Eθ(x) (also known as the free energy) with a log partition function as

Eθ(x) = − log
∑
y

exp(fθ(x)[y]) (10)

A.2 WHY DOES EM LOSS APPEAR IN OUR FINAL LOSS?

In Eqn. (7), we define our final loss as a combination of LSFEA, LLCS along with the EM loss LEM .
Basically, the foundation of our AEA is the inherent limitations of EM loss in sufficiently reducing
the energy gap in the early-stage of batch arrivals where the energy gap between source and target
domains is pronounced. To address this, our SFEA loss is proposed to adaptively minimize target
energy over time (strongly in the initial batches and more weakly later on), thereby reducing the
energy gap more quickly, while our LCS loss considers the directional aspect of energy alignment.
In turn, our method is designed to complement the limitations of the EM loss while leveraging its
advantages in TTA (rather than replacing it), which is why we incorporate EM loss in our final
objective.

A.3 ENERGY-LEVEL DISCREPANCY BETWEEN THE SOURCE AND TARGET DOMAINS

We demonstrate the energy level discrepancy between the source and target domains to further
strengthen our implications. As shown Fig. 8, the energy levels of the target samples, which is
referred to as ‘CIFAR10-C’, are higher than that of the source samples of CIFAR10 regardless of the
classes. Due to this energy level discrepancy between the source and target datasets, the existing EM
loss approaches exhibit a limited performance in the early-stage of online batches as the EM loss
fails to sufficiently decrease the energy levels of the target samples. In contrast, our method (AEA)
strategically reduces this energy gap while precisely guiding the direction of energy alignment by
using our proposed losses LSFEA, and LLCS .

Figure 8: Energy-level discrepancy on CIFAR10 (red) and CIFAR10-C (blue) dataset at the test time.
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A.4 MOTIVATION AND NECESSITY OF OUR LCS LOSS

Our LCS loss is proposed to address the directional aspect of energy alignment, particularly con-
cerning the class-wise adjustment of logit elements. Specifically, our SFEA loss alone minimizes
the free energy of the target samples, aligning the energy between the source and target domains in
terms of the magnitude of energy levels. It tends to increase the overall magnitude of the logits across
all classes rather than considering the relativity of each logit element (i.e., class-wise correlation).
On the other hand, our LCS loss additionally accounts for class-wise correlation by increasing the
logit elements of classes with high correlation together. This allows each target sample to align with
the well-trained source knowledge in a class-wise manner, leading to directionally improved energy
alignment.

To support our claim, in Fig. 9, we provide sample-wise visualizations (similar to Figs. 1a-1b) with
and without our LCS loss. In Fig. 9b, while our SFEA loss effectively reduces the energy gap, a
number of target samples are still not clearly separated according to their true classes. In contrast, by
incorporating our LCS loss in Fig. 9c, the target samples align more successfully with the source
samples in a class-wise manner, guiding the direction of energy alignment in a logit space.

(a) EM only (b) EM + SFEA (c) EM + SFEA + LCS

Figure 9: Sample-wise logit (x, y-axes) and energy (z-axis) distribution in the early stage of adaptation steps
(similar to Figs. 1a-1b). Although our SFEA loss effectively reduces the energy gap, a number of target samples
are still not clearly separated according to their true classes. In contrast, by incorporating our LCS loss, the
target samples align more successfully with the source samples in a class-wise manner, guiding the direction of
energy alignment in a logit space.

A.5 FURTHER ANALYSIS ON THE MODEL OUTPUT

In table 6, we present additional results that help understand how our proposed losses affect model
outputs. Specifically, on CIFAR10-C dataset, we consider four methods: No Adaptation, EM, EM
+ SEFA, and EM + SEFA + LCS, measuring their average energy scores for source/target domains
(Esrc, Etrg), accuracy and entropy of test samples. From the results, we can further recognize the
effects of our method as follows: Our proposed methods (i.e., LSEFA, LLCS) can effectively reduce
the energy gap between the source and target domains, leading to improved accuracy. Furthermore,
it is observed that our proposed methods produce lower entropy than TENT (EM loss) by guiding
target samples to be placed in more confident and correct regions.

No adaptation EM EM+SEFA EM+SFEA+LCS

Esrc -10.26 -10.54 -11.26 -10.83
Etrg -6.85 -7.35 -8.81 -9.28

|Esrc-Etrg| 3.41 3.19 2.45 1.55
Accuracy (%) 61.5 64.8 71.0 72.1

Entropy 7.94 7.84 7.67 7.65

Table 6: Analysis on the model output.
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A.6 ABLATION STUDY ON THE CHOICE OF LOSS FUNCTION

In Table 7, we conduct an ablation study on the choice of loss function for energy alignment,
comparing the hinge loss to our SFEA loss. Specifically, we report the results with varying λ1, a
coefficient of LSFEA, to evaluate hyperparameter sensitivity. The results demonstrate that our loss is
less sensitive to hyperparameters than hinge loss, achieving better performance with marginal gains.
Our intuition is that these improvements are attributed to the smoothness of the softplus function
around the near-zero region, containing more information useful for reducing the energy gap than the
hinge loss near that region.

Also, unlike previous energy alignment works that have access to the source domain, the source-free
scenario in TTA does not allow for accurate estimation of source energy. Under this new setting,
we have utilized the approximated source energy for energy alignment, wherein our smoothed loss
design proves to be more feasible and leads to better performance compared to the hinge loss.

