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Abstract
In natural language processing (NLP), the role001
of embeddings in representing linguistic seman-002
tics is crucial. Despite the prevalence of vector003
representations in embedding sets, they exhibit004
limitations in expressiveness and lack compre-005
hensive set operations. To address this, we at-006
tempt to formulate and apply sets and their op-007
erations within pre-trained embedding spaces.008
Inspired by quantum logic, we propose to go009
beyond the conventional vector set representa-010
tion with our novel subspace-based approach.011
This methodology constructs subspaces using012
pre-trained embedding sets, effectively preserv-013
ing semantic nuances previously overlooked,014
and consequently consistently improving per-015
formance in downstream tasks. 1016

1 Introduction017

Embedding-based word representations have be-018

come fundamental in the field of natural language019

processing (NLP). Models like word2vec (Mikolov020

et al., 2013) and GloVe (Pennington et al., 2014),021

along with recent Transformer-based architec-022

tures (Vaswani et al., 2017; Devlin et al., 2019),023

have underscored the significance of embeddings024

in capturing the complexities of linguistic seman-025

tics.026

The importance of representing collections of027

words is pivotal in understanding concepts and028

relationships within language contexts (Zaheer029

et al., 2017; Zhelezniak et al., 2019). For instance,030

while words like “apple” and “orange” each carry031

their distinct meanings, together they represent the032

broader concept of fruits. Another example of im-033

portant application is a sentence representation (Za-034

heer et al., 2017). The set of words in a sentence035

captures the overall meaning, allowing for compu-036

tations such as text similarity (Agirre et al., 2012).037

Against this backdrop, our research recognizes038

the significance of applying set operations in NLP039

1Our codes will be publicly available after acceptance.
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Figure 1: Superiority of subspace representations:
Our subspace representation (blue) surpasses the tradi-

tional vector set representation (gray) in both text sim-
ilarity and text concept set retrieval tasks.

and explores a new approach. Set operations enable 040

a richer representation of relationships between 041

collections of words, leading to more accurate se- 042

mantic analysis based on context. For example, 043

employing set operations allows for a clearer un- 044

derstanding of shared semantic features and dif- 045

ferences among word groups within a text. This 046

directly benefits tasks like determining semantic 047

similarity and expanding word sets. 048

In response to these challenges, our study intro- 049

duces a novel methodology that exploits the prin- 050

ciples of quantum logic (Birkhoff and Von Neu- 051

mann, 1936), applied within embedding spaces to 052

define set operations. Our proposed framework 053

adopts a subspace-based approach for representing 054

word sets, aiming to maintain the intricate seman- 055

tic relationships within these sets. We represent a 056

word set as a subspace which is spanned by pre- 057

trained embeddings. Additionally, it adheres to 058

the foundational laws of set theory as delineated 059

in the framework of quantum logic. This compli- 060

ance ensures that our set operations, such as union, 061

intersection, and complement, are not only mathe- 062

matically robust but also linguistically meaningful 063
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when applied them in pre-trained embedding space.064

