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Abstract

In natural language processing (NLP), the role
of embeddings in representing linguistic seman-
tics is crucial. Despite the prevalence of vector
representations in embedding sets, they exhibit
limitations in expressiveness and lack compre-
hensive set operations. To address this, we at-
tempt to formulate and apply sets and their op-
erations within pre-trained embedding spaces.
Inspired by quantum logic, we propose to go
beyond the conventional vector set representa-
tion with our novel subspace-based approach.
This methodology constructs subspaces using
pre-trained embedding sets, effectively preserv-
ing semantic nuances previously overlooked,
and consequently consistently improving per-
formance in downstream tasks. !

1 Introduction

Embedding-based word representations have be-
come fundamental in the field of natural language
processing (NLP). Models like word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014),
along with recent Transformer-based architec-
tures (Vaswani et al., 2017; Devlin et al., 2019),
have underscored the significance of embeddings
in capturing the complexities of linguistic seman-
tics.

The importance of representing collections of
words is pivotal in understanding concepts and
relationships within language contexts (Zaheer
et al., 2017; Zhelezniak et al., 2019). For instance,
while words like “apple” and “orange” each carry
their distinct meanings, together they represent the
broader concept of fruits. Another example of im-
portant application is a sentence representation (Za-
heer et al., 2017). The set of words in a sentence
captures the overall meaning, allowing for compu-
tations such as text similarity (Agirre et al., 2012).

Against this backdrop, our research recognizes
the significance of applying set operations in NLP

'Our codes will be publicly available after acceptance.
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Figure 1: Superiority of subspace representations:
Our subspace representation (blue) surpasses the tradi-

tional vector set representation (gray) in both text sim-
ilarity and text concept set retrieval tasks.

and explores a new approach. Set operations enable
a richer representation of relationships between
collections of words, leading to more accurate se-
mantic analysis based on context. For example,
employing set operations allows for a clearer un-
derstanding of shared semantic features and dif-
ferences among word groups within a text. This
directly benefits tasks like determining semantic
similarity and expanding word sets.

In response to these challenges, our study intro-
duces a novel methodology that exploits the prin-
ciples of quantum logic (Birkhoff and Von Neu-
mann, 1936), applied within embedding spaces to
define set operations. Our proposed framework
adopts a subspace-based approach for representing
word sets, aiming to maintain the intricate seman-
tic relationships within these sets. We represent a
word set as a subspace which is spanned by pre-
trained embeddings. Additionally, it adheres to
the foundational laws of set theory as delineated
in the framework of quantum logic. This compli-
ance ensures that our set operations, such as union,
intersection, and complement, are not only mathe-
matically robust but also linguistically meaningful



when applied them in pre-trained embedding space.

We first introduce a subspace set representation
along with basic operations (N, U, and €). Subse-
quently, to highlight the usefulness of our proposed
framework, we introduce two core set computa-
tions: text similarity and set membership. The
empirical results consistently point towards the no-
table superiority of our approach; our straightfor-
ward approach of spanning subspaces with pre-
trained embedding sets enables a rich set repre-
sentation, and we demonstrated its consistent per-
formance enhancement in downstream tasks (Fig-
ure 1). Our research contributions include:

1. The introduction of continuous set represen-
tations and a framework for set operations,
enabling more effective manipulation of word
embedding sets (§4).

2. We propose SubspaceBERTScore, an exten-
sion of the embedding set-based text similar-
ity method, BERTScore (Zhang et al., 2020).
By simply transitioning from a vector set rep-
resentation to a subspace, and incorporating
a subspace-based indicator function, we ob-
serve a salient improvement in performance
across all text similarity benchmarks (§5).

3. We apply subspace-based basic operations
(N, U, and €) to set expansion task and achive
high performance (§6).

2 Preliminaries

To make the following discussion clear, we de-
fine several symbols. The sets of tokens in
two sentences (A and B) are denoted as A =
{ay,a9,...}, B ={b1,be,...} respectively. The
sets of contextualized token vectors are denoted
as A = {aj,a,...},B = {by,by,...}, where
a and b are token vectors generated by the pre-
trained embedding model such as BERT. The
subspace spanned by A is denoted as Sy =
span(ai, ag, ... ). Note that the bases of the sub-
space is orthonormalized.

