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Abstract

Pre-trained Large Language Models (LLMs)
have been shown effective in various natural
language processing tasks, especially when
fine-tuned on specific downstream scenarios.
However, the full fine-tuning of LLMs is
usually computationally expensive and time-
consuming due to the ever-increasing parame-
ter size. In addition, while the LLMs are pre-
trained to memorize the facts and knowledge
from unstructured textual corpora, they cannot
be well generalized to some domain-specific
scenarios where additional structured knowl-
edge is required, such as enterprise databases or
social graphs. In this paper, we design a novel
structure-aware adapter for LLMs to utilize
structured relational information from knowl-
edge graphs with a structure-aware relational
attention mechanism. The proposed adapter
framework only introduces a small scale of
new parameters and therefore significantly re-
duces the cost of fine-tuning, without perturb-
ing the initial pre-trained parameters of LLMs.
We also propose a knowledge-graph-induced
path-of-thought prompt to enhance the utiliza-
tion of the LLM adapter to retrieve informa-
tion from the knowledge graph. We evaluate
the proposed model on two question-answering
benchmarks. The evaluation results show that
the proposed method outperforms the state-
of-the-art LLM adapters by 4.1%-15.9% and
1.4%-17.6% in question-answering accuracy
of CSQA and OBQA datasets. Ablation stud-
ies are also discussed to prove the effectiveness
of the proposed modules.

1 Introduction

Pre-trained Large Language Models (LLMs), such
as LLaMA (Touvron et al., 2023), GPT-3 (Brown
et al., 2020), Alexa Teacher Model (FitzGerald
etal., 2022; Soltan et al., 2022), and RoBERTa (Liu
et al., 2019), have achieved remarkable success
in a wide range of natural language processing
(NLP) tasks, such as question answering, language

translation, text generation, text summarization,
etc. The success of LLMs can be attributed to
the massive number of model parameters, the pre-
training on diverse and extensive text data, and
the fine-tuning of specific tasks. However, the full
fine-tuning of LLMs is usually computationally
expensive and time-consuming. In addition, it can
also lead to the problems of catastrophic forgetting
and over-fitting, where the model forgets previously
learned information or overfits as it adjusts to new
task-specific data.

The adaption-based fine-tuning models freeze
pre-trained parameters of LLMs and only intro-
duce a small scale of trainable parameters. The
state-of-the-art adapters include (i) prompt-tuning
adaption models such as LLaMA-Adapter (Zhang
et al., 2023b), Prefix-Tuning (Li and Liang, 2021),
P-tuning (Liu et al., 2021b), and Prompt Tun-
ing (Lester et al., 2021); (ii) low-rank parameter
adaption models such as LoRA (Hu et al., 2021)
and Adal.oRa (Zhang et al., 2023a). While the
adapters help significantly reduce the computa-
tional cost and adapt LLMs faster for various down-
stream tasks, they may still suffer from halluci-
nation problems and generate factually incorrect
content, when the pre-trained knowledge is not
well generalized to the new specific tasks. This
can limit the application of adapted LLMs in some
downstream scenarios where domain-specific or
personalized knowledge is required, such as med-
ical diagnosis (Varshney et al., 2023), social net-
works (Li et al., 2022), and personalized virtual
assistant (Sun et al., 2022).

To address this challenge, additional external
knowledge bases and knowledge retrieval mech-
anisms are required to enhance the adaption of
LLMs. Knowledge graphs (KGs) have enormous
potentials to encapsulate and condense rich struc-
tured and relational information that textual data in-
herently lacks (Schneider et al., 2022). In addition,
with a domain-specific knowledge graph as addi-



tional input, the LLLM can be trained to leverage
domain-specific knowledge and relieve hallucina-
tion problems, especially for adaption methods that
only update a limited scale of parameters. Many
previous works have shown the effectiveness of
integrating KGs into the pre-training (Zhang et al.,
2019; Shen et al., 2020; Zhang et al., 2020; Wang
et al., 2021) or inference (Baek et al., 2023; Sun
et al., 2021; Zhang et al., 2021) of LLM to enhanc-
ing various NLP tasks.

However, limited work has effectively integrated
LLMs with KGs for parameter-efficient adaption.
The CKGA (Lu et al., 2023) model has explored
leveraging pre-trained knowledge graph embed-
ding (KGE) to adapt BERT (Devlin et al., 2018),
but it still requires an additional training objective
of link prediction for graph convolutional networks
(GCNs), and the LLMs cannot directly sense the
structure of KGs. In this paper, we propose the
Structure-Aware Adapter (SAA) for LLMs to
discerningly attend to the structure of knowledge
graphs at a granular level. The framework of the
SAA model is shown in Figure 1. We first ground
and match the concepts, and retrieve the knowledge
subgraphs for input sequences. Then, we propose
(1) the structure-aware relational attention for the
pre-trained LLM to attend to an external knowledge
graph. The proposed mechanism has a hierarchical
attention strategy that attends to the source nodes in
the first level and then attends to the relations and
target nodes using relational attention in the second
level. This technique allows the LLM to engage
with the pivotal knowledge at a more intricate gran-
ularity while neglecting the redundant information.
(ii) The path-of-thought (PoT) prompting method is
also proposed to retrieve and integrate the reason-
ing path from the knowledge graph to enforce the
training of proposed relational attention to utilize
the information from the knowledge graph.