We first introduce a subspace set representation065

along with basic operations (∩, ∪, and ∈). Subse-066

quently, to highlight the usefulness of our proposed067

framework, we introduce two core set computa-068

tions: text similarity and set membership. The069

empirical results consistently point towards the no-070

table superiority of our approach; our straightfor-071

ward approach of spanning subspaces with pre-072

trained embedding sets enables a rich set repre-073

sentation, and we demonstrated its consistent per-074

formance enhancement in downstream tasks (Fig-075

ure 1). Our research contributions include:076

1. The introduction of continuous set represen-077

tations and a framework for set operations,078

enabling more effective manipulation of word079

embedding sets (§4).080

2. We propose SubspaceBERTScore, an exten-081

sion of the embedding set-based text similar-082

ity method, BERTScore (Zhang et al., 2020).083

By simply transitioning from a vector set rep-084

resentation to a subspace, and incorporating085

a subspace-based indicator function, we ob-086

serve a salient improvement in performance087

across all text similarity benchmarks (§5).088

3. We apply subspace-based basic operations089

(∩,∪, and ∈) to set expansion task and achive090

high performance (§6).091

2 Preliminaries092

To make the following discussion clear, we de-093

fine several symbols. The sets of tokens in094

two sentences (A and B) are denoted as A =095

{a1, a2, . . . }, B = {b1, b2, . . . } respectively. The096

sets of contextualized token vectors are denoted097

as A = {a1,a2, . . . },B = {b1, b2, . . . }, where098

a and b are token vectors generated by the pre-099

trained embedding model such as BERT. The100

subspace spanned by A is denoted as SA =101

span(a1,a2, . . . ). Note that the bases of the sub-102

space is orthonormalized.103

3 Symbolic Set Operations104

We first formulate various set operations in a pre-105

trained embedding space. Among many types of106

operations for practical NLP applications, this work107

focuses on set similarity: 108

A = {A, boy ,walks, in, this, park},
B = {The, kid , runs, in, the, square},
Similarity(A,B),

(1) 109

set membership (∈) and basic operations (∩, ∪): 110

Color = {red , blue, green, orange, . . . },
Fruit = {apple, orange, peach, . . . },
orange ∈ Color ∩ Fruit .

(2) 111

For this purpose, we need following representa- 112

tions on a pre-trained embedding space2: 113

An element and a set of elements The rep- 114

resentations of an element and a set of ele- 115

ments are the most basic ones. To exploit 116

word embeddings, we represent a word (e.g., 117

orange) as an element and a group of words (e.g., 118

{red , blue, green, orange, . . . }) as a word set. 119

Quantification of set membership (indicator 120

function) Membership denotes a relation in 121

which word w is an element of set A, i.e., w ∈ 122

A. We quantify it based on vector representations. 123

Although the membership is typically a binary deci- 124

sion identical to that in a symbolic space, it can also 125

be measured by the degree of closeness in a contin- 126

uous vector space. Membership can be computed 127

as an indicator function. The indicator function 128

1set quantifies whether the word w is included (1) 129

or not (0) in the set in a discrete manner: 130

1set[w ∈ A] =

{
1 if w ∈ A,
0 if w /∈ A.

(3) 131

Similarity between discrete symbol sets Set 132

similarity, such as recall and precision, is an es- 133

sential operation when calculating the similarity 134

of texts. Despite its simplicity, the word overlap- 135

based sentence similarity serves as a remarkably 136

effective approximation and has found widespread 137

practical application, as evidenced by numerous 138

studies(Bojar et al., 2018; Zhang et al., 2020; Cer 139

et al., 2017; Zhelezniak et al., 2019). They stand 140

out as excellent similarity metrics based on embed- 141

dings. BERTScore (Zhang et al., 2020), which uti- 142

lizes embeddings for its computation, is grounded 143

2These operations do not include some set operations such
as cardinality, but are sufficient for expressing the practical
forms of sets such as Eq. (1).
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in recall and precision 3. The typical computations144

for recall (R) and precision (P ) are as follows4:145

R =
1

|A|
∑
ai∈A

1set[ai ∈ B], (4)146

P =
1

|B|
∑
bi∈B

1set[bi ∈ A], (5)147

Basic set operations We need three basic set op-148

erations: intersection (A ∩ B ), union (A ∪ B ),149

and complement ( A ). They allow us to represent150

various sets using such different combinations as151

Color ∩ Fruit .152

4 Subspace-based Set Representations153

We propose the representations of a word set and154

set operations based on quantum logic (Birkhoff155

and Von Neumann, 1936). They hold advantages of156

geometric properties in an embedding space, and157

the set operations are guaranteed to hold for the158

laws of a set defined in quantum logic.159

4.1 Quantum logic160

While word embedding represents a word’s mean-161

ing as a vector in linear space, quantum mechanics162

similarly represents a quantum state as a vector in163

linear space. These two intuitively different fields164

are very close to each other in terms of the repre-165

sentation and the operation of information.166

Quantum logic (Birkhoff and Von Neumann,167

1936) theory describes quantum mechanical phe-168

nomena. Intuitively, it is a framework for set oper-169

ations in a vector space. In quantum logic, a set170

of vectors is represented as a linear subspace in171

a Hilbert space, and such set operations as union,172

intersection, and complement are defined as opera-173

tions on subspaces. Quantum logic, which employs174

a complete orthomodular lattice as its system of175

truth values, guarantees to hold various set opera-176

tions, such as De Morgan’s laws (A ∩ B) = A∪B177

and (A ∪ B) = A∩B , idempotent law: A∩A = A,178

and double complement: A = A.179

4.2 Set Operations in an Embedding Space180

The representations of an element, a set, and such181

set operations as union, intersection, and comple-182

ment in quantum logic can be applied directly in183

3Unlike the symbolic set similarity, which do not consider
word order, contextualized embeddings enable the capture of
word sequence information.

