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ABSTRACT

Graph foundation models (GFMs) have recently emerged as a promising paradigm
for achieving broad generalization across various graph data. However, existing
GFMs are often trained on datasets that may not fully reflect real-world graphs,
limiting their generalization performance. In contrast, tabular foundation models
(TFMs) not only excel at classical tabular prediction tasks but have also shown
strong applicability in other domains such as time series forecasting, natural lan-
guage processing, and computer vision. Motivated by this, we take an alternative
view to the standard perspective of GFMs and reformulate node classification as
a tabular problem. In this reformulation, each node is represented as a row with
feature, structure, and label information as columns, enabling TFMs to directly
perform zero-shot node classification via in-context learning. In this work, we
introduce TAG, a tabular approach for graph learning that first converts a graph
into a table via feature and structural encoders, applies multiple TFMs to diversely
subsampled tables, and then aggregates their outputs through ensemble selec-
tion. Through experiments on 28 real-world datasets, TAG achieves consistent
improvements over task-specific GNNs and state-of-the-art GFMs, highlighting
the potential of tabular reformulation for scalable and generalizable graph learning.

1 INTRODUCTION

Graph foundation models (GFMs) have recently emerged as a central research direction in graph
machine learning (Mao et al., 2024; Huang et al., 2025). However, their effectiveness on node
classification benchmarks has so far been limited, with performance improvements over standard
task-specific graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018) often
being marginal (Zhao et al., 2025; Finkelshtein et al., 2025). A growing body of work argues that
this shortfall is primarily due to the characteristic of the training data: many available pretraining
graphs are small in scale, contain outdated node features, and rely on heuristic or artificial topological
structures, making them poor representatives of real-world graphs (Bechler-Speicher et al., 2025;
Platonov et al., 2023a; Coupette et al., 2025).

Feature
Encoding

Structural
Encoding Label

Table

Graph

Figure 1: An illustration of how
TAG transforms a graph into a tabu-
lar representation using feature and
structural encoders.

In contrast, tabular foundation models (TFMs) have demon-
strated broad applicability by representing heterogeneous do-
mains in a unified tabular format. This perspective has enabled
strong generalization in settings as diverse as computer vision
(McCarter, 2025), natural language processing (Van Breugel
& Van Der Schaar, 2024; Hegselmann et al., 2023; Mráz et al.,
2025), and time-series forecasting (Hoo et al., 2025). This mo-
tivates our central research question: Can the generalization
strengths of tabular foundation models be effectively leveraged
to build a foundation model for node classification?

To address this question, we first observe that once the
graph’s topological structure has been exploited, either through
neighbor aggregation or through least-squares solutions in
GraphAny (Zhao et al., 2025) and TS-GNNs (Finkelshtein
et al., 2025), the node classification problem reduces to pre-
dicting labels from feature vectors. At this stage, the goal is
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simply to map vectors to labels. In traditional GNNs and TS-GNNs, this is typically done with a
lightweight classifier, whereas GraphAny employs a more elaborate attention mechanism to produce
the final predictions. This perspective naturally aligns node classification with tabular learning,
allowing us to leverage TFMs.

Motivated by this perspective, we introduce TAG, a tabular approach for graph learning that reinter-
prets node classification as an ensemble learning problem over tabular models. TAG first converts
the input graph to a table by computing node-level features using pre-defined feature and structural
encoders, as shown in Figure 1. However, the resulting tables are often too large and contain diverse
features and label spaces that current TFMs (Hollmann et al., 2023) are not designed to handle. We
employ an ensemble aggregation strategy: subsampling multiple smaller, size-constrained tables,
applying TFM to each table to obtain individual predictions, and aggregating them via ensemble
selection (Caruana et al., 2004). The resulting design unifies graph-specific insights with advances in
tabular learning, yielding a single, generalizable foundation model that does not require pretraining
on graph data, yet still outperforms the state-of-the-art GFMs and task-specific GNNs by 7%.