λ1 1.0 1.2 1.4 1.6 1.8 2.0

hinge 80.3 80.2 79.9 79.7 79.3 79.0
ours 80.5 (+0.2%) 80.7 (+0.5%) 80.6 (+0.7%) 80.2 (+0.5%) 79.9 (+0.6%) 79.8 (+0.8%)

Table 7: Ablation study on the choice of loss function for energy alignment, comparing the hinge loss to our
SFEA loss. We report the average classification accuracy (%, ↑) on CIFAR10-C dataset. The other experimental
details (e.g., pre-trained model, hyperparameters, etc.) are consistent with the main settings in the paper.

A.7 EVIDENCE FOR EM LOSS’S LIMITATION ON ENERGY GAP REDUCTION

Our argument on this topic initiates from an energy-based reinterpretation in Sec. 3.2, where the
EM loss can be decomposed into two contrastive energy-based terms. Regarding the 1st term
(i.e.,

∑K
j=1 pθ(yj |x)Eθ(x, yj)), given the absence of labels for target samples, this term dispersely

reduces the energy given class (i.e., Eθ(x, yj)) across each class, whereas the supervised NLL loss
concentrates predictive probabilities on the ground truth class. Also, the 2nd term (i.e., negative free
energy, −Eθ(x)) encourages the increase of ensemble of energies as a penalization during adaptation.

In TTA, due to the typically limited adaptation batches provided for sequential target batches, the
EM loss exhibits limitations in sufficiently reducing the energy gap within the constrained iterations,
potentially hindering the assertive adaptation in TTA. Confirmingly, as shown in 1c and 2, the EM loss
alone is not sufficient to reduce the energy gap between the source and target domains. For a more
comprehensive understanding, in Fig. 10, we visualize how these two decomposed terms change
during adaptation. Here, −Esrc and −Etrg represent the negative free energy (i.e., 2nd term) for
the source and target domain, respectively, and the 1st term corresponds to

∑K
j=1 pθ(yj |x)Eθ(x, yj)

as denoted in Eqn. (2). In the result, among the two terms, the 1st term is dominant, leading to
a reduction in energy as adaptation progresses. However, in the case of EM loss, the energy gap
between source and target domains slowly decreases, and it fails to reach the energy level of the
source domain. On the other hand, by adding our SFEA loss to EM loss, we can explicitly align
the energy, thereby reducing the energy gap more fast. Also, this result is consistent with Fig. 2 in
our main paper; our SFEA loss facilitates a close approximation to the Oracle case, which assumes
knowledge of source domain, achieving superior TTA performance.

A.8 THE LINK BETWEEN ENERGY GAP REDUCTION AND BETTER ADAPTATION

In this paper, we argue that the performance of TTA can be improved by aligning the energy levels
between the source and target domains. To accomplish this, our AEA adopts the SFEA loss (in Sec.
3.3) and the LCS loss (in Sec. 3.4), which successfully reduce energy gap, thereby accelerating model
adaptation and achieving superior TTA performance on various domain-shift datasets.

As introduced in Sec. 4.3, one can pose a following question: why would reducing this energy gap
improve TTA? We figure out that our energy alignment can also facilitate feature alignment between
the source and target domains. Indeed, it has been widely studied that the feature alignment through
domain-invariant representation learning effectively addresses domain shift problems (Yang et al.,
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Figure 10: Visualization of how the two decomposed loss terms in Eqn. (2) change during test-time adaptation
on CIFAR10-C.

2022; Lu et al., 2022). However, as they are typically allowed to access both source and target
samples, it is straightforward to align features of both domains, while the absence of source domain
in our TTA setting makes it quite challenging. Instead, we utilize the energy level that obviously
differentiate between the source and target domains as a surrogate feature to be aligned. We note that
before adaptation, the pre-trained model produces low energy (i.e., high logits) for the source domain
and high energy (i.e., low logits) for the target domain (as observed in Fig. 1a). As an alternative to
directly aligning features, our AEA strategically matches the energy levels between the source and
target domains in the logit space, encouraging the model to learn aligned feature representations.

More specifically, in the implementation, we freeze the classifier of pre-trained model which is
trained on the source domain, while updating model parameters (e.g., BN parameters of feature
extractor) prior to the classifier. As discussed in Liang et al. (2020), such a classifier holds fine-
grained knowledge on the source domain (i.e., source hypothesis), and by aligning the target domain’s
representation with the source hypothesis, a well-trained classifier can be effectively utilized for
performance improvement. In this context, since our energy alignment encourages decreasing the
energies (or increasing the overall logits) of target samples, it necessarily makes the model parameters
to be updated so that the target features are aligned with the classifier’s weight itself, which is already
sufficiently aligned with the source domain. Consequentially, this inherently results in alignment
of feature representations of target domain with those of source domain, leading to performance
enhancement.

In Fig. 7, we provide the feature visualization of source/target samples within a few adaptation
batches (after 30 steps out of total 157 steps). As can be seen, in the cases without adaptation (left)
and with just EM loss (center), the class-wise feature means are not aligned well between source
and target; at the same time, these two cases have shown high energy gaps and low performances on
the target domain (as shown in Fig. 1c and 2). On the other hand, our AEA (right) can significantly
align features between the source and target domains, encouraged by our energy alignment approach.
From the results, we emphasize that our strategical and effective energy alignment scheme through
SFEA loss and LCS loss facilitates feature alignment, which leads to improved TTA performance.