4For simplicity in explanation, we present A and B in Eq.
(4) and Eq. (5) as a set of tokens.

Algorithm 1 Computing basis of a subspace

Input: {v(1), . . . ,v(k)} ⊆ R1×d: Word embed-
dings to span subspace SA

Output: SA ∈ Rr×d: Bases of SA
A ∈ Rk×d ← STACK_ROWS(v(1), . . . ,v(k))
SA ∈ Rr×d ← (ORTHO_NORMAL(A⊤))⊤ ▷
Orthonormalize the bases. r is the rank of A
return SA

a word embedding space because it is a Euclidean 184

space and therefore also a Hilbert space. How- 185

ever, since set similarity and set membership for 186

a word embedding space are still missing in quan- 187

tum logic, we propose a novel formulation of those 188

operations using subspace-based representations, 189

which is consistent with quantum logic. The corre- 190

spondence between symbolic and subspace-based 191

set operations is shown in Table 1. 192

Set and elements Let Rn be a n-dimensional 193

embedding space (Euclidean space), let A = 194

{w1,w2, . . . } be a set of words, and let vw ∈ Rn 195

be a word (token) vector corresponding to w . As 196

discussed in §3, we first formulate the representa- 197

tion of a word and a word set. In quantum logic, 198

an element is represented by a vector, and a set is 199

represented by a subspace spanned by the vectors 200

corresponding to its elements. Here we assume an 201

element, i.e., word w , is represented by vector vw , 202

and a word set is represented by linear subspace 203

SA ⊂ Rn spanned by word vectors: 204

SA := span(A) := span(a1,a2, . . . ). (6) 205

Hereinafter we simply refer to linear subspace as 206

subspace. Algorithm 1 is the pseudocode for com- 207

puting the basis of the subspace. 208

Basic set operations The complement of set A, 209

denoted by A, is represented by the orthogonal 210

complement of subspace SA: 211

SA := (SA)⊥ = {v | ∃a ∈ SA,v · a = 0}. (7) 212

The union of two sets, A and B , denoted by 213

A ∪ B , is represented by the sum space of two 214

subspaces, SA and SB : 215

SA∪B := SA + SB ={a+ b |a∈SA, b∈SB}.(8) 216

The intersection of two sets, A and B , denoted 217

by A ∩B , is represented by the intersection of two 218
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Symbolic Set Representation Subspace-based Set Representation

Element
king

Vector
vking

Set
Male = {king ,man, . . . }

Subspace
SMale = span(vking ,vman , . . . )

Complement
Male

Orthogonal complement
(SMale)

⊥

Union
Male ∪ Female

Sum space
SMale + SFemale

Intersection
Color ∩ Fruit

Intersection
SColor ∩ SFruit

Set membership
boy ∈ Male

boy Subspace indicator function
1subspace(vboy , SMale)

Table 1: Correspondence between symbolic set representations and subspace-based set representations: We
demonstrate that union, intersection, and complement, which are formulated in quantum logic, and our new
formulations of set membership and word set similarity hold in pre-trained word embedding space.

subspaces, SA and SB :219

SA∩B := SA ∩ SB = {v | v ∈ SA,v ∈ SB}. (9)220

The basis of the intersection can be computed221

based on singular value decomposition (SVD). The222

bases are the vectors shared by the two subspaces.223

Hard membership The set membership in the224

embedding space (e.g., boy ∈ Male) can be repre-225

sented by the inclusion of a vector into a subspace226

(e.g., vboy ∈ SMale) and given by the following227

indicator function:228

1hard(v,SA) :=

{
1 (v ∈ SA),
0 (v /∈ SA).