Contributions. Our work makes the following contributions toward building generalizable foundation
models for graph tasks:

1. We formulate node classification as a tabular classification problem, which enables the use of
tabular foundation models trained exclusively on tabular data for zero-shot inference, without
restrictions on the number of features, labeled nodes, or output classes.

2. We introduce TAG, a tabular approach for graph learning that represents nodes as rows in a
table and adapts TFMs to node classification via subsampling and ensemble aggregation.

3. We evaluate our approach on 28 real-world node classification datasets, demonstrating significant
improvements over existing GFMs and task-specific GNNs, improving the averaged accuracy
from 65.78% to 73.10%.

2 RELATED WORK

Graph foundation models for node classification. Graph Neural Networks (GNNs) are the
dominant approach for solving graph machine learning tasks. However, these models are typically
trained separately on each dataset and lack the ability to generalize across different feature and label
spaces. Graph Foundation Models (GFMs) have emerged (Mao et al., 2024; Huang et al., 2025)
to address this gap by learning transferable representations from diverse graph data. GFMs have
shown strong performance on the label inpainting problem (Finkelshtein et al., 2025), a subtask of
inductive node-based learning where the test graph contains partially observed features, analogous
to image inpainting. One of the first attempts in this direction is GraphAny (Zhao et al., 2025),
which characterizes the natural symmetries required of a GFM: node permutation-equivariance, label
permutation-equivariance, and feature permutation-invariance. It then constructs an ensemble by
combining the closed-form solutions of multiple least-squares models that respect these symmetries.
An attention mechanism is used to weight the ensemble components, and the resulting model has been
shown to generalize to unseen graphs with arbitrary feature and label spaces. The subsequent TS-
GNN model (Finkelshtein et al., 2025) formalizes the aforementioned symmetries into a theoretically
grounded framework for GFMs. It derives linear layers that respect the same symmetry constraints,
proves the universality of the resulting architecture over multi-sets, and shows empirically that
performance improves as the number of training graphs increases. Our proposed method TAG,
incorporates tabular foundation models to allow for a richer set of ensemble models, leading to
significantly improved generalization capabilities and empirical performance.

Tabular foundation models and their application. A tabular learning problem involves predicting
labels from data organized in a table, where each row corresponds to an instance and columns corre-
spond to features. Unlike structured domains such as images or text, tabular data are heterogeneous
and lack strong inductive biases, which historically limit transferability across datasets.

Prior-Data Fitted Networks (PFNs) (Müller et al., 2022) are transformer-based models that enable
in-context learning (ICL) on tabular datasets. The distinctive ingredient in PFNs is their synthetic-task
pretraining: millions of tabular datasets are sampled from randomized structural causal models
spanning diverse mechanisms (linear, tree-based, interaction-heavy, etc.). Each synthetic dataset
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is split into a context and a query set, and the transformer is trained to approximate the posterior
predictive distribution on the queries under the known generative process. This curriculum induces a
broad prior over tabular problems, enabling state-of-the-art tabular foundation models (TFM) such as
TabPFN (Hollmann et al., 2023; 2025) to adapt to new tables without gradient updates.

Beyond classical tabular benchmarks, TFMs have shown surprising generalization capabilities in other
domains, including computer vision (McCarter, 2025), natural language processing (Van Breugel &
Van Der Schaar, 2024; Hegselmann et al., 2023; Mráz et al., 2025), and time-series forecasting (Hoo
et al., 2025). These results suggest that TFMs are not limited to standard tabular tasks, but can serve
as a unifying framework for heterogeneous data. Our proposed model, TAG, builds on this insight
by framing node classification as a tabular learning problem, enabling TFMs to adapt to new graphs
without retraining and bridging their advances with the challenges of graph machine learning.

Concurrent to our work, Eremeev et al. (2025) propose G2T-FM, which augments node features with
structural signals, converts them into tabular rows, and applies a TFM, conceptually similar to TAG.
G2T-FM inherits TabPFN’s limits and is thus restricted to graphs with ≤ 10,000 labeled nodes, ≤ 500
node features, and ≤ 10 classes. In contrast, TAG’s table subsampling and ensemble selection avoid
these caps, supporting graphs with an arbitrary number of classes, labeled nodes, and node features.