We evaluate the proposed SAA model in two
public question-answering benchmark datasets,
CommonSenseQA (CSQA) (Talmor et al., 2018)
and OpenBookQA (OBQA) (Mihaylov et al.,
2018). We compare the proposed model with state-
of-the-art LLM adapter models, as well as their
extensions which incorporate pre-trained knowl-
edge graph embedding (KGE) or knowledge graph
triplets. We train the adapter models over LLaMA-
7B (Touvron et al., 2023) and LLaMA-3B (Geng
and Liu, 2023) and repeat the experiments for 5
times to report the average question-answering ac-
curacy and standard deviation. The evaluation re-

sult shows that the proposed SAA model outper-
forms the state-of-the-art LLM adapters by 4.1%-
15.9% and 1.4%-17.6% in question-answering ac-
curacy of CSQA and OBQA datasets for LLaMA-
7B. Ablation studies also show the effectiveness
of the proposed structure-aware relational attention
and path-of-thought prompting modules.

2 Structure-Aware Adapter

In this section, we introduce the formulation of the
tasks, the proposed structure-aware relational atten-
tion technique, and path-of-thought prompt. While
the proposed method can be generalized to many
large language models and tasks, in this section we
focus on the decoder-based language models and
the question-answering task for the brevity.

2.1 Preliminaries and Formulation

We model the adaption objective as the causal lan-
guage modeling for the decoder-based language
models such as LLaMA (Touvron et al., 2023).
The causal language modeling involves autoregres-
sively predicting the next token in a sequence given
the previous tokens. Assume the tokens in the input
sequence of length n is denoted as ¢1, to, - - -
the objective is formulated as,
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where ¢(t,t1,t9,- - ,t;—1) is a scoring function or
model that computes the compatibility between the
context and the candidate token ¢. Most natural
language processing tasks can be modeled as an
autoregressive text generation task with the causal
language modeling objective and a prompt incor-
porating the original input and contexts. For exam-
ple, we model the question-answering task with a
prompt shown in Figure 2. The question-answering
task provides the question context and choices as
input, requiring the model the predict the correct
choice. We use T, = {té, tg, -+« 1y } to denote the
question tokens and T, = {t!,¢2,--- 7} for the
choice tokens. The sequence after prompting is de-
noted as T' = prompt(T,, T,) = {t1,t2,- -+ ,tn}.
In our task, the model receives an additional
knowledge graph G as input. We assume the knowl-
edge graph is a heterogeneous directed graph. This
formulation can be generalized to most existing
knowledge graphs or structured data. Assume there
are N nodes and R relations. The adjacency matrix
can be denoted as A € Z) "N Ak =1 rep-
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Figure 1: The framework of the proposed structure-aware adapter (SAA). The SAA model freezes the original
attention weights and introduces parameter-efficient adaption to produce weights for node and relation, respectively
(in orange). Hierarchical relational attention is further proposed to directly allow the LLM attends to the graph
structure in Figure 3 and Figure 4. A zero-init fusion is applied to integrate the outputs. The path-of-thought
prompting for adaption training is also proposed to enhance the utilization of the retrieved knowledge graph.

N
Given the following question, pick the best answer from given choices.

Question: The only baggage the woman checked was a drawstring bag,
where was she heading with it?

Choices:
(A) garbage can (B) military (C) jewelry store (D) safe (E) airport

Answer: (E) airport

Contexts: drawstring is part of drawstring bag, drawstring bag is
at location of airport. baggage is at location of airport

J

Figure 2: Example of an induced path-of-thought
prompt in CSQA training dataset. During the infer-
ence in the test or validation set, the blue sentences are
the expected generation. The sentence after "Contexts:"
is the path-of-thought path retrieved from KG.

resents there is an edge between the i-th node and
j-th node with k-th relation. In knowledge graphs,
the feature of a node or a relation is represented by
the representations denoted as x and r, respectively.
Practically, the model retrieves subgraphs from the
original full knowledge graph for each data sample,
containing the related concepts, k-hop neighbors,
and the respective relations. We denote the sub-
graphs with the same notation as illustrated above.

