Exploring System 1 and 2 communication
for latent reasoning in LLLMs

Julian Coda-Forno'?* Zhuokai Zhao®> Qiang Zhang® Dipesh Tamboli® Weiwei Li*

Xiangjun Fan® Lizhu Zhang? Eric Schulz? Hsiao-Ping Tseng?

!Technical University of Munich (TUM) 2Helmholtz Munich *Meta

Abstract

Should LLM reasoning live in a separate module, or within a single model’s forward
pass and representational space? We study dual-architecture latent reasoning,
where a fluent Base exchanges latent messages with a Coprocessor, and test two
hypotheses aimed at improving latent communication over Liu et al.| [2024b]: (H1)
increase channel capacity; (H2) learn communication via joint finetuning. Under
matched latent-token budgets on GPT-2 and Qwen-3, H2 is consistently strongest
while H1 yields modest gains. A unified soft-embedding baseline—a single model
with the same forward pass and shared representations, using the same latent-token
budget—nearly matches H2 and surpasses H1, suggesting current dual designs
mostly add compute rather than qualitatively improving reasoning. Across GSM8K,
ProsQA, and a Countdown stress test with increasing branching factor, scaling
the latent-token budget beyond small values fails to improve robustness. Latent
analyses show overlapping subspaces with limited specialization, consistent with
weak reasoning gains. We conclude dual-model latent reasoning remains promising
in principle, but likely requires objectives and communication mechanisms that
explicitly shape latent spaces for algorithmic planning.

1 Introduction

Large language models (LLMs) trained with web-scale pre-training and alignment have achieved
impressive zero-shot reasoning capabilities across diverse tasks [Dubey et al., 2024, |[Hurst et al.,
2024, [Yang et al}2025| [Liu et al.,|20244a]. Despite their strong performance, LLMs are often seen
as “fast and fluent” rather than genuinely deliberative — resembling the intuitive, System-1 side
of dual-process theories of cognition [Kahneman) 2011]. Indeed, recent surveys explicitly describe
progress in reasoning LLMs as a shift from System-1-like heuristics to System-2-style deliberation [[L1
et al.,[2025b]], highlighting the need for architectures that support more structured reasoning.

The dominant approach today is chain-of-thought (CoT) reasoning [Wei et al., 2022 [Liu et al.,[2024a]],
where intermediate steps are verbalized in natural language. While effective, CoT incurs substantial
token-level overhead, limits abstraction bandwidth, and constrains inference unnecessarily to the
sequential, symbolic space of text [Chen et al., 2025]|Qu et al., [2025]]. As model sizes and context
window grow, these inefficiencies become increasingly prohibitive, motivating the search for more
compact and expressive reasoning representations.

Latent reasoning [Hao et al., [2024, |Liu et al., 2024c| |Geiping et al., 2025] offers an alternative that
enables the model to perform multi-step inference internally within its continuous hidden states,
surfacing only the final answer. This paradigm promises two key advantages. First, reasoning in

*Work done during an internship at Meta.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: FORLM.

high-dimensional embeddings provides vastly greater expressive bandwidth than token sequences,
potentially allowing richer intermediate computations [Zhang et al.,[2025]]. Second, for combinatorial
problems, operating over structured latent abstractions can dramatically reduce the effective search
space [Geiping et al.L[2025]. Such ideas find parallels in cognitive science, where humans are believed
to reason in internal “mentalese" before translating thoughts into language [Fodor, |1973].

Most latent-reasoning methods still ask a single network to do both fast association and slow
deliberation; e.g., Coconut [Hao et al.|[2024]] feeds the model’s last hidden state back as input, forcing
the same space to support next-token prediction and a putative “language of thought,” creating a
representational tug-of-war. Neuroscience evidence instead points to partially distinct substrates (PFC
for deliberative control; striatal circuits for habitual responses [Miller and Cohen, |2001} |O’Reilly
and Frank| |2006| Dolan and Dayan, |2013])), suggesting that separating roles could help. KV-cache
coprocessors [Liu et al., [2024c] fit this separation, but reported gains are limited; we argue the
bottleneck is latent communication between modules.

We therefore revisit the KV-coprocessor design with two changes aimed at strengthening commu-
nication: (i) frozen-Base cache augmentation, where the coprocessor writes cache edits that reach
all layers of the Base, and (ii) co-finetuning, where the Base and coprocessor are trained jointly to
make the Base “listen” to latent messages. Under matched token budgets and latent counts Ny, we
evaluate on two model families, standard pre-training benchmarks, and reasoning tasks (GSM8K,
ProsQA, a controlled Countdown stress test), and we analyze latent representations for specialization.
This lets us test whether these architectures deliver genuine “latent reasoning” rather than merely
adding compute.

In brief, our KV-coprocessor variants lower perplexity but yield limited reasoning gains over a unified
single model baseline; within the |Liu et al.| [2024c|] framework, our results seem to suggest that
scaling Nz, mostly adds compute rather than reasoning.

2 Related work

Reasoning in latent space. Latent-space methods shift multi-step inference from tokenized CoT
into a small set of latent variables, decoupling compute from text length. Representative approaches
include Coconut, which feeds continuous “thoughts” back into the model [Hao et al., [2024]]; differen-
tiable KV-cache augmentation, which separates a Base token predictor from a coprocessor that edits
the cache [[Liu et al.,[2024b]]; and compressed/implicit CoT that learns dense contemplation tokens or
plans without emitting text [Cheng et al. 2024, [Kurtz et al., 2024]]. Recent surveys synthesize this
trend and its claimed benefits [Li et al.| 20254} Zhu et al., 2025]. Despite clear token-efficiency gains,
reported improvements on reasoning are mixed, motivating our study of how to train dual-model
systems for effective latent communication.