3 BACKGROUND: GRAPHS, LABEL INPAINTING AND TABPFN

Graphs. We consider a simple, undirected1, unweighted graph G = (V,E,X,Y ) with N nodes.
The graph structure (V,E) is represented by an adjacency matrix A ∈ {0, 1}N×N . Each node
is equipped with a feature vector and a class label: the feature vectors are collected in the matrix
X ∈ RN×F , and the one-hot encoded labels across C classes are given by Y ∈ {0, 1}N×C . The
(random-walk) normalized adjacency matrix is defined as Â =D−1A, whereD is a diagonal degree
matrix D = diag(d1, . . . , dn) with di =

∑n
j=1Aij denoting the degree of node i. Given a matrix

M ∈ RN×D and a subset of nodes S ⊆ V , we writeMS ∈ R|S|×D for the submatrix consisting of
the rows ofM indexed by S. For a single node v ∈ V , the corresponding row vector is denoted by
mv ∈ RD. Lastly, we denote [N ] = {1, 2, . . . , N}.

Label Inpainting. We study the label inpainting (Finkelshtein et al., 2025) setting, a subtask of induc-
tive node classification. Let L ⊂ V denote the set of labeled nodes with labels YL ∈ R|L|×C , and let
Q ⊆ V \ L denote the set of query nodes. The goal is to predict the missing labels YQ ∈ R|Q|×C for
the query nodes, given the existing labels. Unlike the classical semi-supervised regime, which assumes
a fixed set of training labels, label inpainting treats the labeled nodes themselves as part of the input,
and the test graphs are also partially labeled. This formulation enables generalization across varying la-
bel sets and unseen graphs: given a partially labeled graph, the task is to “fill in” the missing labels by
leveraging both node features and structural information, analogous to inpainting in computer vision.

TabPFN. A state-of-the-art tabular foundation model that performs in-context learning by amortizing
Bayesian inference (Müller et al., 2022). Given a labeled context (XL,YL) with XL ∈ R|L|×F ,
YL ∈ {0, 1}|L|×C , and a query setXQ ∈ R|Q|×F , TabPFN outputs class probabilities

ŶQ = TabPFN
(
(XL,YL), XQ

)
∈ [0, 1]|Q|×C ,

with each row summing to one. For each q ∈ Q, the prediction ŷq approximates the posterior predic-
tive distribution p(yq | xq,XL,YL), under a prior learned from large-scale synthetic data-generating
processes during pretraining. In our node-classification setting, each row corresponds to a node.

4 THE TAG FRAMEWORK

In this section, we present TAG, a tabular approach to graph learning that reinterprets node classi-
fication as an ensemble learning problem over tabular models. Given a graph G = (V,E,X,Y ),
our key idea is to reduce graph-structured data into a tabular form that can be directly processed by
powerful tabular foundation models. TAG decouples the problem into three stages:

1All results naturally extend to directed graphs; we focus on undirected graphs for ease of presentation.
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Figure 2: Overall pipeline of TAG. Given a graph G and a set of querying nodes Q, TAG first
employs node-level encoding on G and converts it into a table T . Then TAG constructs {b}Bb=1

subsampled tables and applies TFM on them. Finally, TAG aggregates individual query scores Ŷ (b)
Q

via ensemble selection to produce the final prediction ŶQ.

1. Node-level encoding: Each node is represented as a row in a table by concatenating its label (if
available) with multiple feature and structure encoders. This step transforms graph information
into a tabular format that can be processed by tabular models.

2. Tabular learning: Since TFMs are limited to relatively small tables, we construct multiple
subsampled tables by selecting subsets of columns and labeled rows, and obtain separate
predictions from the TFM given each subsample.

3. Ensemble aggregation: Predictions from the subsampled tables are combined through ensemble
selection, which uses predictions on held-out data to determine ensemble weights that both
account for model quality and model interactions. The final prediction for each query node is
obtained as a weighted combination of these outputs.