We focus on the adaption-based fine-tuning for
LLMs, which freezes the original parameters (de-
noted as ®) of LLMs pre-trained on the large-scale
textual corpora. While the gradient computation
via  is still required, there is no update on the orig-
inal parameters. In our model, the adaption-based
fine-tuning model only introduces a small scale of
new parameters (denoted as ¢2, |¢2| < |D]). ¢2
can be represented as either parameter tuning for
pre-trained weight matrices like LoORA or prompt
embedding like LLLaMA-Adapter. The proposed
structure-aware adapter tries to combine the ad-

vantage of both, while efficiently incorporate the
knowledge from non-textual structured data and
generalize to downstream scenarios.

2.2 Structure-Aware Relational Attention

(Level-1) Parameter-Efficient External Node At-
tention Typically, the self-attention layer [ in-
cludes weight matrices W, W, Wy, and op-
tionally W, for computing the queries, keys,
values, and output mapping, respectively. We
have Wgo, Wi, Wy, Wo € R4 where d is
the dimension of LLLM hidden states. In the
proposed Structure-Aware Relational Attention
(SARA) model, we adapt W g, Wy, with low-rank
adaption as LoRA (Hu et al., 2021) to produce the
weight matrices for nodes (n) and relations (r) for
the external attention on KG,

ng)v =Wgkyv + Pg?,)v( g?,)V)T

2

Wg?v =Wgy + P%?V(Q(I;?V)Ta *
where the P € R%% and Q € R**? are low-
rank decomposition matrices designed to adjust the
original LLM weight matrices. z is the rank and
we have z < d. Therefore, the matrix multipli-
cation of PQ" contains much fewer parameters
compared with W.

Since the knowledge graph provides text descrip-
tions for all the nodes and relations, we compute
the node embeddings x and relation embedding
r of KG using the text descriptions. We apply
the same tokenization as LLLM and use the output
of the embedding layer to compute x and r. For
those nodes and relations with £ > 1 tokens, we
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Figure 3: The Level-1 attention of the proposed SARA
which attends to the source nodes with external atten-
tion.

Input sequence t || ;; Level-2 Attention on 7; j, x;j

WK(") — Source node x;

o /V| — Relation 7y
W T

K/V
)
QWKW'. ®

y___

— Target node x;

Figure 4: The Level-2 attention of the proposed SARA
which attends to the relations and target nodes using
relational attention.

take the average embedding, i.e. x = |—}€| Zf X,

r= ﬁ Zf r;. With the computed x, r, and adja-
cency matrix A, we design a 2-level hierarchical
relational attention for the knowledge graph.

The framework of Level-1 attention is shown in
Figure 3. The intuition is to conduct external at-
tention to query relevant knowledge from the struc-
tured knowledge graph. For the computing of the
query, we use the original weight W. For the
keys and values, we apply adapted matrices W(n)
Wg), WE}L ), Wg) as introduced in Equation 2.
In the first level of the hierarchical attention, as is
shown in Figure 3, we first compute the attention
score o(1) between the input sequence T and all
the source nodes x;, which can be formulated as,

<TWQ><xZw§?)>T)
7 ,
3)

where W is the pre-trained frozen weight from
LLM. ng) is the trainable weight of key for nodes.
d is the dimension of hidden states. Note that while
exploited, the formulation of multi-head attention
is omitted here for brevity.

cW(T,%;) = Softmaz(

(Level-2) Parameter-Efficient Relational Atten-
tion The relational attention, or the graph trans-
former (Diao and Loynd, 2022) was initially pro-
posed to improve the reasoning of graph representa-
tion learning tasks. Inspired by relational attention,
we propose the hierarchical relational attention in
Figure 4 for adapting LLMs to incorporate the re-
lational information from knowledge graphs. The

idea of hierarchical relational attention is to con-
catenate the node representations with the relation
representations, as well as concatenate the weight
matrices. Then we compute the attention on a more
fine-grained level. More specifically, for each edge
triplet (x;,r; ;, ;) we have

ai; = [Tiri)[We Wl !

kij = ;i (W) WD) @)

viy = b [(WP) T (W) T,
where T is the tokens of the input sequence. r; ; is
the relation between node ¢ and j. x; is the rarget
node. W, is the original query weight matrix in

the LLM attention layer. The computation can also
be simplified as

qij = TWQ + I‘Z‘,jWQ
kiﬂ‘ = ijyg) + I‘i,ng) (5)
Vij = XjWSL) + rijng).

