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Abstract

We investigate the inherent bias of Stochastic Gradient Descent (SGD) toward
learning low-rank weight matrices during the training of deep neural networks. Our
results demonstrate that training with mini-batch SGD and weight decay induces
a bias toward rank minimization in the weight matrices. Specifically, we show
both theoretically and empirically that this bias becomes more pronounced with
smaller batch sizes, higher learning rates, or stronger weight decay. Additionally,
we predict and empirically confirm that weight decay is essential for this bias to
occur. Unlike previous literature, our analysis does not rely on assumptions about
the data, convergence, or optimality of the weight matrices, making it applicable to
a wide range of neural network architectures of any width or depth. Finally, we
empirically explore the connection between this bias and generalization, finding
that it has a marginal effect on the test performance.

1 Introduction

Stochastic gradient descent (SGD) is one of the most widely used optimization techniques for training
deep learning models [1]. While initially developed to mitigate the computational challenges of
traditional gradient descent, recent studies suggest that SGD also plays a crucial role in regularization,
helping prevent overparameterized models from converging to minima that do not generalize well [2,
3, 4, 5]. Empirical research has shown, for example, that SGD can outperform gradient descent [5],
with smaller batch sizes leading to better generalization [6, 4]. However, the full extent of SGD’s
regularization effects is not yet fully understood.

Various studies have shown that when training large neural networks using gradient-based optimiza-
tion, the networks tend to become highly compressible. For example, many papers have demonstrated
that a significant portion of the weights can be pruned post-training [7, 8, 9, 10, 11, 12], large
pre-trained models can be distilled into smaller models [13, 14, 15, 16], and in some cases, the
learned weight matrices can be approximated using low-rank matrices without a significant loss in
accuracy [17, 18, 19, 20, 21, 22].

While these empirical observations provide promising evidence that neural networks can be com-
pressed in various ways, controlling the compression requires theoretical guidance to understand
how it is influenced by different aspects of the learning process, such as hyperparameters, data, and
model architecture. To address this gap, several attempts have been made to explore the origins of
the low-rank bias. For instance, in [23, 24, 25], researchers examined the rank of weight matrices
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(a) B = 8 (b) B = 16 (c) µ = 0.5 (d) λ = 6e− 3

Figure 1: Higher weight decay (λ) and learning rate (µ), or smaller batch sizes (B), lead to a
lower average rank across the network layers. We plot the average rank at end of training for
ResNet-18 trained on CIFAR10 when varying a pair of hyperparameters.

Table 1: The assumptions and results of various papers on low-rank bias in deep learning.
The last column shows the result of each paper. The notation LinL denotes a composition of L
linear layers, and σ represents the ReLU activation. N/A is used when the paper does not specify a
constraint. Our paper considers a much more realistic setting than all of the previous papers.

Paper Architecture Data Objective function Optimizer Convergence Result
[26] LinL Linearly separable Exponential/logistic loss GF N/A Each layer has rank ≤ 1

[28] Lin1 ◦ σ ◦ Lin1 1-dimensional Min L2 regularization s.t. data fitting N/A Global optimum First layer has rank ≤ 1

[24] Lin1 ◦ σ ◦ LinL d-dimensional Min L2 regularization s.t. data fitting N/A Global optimum Bottom linear transformation has rank ≤ d

[27] LinK ◦ σ ◦ Lin1 ◦ . . . σ ◦ Lin1 Linearly separable Exponential/logistic loss GF N/A Top K layers have rank ≤ 1

[25] Lin1 ◦ σ ◦ Lin1 ◦ . . . σ ◦ Lin1 Separable by a depth L′ network Min L2 regularization s.t. fitting the data N/A Global optimum Top L− L′ layers have rank ≤ 2

Ours Res, Conv, Lin, Activation N/A Differentiable loss + L2 regularization SGD N/A Each layer has rank O(1) (w.r.t the width)

in neural networks that globally minimize L2 regularization while fitting the training data. Specifi-
cally, [23] demonstrated that for data on a 1-dimensional manifold, the weight matrices of a two-layer
network become rank-1 at the global minimum. This result was later extended in [24], showing that
the weight matrix has rank ≤ d when the data lies in a d-dimensional space. Additionally, [25] found
that in sufficiently deep ReLU networks, the weight matrices at the top-most layers become low-rank
at the global minimum. Similarly, [26] showed that gradient flow (GF) training of univariate linear
networks with exponentially-tailed classification losses learns rank-1 weight matrices when the data
is linearly separable. A more recent study [27] extended this result, demonstrating that when training
a ReLU network with multiple linear layers at the top using GF, the top layers converge to rank-1
weight matrices.