For further analysis, in Table 8, we measured the true distance between source features and target fea-
tures during TTA adaptation. Specifically, for each adaptation stage, we (1) estimate the source/target
feature means for each ground-truth class, (2) measure the Euclidean distance between the feature
means for each class, and (3) take the average across all classes. These measurements can indicate
how well the adapted model performs feature alignment between the source and target domains. The
results demonstrate that our method indeed aligns the true source and target features more rapidly.
For instance, our AEA achieves better alignment by reducing the distance between each feature from
5.18 to 0.98 over 40 adaptation batches, whereas TENT does from 5.18 to 1.76. Based on these
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

No adaptation 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18
TENT 5.18 1.87 1.83 1.80 1.76 1.73 1.69 1.64 1.61 1.58 1.55 1.52 1.49 1.46 1.44 1.41

AEA (ours) 5.18 1.58 1.28 1.09 0.98 0.94 0.89 0.86 0.82 0.79 0.78 0.77 0.75 0.71 0.69 0.71

Table 8: Feature alignment between the source and target domains. We measure the true distance (i.e, Euclidean
distance) between source features and target features during TTA adaptation. Each column represents the number
of adaptation batches. Experiments are conducted on CIFAR10-C (gaussian noise with severity level 5).

findings, we argue that our adaptive energy alignment approach facilitates more effective feature
alignment from the early online batches, accelerating TTA adaptation.

B ADDITIONAL RESULTS

B.1 EVALUATION ON IMAGENET-C DATASET

In Tables 9-10, we evaluate the online TTA performance on ImageNet-C dataset, comparing our AEA
with comparable baselines. For the experiments, we employ ResNet-50 backbone as a pre-trained
model and follow the setup of TENT (Wang et al., 2021). We consider two different practical settings
using the large-scale ImageNet-C dataset, which contains 50K target samples: First, we assume
there are sufficient target samples (50K, full), and second, we examine a case where the number of
target samples is smaller (10K). We report each result in Table 9 and Table 10, respectively. The
results show that our AEA still achieves competitive performance in both cases. Notably in case of
limited target samples (10K), our AEA outperforms the baselines by large margins (≥ 4.0). This
result indeed supports our claim that our adaptive energy alignment approach can achieve desired
performance even in a few adaptation batches compared to the baselines, enhancing its applicability
in various scenarios.

Table 9: Classification errors (%, ↓) on ImageNet-C (50K target samples) with the highest severity level 5 for
ResNet-50 backbone.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 95.5 94.9 95.4 84.9 91.7 86.6 77.1 84.1 79.4 77.3 44.3 95.8 85.2 77.4 66.8 82.4
TENT 77.4 75.2 75.8 78.0 79.9 65.3 54.2 55.9 62.2 45.4 34.5 88.4 48.9 45.5 53.2 62.6

Bn adapt 88.4 87.8 87.7 88.4 88.0 78.6 64.4 68.1 69.4 55.3 36.8 89.3 59.2 57.3 67.7 72.4
SHOT 77.6 74.9 76.0 80.4 80.9 63.5 53.1 54.0 61.7 45.1 34.0 95.3 47.9 45.0 52.6 62.8

ConjugatePL 76.5 74.1 75.4 77.4 78.4 64.8 54.1 55.5 61.5 45.2 34.4 85.6 48.6 45.3 52.9 62.0
SAR 75.2 74.4 73.9 77.5 77.7 63.5 54.0 55.6 60.5 45.4 34.5 76.7 48.9 45.5 52.9 61.1

AEA (ours) 73.8 73.2 72.7 75.8 79.2 59.7 51.9 52.7 58.6 44.0 34.3 90.5 46.6 43.3 50.5 60.5

Table 10: Classification errors (%, ↓) on ImageNet-C (10K target samples) with the highest severity level 5 for
ResNet-50 backbone.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 95.5 94.8 95.4 84.8 91.7 86.2 76.8 84.0 79.3 77.1 44.4 95.6 85.3 77.1 66.5 82.3
TENT 83.6 82.2 82.9 84.0 84.1 73.0 59.5 62.4 65.2 49.6 35.6 85.9 54.4 50.3 60.0 67.5

Bn adapt 88.4 87.7 87.6 88.4 87.9 78.9 64.5 68.1 69.0 55.0 37.0 89.2 59.3 57.2 67.5 72.4
SHOT 81.1 79.2 80.2 84.2 83.8 70.2 57.3 58.6 63.7 47.8 35.1 92.0 51.9 48.6 56.7 66.0

ConjugatePL 84.0 82.6 83.3 84.5 84.4 73.3 59.7 62.6 65.4 49.7 35.6 85.6 54.7 50.5 60.1 67.7
SAR 83.7 83.7 82.9 85.3 84.9 72.8 59.9 62.5 65.2 50.0 35.8 83.3 55.0 50.8 60.0 67.7

AEA (ours) 77.2 75.8 76.5 78.8 79.8 63.6 54.2 54.6 59.9 45.6 34.7 83.5 48.5 45.1 52.6 62.0

B.2 PERFORMANCE UNDER DIFFERENT BACKBONES

In table 11, we report experimental results for different backbone architectures of vision transformer
(ViT) family (Dosovitskiy et al., 2021). Our method can be easily applied to various model architec-
tures and, as shown in the results, consistently achieves superior TTA performance compared to other
comparable baselines.
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Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adapt. 33.5 28.3 17.8 5.8 22.6 10.6 4.9 5.5 7.3 12.9 2.9 10.0 12.7 24.4 15.5 14.3
TENT 24.2 18.9 14.0 4.7 16.6 7.8 3.9 5.0 6.3 9.0 2.7 5.8 10.3 8.6 13.4 10.1
SAR 28.1 19.8 14.4 4.8 16.6 8.0 4.0 5.1 6.4 9.5 2.7 6.0 10.4 8.8 13.5 10.5

AEA(ours) 20.3 16.3 11.5 4.7 15.0 6.6 3.7 5.1 5.3 7.0 2.7 3.9 10.1 6.9 13.6 8.8

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 65.1 66.3 63.6 67.6 77.8 63.4 68.9 77.8 73.3 46.8 38.8 49.7 68.0 45.5 44.1 61.1
TENT 48.2 47.4 47.1 47.7 55.5 45.0 52.6 86.5 84.3 34.2 27.2 35.0 62.5 33.4 35.6 49.5
SAR 48.2 47.2 47.1 47.6 53.8 45.1 51.7 80.2 68.6 33.9 27.9 35.4 49.4 33.9 35.7 47.0

AEA(ours) 45.9 44.9 44.4 44.5 48.1 41.4 50.7 88.6 74.3 30.8 26.3 35.5 40.9 29.9 33.1 45.3

Table 11: Classification errors (%, ↓) on CIFAR10-C for ViT small 16 backbone (top) and on ImageNet-C for
ViT base 16 backbone (bottom).