(10)229

However, this binary decision fails to exploit the230

geometric properties of the word embedding space231

regarding semantic similarity. Suppose we quantify232

the degree of membership of word boy for word set233

Male consisting of many masculine nouns other234

than boy . Even if vboy is located very close to235

SMale due to its semantic similarity to masculine236

nouns, 1hard(vboy ,SMale) must return 0 because237

vboy must not be located exactly on subspace SMale238

defined by Male. It must return 1 based on the239

masculine property of word boy . Such hard mem-240

bership defined by Eq. (10) is incompatible with241

an embedding space.242

Soft membership: Subspace indicator function243

Instead, we define another membership function244

called subspace indicator function 1subspace that245

returns continuous values from 0 to 1 depending 246

on the following minimum angle between vector 247

vw and subspace SA (the first canonical angle): 248

1subspace(v,SA) := max

{
|a · v|
∥a∥∥v∥

∣∣∣∣a ∈ SA
}

.

(11)
249

This captures the degree of membership between 250

a word and a word set, represented by the angle 251

between a word vector and a subspace. It is a 252

natural extension of 1hard, i.e., 1subspace returns 1 253

when vw ∈ SA and 0 when vw ∈ SA. 254

The key distinction of our subspace indicator 255

function approach lies in its ability to leverage the 256

comprehensive information encapsulated within 257

pre-trained word embedding space. The subspace 258

indicator function does not simply find the nearest 259

individual word from the set. Instead, we consider 260

the closeness of the query word to the entire set 261

as a whole, by projecting the query word into 262

the subspace spanned by the pre-trained embed- 263

dings (as illustrated in the figure of the subspace 264

indicator function function in Table 1). This way, 265

we account not just for the individual word similar- 266

ities, but also for the overall semantic coherence of 267

the word set. The detailed process for computing 268

this subspace indicator function can be found in 269

Algorithm 2. 270

4.3 Set Similarity 271

Limitation of symbolic set similarities Suppose 272

we quantify the set similarity between A = {A, boy, 273
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B = {b1, b2, b3} 𝕊B = span{b1, b2, b3}

ai
ai𝕊B

b3

b1

b3

b2 b1
b2

Sentence B
We are the king 

and queen.

Sentence A
We are the royalty.

𝕊B

BERTScore SubspaceBERTScore

royalty
𝕊B

king

We queen

BERT

“royalty” is
aligned to “king”.

royalty

We queen

king

We queen

king

royalty

royal

a1 a2 a3 a4 a5

b6 b7b1 b2 b3 b4 b5

arethearethe

?
BERT

1vector(royalty, B)

“royalty” is aligned to the subspace. 
The nearest neighbor 

of the projected vector is “royal ”.

Figure 2: Comparison between the proposed SubspaceBERTScore and BERTScore. We visualize the alignment
process between the word royalty and the words in the sentence B. SubspaceBERTScore represents B as the
subspace SB and calculates the similarity (canonical angle) between SB and the royalty vector (a4). Our approach
provides a “softer” alignment, capturing the overall semantic context of the sentence. On the other hand, BERTScore
adopts a “harder” alignment strategy, selecting only the word from the sentence with the maximum cosine similarity.

walks, in, this, park} and B = {The, kid, runs, in,274

the, square}, which represent semantically similar275

sentences. The challenge with traditional symbolic276

set similarities, such as recall, is that they primarily277

rely on the exact overlap of words between the sets.278

These semantically similar sentences share only279

one word {in} between A and B : |A∩B | = 1. To280

address this shortcoming, it is essential to compute281

vector-based set similarity, such as BERTScore.282

Three types of similarity in BERTScore283

BERTScore is a method that uses embeddings to284

approximately calculate R, P , and the F -score:285

RBERT =
1

|A|
∑
ai∈A

1vectors(ai,B), (12)286

PBERT =
1

|B|
∑
bi∈B

1vectors(bi,A), (13)287

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
, (14)288

where a sentence is represented as a set of token289

vectors A and B. 1vectors is the indicator function290

for vector sets. Intuitively, this indicator function291

represents the calculation of selecting one token292

from the sentence and serves as a flexible extension293

of the binary indicator function 1set. It returns294

a continuous similarity score between −1 and 1295

for a token, depending on its similarity with the296

tokens in the sentence. Specifically, 1vectors(ai,B)297

quantifies to what extent the i-th token vector ai in298

sentence A is semantically included in sentence B299

by taking the maximum cosine similarity between300

ai and the token vectors in B:301

1vectors(ai,B) = max
bj∈B

cos(ai, bj) ∈ [−1, 1],

(15)