3 Symbolic Set Operations

We first formulate various set operations in a pre-
trained embedding space. Among many types of
operations for practical NLP applications, this work

focuses on set similarity:

A ={A, boy, walks, in, this, park},
B = {The, kid, runs, in, the, square}, (1)
Similarity (A4, B),

set membership (€) and basic operations (N, U):

Color = {red, blue, green, orange, . .. },
Fruit = {apple, orange, peach, ...}, 2)
orange € Color N Fruit.

For this purpose, we need following representa-
tions on a pre-trained embedding space’:

An element and a set of elements The rep-
resentations of an element and a set of ele-
ments are the most basic ones. To exploit
word embeddings, we represent a word (e.g.,
orange) as an element and a group of words (e.g.,
{red, blue, green, orange, . .. }) as a word set.

Quantification of set membership (indicator
function) Membership denotes a relation in
which word w is an element of set 4, i.e., w €
A. We quantify it based on vector representations.
Although the membership is typically a binary deci-
sion identical to that in a symbolic space, it can also
be measured by the degree of closeness in a contin-
uous vector space. Membership can be computed
as an indicator function. The indicator function
Lset quantifies whether the word w is included (1)
or not (0) in the set in a discrete manner:

1 if we A,
ﬂset[wEA]:{O £ w%A (3)

Similarity between discrete symbol sets Set
similarity, such as recall and precision, is an es-
sential operation when calculating the similarity
of texts. Despite its simplicity, the word overlap-
based sentence similarity serves as a remarkably
effective approximation and has found widespread
practical application, as evidenced by numerous
studies(Bojar et al., 2018; Zhang et al., 2020; Cer
et al., 2017; Zhelezniak et al., 2019). They stand
out as excellent similarity metrics based on embed-
dings. BERTScore (Zhang et al., 2020), which uti-
lizes embeddings for its computation, is grounded

’These operations do not include some set operations such
as cardinality, but are sufficient for expressing the practical
forms of sets such as Eq. (1).



in recall and precision 3. The typical computations
for recall (R) and precision (P) are as follows*:

1

R=1= leai € B, (4)
‘A| a;EA
1

P =) Luetlbi € A, (5)
1Bl £

Basic set operations We need three basic set op-
erations: intersection (A N B), union (A U B),

and complement ( A ). They allow us to represent
various sets using such different combinations as
Color N Fruit.

4 Subspace-based Set Representations

We propose the representations of a word set and
set operations based on quantum logic (Birkhoff
and Von Neumann, 1936). They hold advantages of
geometric properties in an embedding space, and
the set operations are guaranteed to hold for the
laws of a set defined in quantum logic.

4.1 Quantum logic

While word embedding represents a word’s mean-
ing as a vector in linear space, quantum mechanics
similarly represents a quantum state as a vector in
linear space. These two intuitively different fields
are very close to each other in terms of the repre-
sentation and the operation of information.
Quantum logic (Birkhoff and Von Neumann,
1936) theory describes quantum mechanical phe-
nomena. Intuitively, it is a framework for set oper-
ations in a vector space. In quantum logic, a set
of vectors is represented as a linear subspace in
a Hilbert space, and such set operations as union,
intersection, and complement are defined as opera-
tions on subspaces. Quantum logic, which employs
a complete orthomodular lattice as its system of
truth values, guarantees to hold various set opera-
tions, such as De Morgan’s laws (AN B) = AUB

and (AU B) = ANB, idempotent law: ANA = 4,
and double complement: A = A.

4.2 Set Operations in an Embedding Space

The representations of an element, a set, and such
set operations as union, intersection, and comple-
ment in quantum logic can be applied directly in

3Unlike the symbolic set similarity, which do not consider
word order, contextualized embeddings enable the capture of
word sequence information.

*For simplicity in explanation, we present A and B in Eq.
(4) and Eq. (5) as a set of tokens.