B.3 PERFORMANCE ON SEGMENTATION TASK

For further justification, we evaluate our method on the segmentation TTA task in Table 12. We
report the segmentation performance (i.e., MIoU(%)) on the Cityscapes dataset Cordts et al. (2016),
following the experimental setup of Volpi et al. (2022). More specifically, given a pre-trained
segmentation model on GTA-5 dataset Richter et al. (2016), we perform online test-time adaptation
to adapt the pre-trained model to target sequences composed of target samples from each scene (i.e.,
city) in Cityscapes dataset. In Table 12, we report the results for five different scenes and other
experimental details (e.g., segmentation model, batch size, etc.) are consistent with Volpi et al. (2022).
Also, we use the same hyperparameters in our main results for AEA evaluation. The results show
that our AEA still achieves competitive performance in the segmentation TTA task, demonstrating its
effectiveness and applicability across various tasks.

Target sequence Seq.#1 Seq.#2 Seq.#3 Seq.#4 Seq.#5 Avg.

No adaptation 42.8 41.9 47.6 46.3 47.9 45.3
BN adaptation 43.3 42.7 48.1 47.0 48.5 45.9

TENT 43.7 43.6 48.8 47.8 49.1 46.6

AEA (ours) 44.7 44.9 50.3 48.3 49.3 47.5

Table 12: Evaluation under the TTA segmentation task, following the experimental setup of Volpi et al. (2022).
We report the segmentation performance (i.e., MIoU(%, ↑)) on the Cityscapes dataset Cordts et al. (2016). We
adapt a pre-trained segmentation model on GTA-5 dataset to five different target sequences from Cityscapes: #1)
aachen, #2) dusseldorf, #3) erfurt, #4) monchengladbach and #5) ulm.

B.4 PERFORMANCE UNDER SOURCE-FREE DOMAIN ADAPTATION SETTING

Our AEA can also be applied to the source-free domain adaptation (SFDA) task and we present
the results in Table 13. The main difference between SFDA and TTA is that SFDA allows access
to the entire target samples for model adaptation, whereas TTA should conduct adaptation over a
continuous stream of target batches. To demonstrate the effectiveness of our AEA, we measured
performance by varying the number of target samples for adaptation in the SFDA setting. Specifically,
we first adapt a pre-trained model on the given target samples, and subsequently, the performance is
evaluated over the entire target samples. The results show that our method still achieves competitive
performance in the SFDA setting, with a significant performance improvement when the number of
target samples is small. For example, given only 30% of the entire target samples (for adaptation),
our AEA outperforms SHOT by 6.9% and even surpasses the performance of SHOT adapted on the
full dataset. These findings support the advantages of our method in accelerating adaptation and
suggest its applicability in other source-free scenarios.

B.5 ABLATION STUDY ON UPDATING MODEL PARAMETERS

We have further conducted an additional ablation study on the proposed components in our AEA.
In Table 14, we show the results (i.e., classification errors) of updating all the parameters in the
feature extractor, along with the results of updating only the batch normalization parameters, which
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

No adaptation 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9
TENT 61.6 62.9 64.3 64.9 66.6 67.5 68.7 69.1 70.1 70.5
SHOT 63.2 67.8 70.2 71.3 72.6 73.3 74.3 74.5 75.5 75.2

AEA (ours) 67.7 72.9 77.1 77.4 77.6 77.6 77.8 77.7 77.2 76.8

Table 13: Performance under SFDA setting. We report classification accuracy (%, ↑) with varying the sample
sizes (in column) for model adaptation. Experiments are conducted on CIFAR10-C (gaussian noise with severity
level 5).

Table 14: Ablation study for each component of AEA. The results show that each component (i.e., LSFEA,
LLCS) of our method individually contributes to the performance improvement in TTA.

Updated parameters Methods CIFAR10-C

No adaptation 44.4

EM 24.0
Batch Normalization EM + SFEA 20.7

EM + SFEA + LCS 19.5

EM 22.6
Feature Extractor EM + SFEA 21.7

EM + SFEA + LCS 20.6

is denoted by ‘Batch Normalization’. As can be seen, our proposed loss functions, i.e., LSFEA and
LLCS , individually contribute to the performance improvement compared to naive EM baselines.
This indicates that our approach works effectively regardless of which parameters are updated.

B.6 RESULTS WITH STANDARD DEVIATIONS

In Table 15, we present the online TTA results on CIFAR10-C and CIFAR100-C with standard
deviations. Each TTA method is conducted with three different random seeds, and we report the mean
and standard deviation of three runs for each method. Our AEA, which is fundamentally based on the
EM loss, shows similar or lower standard deviations compared to TENT. The results still confirm that
our method consistently achieves superior TTA performance through our energy alignment approach.

