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Abstract

Pre-trained Large Language Models (LLMs)001
have been shown effective in various natural002
language processing tasks, especially when003
fine-tuned on specific downstream scenarios.004
However, the full fine-tuning of LLMs is005
usually computationally expensive and time-006
consuming due to the ever-increasing parame-007
ter size. In addition, while the LLMs are pre-008
trained to memorize the facts and knowledge009
from unstructured textual corpora, they cannot010
be well generalized to some domain-specific011
scenarios where additional structured knowl-012
edge is required, such as enterprise databases or013
social graphs. In this paper, we design a novel014
structure-aware adapter for LLMs to utilize015
structured relational information from knowl-016
edge graphs with a structure-aware relational017
attention mechanism. The proposed adapter018
framework only introduces a small scale of019
new parameters and therefore significantly re-020
duces the cost of fine-tuning, without perturb-021
ing the initial pre-trained parameters of LLMs.022
We also propose a knowledge-graph-induced023
path-of-thought prompt to enhance the utiliza-024
tion of the LLM adapter to retrieve informa-025
tion from the knowledge graph. We evaluate026
the proposed model on two question-answering027
benchmarks. The evaluation results show that028
the proposed method outperforms the state-029
of-the-art LLM adapters by 4.1%-15.9% and030
1.4%-17.6% in question-answering accuracy031
of CSQA and OBQA datasets. Ablation stud-032
ies are also discussed to prove the effectiveness033
of the proposed modules.034

1 Introduction035

Pre-trained Large Language Models (LLMs), such036

as LLaMA (Touvron et al., 2023), GPT-3 (Brown037

et al., 2020), Alexa Teacher Model (FitzGerald038

et al., 2022; Soltan et al., 2022), and RoBERTa (Liu039

et al., 2019), have achieved remarkable success040

in a wide range of natural language processing041

(NLP) tasks, such as question answering, language042

translation, text generation, text summarization, 043

etc. The success of LLMs can be attributed to 044

the massive number of model parameters, the pre- 045

training on diverse and extensive text data, and 046

the fine-tuning of specific tasks. However, the full 047

fine-tuning of LLMs is usually computationally 048

expensive and time-consuming. In addition, it can 049

also lead to the problems of catastrophic forgetting 050

and over-fitting, where the model forgets previously 051

learned information or overfits as it adjusts to new 052

task-specific data. 053

The adaption-based fine-tuning models freeze 054

pre-trained parameters of LLMs and only intro- 055

duce a small scale of trainable parameters. The 056

state-of-the-art adapters include (i) prompt-tuning 057

adaption models such as LLaMA-Adapter (Zhang 058

et al., 2023b), Prefix-Tuning (Li and Liang, 2021), 059

P-tuning (Liu et al., 2021b), and Prompt Tun- 060

ing (Lester et al., 2021); (ii) low-rank parameter 061

adaption models such as LoRA (Hu et al., 2021) 062

and AdaLoRa (Zhang et al., 2023a). While the 063

adapters help significantly reduce the computa- 064

tional cost and adapt LLMs faster for various down- 065

stream tasks, they may still suffer from halluci- 066

nation problems and generate factually incorrect 067

content, when the pre-trained knowledge is not 068

well generalized to the new specific tasks. This 069

can limit the application of adapted LLMs in some 070

downstream scenarios where domain-specific or 071

personalized knowledge is required, such as med- 072

ical diagnosis (Varshney et al., 2023), social net- 073

works (Li et al., 2022), and personalized virtual 074

assistant (Sun et al., 2022). 075

To address this challenge, additional external 076

knowledge bases and knowledge retrieval mech- 077

anisms are required to enhance the adaption of 078

LLMs. Knowledge graphs (KGs) have enormous 079

potentials to encapsulate and condense rich struc- 080

tured and relational information that textual data in- 081

herently lacks (Schneider et al., 2022). In addition, 082

with a domain-specific knowledge graph as addi- 083
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tional input, the LLM can be trained to leverage084