With the above definition, the second-level atten-
tion weight o and attention score o(®) can be
computed as

q;,;(T, rw)ij(rz,JvXJ)

2
045, j) (T, 135, %x;) = Vi
o2 — exp(a; y ))
’] 2 )
5o exp(al)

(6)
where N; = {xj\Ai-fj # 0} represents all the
neighbors of node i w.r.t. any relation r*.
Zero-Init Fusion of two attention levels Finally,

we compute the hierarchical attention score by mul-
tiplying the scores of two levels with adjacency
matrix of subgraph,

(KG)

Z oA ;o) 7

We integrate the output of SARA with the original
output of LLM with a zero-init gate (Zhang et al.,
2023b),

bl = Wo([oKC)-g; oM} [V (KO, y L))
®)
where g is the zero-init gate and the semicolon rep-
resents concatenation. Wy is the output mapping
in the original LLM attention. o(“2™) is the origi-
nal softmax attention score for the input sequence

T. V is the value matrix in Equation 5, we have



vi; € V. h} is the output hidden state for the
token ¢ at layer [.

The proposed SARA can be applied to adapt
multiple attention layers of original LLM atten-
tion, practically the last L attention layers. With
multiple adapted layers fused with the proposed
KG attention, the LLM can learn to attend to com-
plex graph structures. Compared with the existing
method which directly attends to textual triplets of
trained KG representations, the proposed mecha-
nism adapts LLM to attend to the graph structures
in a more fine-grained manner. In addition, since
the knowledge graph usually contains a lot of re-
dundant information (Akrami et al., 2020), the pro-
posed relational attention enables the LLM to se-
lectively retrieve essential information and neglect
the redundant or unrelated nodes and relations.

2.3 Enhance Knowledge Reasoning with
Path-of-Thought Prompt

In the previous section, we have introduced the
structure-aware relational attention, which retrieves
and fuses the fine-grained knowledge output from
the knowledge graph (KG). While it provides the
mechanism for LLM to retrieve additional knowl-
edge, it’s not guaranteed whether the model can
learn to utilize it during adaption (especially with
fewer trainable parameters). One straight-forward
idea is to pre-train the LLM with the KG module
on additional large textual corpora (Yasunaga et al.,
2022), which will result in heavy computation cost.
In this paper, we propose a knowledge-induced
path-of-thought (PoT) prompt to enforce the uti-
lization of KGs.

The idea of the proposed PoT prompt is inspired
by the chain-of-thought prompt (Wei et al., 2022),
which was proposed to enhance the zero-shot infer-
ence of LLM, where several examples with manu-
ally labeled chain-of-thought contexts are provided
before we input the actual sequence into the LLM.
In our case, instead of prompting at inference time,
we retrieve and integrate PoT in the training prompt
to enhance the adaption training. More specifically,
we design an algorithm to retrieve the reasoning
path between pairs of matched concepts in KG. We
denote the concepts from the question as ¢, € Cy,
the choice concepts as ¢, € C), and the concepts
of correct choice (answer) as ¢, € C’p. Then, for
every pair of concepts from (cq,cp) € Cy X C'p,
we compute the shortest paths between them using
Dijkstra algorithm (Cormen, 2001). Finally, we
concatenate the text of nodes and relations along

the shortest paths to form the final prompt, together
with the question, choices, and answer. One exam-
ple of computed PoT prompts is shown in Figure 2.

This technique is different from the previous
works transforming the KG triplets or knowledge
contexts into texts as additional input (Wang et al.,
2021; Baek et al., 2023). In the proposed PoT
prompting, the retrieved reasoning path works
as the additional learning objective instead of in-
put. The proposed prompting actually enforces the
adapted LLM to (i) generate the answer prediction,
and (ii) generate the context of the reasoning path.
This additional objective, therefore, enhances the
model to utilize the information from KG.

3 Experiments

In this paper, we focus on the question-answering
task which emphasizes the knowledge reasoning
of LLMs. The proposed models and baselines
are evaluated on two public question-answering
benchmark datasets, including CommonSenseQA
(CSQA) (Talmor et al., 2018) and OpenbookQA
(OBQA) (Mihaylov et al., 2018) (see Appendix A
for details). We compare our algorithm with two
state-of-the-art LLM adapters, LoRA (Hu et al.,
2021) and LLaMA Adapter (Zhang et al., 2023b),
as well as their knowledge-enhanced variants. The
baseline details and hyper-parameters are introdu-
cued in Appendix A.3. In the experiments, we
use two pre-trained LL.Ms as the base models for
adaption: (i) LLaMA-7B!, a pre-trained LLaMA
model (Touvron et al., 2023) by Meta Al containing
7-billion parameters. (ii) LLaMA-3B (Geng and
Liu, 2023) , a smaller pre-trained LLaMA model
by OpenLLM Research (Geng and Liu, 2023), with
3-billion parameters.

3.1 Knowledge Graph Retrieval

For each query, we retrieve a knowledge sub-graph
based on the heuristic concept match (Yasunaga
et al., 2022). We extract the concepts from ques-
tions and choices after lemmatization and match
them with the concept nodes in KG, based on the
with the en_core_web_sm pipeline in the spaCy li-
brary®. The average numbers of matched concepts
in CSQA and OBQA datasets are 14.04 and 14.59.
Based on the matched concepts, we further retrieve
and include top-100 2-hop neighbors, sorted and
filtered based on semantic similarity score.