While these analyses offer valuable insights, each one makes strong assumptions about the structure
of the data (e.g., linear separability, low-dimensionality), the network architecture, the optimization
method, or the objective function, and they only apply to specific layers of the network. More-
over, these analyses reveal little about the relationship between the low-rank bias and the training
hyperparameters or the model architecture, which limits the practical utility of these results.

Contributions. In this paper, we show that using mini-batch Stochastic Gradient Descent (SGD)
and weight decay implicitly minimizes the rank of the learned weight matrices during the training
of neural networks, particularly encouraging the learning of low-dimensional feature manifolds.
Within the active field that investigates these properties [29, 26, 28, 27, 25], our analysis is the first to
characterize how SGD and weight decay induce a low-rank bias in all of the weight matrices of a wide
range of neural network architectures (e.g., with residual connections [30], self-attention layers [31]
and convolutional layers [32]), without making assumptions about the data (e.g., linear separability
or low-dimensionality) or strong assumptions about the convergence of the training process. Our
theoretical analysis predicts that smaller batch sizes, higher learning rates, or increased weight decay
results in a decrease in the rank of the learned matrices, and that weight decay is necessary to achieve
this bias. Our results are compared with the previous literature in Tab. 1.

To validate our theory, we provide a comprehensive empirical analysis in which we examine the
regularization effects of different hyperparameters on the rank of weight matrices for various network
architectures. Additionally, we carried out several experiments to examine the connection between
low-rank bias and generalization. Our findings suggest that although low-rank bias is not crucial for
good generalization, it is correlated with a slight improvement in performance.
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2 Problem Setup

We study the influence of using mini-batch SGD in conjunction with weight decay on the ranks of
the learned weight matrices of neural networks in standard learning settings. Namely, we consider
a parametric model F ⊂ {f ′ : X → Rq}, where each function fW ∈ F is specified by a vector of
parameters W ∈ RN . The goal is to learn a function from a training dataset S = {xi}mi=1. For each
sample we have a loss function measuring the performance on that sample ℓi : Rq → R which is
simply a differentiable function. For example, in supervised learning we have ℓi(u, yi), where yi is
the label of the ith sample. The model is trained to minimize the regularized empirical risk,

Lλ
S(fW ) :=

1

m

m∑
i=1

ℓi(fW (xi)) + λ∥W∥22, (1)

where λ > 0 is a predefined hyperparameter and ∥ · ∥2 is the Frobenius norm. To accomplish this
task, we typically use mini-batch SGD, as outlined in the following paragraph.

Model architecture. In this paper, we consider a broad set of neural network architectures, including
but not limited to neural networks with fully-connected layers, residual connections, convolutional
layers, pooling layers, sub-differentiable activation functions (e.g., sigmoid, tanh, ReLU, Leaky
ReLU), self-attention layers and siamese layers.

In this framework, the model fW (x) := h(x;W 1, . . . ,W k) is a function that takes a sequence of
weight matrices W 1, . . . ,W k and an input vector x. Throughout the paper, we assume that for each
layer l ∈ [k], we can write

fW (x) = gl(W
lul

1(x,W|l), . . . ,W
lul

ml
(x,W|l),W|l, x), (2)

where gl is a sub-differentiable function accepting vectors W lul
j(x,W|l), the parameters W|l =

{W j}j ̸=l and x as input. Here, ul
j(x,W|l) are functions of x and the weight matrices W|l, viewed as

a layer preceding W l.