Communication and coordination between models. Our focus on “latent communication” be-
tween a Base and a coprocessor connects to two strands. First, teacher—student transfer suggests that
sharing an initialization can facilitate implicit trait transfer, even without explicit supervision [Cloud
et al.} 2025]; this supports initializing the coprocessor from the Base to align internal representations.
Second, multi-agent prompting frameworks use inter-model dialogue to improve reliability [Du et al.|
2023} [Liang et al., 2023|], though recent analyses find gains can be brittle or dataset-dependent [Wang
et al.,[2024]]. Finally, our unified soft-embedding baseline is grounded in continuous-prompt methods
that endow a single network with extra latent capacity via trainable prefix/prompt vectors [Lester
et al.| 2021} [Li and Liang}, 2021} |Goyal et al.]], providing a strong, parameter-efficient alternative to
dual-model designs.

3 Methods

3.1 Problem setting

Setup and notation. Let By be a frozen, pretrained LLM (Base) with parameters 6. Given a prompt
x and target y, a forward pass of By produces per-layer key—value caches {(K,(z;0), Vo(x;0))}_,,
abbreviated K'Vy(z). A coprocessor Cy with parameters ¢ reads K 'Vy(z) together with Ny, learnable

Liu et al. (2024): Hypothesis 1: Hypothesis 2:

AP0 B AR = 0P B AR P OO0 A B8

00000 GGE 00 00000 88 ad , Boo0n QGG oo
00000 GLE 00 00000 @@ od G 00000 BEE 00
~00000 GEG 00 ~00000 Qg 00 ~00000 GGG 00
K‘[/cac;]mﬁ]ﬁi]i] Lalhlddenstategﬁ K\[,cac@mi]ﬁﬁi] KV—cachLloLasei]i] Kw[/cacgmt]t]t]t] Lalhlddenstales[jm
tDDDDDDDD‘ tDDDDDDDD‘ tDDDDDDDD,
o000 aad s o000 aaa ¢ do0od aad ¢
00000 4000 000040 000 00004 aoo

000 & 000 @ 000 «

Figure 1: Overview of the deliberation—in—KV-cache architecture of |Liu et al.|[2024b] and our two
variants designed to strengthen cross-module communication.

soft tokens and emits a latent sequence Z € RN2*4_ At decoding time, Z is injected back into By
(in a manner that depends on the variant below), after which the Base generates .

Objective. The training goal is to learn latents that improve conditional likelihood:

E (s)]l - inject(Z; K :
5 @l Ey)~p|logpo(y | @, inject(Z; KVa(2)))]

where Z = Cy (K Vp(x), Np-soft) and inject(-) denotes the chosen mechanism for feeding Z (or
the coprocessor’s cache) back to the Base.

Pipeline (as in Liu et al.|[2024b]). We follow the standard three-stage process (cf. Fig. El, left):

(i) KV-cache generation. Run By on x once to obtain K Vp(x).

(i) Latent augmentation. Run Cy; on KVp(zx) plus Ny, learnable soft tokens to produce a latent
sequence Z. In[Liu et al|[2024b]], the final hidden states of C'y are used as input embeddings to
By.

(iii) Decoding. Inject the augmentation into By and decode y. Unless otherwise noted, only ¢ and the
soft-token embeddings receive gradients.

3.2 Experimental variants

We test two hypotheses aimed at strengthening communication between modules and isolating where
the gains arise. Each hypothesis states a falsifiable prediction at matched latent-token budgets.

Hypothesis 1 — Frozen-Base KV augmentation. Change: Instead of converting the coprocessor’s
output into input embeddings, we concatenate its per-layer cache to the Base cache at injection
time. Let KV, () denote the coprocessor’s cache produced from K'Vy(z) and the Ny, soft tokens.
Decoding uses

[Ke(x;0); Ke(z;0)] and [Ve(2;0); Ve(as)] VE=1,...,L,

i.e., concatenation along the sequence (cache) dimension Optimization: 0 remains frozen; only ¢
and the soft tokens are trained. Motivation: With a frozen Base, steering only via input embeddings
gives the coprocessor influence primarily at early layers. Cache-level augmentation propagates
the latent signal through all layers, potentially enabling richer, layer-wise “latent communication”.
Prediction: With 6 frozen, cache augmentation will outperform embedding-only feedback [Liu et al.
[2024b] at matched latent-token budgets Ny,.

>We denote sequence-axis concatenation by [-; -].

Hypothesis 2 — Co-finetuned dual model. Change: Same injection mechanism as the reference
system in |Liu et al.| [2024b] (latents as input embeddings to the Base), but we unfreeze the Base.
Optimization: Update both € and ¢ jointly (plus soft tokens) under the log-likelihood objective
above. Motivation: Joint training allows By to learn to “listen” to the coprocessor’s messages rather
than treating them as exogenous noise. Although this increases the number of trainable parameters,
it isolates whether improved cross-module interaction—rather than mere extra compute—drives
downstream gains. Prediction: For the same latent injection as|Liu et al.[[2024b]], co-finetuning will
outperform the frozen-Base counterpart at matched Ny, reflecting learned communication rather than
added compute.

Implementation note. Both variants are realized within the same three-pass schedule used through-
out the paper (: Base pass to form K'Vp(x) — coprocessor pass to form Z (and, for Hyp. 1,
KVy(z)) — Base decode with injection. This preserves a clean separation between next-token
prediction and latent computation.

4 Experimental analysis:

4.1 Large scale data training

We replicate the deliberation K'V-cache pipeline of [Liu et al.|[2024b], but adapt it to a tighter compute
budget and to two model families.