1https ://github.com/facebookresearch/1llama
2ht’cps ://spacy.io/models/en#en_core_web_sm
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Table 1: Evaluation result of question-answering accuracy in CSQA and OBQA datasets. We report the average
accuracy and the respective standard deviation with 5 random seeds. The first two columns are the results of
LLaMA-7B pre-trained LLM and the last two columns are the result of a relatively smaller LLaMA-3B model. The
proposed structure-aware achieves the highest average accuracy.

LLaMA-7B LLaMA-3B
Model Name CSQA OBQA CSQA OBQA
Zero-Shot 0.3073 0.2780 0.1957 0.2760
LLAMA-Adapter 0.6124T0-0119 57 0g+0.0139 () 6169+0-0112 () 4480+0-0772

LLAMA-Adapter + KGE
LLAMA-Adapter + KG Triplets

LoRA

LoRA + KGE
LoRA + KG triplets
LLAMA-Adapter + LoRA

SSA (Ours)

0.5920+0-0163
0'5951:|:0.0070
0.6822+0-0110
0.6943*0-0050
0.6644:50-0050
0.6994+0-0032
0.7100i0.0058

0.5416i0'0190
0.6368+0-0129
O.6624i0'0144
0.6652i0'0088
0.6696i0'01 12
0.6396i0'0067
0.6715+00042

0.20690-0111
0.3053%0-1265
0'5297i0.1789
0.6401i0’0090
0‘3735i0.0925
0.6624i0’0102
0.6650i0'0115

0.30160-0099
0.5172+0-009
0_6028i0.0212
0.5928i0'0145
0.6048i0'0119
0_6100:|:0.0163
0.6140>°-01"

3.2 Evaluation Metrics

We provide the model a prompt containing the ques-
tions, choices, and optionally path-of-thought con-
texts as is shown in Figure 2. During inference,
we have the adapted LLM to generate the next
5 tokens after the "Answer:" in the prompt. We
use the multiple choice symbol binding (MCSB)
method (Robinson et al., 2022) to compute the pre-
diction label. More specifically, we find the choice
token (e.g. "(A)") with the maximum number of
appearances and use it as the model prediction. Fi-
nally, we report the accuracy of question answering
as the evaluation metric. We repeat all the experi-
ments for 5 times and report the average accuracy
and the standard deviation.

3.3 Experimental results

We compare our proposed structure-aware adapter
model with the baselines in both the CSQA and
OBQA datasets. The learning rate is set as 0.0003.
We apply the proposed adapter to the last 20 layers
of LLM attention, the same as the settings of base-
lines. The low-rank dimension and alpha are set as
z = 2 and a = 8 for the adaption of weight matri-
ces. In our model with the path-of-thought prompt-
ing, we limit the maximum length of the shortest
path of thought as 50 tokens in the training prompt.
The experimental results of the proposed structure-
aware adapter and the baselines are shown in Ta-
ble 1. The proposed structure-aware adapter outper-
forms the state-of-the-art baselines. When adapting
on LLaMA-7B in the CSQA dataset, our model
achieves 15.9% and 4.1% higher accuracy than
LLaMA-Adapter and LoRA, respectively. When
adapting on LLaMA-7B in the OBQA dataset, our

model achieves 17.6% and 1.4% higher accuracy
than LLaMA-Adapter and LoRA.

We also compare the proposed model with sev-
eral extensions of LLaMA-Adapter and LoRA en-
hanced with pre-trained knowledge graph embed-
ding (KGE) or textual KG triplets. In the KGE
extensions, we integrate the pre-trained KGE of the
matched concepts and related neighboring concepts
by applying a linear mapping, and then adding to
the prompt embedding of LLaMA-Adapter or ap-
plying LoRA-adapted external attention on KGE.
The pre-trained KGE improves the performance of
LoRA in most cases of datasets and PLMs. This is
because the KGE is pre-trained to include the infor-
mation of relations and adjacency concepts, which
serve as external knowledge for LoRA to answer
questions. The KG triplets also help the adaption
models in the question-answering task, especially
for LLaMA-Adapter on the OBQA dataset. How-
ever, integrating either the pre-trained KGE or the
textual KG triplets is not optimal. While already
being filtered with some rule-based pre-processing,
there is still a lot of redundant information stored
in KGE as well as KG triplets. The methods in-
corporating KGE and KG triplets do not allow the
LLM to sense the relational structure and selec-
tively retrieved the key information. The proposed
structure-aware relational attention naturally allows
LLM to attend to the relational structure of KG at a
more fine-grained level, which enhances the ability
of the proposed module to denoise the redundant
information and achieve higher average accuracy.