This modular design allows TAG to exploit the strengths of tabular foundation models while remaining
lightweight and training-free. Figure 2 presents the overall pipeline of TAG.

4.1 NODE-LEVEL ENCODING

Given G = (V,E,X,Y ), we employ I + 1 feature encoders {ϕ(i)}Ii=0 : RN×(F+N) → RN×D1

and J structure encoders {ψ(j)}Jj=1 : RN×N → RN×D2 . These produce a tabular representation
T ∈ RN×(ID1+JD2+C), where each node v ∈ V corresponds to a row defined as

Tv =
(
ϕ(0)

v (X,A), . . . ,ϕ(I)
v (X,A),ψ(1)

v (A), . . . ,ψ(J)
v (A),Yv

)
,

where ϕ(i)
v (X,A) ∈ RD1 and ψ(j)

v (A) ∈ RD2 denote the outputs of the i-th feature encoder and the
j-th structure encoder for node v, respectively. The term Yv is the one-hot label encoding if v ∈ L,
and the zero-vector otherwise.

Feature encoders. We include the raw node features ϕ(0)(X,A) =X . To incorporate local struc-
tural information, we add neighborhood-smoothed features, which have been shown to improve per-
formance (see Section 5.3). Specifically, we use k-order neighborhood averages for k ∈ {1, · · · , 4},
i.e., ϕ(k)(X,A) = ÂkX , where Â is the normalized adjacency matrix.

Structure encoders. Unlike GNNs, TFMs operate on sets of rows and are thus unaware of the
underlying topology. To reintroduce this information, we employ well-established structural
encoders designed to capture both local and global graph structure. Specifically, we include (1)
RandomWalkPE (Dwivedi et al., 2022), denoted as ψ(1), which encodes local structures, (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LaplacianEigenvectorPE (Dwivedi et al., 2023), denoted as ψ(2), the top-20 eigenvectors of the
normalized Laplacian providing smooth global encodings, and (3) GPSE (Cantürk et al., 2024),
denoted as ψ(3), pretrained embeddings from frozen message-passing networks that have been
shown to be strong general-purpose structure encoders.
Remark 4.1. The construction of both feature and structure encodings is lightweight and training-free,
relying only on closed-form computations.

4.2 TABULAR LEARNING AND ENSEMBLE AGGREGATION

Tabular learning. The tabular representation of a graph is denoted by T = (Z,Y ), where Z ∈
RN×(ID1+JD2) stores the row features obtained by concatenating all feature and structure encodings,
and Y ∈ {0, 1}N×C contains the corresponding row one-hot label vectors. We distinguish between
labeled rows (ZL,YL) ∈ R|L|×(ID1+JD2+C), which include both row features and labels, and query
rows ZQ ∈ R|Q|×(ID1+JD2), which include only row features. The task is to inpaint the missing
labels ŶQ for the query rows, which could be achieved by directly applying TabPFN as

ŶQ = TabPFN
(
(ZL,YL), ZQ

)
. (1)

However, due to the computational complexity of its attention mechanism and its pretraining regime,
TabPFN is currently limited to relatively small tables, supporting at most 10,000 labeled rows, 500
columns, and 10 classes. This restriction prevents it from serving as a general-purpose foundation
model, since the encoded tables in TAG can reach up to 90,000 labeled rows, 40,000 columns, and
70 different classes, exceeding the capability of TabPFN.

Subsampling. We address this limitation by constructing B smaller subsampled tables {T (b)}Bb=1,
each fitting TabPFN’s size constraints. Each T (b) is obtained by (1) retaining all unlabeled rows, (2)
uniformly subsampling columns, and (3) class-balanced subsampling of labeled rows to preserve
its distribution. TabPFN is then applied to each T (b), producing predictions for the query rows
Ŷ

(b)
Q . For tables with more than 10 classes, we adopt an error-correcting output code (ECOC)

strategy (Dietterich & Bakiri, 1994) suggested by Hollmann et al. (2025), which splits tasks with
more than ten classes into subproblems with 10 or fewer classes.