Base models: GPT-2 (124 M) |Radford et al.[[2019] and Qwen-3 (0.6 B)|Yang et al.| [2025] replace
the 2-B-parameter Gemma used in the [Liu et al|[2024c] paper. This choice allows us to complete all
runs within a 3-day window on an 8 x A100 (80 GB) node.

Token budget: Liu et al. train for ~ 2 x 101! tokens (sequence 2048, batch 1024, 100 k steps). We
scale this down to 40 B tokens for GPT-2 and 8 B tokens for Qwen-3, which we found sufficient to
reproduce their qualitative trends without exceeding our hardware envelope.

Dataset. All large-scale training uses FineWeb-Edu-100BT [Lozhkov et al.|[2024].

Sequence & latent parameters: We use sequence length S=1024, latent augmentations per sequence
M =64, ahead tokens N 4 =16 for back-propagating the loss into the coprocessor (Liu et al.|[2024b]
use 2048/128/16), and N, =16 latents. Figure /D show that validation perplexity decreases
almost linearly as Ny, grows under Hypothesis 2. Training cost scales with the effective per-example
context S + M-(Np+N,4), so larger Ny, substantially raises wall-clock. Within our budget, N;, =16
provided a practical operating point, while [Liu et al.| [2024b]] report their strongest results around
N1,=32 on larger bases.

Three-pass training loop implementation (Fig. [5): [Liu et al| [2024b] describe “an efficient
training framework ... in one forward pass”, enabled by a custom attention mask that scales to large
datasets. Such a mask must support multiple augmentations (M) per sequence; otherwise only one
augmentation is trained, yielding two orders of magnitude less signal per token. However, a single
forward pass could allow the Base model to shortcut the intended latent computation—performing
both next-token prediction and latent augmentation itself, thereby collapsing the two representational
spaces and defeating the purpose of the technique. We cannot verify whether [Liu et al.| [2024b].
avoid this, as their code is not public; the attention masks they describe imply that only one model
processes the pass, but the exact implementation remains unclear. To keep our dataset large while
preventing this shortcut, we adopt a strict three-pass loop (Figure [5)) whose attention masks still allow
M augmentations of each sequence.

Only the coprocessor (and, in Hypothesis 2, the Base model) receives gradients. Although this
three-pass schedule incurs a 3x wall-clock penalty compared with the unknown “single-pass” imple-
mentation, it preserves a clean separation between next-token prediction and latent reasoning—the
property we wish to evaluate.

After convergence, models are evaluated greedily on standard pre-training benchmark for small
LLMs: HellaSwag, ARC-Easy, SociallQA, PIQA, and Winogrande.

—— Liu et al. (2024) Hyp 1 —— Hyp 2
== Base checkpoint —— Cont. pretraining —— Soft embeddings

N
N
1

Perplexity
S
1

16 T T T T T T T 1 T T T T T T T
0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7
Tokens (B) Tokens (B)
C D
N =2 N, =4 —_— N, =8 —_— N, =16
24 A |
4.4
22
ey 4.2
)
L 20 ~ _
5 4.0
5]
A 18 3.8
3.6
16 T T T T T T T 1 T T T T T T T
0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7

Tokens (B) Tokens (B)

Figure 2: Validation perplexity whilst training on the FinWeb-Edu-100BT corpus. A: GPT-2 variants
(using N1, =16 where applicable). B: Qwen-3 variants (using N;, =16 where applicable). C: Ablating
number of latents Ny, of the GPT-2 Coprocessor for Hypothesis 2. D: Ablating number of latents N,
of the Qwen-3 Coprocessor for Hypothesis 2.

4.1.1 Baselines

Baseline 1 - Base model + continued pre-training: Liu et al.|[2024b]], compare their dual-model to
the initial base checkpoint, meaning the dual system has seen far more data. Instead, we keep the
architecture unchanged and simply continue pre-training the base model on the same number of
tokens used by our dual-model runs.

Baseline 2 - Base model + N, soft embeddings: To test whether a single network can absorb the
“System-2” role, we continue pre-training the base model alone while attaching the same number
of new Ny, learnable soft tokens used by the coprocessor setup (similar in spirit to|Goyal et al., but
with untied, slot-specific embeddings rather than a single shared token). This contrasts a unified
versus dual-network design under identical data and latent embedding budgets. See App. [A.]for
visualization.

Note. Neither baseline is strictly parameter-matched—our dual-model has twice as many
weights—yet they provide useful sanity checks on data scaling and on the value of a separate
COProcessor.

4.1.2 Results

Qualitative replication of Liu et al. [2024b]]. Substituting the 2-B parameter Gemma with much
smaller GPT-2 (124 M) and Qwen-3 (0.6 B) still produces the qualitative trends reported by |Liu
et al| [2024c]|(Fig. 2A/B). Perplexity (ppl) drops by 2 for GPT-2 and 2.5 for Qwen-3—an order-of-
magnitude larger reduction than that reported in the original paper setup. On GPT-2 the dual-model
also raises mean benchmark accuracy by +2.0 percentage point (pp) (Table([T). For Qwen-3, however,
lower perplexity does not translate into higher benchmark scores; continued pre-training alone even

Model Hellaswag ARC-Easy Social IQA PIQA Winogrande

GPT-2 variants

GPT-2 continued pretraining 30.7 (+0.0) 54.2 (+0.0) 37.8 (+0.0) 64.5 (+0.0) 50.5 (+0.0)
GPT-2 + soft embeddings 30.7 (+0.0) 55.6 (+1.4) 37.7 (=0.1) 64.6(+0.1) 51.9 (+1.4)

Liu et al [2024b] 29.0 (-1.7) 45.0(=9.2) 37.4(-0.4) 62.1(=2.4) 50.7(+0.2)
Hypothesis 1 294 (-1.3) 482(-6.0) 38.7(+0.9) 62.9(-1.6) 52.3 (+1.8)
Hypothesis 2 312 (+0.5) 55.8 (+1.6) 382 (+0.4) 653 (+0.8) 52.1(+1.6)