In addition, we study the effectiveness of the pro-
posed model and baselines on a LLaMA-3B model,
which contains fewer parameters and is pre-trained



on smaller and unofficial corpora, and fewer sub-
tasks. The adaption in LLaMA-3B is more chal-
lenging because it contains much less pre-trained
knowledge and, meanwhile, it’s more difficult to
enforce it to leverage the external knowledge from
KG. In this case, we observe the adaption training
of many baselines becomes unstable and some-
times fails to converge. This leads to lower average
accuracy scores and high standard deviation. The
instability of training is especially significant after
incorporating the KGE and KG triplets. While the
proposed structure-aware adapter also leverages
external knowledge, we in addition propose the
path-of-thought prompting to enforce the model to
attend to KGs and therefore stabilize the training.
Compared with baselines, the training of the pro-
posed model is more stable and we do not observe
a collapse of convergence.

3.4 Efficiency Analysis

We report the number of trainable parameters, the
memory cost, as well as the average training time
on CSQA and OBQA datasets in Table 2. The
proposed SSA model uses a comparable number
of trainable parameters (0.048%0) as LoRA and
LoRA-Triplets (0.024%0), and much fewer param-
eters than other baselines (> 0.122%o). In addi-
tion, while integrated with attention on KG, we do
not observe a significant increase in training time
for the proposed model (11 hours) compared with
LoRA (8 hours) and LLAMA-Adapter (11 hours).

Table 2: The efficiency comparison of numbers of train-
able parameters, memory, and average training time.

and target nodes x;. (ii) With Node Attention:
We simplify the proposed method to attend to only
the nodes x; of matched or related concepts in the
retrieved knowledge subgraph. (iii) Without Path-
of-Thought: The proposed SAA model without
the path-of-thought (PoT) prompting, where we
train the model without the "Contexts:" part.

Table 3: Ablation study of the Structure-Aware Adapter,
after removing Relational Attention, replacing with
Node Attention, or removing the path-of-thought (PoT).

Model Name #Trainable Param. Mem Time
Zero-Shot 0.00M (0.000%0) - -

L.Ada. 0.82M (0.122%0) 356M 11 hrs
L.Ada.+KGE 5.01M (0.744%0)  21.23M 13 hrs
L.Ada.+Triplets  0.82M (0.122%0) 3.62M 20 hrs
LoRA 0.16M (0.024%0) 0.62M 8 hrs
LoRA+KGE 4.36M (0.647%0)  17.34M 11 hrs
LoRA+Triplets 0.16M (0.024%0) 0.65M 18 hrs
L.Ada.+LoRA 0.98M (0.146%0) 421M 13 hrs
SSA (Ours) 0.32M (0.048%0) 1.22M 11 hrs

3.5 Ablation Study

We conducted ablation studies to evaluate the effec-
tiveness of the proposed modules of the structure-
aware adapter. We removed or modified the pro-
posed modules to form the following ablation ex-
periments: (i) Without Relational Attention: We
remove the proposed structure-aware relational at-
tention and use a typical attention mechanism to
attend to the average embeddings of relations r; ;

Model Name CSQA OBQA
W/o Rel. Att.  0.6968=0-907  (.6608*0-0231
W/ Node Att.  0.691570-0089 () g542+0-0068
W/o PoT 0.7076i0'0096 0.6674%£0-0093
SSA (Ours)  0.7100%0-0058 ¢ 6715%0-0042

The experimental result is shown in Table 3. By
removing the proposed hierarchical relational at-
tention for the knowledge graph, the accuracy de-
creases for 1.32% and 1.07% respectively in CSQA
and OBQA datasets, which illustrates the effective-
ness of the relational attention. A further simpli-
fied ablation model is the one with node attention,
which ignores the relation features and only at-
tends to the matched concepts or their neighbors.
We also observe a decrease of 1.85% and 1.73% in
both datasets. While the neighbors of matched con-
cepts also provide contexts for solving the question-
answering task, neglecting the relations and graph
structure leads to a significant decrease in the ac-
curacy metrics. Finally, we also study the model
without the proposed path-of-thought prompting.
After removing PoT, there is a observed accuracy
reduction in both datasets and the standard devia-
tion also increases. This shows the benefit of ap-
plying the path-of-thought prompting in enhancing
knowledge utilization and training stabilization.