Table 15: Classification errors (%, ↓) with standard deviations on CIFAR10-C with the highest severity level 5
for ResNet-26 backbone.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 73.1
(±0.00)

66.8
(±0.00)

69.4
(±0.00)

40.2
(±0.00)

51.9
(±0.00)

37.9
(±0.00)

38.1
(±0.00)

25.5
(±0.00)

39.3
(±0.00)

39.4
(±0.00)

10.1
(±0.00)

55.2
(±0.00)

26.7
(±0.00)

61.5
(±0.00)

31.0
(±0.00)

44.4
(±0.00)

TENT 32.7
(±0.52)

30.2
(±0.34)

39.1
(±0.10)

15.7
(±0.16)

35.9
(±0.58)

18.2
(±0.13)

16.1
(±0.28)

21.8
(±0.10)

23.1
(±0.30)

19.4
(±0.15)

12.7
(±0.29)

16.0
(±0.43)

26.1
(±0.56)

22.3
(±0.42)

30.4
(±0.50)

24.0
(±0.33)

BN adaptation 39.1
(±0.11)

36.6
(±0.13)

46.1
(±0.07)

17.2
(±0.18)

41.1
(±0.33)

19.8
(±0.13)

18.0
(±0.10)

25.1
(±0.12)

25.5
(±0.02)

21.0
(±0.07)

14.1
(±0.09)

17.6
(±0.18)

28.9
(±0.23)

26.6
(±0.23)

35.5
(±0.11)

27.5
(±0.14)

SHOT 29.5
(±0.76)

26.5
(±0.40)

35.4
(±0.52)

14.6
(±0.04)

33.7
(±1.01)

17.0
(±0.08)

14.6
(±0.49)

19.8
(±0.34)

22.2
(±0.84)

17.8
(±0.18)

11.8
(±0.49)

16.2
(±0.99)

24.6
(±0.32)

20.4
(±0.51)

26.9
(±0.58)

22.1
(±0.50)

T3A 65.3
(±0.22)

59.6
(±0.12)

65.5
(±0.15)

37.0
(±0.05)

47.7
(±0.02)

34.5
(±0.16)

34.0
(±0.05)

24.8
(±0.05)

36.6
(±0.12)

34.6
(±0.15)

10.1
(±0.02)

50.0
(±0.25)

25.1
(±0.03)

51.8
(±0.08)

29.8
(±0.08)

40.4
(±0.10)

TTT 24.9
(±0.74)

23.0
(±0.04)

30.2
(±0.13)

13.5
(±0.19)

34.6
(±0.32)

20.4
(±0.23)

15.9
(±0.04)

19.3
(±0.08)

17.9
(±0.30)

14.1
(±0.21)

9.4
(±0.08)

26.4
(±0.42)

23.7
(±0.26)

16.0
(±0.17)

23.8
(±0.17)

20.9
(±0.22)

NOTE 48.8
(±0.57)

42.5
(±0.29)

47.5
(±0.42)

25.0
(±0.50)

40.9
(±0.25)

24.4
(±0.16)

23.7
(±0.12)

20.3
(±0.16)

23.5
(±0.23)

22.8
(±0.16)

9.1
(±0.16)

31.6
(±0.29)

24.7
(±0.18)

41.9
(±0.14)

29.2
(±0.19)

30.4
(±0.25)

Conjugate PL 32.7
(±0.45)

30.1
(±0.36)

39.2
(±0.12)

15.8
(±0.19)

35.8
(±0.58)

18.2
(±0.13)

16.1
(±0.28)

21.8
(±0.10)

23.1
(±0.32)

19.4
(±0.14)

12.7
(±0.29)

16.1
(±0.44)

26.1
(±0.53)

22.3
(±0.45)

30.4
(±0.48)

24.0
(±0.32)

EATA 38.7
(±0.17)

36.2
(±0.40)

46.0
(±0.19)

17.1
(±0.21)

40.8
(±0.26)

19.8
(±0.06)

17.9
(±0.12)

24.9
(±0.22)

25.4
(±0.09)

20.9
(±0.11)

14.1
(±0.03)

17.6
(±0.20)

28.7
(±0.34)

26.4
(±0.23)

35.3
(±0.17)

27.3
(±0.19)

SAR 32.9
(±0.13)

30.6
(±0.22)

39.5
(±0.28)

15.9
(±0.20)

36.3
(±0.31)

18.3
(±0.08)

16.3
(±0.12)

22.1
(±0.13)

23.2
(±0.06)

19.3
(±0.23)

12.7
(±0.12)

16.5
(±0.17)

26.2
(±0.21)

22.8
(±0.26)

30.6
(±0.52)

24.2
(±0.20)

TEA 27.7
(±0.27)

25.5
(±0.40)

34.2
(±0.64)

15.3
(±0.22)

34.8
(±0.95)

18.0
(±0.23)

15.9
(±0.45)

20.0
(±0.09)

20.5
(±0.31)

17.7
(±0.19)

12.4
(±0.24)

16.4
(±0.24)

25.7
(±0.12)

19.2
(±0.10)

26.3
(±0.22)

22.0
(±0.31)

AEA (ours) 24.7
(±0.19)

22.7
(±0.05)

31.9
(±0.58)

13.8
(±0.10)

30.8
(±0.86)

16.2
(±0.38)

13.8
(±0.34)

17.5
(±0.20)

17.5
(±0.17)

15.4
(±0.39)

10.8
(±0.20)

13.7
(±0.42)

23.3
(±0.27)

17.4
(±0.12)

23.8
(±0.17)

19.5
(±0.30)
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Table 16: Classification errors (%, ↓) with standard deviations on CIFAR100-C with the highest severity level 5
for ResNet-26 backbone.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 89.3
(±0.00)

88.3
(±0.00)

91.0
(±0.00)

67.2
(±0.00)