Qwen variants

Qwen continued pretraining 26.6 (+0.0) 34.5 (+0.0) 35.3 (+0.0) 55.1 (+0.0) 52.0 (+0.0)
Qwen + soft embeddings 259 (-0.7) 372 (2.7) 34.6(-0.7) 553 (+0.2) 50.4 (-1.6)

Liu et al [2024D] 31.8 (+5.2) 36.5(+2.0) 35.4 (+0.1) 58.1(+3.0) 52.0 (+0.0)
Hypothesis 1 352 (+8.6) 45.0 (+10.5) 39.0 (+3.7) 61.0 (+5.9) 55.7 (+3.7)
Hypothesis 2 37.3 (+10.7) 53.1 (+18.6) 41.9 (+6.6) 63.4 (+8.3) 51.1(-0.9)

Table 1: Model performance on standard small LLM benchmarks and A with continued pretraining
baselines.

degrades accuracy. Given Qwen-3’s heavy post-training, such brittleness under distribution shift is
expected. We therefore report all numbers relative to the continued-pre-training baseline.

Both hypotheses outperform Liu et al.|[2024b]. Relative to it’s dual model, Hypothesis I (frozen
Base, cache concatenation) improves average accuracy by +1.5 pp on GPT-2 and +4.4 pp on Qwen-3.
Hypothesis 2 (co-finetuned) improves by +3.7 pp (GPT-2) and +6.6 pp (Qwen-3). In ppl, the variants
are ~ 2 and ~ 4 lower, respectively (Fig. 2JA/B).

Liu model versus data-matched continued pre-training. Relative to our data-matched Baseline 1
(same number of training tokens), the Liu dual model exhibits higher ppl (= +1.5) and mixed
accuracy: —2.7 pp on GPT-2 but 4-2.1 pp on Qwen-3. Averaged across families the net change is
~ —0.3 pp, underscoring the value of stricter baselines.

Dual models versus the “soft-embedding” baseline. Our second baseline—Base model + Ny, soft
embeddings—keeps the architecture unified yet endows the network with the same latent budget.
Against this control the dual-model results are underwhelming:

* Perplexity: Hyp. I has higher ppl than the soft-embedding model for both families; Hyp. 2
lowers it only marginally.

* GPT-2 benchmarks: Averaged over the five tasks in Table [T} Hyp. ! trails by —1.8 pp (46.3
vs. 48.1%), while Hyp. 2 is only +0.4 pp higher (48.5%).

* Qwen-3 benchmarks: Dual models fare better: Hyp. I +6.5pp (47.2 vs. 40.7%); Hyp. 2
+8.7pp (49.4%).

Summary and caveat. At first glance both dual-model variants look successful: they outperform
the [Liu et al.| [2024c] baseline and, on Qwen-3, yield sizeable benchmark gains. But the picture
shifts once we introduce the soft-embedding control. That unified model matches the dual systems
in token budget and latent capacity while using only half as many trainable weights, yet it equals
or exceeds Hyp. I and comes within a hair of Hyp. 2. This pattern indicates that the coprocessor
is not just “adding compute”—it is adding it inefficiently. A single LLM with the same aggregate
parameter count would almost certainly do better. Accordingly, the next section turns to reasoning-
specific benchmarks to see whether the dual architecture offers any benefit that a parameter-matched,
soft-prompted model cannot already provide.

4.2 Reasoning evaluation: benchmarks and a controlled stress test

In this section we wanted to test if additional latent tokens improve reasoning or do they mostly
add compute? We first compare our systems on GSM8K |Cobbe et al.|[2021] and ProsQA Hao
et al.[[2024], then use a controlled Countdown stress test |Pan et al.|[2025] to probe robustness as
combinatorial difficulty increases. We evaluate four systems: our reproduction of Liu et al., Hyp. 1
(frozen Base, cache-concat), Hyp. 2 (co-finetuned), and a single-model soft-embedding baseline with

the same total latent budget N.. For reference, we also compare against Coconut (GPT-2)
[2024]. More implementation details can be found in App.[A2]

Benchmarks. On GSM8K/ProsQA we follow the staged curriculum of and report
accuracy after fine-tuning. Table 2] shows the best results (N, = 12 for this task). Figure[3JA plots
GSMSK accuracy versus total latents N ; the corresponding ProsQA curves are deferred to App. [A.2]
as this benchmark is near-saturated for competitive systems and adds limited insight.

Stress test: Countdown. Countdown lets us scale difficulty in a controlled, task-homogeneous
way by increasing the operand count (branching factor grows rapidly with each operand). Unlike the
benchmarks, we train without curriculum and sweep both Nz, € {1, 2,4, 8} and operands € {3,4,5}.
An illustrative instance appears in the box below. Figure[3B plots accuracy vs. operands, combining
GPT-2 and Qwen curves for clarity.

Countdown example with operands = 4

User: Using the numbers [19, 36, 55, 7], create an equation that equals 65.
Assistant: Let me solve this step by step.

<latent thinking>

<answer> 55 + 36 — 7 — 19 </answer>

Findings. (i) Rank order on GSM8K/ProsQA: Hyp. 2 > soft-embedding > Hyp. 1 ~ Liu (Table[2).
(ii) Scaling latents: Fig.[B]A shows accuracy is largely flat as Ny, increases and can dip at larger N,.
This contrasts with Section 4.1} where perplexity decreased as Ny, grew, suggesting that extra latents
help next-token prediction but do not translate into more reliable reasoning. Interestingly, Coconut
(GPT-2) exhibits the same dipping trend, indicating the difficulty is not specific to dual-model designs.
(iii) Stress test: In Fig.[3B, increasing operands sharply reduces accuracy for all systems after Nz, = 8;
larger Ny, helps slightly at low difficulty but yields diminishing or negative returns thereafter, and
remains very close to the single-model soft-embedding baseline.