Ensemble aggregation. We aggregate the predictions {Ŷ (b)
Q }Bb=1 through an affine combination,

where the contribution of each predictor is determined via ensemble selection (ES) (Caruana et al.,
2004). A hold-out set H ⊂ L, is randomly sampled from the labeled nodes, with the remaining nodes
A = L \H called anchor nodes. Each TabPFN model applies subsampling independently to generate
its own table T̃ (b) from the context (XA,YA), where the subset of columns sampled per model stays
fixed between ensemble selection and inference. We then create held-out predictions per model

Ŷ
(b)
H = TabPFN

(
T̃ (b),Z

(b)
H

)
,

where Z(b)
H denotes the column-subsampled features of the held-out rows. Ensemble selection (Caru-

ana et al., 2004) uses greedy forward selection to approximate weights ŵ(b) for the intractable problem

(ŵ(1), . . . , ŵ(B)) = argmax
∀b∈[B], w(b)∈R∑B

b=1 w(b)=1

AccH
( B∑
b=1

w(b)Ŷ
(b)
H ,YH

)
,

where AccH is the standard multi-class accuracy over the held-out set H

AccH(Ŷ ,Y ) =
1

|H|
∑
i∈H

1

{
arg max

c∈[C]
Ŷi,c = arg max

c∈[C]
Yi,c

}
,

and 1{·} is the indicator function (1 if the condition holds, 0 otherwise). The optimized weights
are then used to combine the query predictions, yielding the final ensemble prediction as

ŶQ =

B∑
b=1

ŵ(b)Ŷ
(b)
Q .
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Remark 4.2. While we focus on TabPFN for its zero-shot in-context prediction, our framework is
general and can accommodate alternative tabular learners (e.g., gradient-boosted trees).

LinearGNNs. In parallel to TabPFN, we train LinearGNNs (Zhao et al., 2025) on each encoded
matrix η ∈ {ϕ(i)(X,A)}4i=0 ∪ {ψ(j)(A)}3j=1, yielding eight additional lightweight ensemble
members. For an encoder η ∈ RN×D, we fit a separate linear mapW ∈ RD×C on the labeled nodes
L via the close form solution of the least squares problem

W ⋆ = argmin
W∈RF×C

∥∥ηW − YL

∥∥2
F
.

Predictions are then obtained for all nodes as class logits Ŷ = ηW ⋆, yielding a training-free,
closed-form predictor for each of our encoders.

5 EXPERIMENTS

In this section, we conduct experiments addressing the following research questions:

Q1 How does TAG’s zero-shot generalization compare to GFMs and end-to-end GNNs?
Q2 Can tabular foundation models be fine-tuned for node classification?

Furthermore, we ablate each key component of TAG to quantify its contribution: feature encoders
(Section 5.3), structure encoders (Appendix A.1), the number of subsampled tables (Section 5.4),
ensemble selection, and LinearGNN (Section 5.5).

Datasets. Following Finkelshtein et al. (2025), we evaluate on 28 diverse node-classification datasets
using their official splits. These include brazil, usa, and europe (Ribeiro et al., 2017); chameleon,
squirrel (Rozemberczki et al., 2021); roman-empire, amazon-ratings, minesweeper, questions, and
tolokers (Platonov et al., 2023b). We further employ wiki-attr and blogcatalog (Yang et al., 2023);
cornell, wisconsin, texas, and actor (Pei et al., 2020); and the classical benchmarks cora, citeseer,
and pubmed (Yang et al., 2016). In addition, we consider co-cs, co-physics, computers, and photo
(Shchur et al., 2023); full-dblp and full-cora (Bojchevski & Günnemann, 2018); wiki-cs (Mernyei &
Cangea, 2022); and last-fm-asia and deezer (Rozemberczki & Sarkar, 2020). Finally, we include the
large-scale arxiv dataset (Hu et al., 2021). Dataset statistics can be found in Appendix B.

All experiments are conducted on a single NVIDIA RTX PRO 6000. Our codebase is publicly
available at: https://anonymous.4open.science/r/tag_iclr_codebase-5971/.
All results reflect the mean accuracy and standard deviation over 5 random seeds.