Algorithm 1 Computing basis of a subspace

Input: {vM),... v*)} C R Word embed-
dings to span subspace S 4

Output: Sp € R™*%: Bases of Sy
A € RF*? « stack_rows(vW), ... v*)
Sa € R™? < (ORTHO_NORMAL(AT))T
Orthonormalize the bases. r is the rank of A
return S,

a word embedding space because it is a Euclidean
space and therefore also a Hilbert space. How-
ever, since set similarity and set membership for
a word embedding space are still missing in quan-
tum logic, we propose a novel formulation of those
operations using subspace-based representations,
which is consistent with quantum logic. The corre-
spondence between symbolic and subspace-based
set operations is shown in Table 1.

Set and elements Let R" be a n-dimensional
embedding space (Euclidean space), let A =
{wy, wa, ...} be aset of words, and let v,, € R"
be a word (token) vector corresponding to w. As
discussed in §3, we first formulate the representa-
tion of a word and a word set. In quantum logic,
an element is represented by a vector, and a set is
represented by a subspace spanned by the vectors
corresponding to its elements. Here we assume an
element, i.e., word w, is represented by vector v,
and a word set is represented by linear subspace
S4 C R"™ spanned by word vectors:

S = span(A) = span(ai, az,...). (6)

Hereinafter we simply refer to linear subspace as
subspace. Algorithm 1 is the pseudocode for com-
puting the basis of the subspace.

Basic set opgrations The complement of set A,
denoted by A, is represented by the orthogonal
complement of subspace S 4:

5= (St ={v|3aecSs,v-a=0} ()

The union of two sets, A and B, denoted by
A U B, is represented by the sum space of two
subspaces, S4 and Sp:

Saup:=Sa+Sp={a+blacSs,beSp}.(8)

The intersection of two sets, A and B, denoted
by AN B, is represented by the intersection of two
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Table 1: Correspondence between symbolic set representations and subspace-based set representations: We
demonstrate that union, intersection, and complement, which are formulated in quantum logic, and our new
formulations of set membership and word set similarity hold in pre-trained word embedding space.

subspaces, S4 and Sp:
Sane =SaNSp={v|veESyveSg} 9

The basis of the intersection can be computed
based on singular value decomposition (SVD). The
bases are the vectors shared by the two subspaces.

Hard membership The set membership in the
embedding space (e.g., boy € Male) can be repre-
sented by the inclusion of a vector into a subspace
(€.8., Vboy € Sprale) and given by the following
indicator function:

1 (v €Sy),

0 (v¢Sa). (19)

I[hard('ua SA) =

However, this binary decision fails to exploit the
geometric properties of the word embedding space
regarding semantic similarity. Suppose we quantify
the degree of membership of word boy for word set
Male consisting of many masculine nouns other
than boy. Even if vy, is located very close to
Sizate due to its semantic similarity to masculine
nouns, Lhard(Vpoy, Sisate) must return 0 because
Vpoy Must not be located exactly on subspace S p7qe
defined by Male. It must return 1 based on the
masculine property of word boy. Such hard mem-
bership defined by Eq. (10) is incompatible with
an embedding space.

Soft membership: Subspace indicator function
Instead, we define another membership function
called subspace indicator function lgpspace that

returns continuous values from 0 to 1 depending
on the following minimum angle between vector
v,, and subspace S 4 (the first canonical angle):

|a- v
1 Sa) = [la][[v]]
subspace (V; S4) maX{HaWUH

a c SA}.
(11)

This captures the degree of membership between
a word and a word set, represented by the angle
between a word vector and a subspace. It is a
natural extension of 1y;,q, 1.€., Lsybspace returns 1
when v,, € S4 and 0 when v,, € S.

The key distinction of our subspace indicator
function approach lies in its ability to leverage the
comprehensive information encapsulated within
pre-trained word embedding space. The subspace
indicator function does not simply find the nearest
individual word from the set. Instead, we consider
the closeness of the query word to the entire set
as a whole, by projecting the query word into
the subspace spanned by the pre-trained embed-
dings (as illustrated in the figure of the subspace
indicator function function in Table 1). This way,
we account not just for the individual word similar-
ities, but also for the overall semantic coherence of
the word set. The detailed process for computing
this subspace indicator function can be found in
Algorithm 2.