Table 2: Accuracy (%) on GSM8K and ProsQA after curriculum fine-tuning with Ny, = 12.

GPT-2 Qwen-3
Model GSM8K ProsQA | GSM8K ProsQA
Coconut (BO) 34.1 97.0 - -
Soft emb. (B1) 26.5 97.7 38.5 99.5
Liu et al. (B2) 16.5 52.6 224 81.0
Hyp. 1 (frozen, concat) 12.0 54.1 24.0 79.0
Hyp. 2 (co-finetuned) 31.5 99.0 38.6 99.5

Efficiency note (Hyp. 2 vs. Coconut). Coconut generates continuous thoughts sequentially with
the same network; for a given input this requires approximately Ny +1 full forward passes (each
time appending a new latent and re-processing), so compute and latency scale linearly with Ny,
[2024]. Our Hyp. 2 uses a strict three-pass schedule independent of N, (Base cache —
Coprocessor latents — Base decode). Assuming similar model sizes, this yields an approximate
forward-pass/FLOPs reduction of

Np+1

3)
e.g., ~ 5.7x fewer full passes at N;, =16, while remaining batch-parallel (multiple augmentations
per sequence can still be handled in one coprocessor pass). In practice this removes Coconut’s serial
bottleneck—while achieving comparable task accuracy on GPT-2 (GSMS8K: 31.5 vs. 34.1; ProsQA:
99.0 vs. 97.0; Table 2] Fig. [3h)—enabling larger models and datasets. However, it is worth noting
that Hyp. 2 also introduces roughly 2x as many trainable parameters as Coconut.

speedup ~

Summary. Across reasoning benchmarks and the controlled stress test, adding latents mostly
buys FLOPs, not robust reasoning. A unified soft-embedding model closely matches the best dual

--------- Soft emb. baseline (N =16)
=—Hyp 2 -+ Soft emb. = Coconut (GPT-2) Ni=1-=N;=4 =N;=8 =N =16 (GPT-2)
Hyp 2 - - Soft emb. (Qwen-3) N =1 =N,=4 = N,=8 — N,=16 (Qwen-3)

40

Accuracy (%)

8 12 16 3 4
Total latent budget N, Operands (branch factor 1)
Figure 3: Ablating the latent budget. A: GSMS8K accuracy vs. total latents N;, (GPT-2 and Qwen;
Coconut shown for GPT-2). B: Countdown accuracy vs. operands (3, 4, 5) with lines for N, €
{1,4, 8,16}, merged across model families.

model at equal Ny, and further increasing Ny, rarely helps—sometimes hurts. This motivates the
interpretability analysis in §4.3]

4.3 Interpretability: do latents specialize or collapse?

Reasoning can be viewed as composing distinct intermediate computations or modules|Andreas et al.
[2016], Lake and Baroni! [2017]], |Velickovi¢ and Blundell [2021]]. If our Hypothesis 2 coprocessor
truly supports such division of labor, different latents should occupy meaningfully different directions
in representation space. If, instead, latents mostly scale confidence without new algorithmic structure,
they will reuse the same span, yielding redundant computations |Olah et al.| [2020], [Elhage et al.
[2022], Kornblith et al.| [2019]. We therefore analyze the coprocessor’s last hidden layer (the signal
fed back as input embeddings to the Base) and test whether latents specialize.

Diagnostic 1: cross-subspace capture heatmap. For each latent ¢, collect its centered occurrences
X; € R"*4 and compute the minimal PCA basis U; € R?**: that explains at least 7 of variance
(we use 7 = 0.97). Let P; = U;U," be the orthogonal projector onto latent i’s subspace. For any
latent j we measure the fraction of X;’s variance captured by P;:

i T

We plot the matrix H as a heatmap (diagonal entries are > 7 by construction) and summarize it with
a single scalar,
Distinctiveness = m >z Higo

where lower is better (less cross-capture = more subspace diversity across latents).

Diagnostic 2: silhouette (cluster separation by latent). We compute the silhouette score Kaufman
and Rousseeuw| [[1990], s € [—1, 1], which for each point compares how close it is to its own latent
cluster versus the nearest other latent cluster; higher s means tighter, better separated clusters. This
complements diagnostic 1: Instead of looking at directional variance reuse across latents (orientation
overlap), it looks at instance-level spatial separation/cohesion of latent-labeled clusters. We report
the global average (formal definition and the mean per-latent scores in App. §A.3).

4.3.1 Results

Large-scale training. Figuredh is nearly uniform and bright off the diagonal, and the quantitative
scores confirm this collapse-like behavior: mean off-diagonal capture M.¢ = 0.9873 (higher

= more redundancy), global silhouette s = —0.1694 with per-latent silhouettes mostly negative
({—0.26, ..., —0.07}; full vector in Appendix |A.4). Together these indicate that occurrences labeled

by different latents largely occupy the same subspaces and are not cluster-separated.

Al B C
3,
- 57
= 71
c
9 9
r—U 11,
131
151]
1 3 5 7 9 11 13 15 12345678 9101112 1 3 5 7 9 11 13 15
latent j latent latent j
|
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of variance of latent j captured by PCs of latent j

Figure 4: Latent cross-subspace capture heatmaps (last coprocessor layer). Each cell (4, j) shows
the fraction of variance of latent j captured by the principal subspace of latent i. A: Large-scale
training. B: Fine-tuning on GSM&k with curriculum. C: Finetuning on countdown with operands =4.