63.5
(±0.00)

60.8
(±0.00)

59.6
(±0.00)

56.1
(±0.00)

62.3
(±0.00)

67.6
(±0.00)

42.7
(±0.00)

84.4
(±0.00)

50.8
(±0.00)

85.5
(±0.00)

60.9
(±0.00)

68.7
(±0.00)

TENT 65.5
(±0.18)

64.7
(±0.12)

65.1
(±0.33)

43.9
(±0.14)

58.1
(±0.17)

47.0
(±0.21)

43.6
(±0.29)

56.2
(±0.37)

54.1
(±0.43)

52.3
(±0.27)

42.9
(±0.43)

49.5
(±0.30)

51.4
(±0.39)

50.7
(±0.15)

59.6
(±0.10)

53.6
(±0.26)

BN adaptation 70.5
(±0.20)

69.9
(±0.13)

68.8
(±0.33)

46.6
(±0.15)

60.8
(±0.33)

48.8
(±0.10)

45.9
(±0.13)

59.0
(±0.33)

56.8
(±0.09)

55.1
(±0.35)

45.5
(±0.19)

51.2
(±0.30)

53.5
(±0.31)

54.8
(±0.03)

62.8
(±0.14)

56.7
(±0.21)

SHOT 58.6
(±0.64)

57.7
(±0.23)

58.7
(±0.66)

41.4
(±0.10)

55.0
(±0.11)

44.1
(±0.37)

41.3
(±0.10)

51.9
(±0.32)

49.9
(±0.19)

48.6
(±0.15)

41.0
(±0.13)

48.6
(±0.46)

48.9
(±0.41)

46.4
(±0.62)

56.0
(±0.38)

49.9
(±0.32)

T3A 89.3
(±0.14)

88.4
(±0.17)

90.4
(±0.04)

64.8
(±0.25)

60.9
(±0.19)

59.9
(±0.25)

57.3
(±0.17)

57.2
(±0.05)

61.2
(±0.12)

65.3
(±0.34)

43.2
(±0.02)

82.5
(±0.01)

50.0
(±0.06)

82.9
(±0.07)

60.4
(±0.29)

67.6
(±0.14)

TTT 63.7
(±0.14)

63.2
(±0.09)

65.1
(±0.29)

43.9
(±0.20)

57.2
(±0.03)

49.9
(±0.20)

43.4
(±0.13)

54.1
(±0.28)

50.8
(±0.55)

49.7
(±0.10)

38.7
(±0.17)

70.2
(±0.27)

49.7
(±0.22)

45.7
(±0.29)

56.1
(±0.37)

53.4
(±0.22)

NOTE 76.4
(±0.29)

74.6
(±0.04)

74.5
(±0.17)

53.9
(±0.25)

57.6
(±0.22)

50.7
(±0.27)

47.9
(±0.18)

52.7
(±0.27)

52.3
(±0.31)

56.7
(±0.34)

38.6
(±0.17)

67.4
(±0.45)

49.0
(±0.25)

70.4
(±0.55)

57.8
(±0.06)

58.7
(±0.25)

Conjugate PL 65.6
(±0.16)

64.7
(±0.14)

65.1
(±0.34)

43.9
(±0.15)

58.1
(±0.17)

47.0
(±0.22)

43.6
(±0.31)

56.2
(±0.38)

54.1
(±0.45)

52.3
(±0.25)

42.9
(±0.40)

49.5
(±0.28)

51.4
(±0.38)

50.7
(±0.18)

59.6
(±0.08)

53.6
(±0.26)

EATA 68.0
(±2.67)

66.2
(±2.50)

71.5
(±1.38)

46.0
(±0.31)

64.7
(±1.13)

49.3
(±1.21)

46.0
(±1.33)

56.7
(±1.03)

57.2
(±1.73)

53.8
(±0.13)

44.1
(±0.69)

51.9
(±1.96)

55.4
(±1.36)

52.1
(±3.23)

62.2
(±0.99)

56.3
(±1.44)

SAR 65.8
(±0.08)

64.9
(±0.32)

65.3
(±0.26)

44.2
(±0.17)

58.2
(±0.26)

47.1
(±0.06)

43.8
(±0.46)

56.4
(±0.35)

54.4
(±0.31)

52.5
(±0.33)

43.0
(±0.32)

49.3
(±0.37)

51.4
(±0.40)

50.8
(±0.04)

59.7
(±0.28)

53.8
(±0.27)

TEA 64.0
(±0.43)

63.3
(±0.09)

64.2
(±0.57)

45.1
(±0.29)

59.0
(±0.23)

48.4
(±0.23)

45.4
(±0.43)

56.5
(±0.28)

55.1
(±0.44)

52.5
(±0.45)

43.3
(±0.27)

53.4
(±0.70)

52.7
(±0.27)

50.1
(±0.10)

60.0
(±0.17)

54.2
(±0.33)

AEA (ours) 58.2
(±0.57)

58.8
(±0.27)

59.0
(±0.24)

40.9
(±0.20)

55.0
(±0.15)

43.9
(±0.44)

40.5
(±0.31)

51.3
(±0.05)

49.0
(±0.31)

47.4
(±0.27)

39.4
(±0.16)

44.1
(±0.51)

48.4
(±0.30)

44.3
(±0.48)

54.8
(±0.25)

49.0
(±0.30)

Table 17: Classification errors (%, ↓) with standard deviations on TinyImageNet-C with the highest severity
level 5 for ResNet-50 backbone.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 96.6
(±0.00)

95.1
(±0.00)

97.2
(±0.00)

92.5
(±0.00)

92.2
(±0.00)

77.8
(±0.00)

78.5
(±0.00)