4 Related Works

Large Language Model Adaption The adaption-
based model fine-tuning, or parameter-efficient
fine-tuning (PEFT) for large language mod-
els (Mangrulkar et al., 2022a) freezes the parame-
ters of the initial pre-trained large language models
and only introduces a small number of trainable
parameters to save computational costs and pre-
serve the pre-trained linguistic knowledge. The
existing work has explored the prompt-tuning adap-
tion methods (Zhang et al., 2023b; Li and Liang,
2021; Lester et al., 2021; Liu et al., 2021b,a; Qin
and Eisner, 2021) and parameter weight adaption



methods (Hu et al., 2021; Zhang et al., 2023a;
Hedegaard et al., 2022). One representative work
of prompt-tuning is the LLaMA-Adapter (Zhang
et al., 2023b), which attaches the embedding of
the trainable adaption prompts as a prefix along
with the input sequence and introduces a zero-init
fusion mechanism to integrate the output of adap-
tion prompt to the language model. The LoRA
model (Hu et al., 2021) is a parameter weight adap-
tion model proven to be effective in adapting the
model for various generative tasks, the performance
of which is close to the full fine-tuning of original
large language models (LLMs). While the existing
adaption models show promising performance in
adapting PLMs to various downstream tasks, these
methods may still suffer from hallucination prob-
lems and generate factually incorrect content due
to limited trainable parameters for domain transfer-
ring. The adaption models still rely on the knowl-
edge from the textual pre-training corpora and can-
not utilize some external knowledge, which limits
their application of domain-specific scenarios. In
this paper, we propose a structure-aware adapter
for PLMs that utilize the structured data to enhance
the downstream generative tasks.
Knowledge Graph Enhanced Language Mod-
eling The knowledge graph, such as Concept-
Net (Speer et al., 2017), Wikidata (Vrandeci¢ and
Krotzsch, 2014), is a structured knowledge base
that has been proven to be effective in improving
the performance of LLM on various natural lan-
guage processing tasks (Pan et al., 2023). Many
other graphs such as social graphs and entity inter-
action logs can also be represented as the knowl-
edge graph to enhance LLMs (Li et al., 2022;
Chang et al., 2021; El-Kishky et al., 2022). The ex-
iting researches have explored utilizing the knowl-
edge graph for improving the LLM pre-training
such as ERNIE (Zhang et al., 2019), GLM (Shen
et al., 2020), E-BERT (Zhang et al., 2020) KE-
PLER (Wang et al., 2021), K-BERT (Liu et al.,
2020), inferences such as QA-GNN (Sun et al.,
2021), GreaseLM (Zhang et al., 2021), KGLM (Lo-
gan IV et al., 2019), DRAGON (Yasunaga et al.,
2022), and KAPING (Baek et al., 2023).
However, limited research has focused on en-
hancing the adaption of LLM with knowledge
graph, while the adaption methods have become
more interesting due to the ever-increasing scale
of PLM parameters. The CKGA (Lu et al., 2023)
model has explored leveraging pre-trained knowl-
edge graph embedding to adapt BERT (Devlin

et al., 2018), but it still requires an additional train-
ing objective of link prediction for graph convolu-
tional networks (GCNs) and the LLM cannot di-
rectly attend to the structure of KGs. The existing
research has explored the mechanisms to integrate
the information from the knowledge graph. Some
of the existing methods transforms the knowledge
graph triplets like ERNIE (Zhang et al., 2019),
SKILL (Moiseev et al., 2022), and KAPING (Baek
et al., 2023), or retrieved knowledge contexts such
as KEPLER (Wang et al., 2021) into text as ad-
ditional input. However, the additional textual
input usually cannot well represent the complex
graph structure and may introduce additional noise.
Some related works focus on generating KG entity
embeddings as additional input for the language
models such as KI-BERT (Faldu et al., 2021) and
NTULM (Li et al., 2022). The other works ex-
ploit joint training of link prediction and masked
language modeling (MLM) objectives for the pre-
training of LLM, such as DRAGON (Yasunaga
et al., 2022) and KEPLER (Wang et al., 2021).
However, these methods usually use a single fusion
bottleneck between LLM and the graph module
and usually train additional graph neural networks
(GNN) to encode the node embeddings, Therefore,
the LL.Ms cannot directly attend to the structure
of KG. On the contrary, we propose the structure-
aware relational attention that allows LLMs to nat-
urally attend to structures of the knowledge graph
without bottleneck networks or additional graph
learning objectives during the adaption training.

5 Conclusion

This paper proposes a structure-aware adapter for
parameter-efficient fine-tuning of LLMs, leverag-
ing structured information from knowledge graphs.
We propose the hierarchical relational attention
mechanism to allow LLMs to intrinsically attend
to knowledge graphs at a granular level. In addi-
tion, a novel algorithm is proposed to extract the
reasoning paths from knowledge graphs and de-
rive the path-of-thought prompts to enforce the effi-
cacy of proposed relational attention in knowledge
extraction. The evaluation result in two question-
answering benchmark datasets demonstrates that
the proposed approach outperforms the state-of-the-
art LLM adapters and their variants in QA accuracy.
Ablation studies further illustrates the effectiveness
of the proposed relational attention and path-of-
though prompting in jointly enhancing the model’s
ability on QA reasoning.