GSMSK with curriculum. Figure shows the curriculum—tuned model; the no—curriculum
variant is in Appendix Relative to the large-scale pre-training task, fine-tuning reduces di-
rectional redundancy among latents: M drops to 0.962 without curriculum and to 0.914 with
curriculum. However, cluster separation does not emerge: the global silhouette remains near zero
in both task-tuned settings (s ~ —0.031). In short, curriculum nudges representations in the right
direction—latents become less overlapping in orientation—but they still occupy essentially the same
region of space (decorrelated directions without spatial separation).

Countdown (operands=4). Countdown induces substantially better cluster separation (global
silhouette s = 0.4531), yet the cross-subspace redundancy remains high with M o = 0.9382. This
realizes the “separated but redundant spans” regime: clusters are distinct in Euclidean space (high
silhouette) but their principal subspaces still explain most of each other’s variance (high off-diagonal
capture). Interestingly, Fig[dk shows distinctiveness degrading beyond latent 8, aligning with Fig[3B
where accuracy improves from Ny, € {1, 4,8} but drops at N;,=16.

Across all three settings the latents tend toward redundant computations: their subspaces are highly
overlapping (high M), even when the data task encourages class separation (Countdown). Task-
aligned fine-tuning helps (curriculum < pretraining in M), but not enough to yield “separated and
specialized” latents (high silhouette and low off-diagonals).

5 Discussion

Building on|Liu et al.| [2024b]], we cast the coprocessor architecture as a principled attempt to disentan-
gle “System-1” token prediction from “System-2” abstract reasoning. Treating latent embeddings as a
private communication channel between the two modules clarifies the conceptual link to dual-process
theories and motivates our two new training hypotheses. However, in our setting, simply providing the
channel (Liu et al.| [2024b])) or strengthening it (H1/H2) did not induce System-2-like computation.

Replacing last-layer hidden-state injection with full KV-cache concatenation yields modest perplexity
and benchmark gains over the original design, yet falls short once stricter baselines are introduced. Its
benefits appear sensitive to model family and vanish on harder reasoning tasks. Jointly updating both
models produces the strongest results across all experiments, confirming that bidirectional adaptation
facilitates cross-model communication. However, a unified network trained with the same soft-token
budget narrows—sometimes erases—the gap, suggesting that current dual-system instantiations add
compute inefficiently rather than unlocking qualitatively new reasoning abilities.

The soft-embedding baseline, parameter-matched continued pre-training, and Coconut all highlight
scenarios where dual-model gains either disappear or can be matched closely by simpler means.
Our Countdown experiments further show that scaling the latent budget beyond eight tokens fails to
deliver systematic robustness as combinatorial complexity explodes. Our interpretability analysis

seem to corroborate this by showing that learned latents largely occupy overlapping representational
subspaces: extra latents mostly amplify confidence rather than add new algorithmic structure.

Our negative results do not invalidate the dual-system framework; they indicate that how the two
models exchange information remains an open problem, and that current instantiations do not create
conditions for System-2-like computation to emerge. Promising directions include (i) designing
objectives that explicitly reward diversity or orthogonality in latent representations to encourage
broader search, and (ii) developing training schedules that preserve large-scale language competence
while gradually shaping latent spaces for multi-step reasoning.

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Yuxin Cheng, Yao Fu, Ruochen Xu, et al. Compressed chain-of-thought: Learning dense contempla-
tion tokens for reasoning. arXiv preprint arXiv:2412.13171,2024.

Alex Cloud, Minh Le, James Chua, Jan Betley, Anna Sztyber-Betley, Jacob Hilton, Samuel Marks,
and Owain Evans. Subliminal learning: Language models transmit behavioral traits via hidden
signals in data. arXiv preprint arXiv:2507.14805, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Ray J. Dolan and Peter Dayan. Goals and habits in the brain. Neuron, 80(2):312-325, 2013. doi:
10.1016/j.neuron.2013.09.007.

Yilun Du, Shizhe Li, Antonio Torralba, and Joshua B. Tenenbaum. Improving factuality and
reasoning in language models through multiagent debate. In NeurIPS 2023 Workshop on LLMs,
2023. arXiv:2305.14325.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pages arXiv—2407, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652,2022. URL https://arxiv.org/abs/2209.10652.

Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https
//arxiv.org/abs/2412.06769.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276, 2024.

10

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, 1990.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 3519-3529, Long Beach, California, USA, Jun 2019. PMLR.
URL http://proceedings.mlr.press/v97/kornblith19a.html,

Alexander Kurtz, Eric Zelikman, Samuel R. Bowman, Christopher D. Manning, Noah D. Goodman,
Fei Sha, Joshua B. Tenenbaum, et al. Quiet-star: Language models can learn to think without
externalized chain-of-thought. arXiv preprint arXiv:2403.09629, 2024.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. arXiv preprint arXiv:1711.00350, 2017. Version
commonly cited in 2018; we reference the arXiv preprint for clarity.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP 2021, 2021. arXiv:2104.08691.

Jing Li, Rui Wang, Yiming Zhao, et al. A survey on latent reasoning in large language models. arXiv
preprint arXiv:2507.06203, 2025a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei Li,
Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Xiao Liang, Zhijiang Guo, Le Song, and Cheng-Lin
Liu. From system 1 to system 2: A survey of reasoning large language models, 2025b. URL
https://arxiv.org/abs/2502.17419.

Yichen Liang, Yuxiang Gu, Jian Yang, et al. Language is not all you need: Aligning agents with
multi-agent debate. arXiv preprint arXiv:2305.12674, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via
differentiable cache augmentation, 2024b. URL https://arxiv.org/abs/2412.17747.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in Latent Space
via Differentiable Cache Augmentation, December 2024c. URL http://arxiv.org/abs/2412|
17747, arXiv:2412.17747 [cs].