302

where cos(ai, bj) is the cosine similarity between303

ai and bj .304

SubspaceBERTScore To overcome the limita- 305

tions of BERTScore regarding the expressiveness 306

of its indicator function, we propose Subspace- 307

BERTScore. This method extends BERTScore by 308

employing the concept of subspace-based sentence 309

representation and indicator function. 310

Extension of P , R, F with Subspaces Based 311

on the above discussions, we propose Subspace- 312

BERTScore, which calculates BERTScore’s R, P , 313

F using the subspace representation of sentences 314

and the subspace indicator function: 315

Rsubspace =
1

|A|
∑
ai∈A

1subspace(ai, SB ), (16) 316

Psubspace =
1

|B|
∑
bi∈B

1subspace(bi,SA), (17) 317

Fsubspace = 2
Psubspace ·Rsubspace

Psubspace +Rsubspace
, (18) 318

where Rsubspace, Psubspace, and Fsubspace are the 319

final evaluation measures of SubspaceBERTScore. 320

Weighting by Importance Previous 321

study (Banerjee and Lavie, 2005; Vedantam 322

et al., 2015) has shown that infrequently occurring 323

words play a more important role in sentence simi- 324

larity than general words. We apply importance 325

weightings to our method as follows: 326

Rsubspace =

∑
ai∈Aweight(ai)1subspace(ai,SB )∑

ai∈Aweight(ai)
,

(19)

327

Psubspace =

∑
bi∈B weight(bi)1subspace(bi,SA)∑

bi∈B weight(bi)
,

(20)

328

where weight(·) is a weighting function. We use 329

the L2 norm of the vector (Yokoi et al., 2020). 330
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Algorithm 2 Subspace indicator function
1subspace(vw ,SA)

Input: SA ∈ Rk×d: Bases of SA
Input: vw ∈ R1×d: A word vector
Output: σ ∈ R: Membership degree

if k = 0 then
return 0

else
ṽw ← vw

||vw || ∈ R1×d

U⊤ ∈ Rk×k, σ ∈ R,V ∈ R ←
SVD(SAṽ

⊤
w )

return σ ∈ R ▷
The output of 1subspace(vw ,SA) is always non-
negative because it is a singular value
end if