Limitations

While the proposed hierarchical structure-aware
relational attention designs the gradients of the ex-
ternal graph attention end-to-end with the adapted
parameters of LLM for the text generative objec-
tive, the retrieval of the KG sub-graph is heuristic
and rule-based. The rule-based sub-graph retrieval
algorithms are usually robust for various datasets
and tasks, however, they still face the challenge of
precision-recall trade-off (either neglecting useful
nodes or including redundant nodes). The empir-
ical solution in this paper is leveraging relatively
higher recall and adopting the proposed level-1 ex-
ternal node attention to denoise redundant nodes.
However, another possible direction is adopting a
neural retrieval algorithm and integrating end-to-
end with the whole framework, which can dynami-
cally update the retrieval results with the LLM fine-
tuning objective, and may bring additional benefit
for the knowledge-enhanced generation task.

Ethics

The datasets, knowledge graph databases, and pre-
trained large language models utilized in this pa-
per were publicly available and open-sourced. All
experiments involving these resources were con-
ducted in compliance with their respective permis-
sive licenses. This study did not involve any addi-
tional human-engaged annotation, investigation, or
survey.
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A Appendix

A.1 Dataset Details

CommonSenseQA (CSQA): The CSQA dataset
(Talmor et al., 2018) is a 5-choice question answer-
ing benchmark which requires different types of

11

commonsense knowledge to predict the correct an-
swers. This dataset includes 9741 samples in the
train set, 1221 in the validation set, and 1140 in
the test set. Since the label of the test set in CSQA
is not publicly available, we report the evaluation
result in the validation set.

OpenbookQA (OBQA): OBQA (Mihaylov et al.,
2018) is another advanced 4-choice question-
answering dataset, probing a deeper understand-
ing of the topic and the language it is expressed
in. While the OBQA dataset also provides salient
facts summarized as an open book, it is not used in
our experiments for a fair comparison. The OBQA
dataset includes 4957 samples for training, 500 for
validation, and 500 for testing. In OBQA the label
of the test set is publicly available.

A.2 Implementation and Environments

All the experiments are conducted on AWS GS5 in-
stances with 8 Nvidia A10G GPUs, 192-core CPUs,
and 748GB memory. The implementation is based
on Python 3.10.11 and PyTorch 2.0.0. We utilize
the accelerate (Gugger et al., 2022) and deepspeed?
libraries for distributed training.

A.3 Baselines and Hyper-parameters

Zero-Shot: We directly apply the pre-trained LLM
for a generation without any fine-tuning or further
adaption.

LLaMA-Adapter (Zhang et al., 2023b): The
state-of-the-art prompt-embedding-based adapter
for LLM. We apply LLaMA-Adapter to the last
20 attention layers with adaption prompt length
equal to 10. The implementation is based on peft
library (Mangrulkar et al., 2022b). All the other
setting remains the same as the paper.
LLaMA-Adapter + KGE: Extension of the
LLaMA-Adapter model to incorporate the pre-
trained knowledge graph embedding (KGE), using
the same framework of the image-incorporated ex-
tension of LLaMA-Adapter (Zhang et al., 2023b)
with linear projection.

LLaMA-Adapter + KG triplets: The extension
of LLaMA-Adapter model where we extract and
integrate up to 100 tokens of triplets from KGs to
the input.

LoRA (Hu et al., 2021): The state-of-the-art pa-
rameter adaption model for LLMs is based on train-
able rank decomposition matrices. We apply LoRA
to the last 20 attention layers. The learning rate is

3https://github.com/microsoft/DeepSpeed


https://github.com/microsoft/DeepSpeed

set as 0.0003. The low-rank dimension and alpha
are set as z = 2 and a = 8. The implementation is
based on peft library.

LoRA + KGE: The extension of the LoORA model
to integrate the linear-mapped pre-trained KGE
from ConceptNet. External attention is applied to
the KGE.

LoRA + KG triplets: Extension of the LoRA
model to include up to 100 tokens of triplets trans-
formed from KGs. We integrate the triplets with
the prompt.

LLaMA-Adapter + LoRA: We simultaneously
apply the LLaMA-Adapter for prompt adaption
and LoRA for parameter adaption, both applied to
the last 20 attention layers with z = 2, « = §, and
10 adaption prompts.

12



	Introduction
	Structure-Aware Adapter
	Preliminaries and Formulation
	Structure-Aware Relational Attention
	Enhance Knowledge Reasoning with Path-of-Thought Prompt

	Experiments
	Knowledge Graph Retrieval
	Evaluation Metrics
	Experimental results
	Efficiency Analysis
	Ablation Study

	Related Works
	Conclusion
	Appendix
	Dataset Details
	Implementation and Environments
	Baselines and Hyper-parameters