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the
finest collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Earl K. Miller and Jonathan D. Cohen. An integrative theory of prefrontal cortex function. Annual
Review of Neuroscience, 24(1):167-202, 2001. doi: 10.1146/annurev.neuro.24.1.167.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. URL
https://distill.pub/2020/circuits/zoom-in/.

Randall C. O’Reilly and Michael J. Frank. Making working memory work: A computational model
of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2):283-328, 2006.
doi: 10.1162/089976606775093909.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

11

http://proceedings.mlr.press/v97/kornblith19a.html
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2412.17747
http://arxiv.org/abs/2412.17747
http://arxiv.org/abs/2412.17747
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://distill.pub/2020/circuits/zoom-in/

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Petar Velickovi¢ and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.
doi: 10.1016/j.patter.2021.100273.

Xuezhi Wang, Jason Wei, Denny Zhou, et al. Rethinking the bounds of 1lm reasoning: Are multi-agent
methods actually reasoning? In ACL 2024, 2024. arXiv:2402.15764.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
space. arXiv preprint arXiv:2505.15778, 2025.

Ziqi Zhu, Ziyang Chen, Zichen Li, et al. Reasoning beyond language: A comprehensive survey on
latent chain-of-thought reasoning. arXiv preprint arXiv:2502.04043, 2025.

12

A Appendix

A.1 Large scale training implementation details

a
b
Pass 1: Base(input_ids=[1, c
position_ids=[0,1,2,3,4], = d)
e
a b ¢ d e b b d d
Pass 2: Coprocessor(, input_embeds=[b’, b”, d’, d”’], .
position_ids=[2, 3, 4, 5], mask2 =)
b”
d

\ . J

Pass 3: Base(, input_embeddings=[z,,, z,,, ., 2., ¢ , €],
position_ids=[4,6], _mask3) = o)
b
d
g

o

(o)

Figure 5: Three-pass schedule on a toy sequence. Example with input “abcde” and two aug-
mentation sites at b and d (M=2), Np=2 latent slots per site (b’,b”, d’,d"”), and N4=1 ahead
token per site. Pass I (Base): run once on the raw sequence to form the cache KVy(z). Pass
2 (Coprocessor): consume K Vy(z) together with the concatenated M x Ny, latent placeholders
[b/, b”, @', d”], producing per-slot latent embeddings zy, v/, zar, za~. Pass 3 (Base decode): reuse
the same K Vj(z) and feed the concatenated outputs plus all M x N4 ahead tokens (one per site in
this toy) as input embeddings (e.g., [2v, v, 24/, 247, €, &]). Concatenation in Passes 2-3 enables
many augmentations per sequence to be trained in parallel while keeping latent computation (Pass 2)
separated from next-token prediction (Pass 3). We are still unsure by the single-pass implementation
sketched by |Liu et al.| [2024b] (no public code), but this schedule preserves disentanglement without
sacrificing batch parallelism.

13

Juns/asgyejlils

» U000 GLE 40
dOODOn GRE OO
oot GEE OO0

00000 (U B0

Trained soft
embeddings

Figure 6: Soft-embedding baseline (main control). A single transformer (no coprocessor) plays
both “System-1" and “System-2” roles. We attach N, learnable soft tokens (“latent slots”) to the Base
and continue pre-training the same Base checkpoint LLM and these tokens on the same dataset and
token budget as the dual-model runs. This matches the dual setup’s latent capacity (/Nz) while using
half the trainable parameters, directly testing whether a separate coprocessor—and its cache-level
latent communication with the Base—provides benefits beyond added compute. During decoding,
the learned soft tokens serve as the latent context via input-embedding injection.

A.2 Reasoning implementation details

Benchmarks and curriculum. For GSMS8K |Cobbe et al.|[2021]] and ProsQA [Hao et al.| [2024]]
we follow the staged curriculum of [Hao et al.|[2024]]. At stage k, the first &£ CoT steps are replaced
by k X c continuous latents. Loss is masked on question tokens and on the latent spans; only the
remaining language tokens contribute to the objective. We sweep c€ {1, 2, 3,4} with k=4, so the
total latent budget is N =k c € {4,8,12,16}. All benchmark fine-tuning runs use a learning rate
of 1x10~*. To make the comparison to Hao et al|[2024] as faithful as possible, we deliberately
minimize changes to their curriculum recipe; better schedules may exist for our dual-architecture, but
exploring them is out of scope here.

—Hyp 2 (GPT-2) = Soft emb. (GPT-2)
Hyp 2 (Qwen-3) Soft emb. (Qwen-3)

Notes. ProsQA is near-saturated for both GPT-2 and
Qwen-3, so curves are flat across Ny, and the soft-
embedding baseline tracks Hypothesis 2 closely. This
complements Fig. A (GSM8K), where accuracy like-
wise fails to grow monotonically with N,. Plotting
conventions match the main text; dotted lines denote
the single-model soft-embedding baseline.

o
o
=)

Accuracy (%)
© (=] o
w o w
.

©
=]

4 12 16
Total latent budget N,

Figure 7: ProsQA accuracy vs. total latents Np,.

Countdown setup. Countdown is trained without curriculum. Operands are sampled uniformly
from [1, 50] and the target from [0, 100]; expressions use +, —, < and x (as in TinyZero |Pan et al.
[2025]]). For each (operands, N1) setting we train for 3 epochs over 262,144 generated training
samples and evaluate on 1,024 held-out samples. We vary the operand count € {3,4,5} and latent
budget Ny, € {1,2,4,8}. All runs use a learning rate of 1x10~%. The branching factor grows with
operands as Catalan(n—1) 2"~ nl, yielding the controlled difficulty axis reported in Fig. .