domain-specific knowledge and relieve hallucina-085

tion problems, especially for adaption methods that086

only update a limited scale of parameters. Many087

previous works have shown the effectiveness of088

integrating KGs into the pre-training (Zhang et al.,089

2019; Shen et al., 2020; Zhang et al., 2020; Wang090

et al., 2021) or inference (Baek et al., 2023; Sun091

et al., 2021; Zhang et al., 2021) of LLM to enhanc-092

ing various NLP tasks.093

However, limited work has effectively integrated094

LLMs with KGs for parameter-efficient adaption.095

The CKGA (Lu et al., 2023) model has explored096

leveraging pre-trained knowledge graph embed-097

ding (KGE) to adapt BERT (Devlin et al., 2018),098

but it still requires an additional training objective099

of link prediction for graph convolutional networks100

(GCNs), and the LLMs cannot directly sense the101

structure of KGs. In this paper, we propose the102

Structure-Aware Adapter (SAA) for LLMs to103

discerningly attend to the structure of knowledge104

graphs at a granular level. The framework of the105

SAA model is shown in Figure 1. We first ground106

and match the concepts, and retrieve the knowledge107

subgraphs for input sequences. Then, we propose108

(i) the structure-aware relational attention for the109

pre-trained LLM to attend to an external knowledge110

graph. The proposed mechanism has a hierarchical111

attention strategy that attends to the source nodes in112

the first level and then attends to the relations and113

target nodes using relational attention in the second114

level. This technique allows the LLM to engage115

with the pivotal knowledge at a more intricate gran-116

ularity while neglecting the redundant information.117

(ii) The path-of-thought (PoT) prompting method is118

also proposed to retrieve and integrate the reason-119

ing path from the knowledge graph to enforce the120

training of proposed relational attention to utilize121

the information from the knowledge graph.122

We evaluate the proposed SAA model in two123

public question-answering benchmark datasets,124

CommonSenseQA (CSQA) (Talmor et al., 2018)125

and OpenBookQA (OBQA) (Mihaylov et al.,126

2018). We compare the proposed model with state-127

of-the-art LLM adapter models, as well as their128

extensions which incorporate pre-trained knowl-129

edge graph embedding (KGE) or knowledge graph130

triplets. We train the adapter models over LLaMA-131

7B (Touvron et al., 2023) and LLaMA-3B (Geng132

and Liu, 2023) and repeat the experiments for 5133

times to report the average question-answering ac-134

curacy and standard deviation. The evaluation re-135

sult shows that the proposed SAA model outper- 136

forms the state-of-the-art LLM adapters by 4.1%- 137

15.9% and 1.4%-17.6% in question-answering ac- 138

curacy of CSQA and OBQA datasets for LLaMA- 139

7B. Ablation studies also show the effectiveness 140

of the proposed structure-aware relational attention 141

and path-of-thought prompting modules. 142

2 Structure-Aware Adapter 143

In this section, we introduce the formulation of the 144

tasks, the proposed structure-aware relational atten- 145

tion technique, and path-of-thought prompt. While 146

the proposed method can be generalized to many 147

large language models and tasks, in this section we 148

focus on the decoder-based language models and 149

the question-answering task for the brevity. 150

2.1 Preliminaries and Formulation 151

We model the adaption objective as the causal lan- 152

guage modeling for the decoder-based language 153

models such as LLaMA (Touvron et al., 2023). 154

The causal language modeling involves autoregres- 155

sively predicting the next token in a sequence given 156

the previous tokens. Assume the tokens in the input 157

sequence of length n is denoted as t1, t2, · · · , tn, 158

the objective is formulated as, 159

p(ti|t1, · · · , ti−1) =
exp(ϕ(ti, t1, · · · , ti−1))∑
t exp(ϕ(t, t1, · · · , ti−1))

,

(1) 160

where ϕ(t, t1, t2, · · · , ti−1) is a scoring function or 161

model that computes the compatibility between the 162

context and the candidate token t. Most natural 163

language processing tasks can be modeled as an 164

autoregressive text generation task with the causal 165

language modeling objective and a prompt incor- 166

porating the original input and contexts. For exam- 167

ple, we model the question-answering task with a 168

prompt shown in Figure 2. The question-answering 169

task provides the question context and choices as 170

input, requiring the model the predict the correct 171

choice. We use Tq = {t1q , t2q , · · · , tnq } to denote the 172

question tokens and Tc = {t1c , t2c , · · · , tnc } for the 173

choice tokens. The sequence after prompting is de- 174

noted as T = prompt(Tq, Tc) = {t1, t2, · · · , tn}. 175

In our task, the model receives an additional 176

knowledge graph G as input. We assume the knowl- 177

edge graph is a heterogeneous directed graph. This 178

formulation can be generalized to most existing 179

knowledge graphs or structured data. Assume there 180

are N nodes and R relations. The adjacency matrix 181

can be denoted as A ∈ ZN×N×R
2 . Ak

i,j = 1 rep- 182
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Figure 1: The framework of the proposed structure-aware adapter (SAA). The SAA model freezes the original
attention weights and introduces parameter-efficient adaption to produce weights for node and relation, respectively
(in orange). Hierarchical relational attention is further proposed to directly allow the LLM attends to the graph
structure in Figure 3 and Figure 4. A zero-init fusion is applied to integrate the outputs. The path-of-thought
prompting for adaption training is also proposed to enhance the utilization of the retrieved knowledge graph.

Given the following question, pick the best answer from given choices.

Question: The only baggage the woman checked was a drawstring bag, 
where was she heading with it?

Choices: 
(A) garbage can (B) military (C) jewelry store (D) safe (E) airport

Answer: (E) airport

Contexts: drawstring is part of drawstring bag, drawstring bag is 
at location of airport. baggage is at location of airport

Figure 2: Example of an induced path-of-thought
prompt in CSQA training dataset. During the infer-
ence in the test or validation set, the blue sentences are
the expected generation. The sentence after "Contexts:"
is the path-of-thought path retrieved from KG.