For example, a neural network with a fully-connected layer can be written as follows:

fW (x) = gl(W
lul(x,W|l),W|l, x), (3)

where ul(x,W|l) is the input to the fully-connected layer and gl(z,W|l, x) takes the output
z = W lul(x,W|l) of the fully-connected layer and returns the output of the neural network
(e.g., by composing multiple layers on top of it). More specifically, a fully-connected net-
work fW (x) = WLσ(WL−1 · · ·W 2σ(W 1x) · · · ) can be written as gl(W

lul(x,W|l)), where
gl(z) = WLσ(WL−1 · · ·W l+1σ(z) · · · ) and ul(x,W|l) = σ(W l−1 · · ·W 2σ(W 1x) · · · ). We can
also represent convolutional layers within this framework. We can think of a convolutional layer
as a transformation that takes some input u and applies the same linear transformation to multiple
‘patches’ independently, W lul

1, . . . ,W
lul

ml
, where each ul

j denotes a patch in the input u (a patch in
this case is a subset of the coordinates in u), ml is the number of patches and W l ∈ Rcl×cl−1dl−1

is a matrix representation of the kernel. In this case, ul(x,W|l) is the output of the layer below
the convolutional layer and ul

j(x,W|l) is the jth patch that the convolutional layer is applied to.
Furthermore, gl is simple the composition of the layers following the given convolutional layer. In
similar ways, we can also express neural networks with residual connections, self-attention layers,
hypernetwork layers, pooling layers, etc’.

Optimization. We employ stochastic sub-gradient descent (SGD) to minimize the regularized
empirical risk Lλ

S(fW ) over a specified number of iterations T . We begin by initializing W1 at
some point. We split the data S into r = |S|

B batches of size B (for simplicity we assume that |S|
is divisible by B) and at iteration t, we take batch S̃t′ with t′ = (t mod r) and update Wt+1 =
Wt − µ∇WLλ

S̃t′
(fWt

), where µ > 0 is the predefined learning rate and ∇W g(W ) represents a
sub-gradient of g : Rn → R. We use sub-gradient descent when dealing with models that are only
sub-differentiable, such as ReLU neural networks (for more details, see section 14.2 in [33]). It is
worth noting that when the model is differentiable, sub-gradient descent aligns with gradient descent.
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3 Theoretical Results

In this section, we prove that when training neural networks with regularized SGD for a long time,
the weight matrices can be approximated with matrices of bounded ranks. We begin by making a
simple observation that the rank of ∇W lℓ(fW (x)) is bounded by ml (see ‘Model architecture’ in
Sec. 2) for any l and any sample x. Then, by recursively unrolling the optimization process, we
express the weight matrix W l

T as a sum of (1− µλ)nW l
T−n and nB gradients of the loss function

with respect to W l for different samples at different iterations. Since each one of these terms is a
matrix of rank ≤ ml, we conclude that the distance between W l

T and a matrix of rank ≤ mlBn
decays exponentially fast when increasing n.

Lemma 3.1. Let ℓ be a differentiable loss function, and let fW be a model as described in
Sec. 2. For any weight matrix W l in fW and any sample x ∈ Rd, the following inequality
holds:

rank (∇W lℓ(fW (x))) ≤ ml,

where ml is a constant depending on the structure of the layer l (defined in Eq. 2).

The above lemma shows the rank of the gradient with respect to any weight matrix W l is bounded by
≤ ml. In particular, for a fully-connected layer with weight matrix W l, the sub-gradient of the loss
function with respect to W l is at most 1 and for a convolutional layer it is bounded by the number of
patches upon which the kernel is being applied.

The following lemma provides an upper bound on the minimal distance between the network’s weight
matrices and matrices of bounded rank.

Lemma 3.2. Let ∥ · ∥ be any matrix norm and ℓ any differentiable loss function. Consider a
model fW as described in Sec. 2 and W l be a weight matrix within fW . Suppose we train fW
using SGD with batch size B ∈ [m], learning rate µ > 0 and weight decay λ > 0, where m
is the total number of training samples. Then, for any integer T > n, the following inequality
holds:

min
W̄ l: rank(W̄ l)≤mlBn

∥∥∥ W l
T

∥W l
T ∥ − W̄ l

∥∥∥ ≤ (1− 2µλ)n ·
∥W l

T−n∥
∥W l

T ∥
.