5 Semantic Textual Similarity Task331

In this section, we examine the effectiveness of332

SubspaceBERTScore through the semantic textual333

similarity task (STS; Agirre et al., 2012).334

Task An STS task calculates the similarity be-335

tween two sentences. For the STS evaluation pro-336

tocol, we follow Gao et al. (2021). Its evaluation337

is based on the correlation between the similar-338

ity calculated by the model and corresponding hu-339

man judgments. We used datasets from the Se-340

mEval shared task 2012-2016 (Agirre et al., 2012,341

2013, 2014, 2015, 2016), STS benchmark (STS-B;342

Cer et al., 2017), and SICK-Relatedness (SICK-R;343

Marelli et al., 2014). We used Spearman’s ρ.344

Embeddings We used 768-dimensional345

BERTbase
5 (Devlin et al., 2019), which was346

pre-trained with BookCorpus and Wikipedia. We347

used hidden states in the last layer.348

Baselines We compared our method Subspace-349

BERTScore with other baseline similarity met-350

rics. The baselines included Avg-cos (Arora et al.,351

2017), the cosine similarity between the averaged352

vectors, CLS-cos (Gao et al., 2021), the cosine sim-353

ilarity between the [CLS] representations of the354

pre-trained language model, DynaMax (Zhelez-355

niak et al., 2019), a set similarity based on fuzzy356

sets, Word Mover’s Distance (WMD; Kusner et al.,357

2015), a metric based on optimal transport cost,358

and Word Rotator’s Distance (WMD; Yokoi et al.,359

2020), an optimal transport-based metric that im-360

proves WMD.361

5https://huggingface.co/bert-base-uncased

Main results The results are shown in Table 2. 362

In comparison to BERTScore, our method achieves 363

superior correlation with human judgments across 364

all three key metrics: F-score, precision, and recall. 365

An important observation is that the performance 366

consistently improves by subspace representation 367

of the set. The results suggest that simply replac- 368

ing the representation of embedding sets and the 369

indicator function with subspace-based alternatives 370

significantly enhances our ability to capture and 371

express the depth of linguistic semantics. 372

We also conduct an experiment using L2 norm as 373

a weighting factor for the indicator function. This 374

method has previously been proven effective in the 375

STS task (Yokoi et al., 2020). We see that both our 376

proposed method and BERTScore improve their 377

performance underlining the effectiveness of this 378

weighting approach in both cases. Notably, our pro- 379

posed method continued to outperform BERTScore 380

even when L2 norm was used for weighting. 381

Our similarity also outperforms the fuzzy-set 382

based similarity of DynaMax. This result suggests 383

that the proposed subspace-based approach repre- 384

sents a set and set operations better than the fuzzy 385

set-based approach in embedding space. 386

6 Text Concept Set Retrieval Task 387

In this section, we evaluate the capability of our 388

proposed set operations (∩, ∪, and ∈) in effectively 389

representing word sets. 390

Task We evaluate our set operations by the set 391

expansion task introduced by Zaheer et al. (2017). 392

In this task, the model is given a set of words that 393

share a common concept or theme. The objective 394

is to expand this set by retrieving relevant words 395

from a vocabulary that fit the same concept. For 396

instance, if the initial set includes words like “ap- 397

ple”, “banana”, and “peach”, the task would be to 398

identify and add other fruit names (e.g., “orange”) 399

to this set. For the evaluation, we follow Zaheer 400

et al. (2017). We report recall (R@k) and Median, 401

that indicate whether the words in the test set can 402

be ranked higher. 403

Embeddings We used the most standard pre- 404

trained word embeddings in all of our experiments: 405

300-dimensional GloVe6 (Pennington et al., 2014), 406

which was pre-trained with Common Crawl, and 407

300-dimensional word2vec7 (Mikolov et al., 2013), 408

6https://nlp.stanford.edu/projects/glove/
7https://code.google.com/archive/p/word2vec/
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Method Metric Weighting STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CLS-cos - - .215 .321 .213 .379 .442 .203 .424 .314
Avg-cos - - .309 .599⋆ .477 .603 .637 .473 .582⋆ .526
WMD - - .238 .443 .389 .531 .532 .384 .509 .432
WRD - - .241 .502 .410 .573 .573 .421 .527 .464
DynaMax - - .322 .518 .432 .616 .639 .452 .560 .506

BERTScore
F - .312 .546 .450 .602 .636 .446 .553 .506
P - .261 .532 .462 .576 .622 .443 .559 .494
R - .350 .527 .416 .602 .623 .430 .522 .496

SubspaceBERTScore
F - .335 .573 .476 .610 .650 .479 .562 .526
P - .282 .550 .488 .580 .630 .475 .568 .511
R - .369⋆ .552 .436 .611 .639 .462 .530 .514

BERTScore
F L2 .321 .540 .452 .613 .640 .454 .558 .511
P L2 .274 .529 .468 .589 .627 .450 .565 .500
R L2 .348 .520 .414 .610 .624 .437 .524 .497

SubspaceBERTScore
F L2 .342 .568 .477 .621 .653⋆ .486⋆ .568 .531⋆
P L2 .292 .547 .492⋆ .592 .634 .479 .574 .516
R L2 .367 .544 .434 .620⋆ .640 .468 .532 .515

Table 2: A comprehensive comparison of similarity metrics in the STS task. The scores are Spearman’s ρ. The
methods with the highest values, using the same pre-trained embeddings, are highlighted in ⋆. Scores that showed
improvement from BERTScore are denoted in bold.