resents there is an edge between the i-th node and183

j-th node with k-th relation. In knowledge graphs,184

the feature of a node or a relation is represented by185

the representations denoted as x and r, respectively.186

Practically, the model retrieves subgraphs from the187

original full knowledge graph for each data sample,188

containing the related concepts, k-hop neighbors,189

and the respective relations. We denote the sub-190

graphs with the same notation as illustrated above.191

We focus on the adaption-based fine-tuning for192

LLMs, which freezes the original parameters (de-193

noted as Φ) of LLMs pre-trained on the large-scale194

textual corpora. While the gradient computation195

via Φ is still required, there is no update on the orig-196

inal parameters. In our model, the adaption-based197

fine-tuning model only introduces a small scale of198

new parameters (denoted as ϕ∆, |ϕ∆| ≪ |Φ|). ϕ∆199

can be represented as either parameter tuning for200

pre-trained weight matrices like LoRA or prompt201

embedding like LLaMA-Adapter. The proposed202

structure-aware adapter tries to combine the ad-203

vantage of both, while efficiently incorporate the 204

knowledge from non-textual structured data and 205

generalize to downstream scenarios. 206

2.2 Structure-Aware Relational Attention 207

(Level-1) Parameter-Efficient External Node At- 208

tention Typically, the self-attention layer l in- 209

cludes weight matrices WQ, WK , WV , and op- 210

tionally WO, for computing the queries, keys, 211

values, and output mapping, respectively. We 212

have WQ,WK ,WV ,WO ∈ Rd×d where d is 213

the dimension of LLM hidden states. In the 214

proposed Structure-Aware Relational Attention 215

(SARA) model, we adapt WK , WV with low-rank 216

adaption as LoRA (Hu et al., 2021) to produce the 217

weight matrices for nodes (n) and relations (r) for 218

the external attention on KG, 219

W
(n)
K,V =WK,V +P

(n)
K,V (Q

(n)
K,V )

⊤

W
(r)
K,V =WK,V +P

(r)
K,V (Q

(r)
K,V )

⊤,
(2) 220

where the P ∈ Rd×z and Q ∈ Rz×d are low- 221

rank decomposition matrices designed to adjust the 222

original LLM weight matrices. z is the rank and 223

we have z ≪ d. Therefore, the matrix multipli- 224

cation of PQ⊤ contains much fewer parameters 225

compared with W. 226

Since the knowledge graph provides text descrip- 227

tions for all the nodes and relations, we compute 228

the node embeddings x and relation embedding 229

r of KG using the text descriptions. We apply 230

the same tokenization as LLM and use the output 231

of the embedding layer to compute x and r. For 232

those nodes and relations with k > 1 tokens, we 233
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Figure 3: The Level-1 attention of the proposed SARA
which attends to the source nodes with external atten-
tion.
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Figure 4: The Level-2 attention of the proposed SARA
which attends to the relations and target nodes using
relational attention.

take the average embedding, i.e. x = 1
|k|

∑k
i xi,234

r = 1
|k|

∑k
i ri. With the computed x, r, and adja-235

cency matrix A, we design a 2-level hierarchical236

relational attention for the knowledge graph.237

The framework of Level-1 attention is shown in238

Figure 3. The intuition is to conduct external at-239

tention to query relevant knowledge from the struc-240

tured knowledge graph. For the computing of the241

query, we use the original weight WQ. For the242

keys and values, we apply adapted matrices W(n)
K ,243

W
(r)
K , W(n)

V , W(r)
V as introduced in Equation 2.244

In the first level of the hierarchical attention, as is245

shown in Figure 3, we first compute the attention246

score σ(1) between the input sequence T and all247

the source nodes xi, which can be formulated as,248

σ(1)(T,xi) = Softmax(
(TWQ)(xiW

(n)
K )⊤√

d
),

(3)249

where WQ is the pre-trained frozen weight from250

LLM. W(n)
K is the trainable weight of key for nodes.251

d is the dimension of hidden states. Note that while252

exploited, the formulation of multi-head attention253

is omitted here for brevity.254

(Level-2) Parameter-Efficient Relational Atten-255

tion The relational attention, or the graph trans-256

former (Diao and Loynd, 2022) was initially pro-257

posed to improve the reasoning of graph representa-258

tion learning tasks. Inspired by relational attention,259

we propose the hierarchical relational attention in260

Figure 4 for adapting LLMs to incorporate the re-261

lational information from knowledge graphs. The262

idea of hierarchical relational attention is to con- 263

catenate the node representations with the relation 264

representations, as well as concatenate the weight 265

matrices. Then we compute the attention on a more 266

fine-grained level. More specifically, for each edge 267

triplet (xi, ri,j ,xj) we have 268

qi,j = [T; ri,j ][W
⊤
Q;W

⊤
Q]

⊤

ki,j = [xj ; ri,j ][(W
(n)
K )⊤; (W

(r)
K )⊤]⊤

vi,j = [xj ; ri,j ][(W
(n)
V )⊤; (W

(r)
V )⊤]⊤,

(4) 269

where T is the tokens of the input sequence. ri,j is 270

the relation between node i and j. xj is the target 271

node. WQ is the original query weight matrix in 272

the LLM attention layer. The computation can also 273

be simplified as 274

qi,j = TWQ + ri,jWQ

ki,j = xjW
(n)
K + ri,jW

(r)
K

vi,j = xjW
(n)
V + ri,jW

(r)
V .