Fine-tuning from large-scale pre-training. On GSM8K/ProsQA, resuming from large-scale pre-
training hurts relative to starting from base checkpoints (Tables [3H4)), suggesting a mismatch between
next-token pre-training geometry and our curriculum-based supervision at this scale.

Comparison protocols (all end curriculum at N, =16).

14

* Hyp. 2 (scratch): co-finetune Base and Coprocessor from the standard base checkpoints;
staged curriculum with k=4 stages and c=4 latents per stage.

* Resume + curriculum: initialize Hyp. 2 from the large-scale training checkpoints (Sec. d.T)
and run the same curriculum (k=4, c=4).

* Straight-to-16: initialize from the large-scale checkpoints but skip the curriculum; a single
stage with k=1, c=16.

Table 3: Effect of resuming from large-scale pre-training on GSM8K. Accuracy (%); A is the change
vs. Hyp. 2 (scratch).

Model Hyp. 2 (scratch) Resume + curriculum Straight-to-16

GPT-2 315 26.0 (A— 5.5) 282 (A—3.3)
Qwen-3 38.6 35.7 (A— 2.9) 37.3 (A—1.3)

Table 4: Effect of resuming from large-scale pre-training on ProsQA. Accuracy (%); A is the change
vs. Hyp. 2 (scratch).

Model Hyp. 2 (scratch) Resume + curriculum Straight-to-16

GPT-2 99.0 97.1 (A—1.9) 97.3 (A—1.7)
Qwen-3 99.5 88.3 (A—11.2) 84.5 (A— 15.0)

By contrast, on Countdown (no curriculum) resuming helps at N;,=16: Fig. [§] compares three
curves per family (GPT-2 left, Qwen-3 right)—Hypothesis 2 (from scratch), Hypothesis 1, and
Hypothesis 2 resumed from large-scale training—and the resumed Hypothesis 2 dominates. One
plausible explanation is that Countdown’s objective is closer to the pre-training signal (no curriculum,
homogeneous task family), whereas GSM8K/ProsQA curriculum alters the supervision structure
in a way that conflicts with the pre-trained latent geometry. A fuller exploration of how to transfer
large-scale pre-training into reasoning-specific curricula is a promising direction for future work.

— Hyp 2 m— Hyp 1 Hyp 2 + Resume from large scale training
GPT-2 Qwen-3

100 4 q
80 1

60

40 4

Accuracy (%)

204

«
—

o o

4 4
Operands (branch factor 1) Operands (branch factor 1)

Figure 8: Countdown appendix: accuracy at N1, =16 for Hypothesis 2 (from scratch), Hypothesis 1,
and Hypothesis 2 resumed from large-scale pre-training. Left: GPT-2. Right: Qwen-3. Resuming
improves Countdown despite hurting GSM8K/ProsQA, hinting at a mismatch between curriculum-
based supervision and pre-trained latent geometry.

A.3 Silhouette definition

Let X = {z) }é\’:l C R? be all occurrences from the coprocessor’s last hidden layer, labeled by latent

indices y,, € {1, ..., Ny} with clusters Cy = {p : y, = £}. For p € Cy, define the mean intra-latent

15

distance
1
ap = C=1 ZH%*%Hz,

qeCy
q#p

and, for ¢’ # ¢, the mean distance

1 .
d(p,Co) = 5= > llzp—zglla, b, = mind(p,C).
|Ce| 227
qeCy
The silhouette of p is
— bp—iap e [-1,1].

o max{ay, by}

We report the global silhouette s = 4 Z;V:l s, and the per-latent silhouette s, = ﬁ > ey Sp-
For singleton clusters, we set s, = 0.

A.4 Additional interpretability results

Al B C
3,
- 57
€ 7
3 o
B 1]
131
15]

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

latent j latent j latent j
|
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of variance of latent j captured by PCs of latent i

Figure 9: Supplementary latent cross-subspace capture heatmaps (coprocessor last layer). A:
Countdown with operands =3. B: Countdown with operands=5. C: GSMS8K without curriculum.
Panels A/B are qualitatively similar to the main-paper operands =4 plot; panel C shows stronger
collapse than its curriculum counterpart.

16

Latent Large-scale pretrain GSMS8K (curr.) Countdown (op=4)

1 -0.158 -0.014 0.912
2 -0.089 -0.036 0.506
3 -0.176 -0.036 0.324
4 -0.173 -0.032 0.209
5 -0.259 -0.044 0.243
6 -0.113 -0.047 0.550
7 -0.067 -0.047 0.635
8 -0.143 -0.045 0.629
9 -0.117 -0.032 0.723
10 -0.170 -0.040 0.742
11 -0.202 -0.022 0.568
12 -0.252 0.019 0.357
13 -0.193 - 0.336
14 -0.133 - 0.461
15 -0.191 - 0.026
16 -0.211 - 0.030

Table 5: Per-latent silhouette s, . Dashes indicate unused latents in the GSMS8K run (here N;,=12).
Large-scale pretraining shows uniformly negative silhouettes (cluster intermixing); GSM8K with
curriculum hovers near zero (weak separation); Countdown exhibits strong separation for most latents
while still showing redundancy in cross-subspace capture (see main-text heatmaps).

17

	Introduction
	Related work
	Methods
	Problem setting
	Experimental variants

	Experimental analysis:
	Large scale data training
	Baselines
	Results

	Reasoning evaluation: benchmarks and a controlled stress test
	Interpretability: do latents specialize or collapse?
	Results

	Discussion
	Appendix
	Large scale training implementation details
	Reasoning implementation details
	Silhouette definition
	Additional interpretability results