81.9
(±0.00)

78.1
(±0.00)

89.5
(±0.00)

77.8
(±0.00)

98.3
(±0.00)

69.5
(±0.00)

71.9
(±0.00)

55.6
(±0.00)

83.5
(±0.00)

SHOT 64.5
(±0.15)

62.8
(±0.25)

70.6
(±0.42)

61.9
(±0.17)

73.5
(±0.20)

54.5
(±0.37)

53.8
(±0.48)

62.1
(±0.34)

61.1
(±0.37)

65.2
(±0.25)

56.2
(±0.08)

89.6
(± 1.70)

55.4
(±0.25)

50.8
(±0.32)

51.8
(±0.20)

62.2
(±0.37)

TENT 66.5
(±0.32)

64.3
(±0.46)

72.9
(±0.16)

63.2
(±0.30)

75.1
(±0.13)

55.5
(±0.20)

54.8
(±0.28)

63.6
(±0.43)

61.9
(±0.16)

67.6
(±0.28)

57.6
(±0.05)

86.2
(±0.09)

56.6
(±0.33)

51.5
(±0.29)

52.5
(±0.15)

63.3
(±0.24)

Bn adapt 68.8
(±0.32)

66.7
(±0.43)

75.7
(±0.27)

65.0
(±0.27)

77.1
(±0.18)

56.4
(±0.30)

55.8
(±0.41)

64.9
(±0.16)

63.4
(±0.27)

71.0
(±0.17)

59.0
(±0.08)

86.5
(±0.12)

57.7
(±0.26)

52.2
(±0.26)

53.3
(±0.19)

64.9
(±0.24)

T3A 96.6
(±0.11)

95.0
(±0.09)

97.3
(±0.06)

92.7
(±0.08)

92.1
(±0.12)

77.3
(±0.27)

78.2
(±0.02)

82.3
(±0.04)

78.2
(±0.13)

89.9
(±0.08)

77.1
(±0.18)

98.5
(±0.10)

68.9
(±0.24)

70.3
(±0.09)

55.8
(±0.08)

83.4
(±0.11)

NOTE 83.4
(±0.18)

80.4
(±0.14)

86.4
(±0.26)

81.9
(±0.05)

85.7
(±0.15)

65.4
(±0.23)

64.1
(±0.30)

69.6
(±0.08)

67.4
(±0.08)

79.8
(±0.06)

64.2
(±0.21)

96.0
(±0.15)

61.2
(±0.24)

56.0
(±0.24)

53.1
(±0.11)

73.0
(±0.16)

SAR 67.2
(±0.22)

65.2
(±0.23)

73.6
(±0.17)

63.9
(±0.28)

75.9
(±0.18)

55.8
(±0.20)

55.2
(±0.32)

64.1
(±0.28)

62.6
(±0.27)

68.4
(±0.24)

58.0
(±0.06)

86.0
(±0.13)

57.1
(±0.27)

51.8
(±0.34)

52.9
(±0.25)

63.8
(±0.23)

ConjugatePL 67.4
(±0.17)

65.3
(±0.22)

74.0
(±0.12)

63.9
(±0.28)

76.1
(±0.22)

55.8
(±0.23)

55.3
(±0.29)

64.3
(±0.30)

62.7
(±0.27)

68.6
(±0.21)

58.1
(±0.07)

86.2
(±0.04)

57.1
(±0.26)

51.8
(±0.37)

53.0
(±0.26)

64.0
(±0.22)

EATA 65.1
(±0.27)

63.6
(±0.46)

69.7
(±0.28)

62.3
(±0.44)

74.2
(±0.54)

55.3
(±0.09)

54.1
(±0.21)

61.3
(±0.28)

61.0
(±0.14)

63.9
(±0.49)

55.4
(±0.34)

90.8
(±0.28)

56.1
(±0.40)

51.1
(±0.62)

52.2
(±0.10)

62.4
(±0.33)

TEA 66.1
(±0.26)

64.6
(±0.24)

72.3
(±0.15)

63.2
(±0.13)

75.1
(±0.10)

55.8
(±0.20)

54.9
(±0.24)

63.1
(±0.47)

61.2
(±0.08)

65.9
(±0.21)

56.9
(±0.30)

85.3
(±0.14)

56.9
(±0.17)

51.8
(±0.08)

52.9
(±0.15)

63.1
(±0.19)

AEA (ours) 63.7
(±0.13)

62.1
(±0.29)

67.9
(±0.31)

60.9
(±0.20)

72.8
(±0.32)

53.8
(±0.06)

52.9
(±0.16)

60.1
(±0.16)

58.9
(±0.22)

61.9
(±0.21)

54.2
(±0.18)

90.3
(±0.88)

54.5
(±0.35)

49.8
(±0.25)

51.1
(±0.08)

61.0
(±0.25)

B.7 CHOICE OF HYPER-PARAMETERS λ1, λ2

To provide a further insight into the choice of hyper-parameters, we have varied the main hyper-
parameters (i.e., λ1, λ2) across a wide range and reported the corresponding results in the Fig. 11.
Our findings demonstrate that various combinations of λ1, λ2 still can yield robust and comparable
performances, with the best results when λ1 is around 1.0 and λ2 is around 25. We note that these
results are consistent with the hyper-parameter analysis we provided in Fig. 6 of the main paper.