(5) 275

With the above definition, the second-level atten- 276

tion weight α(2) and attention score σ(2) can be 277

computed as 278

α
(2)
i,j (T, ri,j ,xj) =

qi,j(T, ri,j)k
⊤
i,j(ri,j ,xj)√
d

σ
(2)
i,j =

exp(α
(2)
i,j )∑

µ∈Ni
exp(α

(2)
i,µ)

,

(6) 279

where Ni = {xj |Ak
i,j ̸= 0} represents all the 280

neighbors of node i w.r.t. any relation rk. 281

Zero-Init Fusion of two attention levels Finally, 282

we compute the hierarchical attention score by mul- 283

tiplying the scores of two levels with adjacency 284

matrix of subgraph, 285

σ
(KG)
i,j =

∑
i,j

σ
(1)
i Ai,jσ

(2)
i,j (7) 286

We integrate the output of SARA with the original 287

output of LLM with a zero-init gate (Zhang et al., 288

2023b), 289

hl
t = WO([σ

(KG)·g; σ(LLM)]·[V(KG);V(LLM)]),
(8) 290

where g is the zero-init gate and the semicolon rep- 291

resents concatenation. WO is the output mapping 292

in the original LLM attention. σ(LLM) is the origi- 293

nal softmax attention score for the input sequence 294

T . V is the value matrix in Equation 5, we have 295
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vi,j ∈ V. hl
t is the output hidden state for the296