4.3 Set Similarity

Limitation of symbolic set similarities Suppose
we quantify the set similarity between A = {A, boy,
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Figure 2: Comparison between the proposed SubspaceBERTScore and BERTScore. We visualize the alignment
process between the word royalty and the words in the sentence B. SubspaceBERTScore represents B as the
subspace Sp and calculates the similarity (canonical angle) between S and the royalty vector (a4). Our approach
provides a “softer” alignment, capturing the overall semantic context of the sentence. On the other hand, BERTScore
adopts a “harder” alignment strategy, selecting only the word from the sentence with the maximum cosine similarity.

walks, in, this, park} and B = {The, kid, runs, in,
the, square}, which represent semantically similar
sentences. The challenge with traditional symbolic
set similarities, such as recall, is that they primarily
rely on the exact overlap of words between the sets.
These semantically similar sentences share only
one word {in} between A and B: |[ANB| = 1. To
address this shortcoming, it is essential to compute
vector-based set similarity, such as BERTScore.

Three types of similarity in BERTScore
BERTScore is a method that uses embeddings to
approximately calculate R, P, and the F'-score:

1

RBERT = m Z ﬂvectors(aiaB)a (12)
a,-eA
1
PBERT = @ ng;?) ]]-vectors(biy A), (13)

PgERrT - RBERT
FpERT = 2 , (14)
PggrT + RBERT

where a sentence is represented as a set of token
vectors A and B. 1 eciors 1S the indicator function
for vector sets. Intuitively, this indicator function
represents the calculation of selecting one token
from the sentence and serves as a flexible extension
of the binary indicator function ls. It returns
a continuous similarity score between —1 and 1
for a token, depending on its similarity with the
tokens in the sentence. Specifically, Lyectors(ai, B)
quantifies to what extent the ¢-th token vector a; in
sentence A is semantically included in sentence B
by taking the maximum cosine similarity between
a; and the token vectors in B:
Lyectors(@;, B) = max cos(a;, bj) € [—1,1],
b;cB
(15)

where cos(a;, bj) is the cosine similarity between
a; and bj.

SubspaceBERTScore To overcome the limita-
tions of BERTScore regarding the expressiveness
of its indicator function, we propose Subspace-
BERTScore. This method extends BERTScore by
employing the concept of subspace-based sentence
representation and indicator function.

Extension of P, R, F' with Subspaces Based
on the above discussions, we propose Subspace-
BERTScore, which calculates BERTScore’s R, P,
F using the subspace representation of sentences
and the subspace indicator function:

1
Rsubspace = W Z I[subspauce(a'ia SB)? (16)
a;EA
1
Psubspace = E Z ]lsubspace(biv SA), (17)
b,eB
P ‘R
Fsubspace —9 subspace subspace ’ (18)

Psubspace + Rsubspace

where Rsubspace’ P, subspace» and F, subspace aIt the
final evaluation measures of SubspaceBERTScore.

Weighting by Importance Previous
study (Banerjee and Lavie, 2005; Vedantam
et al., 2015) has shown that infrequently occurring
words play a more important role in sentence simi-
larity than general words. We apply importance
weightings to our method as follows:

ZaiEA Weight(ai) ﬂsubspace(ai> SB)

R = ’
subspace ZaieA weight(a;)
(19)
b B ZbiEB weight(bi)]lsubspace(biv SA)
subspace — ZbiEB Weight(bi) ’
(20)

where weight(-) is a weighting function. We use
the L2 norm of the vector (Yokoi et al., 2020).



Algorithm 2 Subspace indicator function

]]-subspace(vwa SA)
Input: S, € R¥*¢: Bases of Sy

Input: v, € R'?: A word vector
Output: o € R: Membership degree

if £ = 0 then

return 0
else

Tu ¢ Touy € R

Ul € R*fg ¢ RV € R «
SVD(SA?,)

return c € R >

The output of Igybspace(Vw,Sa) is always non-
negative because it is a singular value
end if

5 Semantic Textual Similarity Task

In this section, we examine the effectiveness of
SubspaceBERTScore through the semantic textual
similarity task (STS; Agirre et al., 2012).

Task An STS task calculates the similarity be-
tween two sentences. For the STS evaluation pro-
tocol, we follow Gao et al. (2021). Its evaluation
is based on the correlation between the similar-
ity calculated by the model and corresponding hu-
man judgments. We used datasets from the Se-
mEval shared task 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS benchmark (STS-B;
Cer et al., 2017), and SICK-Relatedness (SICK-R;
Marelli et al., 2014). We used Spearman’s p.