The lemma above provides an upper bound on the minimal distance between the parameters matrix
W ij

T and a matrix of rank ≤ mlBn. The parameter t is a parameter of our choice that controls the
looseness of the bound and is independent of the optimization process. The bound is proportional to

(1− 2µλ)n
∥W l

T−n∥
∥W ij

T ∥
, which decreases exponentially with n as long as ∥W l

T ∥ converges to a non-zero
value. As a next step, we tune t to ensure that the bound would be smaller than ϵ. This result is
summarized in the next theorem.

Theorem 3.3. Let ∥ · ∥ be any matrix norm and ℓ a differentiable loss function and µ, λ > 0
such that µλ < 0.5, B ∈ [m], and ϵ > 0. Consider a model fW as described in Sec. 2
and W l be a weight matrix within fW . Suppose we train fW using SGD with batch size
B ∈ [m], learning rate µ > 0 and weight decay λ > 0, where m is the total number of
training samples. Assume that lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1. Then, for sufficiently large T ,

min
W̄ i: rank(W̄ i)≤

mlB log(2/ϵ)
2µλ

∥∥∥ W l
T

∥W l
T ∥ − W̄ i

∥∥∥ ≤ ϵ.

The above theorem provides an upper bound on the rank of the learned weight matrices. It shows that
when training the model, the normalized weight matrices W l

T

∥W l
T ∥ become approximately matrices of

rank at most mlB log(2/ϵ)
2µλ . While mlB log(2/ϵ)

2µλ is not necessarily a small number, this bound is still non-

trivial since mlB log(2/ϵ)
2µλ = O(1) with respect to the iteration t and the size of the network (its width,
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Figure 2: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying
µ. The top row shows the average rank across layers, while the bottom row shows the train and test
accuracy rates for each setting. In this experiment, λ = 5e−4 and ϵ = 1e−3.
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Figure 3: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying λ.
In this experiment, µ = 1.5 and ϵ = 1e−3.

depth, etc’). This result is particularly striking as it reveals a mechanism that encourages learning
low-rank weight matrices that exclusively depends on the optimization process of SGD with weight
decay, regardless of the weight initialization, geometric properties of the data, or dimensionality of
the data, which are largely irrelevant to the analysis. The assumption lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1

generally occurs in practice and is validated in Appendix B. As a special case, it holds when ∥W l
T ∥

converges to a non-zero value.

4 Experiments

In the previous section we have seen that one can approximate the learned weight matrices using
matrices of bounded rank. Since the bound becomes smaller as we increase λ, µ or decrease B, we
make the following prediction:
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Figure 4: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying B.
In (a) we used µ = 1e−3 and λ = 6e−3, in (b) we used µ = 5e−3 and λ = 6e−3, and in (c) we
used µ = 1e−2 and λ = 4e−4. We used a threshold of ϵ = 1e−3.

Prediction 4.1. When training a neural network using SGD with weight decay, the effective
rank of the learned weight matrices tends to decrease as the batch size decreases, or as the
weight decay or learning rate increases.

While the effective rank of a given matrix can be measured in various ways, in the experiments, we
will focus on counting how many singular values of the normalized version of the matrix exceed
a predefined threshold ϵ > 0 (we use ϵ = 1e−3 unless stated otherwise). In order to validate this
prediction, we empirically study how batch size, weight decay, and learning rate affect the rank of
matrices in deep networks. We conduct separate experiments where we vary one hyperparameter
while keeping the others constant to isolate its effect on the average rank. Additional experiments
with a variety of architectures (e.g., ViT, ResNet-18 and VGG-16), datasets (e.g., CIFAR10, MNIST,
Fashion MNIST, SVHN), as well as visualizations of the singular values of the weight matrices are
provided in Appendix B. The plots are best viewed when zooming into the pictures. Each of the runs
was done using a single GPU for at most 60 hours on a computing cluster with several available GPU
types (e.g., GeForce RTX 2080, Tesla V-100).

4.1 Setup

In each experiment we trained ResNet-18 [30] instances for classification using Cross-Entropy loss
minimization using SGD with batch size B, initial learning rate µ, 0 momentum, and weight decay
λ. The models were trained with a decreasing learning rate of 0.1 at epochs 60, 100, and 200, and
the training was stopped after 500 epochs. During training, we applied random cropping, random
horizontal flips, and random rotations (by 15k degrees for k uniformly sampled from [24]) and
standardized the data.