token t at layer l.297

The proposed SARA can be applied to adapt298

multiple attention layers of original LLM atten-299

tion, practically the last L attention layers. With300

multiple adapted layers fused with the proposed301

KG attention, the LLM can learn to attend to com-302

plex graph structures. Compared with the existing303

method which directly attends to textual triplets of304

trained KG representations, the proposed mecha-305

nism adapts LLM to attend to the graph structures306

in a more fine-grained manner. In addition, since307

the knowledge graph usually contains a lot of re-308

dundant information (Akrami et al., 2020), the pro-309

posed relational attention enables the LLM to se-310

lectively retrieve essential information and neglect311

the redundant or unrelated nodes and relations.312

2.3 Enhance Knowledge Reasoning with313

Path-of-Thought Prompt314

In the previous section, we have introduced the315

structure-aware relational attention, which retrieves316

and fuses the fine-grained knowledge output from317

the knowledge graph (KG). While it provides the318

mechanism for LLM to retrieve additional knowl-319

edge, it’s not guaranteed whether the model can320

learn to utilize it during adaption (especially with321

fewer trainable parameters). One straight-forward322

idea is to pre-train the LLM with the KG module323

on additional large textual corpora (Yasunaga et al.,324

2022), which will result in heavy computation cost.325

In this paper, we propose a knowledge-induced326

path-of-thought (PoT) prompt to enforce the uti-327

lization of KGs.328

The idea of the proposed PoT prompt is inspired329

by the chain-of-thought prompt (Wei et al., 2022),330

which was proposed to enhance the zero-shot infer-331

ence of LLM, where several examples with manu-332

ally labeled chain-of-thought contexts are provided333

before we input the actual sequence into the LLM.334

In our case, instead of prompting at inference time,335

we retrieve and integrate PoT in the training prompt336

to enhance the adaption training. More specifically,337

we design an algorithm to retrieve the reasoning338

path between pairs of matched concepts in KG. We339

denote the concepts from the question as cq ∈ Cq,340

the choice concepts as cp ∈ Cp, and the concepts341

of correct choice (answer) as ĉp ∈ Ĉp. Then, for342

every pair of concepts from (cq, cp) ∈ Cq × Ĉp,343

we compute the shortest paths between them using344

Dijkstra algorithm (Cormen, 2001). Finally, we345

concatenate the text of nodes and relations along346

the shortest paths to form the final prompt, together 347

with the question, choices, and answer. One exam- 348

ple of computed PoT prompts is shown in Figure 2. 349

This technique is different from the previous 350

works transforming the KG triplets or knowledge 351

contexts into texts as additional input (Wang et al., 352

2021; Baek et al., 2023). In the proposed PoT 353

prompting, the retrieved reasoning path works 354

as the additional learning objective instead of in- 355

put. The proposed prompting actually enforces the 356

adapted LLM to (i) generate the answer prediction, 357

and (ii) generate the context of the reasoning path. 358

This additional objective, therefore, enhances the 359

model to utilize the information from KG. 360

3 Experiments 361

In this paper, we focus on the question-answering 362

task which emphasizes the knowledge reasoning 363

of LLMs. The proposed models and baselines 364

are evaluated on two public question-answering 365

benchmark datasets, including CommonSenseQA 366

(CSQA) (Talmor et al., 2018) and OpenbookQA 367

(OBQA) (Mihaylov et al., 2018) (see Appendix A 368

for details). We compare our algorithm with two 369

state-of-the-art LLM adapters, LoRA (Hu et al., 370

2021) and LLaMA Adapter (Zhang et al., 2023b), 371

as well as their knowledge-enhanced variants. The 372

baseline details and hyper-parameters are introdu- 373

cued in Appendix A.3. In the experiments, we 374

use two pre-trained LLMs as the base models for 375

adaption: (i) LLaMA-7B1, a pre-trained LLaMA 376

model (Touvron et al., 2023) by Meta AI containing 377

7-billion parameters. (ii) LLaMA-3B (Geng and 378

Liu, 2023) , a smaller pre-trained LLaMA model 379

by OpenLM Research (Geng and Liu, 2023), with 380

3-billion parameters. 381

3.1 Knowledge Graph Retrieval 382

For each query, we retrieve a knowledge sub-graph 383

based on the heuristic concept match (Yasunaga 384

et al., 2022). We extract the concepts from ques- 385

tions and choices after lemmatization and match 386

them with the concept nodes in KG, based on the 387

with the en_core_web_sm pipeline in the spaCy li- 388

brary2. The average numbers of matched concepts 389

in CSQA and OBQA datasets are 14.04 and 14.59. 390

Based on the matched concepts, we further retrieve 391

and include top-100 2-hop neighbors, sorted and 392

filtered based on semantic similarity score. 393

1https://github.com/facebookresearch/llama
2https://spacy.io/models/en#en_core_web_sm
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Table 1: Evaluation result of question-answering accuracy in CSQA and OBQA datasets. We report the average
accuracy and the respective standard deviation with 5 random seeds. The first two columns are the results of
LLaMA-7B pre-trained LLM and the last two columns are the result of a relatively smaller LLaMA-3B model. The
proposed structure-aware achieves the highest average accuracy.

LLaMA-7B LLaMA-3B
Model Name CSQA OBQA CSQA OBQA
Zero-Shot 0.3073 0.2780 0.1957 0.2760
LLAMA-Adapter 0.6124±0.0119 57.08±0.0139 0.6169±0.0112 0.4480±0.0772

LLAMA-Adapter + KGE 0.5920±0.0163 0.5416±0.0190 0.2069±0.0111 0.3016±0.0099

LLAMA-Adapter + KG Triplets 0.5951±0.0070 0.6368±0.0129 0.3053±0.1265 0.5172±0.0095