Embeddings We used 768-dimensional
BERT}.s’ (Devlin et al., 2019), which was
pre-trained with BookCorpus and Wikipedia. We
used hidden states in the last layer.

Baselines We compared our method Subspace-
BERTScore with other baseline similarity met-
rics. The baselines included Avg-cos (Arora et al.,
2017), the cosine similarity between the averaged
vectors, CLS-cos (Gao et al., 2021), the cosine sim-
ilarity between the [C'LS] representations of the
pre-trained language model, DynaMax (Zhelez-
niak et al., 2019), a set similarity based on fuzzy
sets, Word Mover’s Distance (WMD; Kusner et al.,
2015), a metric based on optimal transport cost,
and Word Rotator’s Distance (WMD) Yokoi et al.,
2020), an optimal transport-based metric that im-
proves WMD.

Shttps://huggingface.co/bert-base-uncased

Main results The results are shown in Table 2.
In comparison to BERTScore, our method achieves
superior correlation with human judgments across
all three key metrics: F-score, precision, and recall.
An important observation is that the performance
consistently improves by subspace representation
of the set. The results suggest that simply replac-
ing the representation of embedding sets and the
indicator function with subspace-based alternatives
significantly enhances our ability to capture and
express the depth of linguistic semantics.

We also conduct an experiment using L2 norm as
a weighting factor for the indicator function. This
method has previously been proven effective in the
STS task (Yokoi et al., 2020). We see that both our
proposed method and BERTScore improve their
performance underlining the effectiveness of this
weighting approach in both cases. Notably, our pro-
posed method continued to outperform BERTScore
even when L2 norm was used for weighting.

Our similarity also outperforms the fuzzy-set
based similarity of DynaMax. This result suggests
that the proposed subspace-based approach repre-
sents a set and set operations better than the fuzzy
set-based approach in embedding space.

6 Text Concept Set Retrieval Task

In this section, we evaluate the capability of our
proposed set operations (N, U, and €) in effectively
representing word sets.

Task We evaluate our set operations by the set
expansion task introduced by Zaheer et al. (2017).
In this task, the model is given a set of words that
share a common concept or theme. The objective
is to expand this set by retrieving relevant words
from a vocabulary that fit the same concept. For
instance, if the initial set includes words like “ap-
ple”, “banana”, and “peach”, the task would be to
identify and add other fruit names (e.g., “orange”)
to this set. For the evaluation, we follow Zaheer
et al. (2017). We report recall (R@k) and Median,
that indicate whether the words in the test set can
be ranked higher.

Embeddings We used the most standard pre-
trained word embeddings in all of our experiments:
300-dimensional GloVe® (Pennington et al., 2014),
which was pre-trained with Common Crawl, and
300-dimensional word2vec’ (Mikolov et al., 2013),

6https://nlp.stanford.edu/projects/glove/
"https://code.google.com/archive/p/word2vec/
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Method Metric Weighting STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
CLS-cos - - 215 321 213 379 442 203 424 314
Avg-cos - - 309 599% 477 .603 .637 473 582% .526
WMD - - 238 443 .389 531 532 384 .509 432
WRD - - 241 502 410 573 573 421 527 464
DynaMax - - 322 518 432 616 .639 452 .560 .506
F - 312 .546 450 .602 .636 446 553 .506
BERTScore P - 261 532 462 576 .622 443 .559 494
R - 350 527 416 .602 .623 430 522 496
F - 335 573 476 .610 .650 479 562 526
SubspaceBERTScore P - 282 .550 .488 .580 .630 475 .568 511
R - 369*% 552 436 .611 639 462 530 514
F L2 321 .540 452 613 .640 454 .558 Sl
BERTScore P L2 274 .529 468 .589 .627 450 .565 .500
R L2 348 .520 414 610 .624 437 524 497
F L2 342 .568 477 .621 .653%  486*  .568 531%
SubspaceBERTScore P L2 292 547 492% 592 634 479 574 516
R L2 .367 544 434 .620% 640 .468 532 515

Table 2: A comprehensive comparison of similarity metrics in the STS task. The scores are Spearman’s p. The
methods with the highest values, using the same pre-trained embeddings, are highlighted in % . Scores that showed

improvement from BERTScore are denoted in bold.

which was pre-trained with Google News.