To study the influence of different hyperparameters on the rank of the weight matrices, in each
experiment, we trained the models while varying one hyperparameter at a time, while keeping other
hyperparameters constant. After each epoch, we compute the average rank across the network’s
weight matrices and its train and test accuracy rates. For a convolutional layer we represent its kernel
parameters as a matrix, whose rows are vectorized versions of its kernels. To estimate the rank of
a given matrix M , we count how many of the singular values of M

∥M∥2
are out of the range [−ϵ, ϵ],

where ϵ is a small tolerance value (we used ϵ = 1e−3 by default).
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4.2 Results

Validating prediction 4.1. As shown in Figs. 1-4, a smaller batch size or higher learning rate and
weight decay leads to a smaller average rank across the network layers. Additionally, Fig. 3 shows
that the effect of batch size on the ranks of the weight matrices is minimal when λ = 0, suggesting
that weight decay is essential for imposing a noticeable low-rank bias on the weight matrices. These
results align with prediction 4.1.

Low-rank bias and generalization. We investigated the relationship between low-rank bias and
generalization by training ResNet-18 models on CIFAR10 with varying batch sizes, while keeping
λ and µ constant. To provide a fair comparison, we selected λ and µ to ensure all models perfectly
fit the training data. Our results, shown in Fig. 4, indicate that models trained with smaller batch
sizes (and as a result with matrices of lower ranks) tend to have a better test performance. Based on
these findings, we predict that when altering a certain hyperparameter, a neural network with a lower
average rank will have better test performance than a network with the same architecture but higher
rank matrices, assuming both networks perfectly fit the training data. For a similar experiment with
VGG-16 [34] see Fig. 12 in Appendix B.

5 Conclusions

Mathematically characterizing the inductive biases of neural networks trained with SGD remains
a significant open problem in the theory of deep learning [35]. In this work, we address one of
the key inductive biases observed in empirical studies: the implicit minimization of the rank of
learned weight matrices during training. Through our theoretical analysis of the training dynamics of
regularized SGD, we identify a forgetting mechanism, where past updates are forgotten exponentially
fast, resulting in learned weights that can be approximated by a mixture of recent training updates.
This process leads to a rank minimization mechanism influenced by batch size, learning rate, and
weight decay. Notably, this behavior appears largely independent of the geometry of the training data
or its intrinsic dimensionality.

A promising direction for future work is to explore whether this theoretical framework can shed light
on other empirical phenomena, such as emergent sparsity in neural networks [10], Neural Collapse in
intermediate layers [36, 37], and Grokking [38]. Additionally, it would be valuable to investigate how
other factors, such as momentum, affect the rank of the learned matrices and whether our findings
can inspire new algorithms for compressing neural networks. Lastly, it would be interesting to study
the relationship between this inductive bias and generalization, which seems plausible based on our
empirical observations.
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A Proofs

Lemma A.1. Let ℓ be a differentiable loss function, and let fW be a model as described in Sec. 2.
For any weight matrix W l in fW and any sample x ∈ Rd, the following inequality holds:

rank (∇W lℓ(fW (x))) ≤ ml,

where ml is a constant depending on the structure of the layer l (defined in Eq. 2).

Proof. Let uj = ul
j(x,W|l), and let fW (x)r denote the r-th coordinate of fW (x). By applying the

chain rule, we have the following identity for the gradient:

∇W lℓ(fW (x)) =

q∑
r=1

∂ℓ(fW (x))

∂fW (x)r
· ∂fW (x)r

∂W l
.

Next, observe that:

∂fW (x)r
∂W l

=

ml∑
j=1

∂fW (x)r
∂W luj

· ∂W
luj

∂W l
=

ml∑
j=1

∂fW (x)r
∂W luj

· u⊤
j .

Substituting this into the previous expression, we get:

∇W lℓ(fW (x)) =

q∑
r=1

∂ℓ(fW (x))

∂fW (x)r
·

ml∑
j=1

∂fW (x)r
∂W luj

· u⊤
j .