LoRA 0.6822±0.0110 0.6624±0.0144 0.5297±0.1789 0.6028±0.0212

LoRA + KGE 0.6943±0.0050 0.6652±0.0088 0.6401±0.0090 0.5928±0.0145

LoRA + KG triplets 0.6644±0.0050 0.6696±0.0112 0.3735±0.0925 0.6048±0.0119

LLAMA-Adapter + LoRA 0.6994±0.0032 0.6396±0.0067 0.6624±0.0102 0.6100±0.0163

SSA (Ours) 0.7100±0.0058 0.6715±0.0042 0.6650±0.0115 0.6140±0.0171

3.2 Evaluation Metrics394

We provide the model a prompt containing the ques-395

tions, choices, and optionally path-of-thought con-396

texts as is shown in Figure 2. During inference,397

we have the adapted LLM to generate the next398

5 tokens after the "Answer:" in the prompt. We399

use the multiple choice symbol binding (MCSB)400

method (Robinson et al., 2022) to compute the pre-401

diction label. More specifically, we find the choice402

token (e.g. "(A)") with the maximum number of403

appearances and use it as the model prediction. Fi-404

nally, we report the accuracy of question answering405

as the evaluation metric. We repeat all the experi-406

ments for 5 times and report the average accuracy407

and the standard deviation.408

3.3 Experimental results409

We compare our proposed structure-aware adapter410

model with the baselines in both the CSQA and411

OBQA datasets. The learning rate is set as 0.0003.412

We apply the proposed adapter to the last 20 layers413

of LLM attention, the same as the settings of base-414

lines. The low-rank dimension and alpha are set as415

z = 2 and α = 8 for the adaption of weight matri-416

ces. In our model with the path-of-thought prompt-417

ing, we limit the maximum length of the shortest418

path of thought as 50 tokens in the training prompt.419

The experimental results of the proposed structure-420

aware adapter and the baselines are shown in Ta-421

ble 1. The proposed structure-aware adapter outper-422

forms the state-of-the-art baselines. When adapting423

on LLaMA-7B in the CSQA dataset, our model424

achieves 15.9% and 4.1% higher accuracy than425

LLaMA-Adapter and LoRA, respectively. When426

adapting on LLaMA-7B in the OBQA dataset, our427

model achieves 17.6% and 1.4% higher accuracy 428

than LLaMA-Adapter and LoRA. 429

We also compare the proposed model with sev- 430

eral extensions of LLaMA-Adapter and LoRA en- 431

hanced with pre-trained knowledge graph embed- 432

ding (KGE) or textual KG triplets. In the KGE 433

extensions, we integrate the pre-trained KGE of the 434

matched concepts and related neighboring concepts 435

by applying a linear mapping, and then adding to 436

the prompt embedding of LLaMA-Adapter or ap- 437

plying LoRA-adapted external attention on KGE. 438

The pre-trained KGE improves the performance of 439

LoRA in most cases of datasets and PLMs. This is 440

because the KGE is pre-trained to include the infor- 441

mation of relations and adjacency concepts, which 442

serve as external knowledge for LoRA to answer 443

questions. The KG triplets also help the adaption 444

models in the question-answering task, especially 445

for LLaMA-Adapter on the OBQA dataset. How- 446

ever, integrating either the pre-trained KGE or the 447

textual KG triplets is not optimal. While already 448

being filtered with some rule-based pre-processing, 449

there is still a lot of redundant information stored 450

in KGE as well as KG triplets. The methods in- 451

corporating KGE and KG triplets do not allow the 452

LLM to sense the relational structure and selec- 453

tively retrieved the key information. The proposed 454

structure-aware relational attention naturally allows 455

LLM to attend to the relational structure of KG at a 456

more fine-grained level, which enhances the ability 457

of the proposed module to denoise the redundant 458

information and achieve higher average accuracy. 459

In addition, we study the effectiveness of the pro- 460

posed model and baselines on a LLaMA-3B model, 461

which contains fewer parameters and is pre-trained 462
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on smaller and unofficial corpora, and fewer sub-463

tasks. The adaption in LLaMA-3B is more chal-464

lenging because it contains much less pre-trained465

knowledge and, meanwhile, it’s more difficult to466

enforce it to leverage the external knowledge from467

KG. In this case, we observe the adaption training468

of many baselines becomes unstable and some-469

times fails to converge. This leads to lower average470

accuracy scores and high standard deviation. The471

instability of training is especially significant after472

incorporating the KGE and KG triplets. While the473

proposed structure-aware adapter also leverages474

external knowledge, we in addition propose the475

path-of-thought prompting to enforce the model to476

attend to KGs and therefore stabilize the training.477

Compared with baselines, the training of the pro-478

posed model is more stable and we do not observe479

a collapse of convergence.480

3.4 Efficiency Analysis481

We report the number of trainable parameters, the482

memory cost, as well as the average training time483

on CSQA and OBQA datasets in Table 2. The484

proposed SSA model uses a comparable number485

of trainable parameters (0.048‰) as LoRA and486

LoRA-Triplets (0.024‰), and much fewer param-487

eters than other baselines (≥ 0.122‰). In addi-488

tion, while integrated with attention on KG, we do489

not observe a significant increase in training time490

for the proposed model (11 hours) compared with491

LoRA (8 hours) and LLAMA-Adapter (11 hours).492

Table 2: The efficiency comparison of numbers of train-
able parameters, memory, and average training time.

Model Name #Trainable Param. Mem Time
Zero-Shot 0.00M (0.000‰) - -
L.Ada. 0.82M (0.122‰) 3.56M 11 hrs
L.Ada.+KGE 5.01M (0.744‰) 21.23M 13 hrs
L.Ada.+Triplets 0.82M (0.122‰) 3.62M 20 hrs
LoRA 0.16M (0.024‰) 0.62M 8 hrs
LoRA+KGE 4.36M (0.647‰) 17.34M 11 hrs
LoRA+Triplets 0.16M (0.024‰) 0.65M 18 hrs
L.Ada.+LoRA 0.98M (0.146‰) 4.21M 13 hrs
SSA (Ours) 0.32M (0.048‰) 1.22M 11 hrs

3.5 Ablation Study493

We conducted ablation studies to evaluate the effec-494

tiveness of the proposed modules of the structure-495

aware adapter. We removed or modified the pro-496

posed modules to form the following ablation ex-497

periments: (i) Without Relational Attention: We498

remove the proposed structure-aware relational at-499

tention and use a typical attention mechanism to500

attend to the average embeddings of relations ri,j501

and target nodes xj . (ii) With Node Attention: 502

We simplify the proposed method to attend to only 503

the nodes xj of matched or related concepts in the 504

retrieved knowledge subgraph. (iii) Without Path- 505

of-Thought: The proposed SAA model without 506

the path-of-thought (PoT) prompting, where we 507

train the model without the "Contexts:" part. 508

Table 3: Ablation study of the Structure-Aware Adapter,
after removing Relational Attention, replacing with
Node Attention, or removing the path-of-thought (PoT).

Model Name CSQA OBQA
W/o Rel. Att. 0.6968±0.0074 0.6608±0.0231

W/ Node Att. 0.6915±0.0089 0.6542±0.0068

W/o PoT 0.7076±0.0096 0.6674±0.0093

SSA (Ours) 0.7100±0.0058 0.6715±0.0042

The experimental result is shown in Table 3. By 509

removing the proposed hierarchical relational at- 510

tention for the knowledge graph, the accuracy de- 511

creases for 1.32% and 1.07% respectively in CSQA 512

and OBQA datasets, which illustrates the effective- 513

ness of the relational attention. A further simpli- 514

fied ablation model is the one with node attention, 515

which ignores the relation features and only at- 516

tends to the matched concepts or their neighbors. 517

We also observe a decrease of 1.85% and 1.73% in 518

both datasets. While the neighbors of matched con- 519

cepts also provide contexts for solving the question- 520

answering task, neglecting the relations and graph 521

structure leads to a significant decrease in the ac- 522

curacy metrics. Finally, we also study the model 523

without the proposed path-of-thought prompting. 524

After removing PoT, there is a observed accuracy 525

reduction in both datasets and the standard devia- 526

tion also increases. This shows the benefit of ap- 527

plying the path-of-thought prompting in enhancing 528

knowledge utilization and training stabilization. 529

4 Related Works 530

Large Language Model Adaption The adaption- 531

based model fine-tuning, or parameter-efficient 532

fine-tuning (PEFT) for large language mod- 533

els (Mangrulkar et al., 2022a) freezes the parame- 534

ters of the initial pre-trained large language models 535

and only introduces a small number of trainable 536

parameters to save computational costs and pre- 537

serve the pre-trained linguistic knowledge. The 538

existing work has explored the prompt-tuning adap- 539

tion methods (Zhang et al., 2023b; Li and Liang, 540

2021; Lester et al., 2021; Liu et al., 2021b,a; Qin 541

and Eisner, 2021) and parameter weight adaption 542
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methods (Hu et al., 2021; Zhang et al., 2023a;543