Set Expansion with Subspace Indicator Func-
tion To illustrate our subspace-based set ex-
pansion method (Subspace Set), we consider a
set of fruit-related words. For example, let’s
take Spuit = {apple, banana,...}. This set
is divided into two subsets: a ’span’ subset
used for creating a subspace representation, and
a ’test’ subset for evaluation. Let’s assume
orange ¢ Skuit_span i a target word for test-
ing. (1) From the ’span’ subset, we generate a

subspace: Spryit = Span(Suit span). For in-
stance, if Sguit_span = {apple, banana, ...}, then
SFruit = Span(vapplea Ubananas - - - ) (2) We de-

fine a subspace indicator function, which computes
the degree to which a word vector belongs to the
subspace. For a word w, the membership score
is calculated as score = Lsybspace(Vorange S Fruit )-
This score reflects the extent to which w aligns
with the semantic characteristics of the subspace.
This method effectively expand the set Stz by
identifying words that share semantic properties
with the subspace defined by the initial set.

Baselines We compared several baselines, which
don’t require training on word sets, to our method.
Random just selects words randomly from the
dataset’s vocabulary. A simple unsupervised base-
line with word embeddings uses the nearest neigh-
bors in the embedding space (Near)®. We also

8While Zaheer et al. (2017) does not provide details about
this method, we have inferred through our replication exper-

compare a method based on fuzzy sets (Fuzzy set;
Zhelezniak et al., 2019) with our method. Similar
to our method, their method is designed to exploit
both the flexibility of word vectors and rich set
operations. Fuzzy Set represents word set A by
max-pooled word vectors 8 = max,ec4 V. One
major difference from our method is that Fuzzy set
represents a set of word vectors by compressing
them into a vector of fixed dimensions. Although
the Text Concept Set Retrieval task requires com-
puting the degree of a word’s membership for a
word set, their method does not provide it. We
instead used cosine similarity cos(v,,, 8) between
word vector v,, of word w € V and s as the degree
of membership to apply fuzzy sets to the task.

Dataset We used a previously created dataset (Za-
heer et al., 2017), which was denoted by “LDA-1k,
Vocab = 17k.” in the paper. The dataset (D5¢)
contains 100 word sets, each of which consists of
50 words sampled from a common topic’. Five
pre-determined words from each set were used as
the word set .S. An additional 800 word sets were
used to train the models that require training on
word sets. Table 3 shows an example of the data
and the number of test sets.

To evaluate the union and intersection sets, we
prepared additional data through the union and

iments that it uses a method based on the cosine similarity
between the query word vector and other vectors to obtain the
nearest neighbor.

This work used Latent Dirichlet Allocation (LDA; Blei
et al., 2003) as a topic model.



Dataset (# Set) Example

Set Words (set elements)
DSt (100) S daily news paper

Si2 rider bike  bicycle

DUron (100) Sy island fishing sea
S12 U S51 races  cycling islands

So tour open  golf
Dnterseet (100) Sy poker casino gambling ...
So N S72 money won  player

Table 3: Examples from original dataset (denoted as
D3¢t and additional DUrion gpnd DIntersect getg.

Method Emb. Set R@100 R@1k Med.
Rand* - x 06 59 8520
Near® w2y x 281 547 641
g Fuzzy set w2v. v 199 472 1240
A Fuzzyset GloVe v 309  69.0 320
Subspace set w2v v 29.7 589 478
Subspace set GloVe v 35.7 727 246
Rand - x 0.6 6.0 8422
B Near w2v X 17.5 343 3270
£ Puzzyset w2v v 28 17.1 4426
A Fuzzyset  GloVe v 54 320 2347
Subspace set w2v v 18.4 46.9 1202
Subspace set GloVe v 24.4 68.3 407
Rand - x 02 6.6 7929
5 Near w2v X 23.5 40.8 3304
Z Puzzyset w2v v 47 209 3420
Z Fuzzyset Glove v 325 750 255
B Subspaceset w2v v 257 457 1445
Subspace set GloVe v 44.2 83.7 149

Table 4: Results of set retrieval task on DY (top
half) and D™tersect (bottom half). The “Emb” column
indicates which pre-trained embedding is used. The
“Set” column indicates whether each method is based on
set computations: v~ for incorporating set operations.

intersection operations on two randomly-selected
word sets from the original word sets (D510, The
number of words in each set in DU™" was limited
to 50 to match the original dataset (D). The
number of words in each set in D™tersect wag set
to a minimum of 10. Finally, 100 unions and inter-
sections were randomly selected from these word
sets with zero elements excluded. See Table 3 for
examples and statistics of the datasets.