We can now simplify this expression:

∇W lℓ(fW (x)) =

ml∑
j=1

(
q∑

r=1

∂ℓ(fW (x))

∂fW (x)r
· ∂fW (x)r

∂W luj

)
u⊤
j .

This represents a sum of ml outer products of vectors, implying that the resulting matrix has a rank
of at most ml.

Lemma 3.2. Let ∥ · ∥ be any matrix norm and ℓ any differentiable loss function. Consider a model
fW as described in Sec. 2 and W l be a weight matrix within fW . Suppose we train fW using SGD
with batch size B ∈ [m], learning rate µ > 0 and weight decay λ > 0, where m is the total number
of training samples. Then, for any integer T > n, the following inequality holds:

min
W̄ l: rank(W̄ l)≤mlBn

∥∥∥ W l
T

∥W l
T ∥ − W̄ l

∥∥∥ ≤ (1− 2µλ)n ·
∥W l

T−n∥
∥W l

T ∥
.

Proof. Let S̃t ⊂ S the mini-batch that was used by SGD at iteration t. We have

W l
T = W l

T−1 − µ∇W lLS̃T−1
(fWT−1

)− 2µλW l
T−1

= (1− 2µλ)W l
T−1 − µ∇W lLS̃T−1

(fWT−1
).

Similarly, we can write

W l
T−1 = (1− 2µλ)W l

T−2 − µ∇W lLS̃T−2
(fWT−2

).

This gives us

W l
T = (1− 2µλ)2W l

T−2 − µ∇W lLS̃T−1
(fWT−1

)− µ(1− 2µλ)∇W lLS̃T−2
(fWT−2

).

By recursively applying this process n times, we have

W l
T = (1− 2µλ)nW l

T−n − µ

n∑
j=1

(1− 2µλ)j−1∇W lLS̃T−j
(fWT−j

)

=: (1− 2µλ)nW l
T−n + U l

T,n.
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We notice that,
∇W lLS̃T−j

(fWT−j
) = 1

B

∑
xi∈S̃T−j

∇W lℓi(fWT−j
(xi)).

According to Lem. A.1, we have rank(∇W lℓi(fWT−j
(xi))) ≤ ml. Therefore,

rank(∇W lLS̃T−j
(fWT−j

)) ≤ Bml since ∇W lLS̃T−j
(fWT−j

) is an average of B matrices
of rank at most ml. In particular, rank(U l

T,n) ≤ mlBn since U l
T,n is a sum of n matrices of rank at

most mlB. Therefore, we obtain that

min
W̄ l: rank(W̄ l)≤mlBn

∥∥W l
T − W̄ l

∥∥ ≤
∥∥W l

T − U l
T,n

∥∥ = (1− 2µλ)n∥W l
T−n∥.

Finally, by dividing both sides by ∥W l
T ∥ we obtain the desired inequality.

Theorem 3.3. Let ∥ · ∥ be any matrix norm and ℓ a differentiable loss function and µ, λ > 0 such
that µλ < 0.5, B ∈ [m], and ϵ > 0. Consider a model fW as described in Sec. 2 and W l be a
weight matrix within fW . Suppose we train fW using SGD with batch size B ∈ [m], learning rate
µ > 0 and weight decay λ > 0, where m is the total number of training samples. Assume that
lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1. Then, for sufficiently large T ,

min
W̄ i: rank(W̄ i)≤

mlB log(2/ϵ)
2µλ

∥∥∥ W l
T

∥W l
T ∥ − W̄ i

∥∥∥ ≤ ϵ.

Proof. We pick n = ⌈ log(ϵ/2)
log(1−2µλ)⌉. Since n is independent of T , we have

lim
T→∞

∥W l
T−n∥

∥W l
T ∥ = lim

T→∞

n∏
j=1

∥W l
T−j∥

∥W l
T−j+1∥

=

n∏
j=1

lim
T→∞

∥W l
T−i∥

∥W l
T−i+1∥

= 1.

Then, for any sufficiently large T , we have ∥W l
T−n∥

∥W l
T ∥ ≤ 2.