which was pre-trained with Google News.409

Set Expansion with Subspace Indicator Func-410

tion To illustrate our subspace-based set ex-411

pansion method (Subspace Set), we consider a412

set of fruit-related words. For example, let’s413

take Sfruit = {apple, banana, . . . }. This set414

is divided into two subsets: a ’span’ subset415

used for creating a subspace representation, and416

a ’test’ subset for evaluation. Let’s assume417

orange /∈ Sfruit_span is a target word for test-418

ing. (1) From the ’span’ subset, we generate a419

subspace: SFruit = span(Sfruit_span). For in-420

stance, if Sfruit_span = {apple, banana, . . . }, then421

SFruit = span(vapple ,vbanana , . . . ). (2) We de-422

fine a subspace indicator function, which computes423

the degree to which a word vector belongs to the424

subspace. For a word w , the membership score425

is calculated as score = 1subspace(vorange ,SFruit).426

This score reflects the extent to which w aligns427

with the semantic characteristics of the subspace.428

This method effectively expand the set Sfruit by429

identifying words that share semantic properties430

with the subspace defined by the initial set.431

Baselines We compared several baselines, which432

don’t require training on word sets, to our method.433

Random just selects words randomly from the434

dataset’s vocabulary. A simple unsupervised base-435

line with word embeddings uses the nearest neigh-436

bors in the embedding space (Near)8. We also437

8While Zaheer et al. (2017) does not provide details about
this method, we have inferred through our replication exper-

compare a method based on fuzzy sets (Fuzzy set; 438

Zhelezniak et al., 2019) with our method. Similar 439

to our method, their method is designed to exploit 440

both the flexibility of word vectors and rich set 441

operations. Fuzzy Set represents word set A by 442

max-pooled word vectors s = maxw∈A vw . One 443

major difference from our method is that Fuzzy set 444

represents a set of word vectors by compressing 445

them into a vector of fixed dimensions. Although 446

the Text Concept Set Retrieval task requires com- 447

puting the degree of a word’s membership for a 448

word set, their method does not provide it. We 449

instead used cosine similarity cos(vw , s) between 450

word vector vw of word w ∈ V and s as the degree 451

of membership to apply fuzzy sets to the task. 452

Dataset We used a previously created dataset (Za- 453

heer et al., 2017), which was denoted by “LDA-1k, 454

Vocab = 17k.” in the paper. The dataset (DSet) 455

contains 100 word sets, each of which consists of 456

50 words sampled from a common topic9. Five 457

pre-determined words from each set were used as 458

the word set S . An additional 800 word sets were 459

used to train the models that require training on 460

word sets. Table 3 shows an example of the data 461

and the number of test sets. 462

To evaluate the union and intersection sets, we 463

prepared additional data through the union and 464

iments that it uses a method based on the cosine similarity
between the query word vector and other vectors to obtain the
nearest neighbor.

9This work used Latent Dirichlet Allocation (LDA; Blei
et al., 2003) as a topic model.
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Dataset (# Set) Example

Set Words (set elements)

DSet (100) S3 daily news paper . . .

DUnion (100)
S12 rider bike bicycle . . .
S51 island fishing sea . . .
S12 ∪ S51 races cycling islands . . .

DIntersect (100)
S9 tour open golf . . .
S72 poker casino gambling . . .
S9 ∩ S72 money won player . . .

Table 3: Examples from original dataset (denoted as
DSet) and additional DUnion and DIntersect sets.

Method Emb. Set R@100 R@1k Med.

D
S
et

Rand♠ - × 0.6 5.9 8520
Near♠ w2v × 28.1 54.7 641
Fuzzy set w2v ✓ 19.9 47.2 1240
Fuzzy set GloVe ✓ 30.9 69.0 320
Subspace set w2v ✓ 29.7 58.9 478
Subspace set GloVe ✓ 35.7 72.7 246

D
U
n
io
n

Rand - × 0.6 6.0 8422
Near w2v × 17.5 34.3 3270
Fuzzy set w2v ✓ 2.8 17.1 4426
Fuzzy set GloVe ✓ 5.4 32.0 2347
Subspace set w2v ✓ 18.4 46.9 1202
Subspace set GloVe ✓ 24.4 68.3 407

D
In
te
rs
ec
t

Rand - × 0.2 6.6 7929
Near w2v × 23.5 40.8 3304
Fuzzy set w2v ✓ 4.7 20.9 3420
Fuzzy set GloVe ✓ 32.5 75.0 255
Subspace set w2v ✓ 25.7 45.7 1445
Subspace set GloVe ✓ 44.2 83.7 149

Table 4: Results of set retrieval task on DUnion (top
half) and DIntersect (bottom half). The “Emb” column
indicates which pre-trained embedding is used. The
“Set” column indicates whether each method is based on
set computations: ✓ for incorporating set operations.