Results In experiments on union and intersection,
we compared our method only with Fuzzy Set. The
proposed method and Fuzzy Set can induce repre-
sentations for the union and intersection using set

!Note that these were based on the dataset LDA-1k, which
was automatically generated by Zaheer et al. (2017) using
LDA, so the quality depends on their method.

operations defined in the word embedding space;
the others cannot do so directly. Table 4 shows the
experimental results. Here our subspace-based set
operation method (Subspace set) is the best among
the methods that did not require training. The
results suggest that combining off-the-shelf pre-
trained embeddings with appropriate set-oriented
operations makes linguistic computation on sets
feasible without additional training. The results in
DUrion apnd DIntersect show that the our method
outperform Fuzzy Set in most metrics. As methods
for achieving set operations in vector spaces, the
proposed method is empirically more promising
than the existing fuzzy set-based method.

7 Related Work

Symbol-based similarities between word sets have
been proposed, such as Jaccard coefficient (Jac-
card, 1901; Manning and Schiitze, 2001; Thada and
Jaglan, 2013) and TF-IDF-based similarity (Juraf-
sky, 2000). Unfortunately, symbol-based methods
cannot capture the semantic similarity of similar
sets or words when the symbols are different.

While many studies have explored representing
word sets in pre-trained embedding spaces (Kus-
ner et al., 2015; Yokoi et al., 2020), they primarily
focus on set similarity. Our approach, however, ex-
tends beyond this by developing a comprehensive
framework for various set operations within these
spaces. Utilizing subspace properties, our method
not only represents word sets but also performs a
range of versatile operations, such as calculating
textual similarities and membership degrees.

Many methods for learning the representation of
sets have been proposed because of the wide range
of possible applications (Zaheer et al., 2017; Pelle-
grini et al., 2021; Lee et al., 2019; Vilnis and Mc-
Callum, 2015; Athiwaratkun and Wilson, 2017). In
contrast, our approach does not require additional
training. This enables us to compute set representa-
tions and operations using popular general-purpose
language models, which are trained on the general
domain (Brown et al., 2020).

8 Conclusion

This study introduces a novel framework for set
representation and operations within pre-trained
embedding spaces, employing linear subspaces
grounded in quantum logic. This approach extends
the scope of conventional embedding set operations
by incorporating vector-based representations.



Ethical Considerations

We recognize the importance of addressing the in-
herent biases in pre-trained models, such as gender
stereotypes. In our experiment, we used RoOBERTa,
which has gender biases (Sharma et al., 2021). We
used this model in its original state to preserve the
experimental conditions of BERTScore, acknowl-
edging that such biases may influence our results.
However, we would like to emphasize that the fo-
cus of our work, which lies in sentence similarity,
does not inherently add to or magnify these ethical
concerns.

Limitations

Our SubspaceBERTScore is built upon the foun-
dation of BERTScore, which presents a limitation
in that our results and findings are inherently de-
pendent on the characteristics and performance of
BERTScore. While we chose BERTScore due to
its robustness and popularity in the field, poten-
tial biases or shortcomings intrinsic to BERTScore
might be incorporated into our extension. Never-
theless, this constraint also suggests future research
possibilities, such as applying our subspace-based
approach to other base sentence similarity metrics,
further expanding the versatility and applicability
of our method.

The experiments we conducted were exclusive
to BERT and RoBERTa. Testing our methodology
with other pre-trained models, like GPT-3 (Brown
et al., 2020), could broaden its applicability and
establish its robustness across various pre-trained
models.

We evaluated our methodology primarily using
English datasets. This decision was made to stream-
line our initial explorations rather than due to an
inherent language-specific bias in our approach.
We expect that our subspace-based methodology
will be effective across various languages.
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