We notice that for the selected T , we have (1− µλ)n ≤ ϵ/2. Hence, for any large T , we have,

(1− µλ)n
∥W l

T−n∥
∥W l

T ∥ ≤ ϵ

Furthermore, since µλ < 0.5, we also have n ≤ log(2/ϵ)
2µλ and mlBn ≤ mlB log(2/ϵ)

2µλ . Therefore, by
Lem. 3.2, we have the desired inequality.

B Additional Experiments

We conducted additional experiments with various learning settings, including training on different
datasets and using different architectures, to provide additional evidence for the bias of SGD with
weight decay toward rank minimization. The experimental setup and results are described below.

B.1 Experimental Details

Architectures. We consider five types of network architectures. (i) The first architecture is a multi-
layer perceptron (MLP), denoted as MLP-BN-L-H , which comprises L hidden layers, each containing
a fully-connected layer with width H , followed by batch normalization and ReLU activations. This
architecture ends with a fully-connected output layer. (ii) The second architecture, referred to as RES-
BN-L-H , consists of a linear layer with width H , followed by L residual blocks, and ending with a
fully-connected layer. Each block performs a computation of the form z + σ(n2(W2σ(n1(W1z)))),
where W1,W2 ∈ RH×H , n1, n2 are batch normalization layers, and σ is the ReLU function. (iii) The
third architecture is the convolutional network (VGG-16) proposed by [34], with dropout replaced
by batch normalization layers to improve training performance, and a single fully-connected layer
at the end. (iv) The fourth architecture is the residual network (ResNet-18) proposed in [30]. (v)
The fifth architecture is a small visual transformer (ViT) [39]. We used a standard ViT that splits
the input images into patches of size 4× 4, and includes 8 self-attention heads, each composed of
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6 self-attention layers. The self-attention layers are followed by two fully-connected layers with a
dropout probability of 0.1, and a GELU activation in between them.

Training and evaluation. We trained each model for classification using Cross-Entropy loss
minimization between its logits and the one-hot encodings of the labels. The training was carried
out by SGD with batch size B, initial learning rate µ, and weight decay λ. The MLP-BN-L-H ,
RES-BN-L-H , ResNet-18, and VGG-16 models were trained with a decreasing learning rate of 0.1 at
epochs 60, 100, and 200, and the training was stopped after 500 epochs. The ViT models were trained
using SGD with a learning rate that was decreased by a factor of 0.2 at epochs 60 and 100 and training
was stopped after 200 epochs. During training, we applied random cropping, random horizontal flips,
and random rotations (by 15k degrees for k uniformly sampled from [24]) and standardized the data.

B.2 Results

Training with different architectures. In the main text, we validated our predictions using the
ResNet-18 architecture. For a more comprehensive analysis, we conducted similar experiments with
additional architectures. Similar to the results in the main text, Figs. 5-13 show that, as we increase
weight decay or learning rate or decrease batch size, the effective rank of the learned weight matrices
tends to decrease. Additionally, when λ = 0, the influence of batch size or learning rate on the rank
of the weight matrices is minimal, as seen in Figs. 5, 6, and 10.

Training with momentum. To ensure that our observations are applicable beyond just SGD with
weight decay, we conducted an experiment to test whether they also hold for SGD with both weight
decay and momentum. As shown in Fig. 5, our predictions regarding the regularization effects of
hyperparameters remain consistent, even when momentum is included in the training process.

Training on different datasets. In Fig. 13, we trained ResNet-18 instances on the MNIST and
SVHN datasets, varying the learning rate while keeping the batch size (B = 16) and weight decay
(λ = 5e−4) constant. The observed behavior, previously noted for CIFAR-10, is also replicated for
these different datasets.

Verifying that lim
T→∞

(∥W l
T−1∥/∥W l

T ∥) = 1. In Thm. 3.3 (main text) we made the assumption that

lim
T→∞

(∥W l
T−1∥/∥W l

T ∥) = 1. In order to validate this assumption, we trained various models and

monitored the ratio between the norms of each layer at consecutive epochs. In each plot at Figs. 14-15
we report the ratios across different layers for a neural network with a certain learning rate. As can be
seen, the ratios consistently converge to 1 during training.