intersection operations on two randomly-selected465

word sets from the original word sets (DSet)10. The466

number of words in each set in DUnion was limited467

to 50 to match the original dataset (DSet). The468

number of words in each set in DIntersect was set469

to a minimum of 10. Finally, 100 unions and inter-470

sections were randomly selected from these word471

sets with zero elements excluded. See Table 3 for472

examples and statistics of the datasets.473

Results In experiments on union and intersection,474

we compared our method only with Fuzzy Set. The475

proposed method and Fuzzy Set can induce repre-476

sentations for the union and intersection using set477

10Note that these were based on the dataset LDA-1k, which
was automatically generated by Zaheer et al. (2017) using
LDA, so the quality depends on their method.

operations defined in the word embedding space; 478

the others cannot do so directly. Table 4 shows the 479

experimental results. Here our subspace-based set 480

operation method (Subspace set) is the best among 481

the methods that did not require training. The 482

results suggest that combining off-the-shelf pre- 483

trained embeddings with appropriate set-oriented 484

operations makes linguistic computation on sets 485

feasible without additional training. The results in 486

DUnion and DIntersect show that the our method 487

outperform Fuzzy Set in most metrics. As methods 488

for achieving set operations in vector spaces, the 489

proposed method is empirically more promising 490

than the existing fuzzy set-based method. 491

7 Related Work 492

Symbol-based similarities between word sets have 493

been proposed, such as Jaccard coefficient (Jac- 494

card, 1901; Manning and Schütze, 2001; Thada and 495

Jaglan, 2013) and TF-IDF-based similarity (Juraf- 496

sky, 2000). Unfortunately, symbol-based methods 497

cannot capture the semantic similarity of similar 498

sets or words when the symbols are different. 499

While many studies have explored representing 500

word sets in pre-trained embedding spaces (Kus- 501

ner et al., 2015; Yokoi et al., 2020), they primarily 502

focus on set similarity. Our approach, however, ex- 503

tends beyond this by developing a comprehensive 504

framework for various set operations within these 505

spaces. Utilizing subspace properties, our method 506

not only represents word sets but also performs a 507

range of versatile operations, such as calculating 508

textual similarities and membership degrees. 509

Many methods for learning the representation of 510

sets have been proposed because of the wide range 511

of possible applications (Zaheer et al., 2017; Pelle- 512

grini et al., 2021; Lee et al., 2019; Vilnis and Mc- 513

Callum, 2015; Athiwaratkun and Wilson, 2017). In 514

contrast, our approach does not require additional 515

training. This enables us to compute set representa- 516

tions and operations using popular general-purpose 517

language models, which are trained on the general 518

domain (Brown et al., 2020). 519

8 Conclusion 520

This study introduces a novel framework for set 521

representation and operations within pre-trained 522

embedding spaces, employing linear subspaces 523

grounded in quantum logic. This approach extends 524

the scope of conventional embedding set operations 525

by incorporating vector-based representations. 526
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Ethical Considerations527

We recognize the importance of addressing the in-528

herent biases in pre-trained models, such as gender529

stereotypes. In our experiment, we used RoBERTa,530

which has gender biases (Sharma et al., 2021). We531

used this model in its original state to preserve the532

experimental conditions of BERTScore, acknowl-533

edging that such biases may influence our results.534

However, we would like to emphasize that the fo-535

cus of our work, which lies in sentence similarity,536

does not inherently add to or magnify these ethical537

concerns.538

Limitations539

Our SubspaceBERTScore is built upon the foun-540

dation of BERTScore, which presents a limitation541

in that our results and findings are inherently de-542

pendent on the characteristics and performance of543

BERTScore. While we chose BERTScore due to544

its robustness and popularity in the field, poten-545

tial biases or shortcomings intrinsic to BERTScore546

might be incorporated into our extension. Never-547

theless, this constraint also suggests future research548

possibilities, such as applying our subspace-based549

approach to other base sentence similarity metrics,550

further expanding the versatility and applicability551

of our method.552

The experiments we conducted were exclusive553

to BERT and RoBERTa. Testing our methodology554

with other pre-trained models, like GPT-3 (Brown555

et al., 2020), could broaden its applicability and556

establish its robustness across various pre-trained557

models.558

We evaluated our methodology primarily using559

English datasets. This decision was made to stream-560

line our initial explorations rather than due to an561

inherent language-specific bias in our approach.562

We expect that our subspace-based methodology563

will be effective across various languages.564
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