Hedegaard et al., 2022). One representative work544

of prompt-tuning is the LLaMA-Adapter (Zhang545

et al., 2023b), which attaches the embedding of546

the trainable adaption prompts as a prefix along547

with the input sequence and introduces a zero-init548

fusion mechanism to integrate the output of adap-549

tion prompt to the language model. The LoRA550

model (Hu et al., 2021) is a parameter weight adap-551

tion model proven to be effective in adapting the552

model for various generative tasks, the performance553

of which is close to the full fine-tuning of original554

large language models (LLMs). While the existing555

adaption models show promising performance in556

adapting PLMs to various downstream tasks, these557

methods may still suffer from hallucination prob-558

lems and generate factually incorrect content due559

to limited trainable parameters for domain transfer-560

ring. The adaption models still rely on the knowl-561

edge from the textual pre-training corpora and can-562

not utilize some external knowledge, which limits563

their application of domain-specific scenarios. In564

this paper, we propose a structure-aware adapter565

for PLMs that utilize the structured data to enhance566

the downstream generative tasks.567

Knowledge Graph Enhanced Language Mod-568

eling The knowledge graph, such as Concept-569

Net (Speer et al., 2017), Wikidata (Vrandečić and570

Krötzsch, 2014), is a structured knowledge base571

that has been proven to be effective in improving572

the performance of LLM on various natural lan-573

guage processing tasks (Pan et al., 2023). Many574

other graphs such as social graphs and entity inter-575

action logs can also be represented as the knowl-576

edge graph to enhance LLMs (Li et al., 2022;577

Chang et al., 2021; El-Kishky et al., 2022). The ex-578

iting researches have explored utilizing the knowl-579

edge graph for improving the LLM pre-training580

such as ERNIE (Zhang et al., 2019), GLM (Shen581

et al., 2020), E-BERT (Zhang et al., 2020) KE-582

PLER (Wang et al., 2021), K-BERT (Liu et al.,583

2020), inferences such as QA-GNN (Sun et al.,584

2021), GreaseLM (Zhang et al., 2021), KGLM (Lo-585

gan IV et al., 2019), DRAGON (Yasunaga et al.,586

2022), and KAPING (Baek et al., 2023).587

However, limited research has focused on en-588

hancing the adaption of LLM with knowledge589

graph, while the adaption methods have become590

more interesting due to the ever-increasing scale591

of PLM parameters. The CKGA (Lu et al., 2023)592

model has explored leveraging pre-trained knowl-593

edge graph embedding to adapt BERT (Devlin594

et al., 2018), but it still requires an additional train- 595

ing objective of link prediction for graph convolu- 596

tional networks (GCNs) and the LLM cannot di- 597

rectly attend to the structure of KGs. The existing 598

research has explored the mechanisms to integrate 599

the information from the knowledge graph. Some 600

of the existing methods transforms the knowledge 601

graph triplets like ERNIE (Zhang et al., 2019), 602

SKILL (Moiseev et al., 2022), and KAPING (Baek 603

et al., 2023), or retrieved knowledge contexts such 604

as KEPLER (Wang et al., 2021) into text as ad- 605

ditional input. However, the additional textual 606

input usually cannot well represent the complex 607

graph structure and may introduce additional noise. 608

Some related works focus on generating KG entity 609

embeddings as additional input for the language 610

models such as KI-BERT (Faldu et al., 2021) and 611

NTULM (Li et al., 2022). The other works ex- 612

ploit joint training of link prediction and masked 613

language modeling (MLM) objectives for the pre- 614

training of LLM, such as DRAGON (Yasunaga 615

et al., 2022) and KEPLER (Wang et al., 2021). 616

However, these methods usually use a single fusion 617

bottleneck between LLM and the graph module 618

and usually train additional graph neural networks 619

(GNN) to encode the node embeddings, Therefore, 620

the LLMs cannot directly attend to the structure 621

of KG. On the contrary, we propose the structure- 622

aware relational attention that allows LLMs to nat- 623

urally attend to structures of the knowledge graph 624

without bottleneck networks or additional graph 625

learning objectives during the adaption training. 626

5 Conclusion 627

This paper proposes a structure-aware adapter for 628

parameter-efficient fine-tuning of LLMs, leverag- 629

ing structured information from knowledge graphs. 630

We propose the hierarchical relational attention 631

mechanism to allow LLMs to intrinsically attend 632

to knowledge graphs at a granular level. In addi- 633

tion, a novel algorithm is proposed to extract the 634

reasoning paths from knowledge graphs and de- 635

rive the path-of-thought prompts to enforce the effi- 636

cacy of proposed relational attention in knowledge 637

extraction. The evaluation result in two question- 638

answering benchmark datasets demonstrates that 639

the proposed approach outperforms the state-of-the- 640

art LLM adapters and their variants in QA accuracy. 641

Ablation studies further illustrates the effectiveness 642

of the proposed relational attention and path-of- 643

though prompting in jointly enhancing the model’s 644

ability on QA reasoning. 645
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Limitations646