Singular values. In our previous experiments, we measured the average rank of the weight matrices
across different layers. To further investigate the rank of the learned weight matrices, we created
visualizations displaying the singular values of the weight matrices for each layer as a function of
batch size.

For instance, in Figs. 16-17 we plotted the singular values of various layers for models that were
trained in the setting of Fig. 4(b) (main text) and Fig. 12(c). Our results indicate that as a general
tendency the singular values of each layer can be partitioned into two distinct groups: “small” singular
values and “large” singular values (see the intersection point of all curves in the plots). Interestingly,
the number of “small” singular values and “large” singular values is generally independent of the
batch size. Moreover, “large” singular values decrease with the batch size and the “small” singular
values increase with the batch size. This behavior provides additional evidence that when training
with smaller batch sizes, the matrices have fewer large singular values compared to training with
larger batch sizes.

Comparing our bound with the averaged rank. As mentioned in the main text, our bound
mlB log(2/ϵ)/(2µλ) is generally loose, but not trivial, as it scales as O(1) relative to the actual
dimensions of the weight matrices. To demonstrate that our bound is non-trivial for wide neural
networks, we trained an MLP-BN-2-10000 (see Appendix B.1 for details) on CIFAR10 using B = 6,
µ = 0.1, and λ = 8e−3. As shown in Figure 18, the network is able to train (achieves a non-trivial
training accuracy), and at the same time, the bound is strictly smaller than the width of 10000 for any
ϵ ≥ 0.3.
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Figure 5: Average rank of MLP-BN-10-100 trained on CIFAR10 when varying λ. In this
experiment, µ = 0.1, momentum 0.9 and ϵ = 1e−3.
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Figure 6: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 when
varying λ. In this experiment, µ = 0.1 and ϵ = 1e−3.
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Figure 7: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 when
varying B. In this experiment, λ = 5e−4 and ϵ = 1e−3.
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Figure 8: Average rank of RES-BN-5-500 trained on CIFAR10 when varying B. In this experi-
ment, λ = 5e−4 and ϵ = 1e−3.

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.004 µ = 0.008 µ = 0.04

Figure 9: Average ranks and accuracy rates of ViT trained on CIFAR10 when varying B. In this
experiment, λ = 5e−4 and ϵ = 1e−3.

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

B = 32 B = 64 B = 128

Figure 10: Average ranks and accuracy rates of ViT trained on CIFAR10 when varying λ. In
this experiment, µ = 4e−2 and ϵ = 1e−3.

14



100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.5 µ = 1.0 µ = 2.0

Figure 11: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying
B. In this experiment, λ = 5e−4 and ϵ = 1e−3.
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Figure 12: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 when varying B.
We used a threshold of ϵ = 1e−3.
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Figure 13: Average ranks and accuracy rates of ResNet-18 trained on MNIST, Fashion MNIST,
and SVHN when varying µ. In this experiment, B = 16, λ = 5e−4 and ϵ = 1e−3.
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Figure 14: Convergence of the weights for ResNet-18 trained on CIFAR10. In this experiment,
B = 8, λ = 5e−4 and ϵ = 0.01 (see Fig. 2(mid) in the main text for the weight ranks and accuracy
rates).
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Figure 15: Convergence of the weights for VGG-16 trained on CIFAR10. In this experiment,
µ = 5e−3, λ = 5e−4 and ϵ = 0.01 (see Fig. 12(b) for the weight ranks and accuracy rates).
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Figure 16: Singular values of the weight matrices of ResNet-18 trained on CIFAR10 when
varying B. Each model was trained with µ = 5e−3 and λ = 6e−3. Each plot reports the singular
values of a given layer (see Fig. 4(b) in the main text for the averaged ranks and accuracy rates).
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Figure 17: Singular values of the weight matrices of VGG-16 trained on CIFAR10 when varying
B. Each model was trained with µ = 1e−2 and λ = 4e−4. Each plot reports the singular values of a
given layer (see Fig. 12(c) for the averaged ranks and accuracy rates).
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Figure 18: Comparing our bound with the averaged rank. We trained a MLP-BN-2-10000 on
CIFAR10 with B = 6, µ = 0.1, λ = 8e−3. We plot our bound for different choices of ϵ.
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