B.8 TIME COMPLEXITY AND MEMORY USAGE

In this section, we compare the time complexity and memory usage between our method and baselines.
In Fig. 12, we measured performance changes according to the time required for adaptation on
CIFAR10-C. Also, in Table 18, we report GPU memory usages (MiB) per adaptation batch during
TTA. As can be seen from the results, our scheme achieves high performance more rapidly and
requires almost the same amount of computations as TENT, which demonstrates that our proposed
method requires only negligible additional costs. Since our proposed SFEA and LCS losses are
simply computed using only output logits and the weights of the last classifier, our proposed method
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Figure 11: Classification errors (%, ↓) on CIFAR10-C dataset with varying our main hyper-parameters (i.e.,
λ1, λ2).

requires only negligible additional costs compared to the conventional EM loss. Therefore, our AEA
can be practically utilized in various scenarios and applications compared to the other promising
baselines.

Figure 12: Classification accuracy (%, ↑) with respect to the adaptation time stamp on CIFAR10-C.

Method CIFAR10-C/100-C TinyImageNet-C

TENT 1,759 9,362
SHOT 1,829 9,973
SAR 1,761 9,367
TEA 1,919 16,449

AEA (ours) 1,761 9,367

Table 18: GPU memory usage (MiB) per batch during adaptation.

B.9 RESULTS UNDER THE CONTINUAL TTA SETTINGS

In Table 19, we have compared our AEA with several promising baselines under the continual TTA
scenario. The key consideration under the continual TTA is to adapt the model persistently to changing
domains while mitigating error accumulation or catastrophic forgetting (Wang et al., 2022). We note
that our AEA does not primarily target the continual setting and thus has no additional components
for those purposes. To compensate for this, we can adopt a simple model restoration technique
(e.g., stochastic restoration in Wang et al. (2022)) which stochastically resets the adapted model
to its initial state. In Table 19, we report our AEA’s results under continual setting with stochastic
restoration technique. For a fair comparison, we also apply the same technique to baseline that do not
include additional components for continual settings, such as TENT (Wang et al., 2021). Interestingly,
the results confirms that although we simply restore the model to its initial state stochastically, our
method can also achieve competitive performance in the continual TTA setting. We attribute this to
our AEA’s capability of effectively accelerating model adaptation within a few batches despite model
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restorations via adaptive energy alignment scheme. This enables the model to rapidly adapt to new
target domains and achieve competent OOD adaptation performance. In this regard, we argue that
our AEA’s acceleration capability could be another beneficial approach to tackle the continual TTA
settings.

C IMPLEMENTATION DETAILS

In this section, we provide some detailed implementation settings for experiments. Basically, we
follow the basic settings of Zhao et al. (2023), including the hyperparameter settings required for
each baseline. For all experiments, we use SGD as optimizer and set the learning rate to 0.001,
batch size to 64, and the number of adaptation iterations per batch to 1. Also, we adapt the model
parameters of the batch normalization layers similar to Wang et al. (2021). Additionally, there are
several hyperparameters that need to be tuned for our AEA, i.e., {λ1, α} for the SFEA loss and {λ2,
C0} for the LCS loss. For all datasets in the experiment section, we apply the SFEA loss with λ1

set to 1.0 and α set to 0.5. Also, for the LCS loss, which depends on the confidence scores of the
model, we set the threshold C0 to 0.99 for CIFAR10-C, 0.66 for CIFAR100-C and TinyImageNet-C,
following Gong et al. (2023). Also, λ2 is set to 25 for all experiments. To further provide insights
into our hyperparameters, we conduct an ablation study for each hyperparameter in Fig. 6 and Sec.
B.7. All the experiments are performed with 1×NVIDIA GeForce RTX 3090 and the other details of
computational resources (e.g. workers, memory, etc.) are the same with Zhao et al. (2023).

Table 19: Classification errors (%, ↓) on CIFAR100-C with the highest severity level 5 for ResNext-29 backbone.
The experiment is conducted under the continual TTA setup following Wang et al. (2022), and the domain shifts
happen from left (Gauss.) to right (JPEG). We report the averaged results over 3 different runs.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

No adaptation 73.0 68.0 39.4 29.4 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.5
BN adaptation (Schneider et al., 2020) 42.3 40.8 43.2 27.7 41.8 29.8 27.9 35.0 34.8 41.7 26.4 30.2 35.6 33.2 41.2 35.4

TENT (Wang et al., 2021) 37.2 34.3 36.3 27.3 39.4 30.1 27.1 32.4 33.1 35.8 24.8 28.0 35.2 30.8 39.1 32.7
EATA (Niu et al., 2022) 37.2 33.1 36.2 27.8 37.9 29.7 26.9 32.7 31.3 35.3 26.9 28.7 33.4 29.8 37.4 32.3
SAR (Niu et al., 2023) 40.5 34.9 37.1 25.9 37.2 28.0 25.6 31.8 30.8 35.9 25.2 28.1 32.1 29.2 37.3 32.0

RoTTA (Yuan et al., 2023) 49.1 45.0 45.5 30.2 42.6 29.5 26.0 32.3 30.6 37.6 24.7 29.2 32.7 30.4 36.9 34.8
COTTA (Wang et al., 2022) 40.6 38.0 39.9 27.2 38.2 28.5 26.5 33.3 32.2 40.6 25.1 26.9 32.3 28.3 33.8 32.8

AEA (ours) 36.2 32.8 32.8 25.3 36.3 27.5 24.8 29.7 29.0 31.8 24.0 25.3 32.2 28.1 35.8 30.1

D LIMITATIONS OF OUR WORK

Since our AEA primarily targets the online TTA setting, it is not equipped with components to
address error accumulation or catastrophic forgetting in continual TTA. A promising future direction
would be to make AEA applicable to continual TTA by integrating it with existing model restoration
strategies (e.g., stochastic restoration) tailored for continual TTA. We hope that our study, which
effectively accelerates model adaptation through adaptive energy alignment, will further promote the
practicality of TTA in a wide range of applications.
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