While the proposed hierarchical structure-aware647

relational attention designs the gradients of the ex-648

ternal graph attention end-to-end with the adapted649

parameters of LLM for the text generative objec-650

tive, the retrieval of the KG sub-graph is heuristic651

and rule-based. The rule-based sub-graph retrieval652

algorithms are usually robust for various datasets653

and tasks, however, they still face the challenge of654

precision-recall trade-off (either neglecting useful655

nodes or including redundant nodes). The empir-656

ical solution in this paper is leveraging relatively657

higher recall and adopting the proposed level-1 ex-658

ternal node attention to denoise redundant nodes.659

However, another possible direction is adopting a660

neural retrieval algorithm and integrating end-to-661

end with the whole framework, which can dynami-662

cally update the retrieval results with the LLM fine-663

tuning objective, and may bring additional benefit664

for the knowledge-enhanced generation task.665

Ethics666

The datasets, knowledge graph databases, and pre-667

trained large language models utilized in this pa-668

per were publicly available and open-sourced. All669

experiments involving these resources were con-670

ducted in compliance with their respective permis-671

sive licenses. This study did not involve any addi-672

tional human-engaged annotation, investigation, or673

survey.674
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A Appendix905

A.1 Dataset Details906

CommonSenseQA (CSQA): The CSQA dataset907

(Talmor et al., 2018) is a 5-choice question answer-908

ing benchmark which requires different types of909

commonsense knowledge to predict the correct an- 910

swers. This dataset includes 9741 samples in the 911

train set, 1221 in the validation set, and 1140 in 912

the test set. Since the label of the test set in CSQA 913

is not publicly available, we report the evaluation 914

result in the validation set. 915

OpenbookQA (OBQA): OBQA (Mihaylov et al., 916

2018) is another advanced 4-choice question- 917

answering dataset, probing a deeper understand- 918

ing of the topic and the language it is expressed 919

in. While the OBQA dataset also provides salient 920

facts summarized as an open book, it is not used in 921

our experiments for a fair comparison. The OBQA 922

dataset includes 4957 samples for training, 500 for 923

validation, and 500 for testing. In OBQA the label 924

of the test set is publicly available. 925

A.2 Implementation and Environments 926

All the experiments are conducted on AWS G5 in- 927

stances with 8 Nvidia A10G GPUs, 192-core CPUs, 928

and 748GB memory. The implementation is based 929

on Python 3.10.11 and PyTorch 2.0.0. We utilize 930

the accelerate (Gugger et al., 2022) and deepspeed3 931

libraries for distributed training. 932

A.3 Baselines and Hyper-parameters 933

Zero-Shot: We directly apply the pre-trained LLM 934

for a generation without any fine-tuning or further 935

adaption. 936

LLaMA-Adapter (Zhang et al., 2023b): The 937

state-of-the-art prompt-embedding-based adapter 938

for LLM. We apply LLaMA-Adapter to the last 939

20 attention layers with adaption prompt length 940

equal to 10. The implementation is based on peft 941

library (Mangrulkar et al., 2022b). All the other 942

setting remains the same as the paper. 943

LLaMA-Adapter + KGE: Extension of the 944

LLaMA-Adapter model to incorporate the pre- 945

trained knowledge graph embedding (KGE), using 946

the same framework of the image-incorporated ex- 947

tension of LLaMA-Adapter (Zhang et al., 2023b) 948

with linear projection. 949

LLaMA-Adapter + KG triplets: The extension 950

of LLaMA-Adapter model where we extract and 951

integrate up to 100 tokens of triplets from KGs to 952

the input. 953

LoRA (Hu et al., 2021): The state-of-the-art pa- 954

rameter adaption model for LLMs is based on train- 955

able rank decomposition matrices. We apply LoRA 956

to the last 20 attention layers. The learning rate is 957

3https://github.com/microsoft/DeepSpeed
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set as 0.0003. The low-rank dimension and alpha958

are set as z = 2 and α = 8. The implementation is959

based on peft library.960

LoRA + KGE: The extension of the LoRA model961

to integrate the linear-mapped pre-trained KGE962

from ConceptNet. External attention is applied to963

the KGE.964

LoRA + KG triplets: Extension of the LoRA965

model to include up to 100 tokens of triplets trans-966

formed from KGs. We integrate the triplets with967

the prompt.968

LLaMA-Adapter + LoRA: We simultaneously969

apply the LLaMA-Adapter for prompt adaption970

and LoRA for parameter adaption, both applied to971

the last 20 attention layers with z = 2, α = 8, and972

10 adaption prompts.973
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