5.1 COMPARISON OF TAG WITH GNNS AND GFMS

We evaluate whether TAG can leverage a pretrained TFM to deliver strong zero-shot performance on
node classification across diverse domains, feature spaces, graph topologies, and label sets (Q1).

Baselines. We compare TAG with end-to-end MeanGNN (Finkelshtein et al., 2024) and GAT
(Veličković et al., 2018), trained separately per dataset. We also compare with GFMs GraphAny
(Zhao et al., 2025) and TS-Mean (Finkelshtein et al., 2025), pretrained on the cora dataset. We apply
PCA to 2048 components before training on full-Cora, co-cs, and co-physics following the setup in
Finkelshtein et al. (2025). TAG uses a pretrained TFM (TabPFN) without extra pretraining or fine-
tuning. For inference, we ensemble predictions from 10 subsampled tables and 8 LinearGNN variants.

Key methodological differences between baselines. The three approaches GNNs, GFMs and
TAG differ along three axes. (i) How structure is used: end-to-end GNNs and GFMs model graphs
explicitly via message passing, whereas TAG employs a structure-agnostic transformer (TabPFN)
and injects graph information through feature/structure encoders and LinearGNN-derived signals.
(ii) Pretraining scale: end-to-end GNNs lack cross-dataset pretraining and current GFMs see only a
small number of real graphs, while TAG inherits a broad prior from TabPFN trained on a massive
corpus of tabular tasks. (iii) Data realism: GNNs and GFMs are typically trained on real-world
graph datasets, whereas TabPFN is trained solely on synthetic data—trading realism for scale and
diversity. Our experiments test whether this synthetic-but-vast prior transfers effectively to graphs
when coupled with a suitable node-level encoding strategy.
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Table 1: Accuracy on 28 node classification datasets. End-to-end (MeanGNN, GAT) are trained per
dataset; GFMs (GraphAny, TS-Mean) are pretrained on cora; TAG uses pretrained TabPFN models.

Dataset End-to-end GFM TAG
MeanGNN GAT GraphAny TS-Mean

actor 32.03±0.29 32.59±0.83 27.54±0.20 28.09±0.93 31.18±0.18
amazon-ratings 40.74±0.13 40.63±0.66 42.80±0.09 42.27±1.40 44.34±0.32
arxiv 50.94±0.38 57.93±3.44 58.85±0.03 56.33±2.58 66.70±0.21
blogcatalog 84.48±0.74 78.20±7.23 71.54±3.04 76.30±2.92 79.77±1.06
brazil 32.31±7.50 35.38±4.21 33.84±15.65 39.23±5.70 73.08±4.03
chameleon 61.75±0.94 58.46±6.23 63.64±1.48 60.83±5.41 72.94±1.13
citeseer 65.06±1.30 63.92±0.84 68.88±0.10 68.66±0.19 68.08±0.61
co-cs 80.87±0.69 82.28±0.86 90.06±0.80 90.92±0.47 90.49±0.50
co-physics 79.05±1.13 85.92±1.10 91.85±0.34 92.61±0.61 92.31±0.27
computers 73.88±0.88 70.94±3.40 82.79±1.13 81.37±1.25 84.33±0.33
cornell 63.78±1.48 69.73±2.26 63.24±1.32 68.65±2.42 75.14±2.16
deezer 54.91±1.81 55.22±2.33 51.82±2.49 52.31±2.52 52.99±1.65
europe 39.12±6.44 39.00±4.30 41.25±7.25 35.88±6.91 55.38±2.30
full-DBLP 65.01±2.40 67.34±2.75 71.48±1.44 66.42±3.65 71.92±1.46
full-cora 55.85±1.04 59.95±0.88 51.18±0.78 53.58±0.73 54.56±0.19
last-fm-asia 77.23±1.01 72.65±0.48 81.14±0.42 78.03±1.02 85.47±0.29
minesweeper 84.06±0.18 84.15±0.24 80.46±0.11 80.68±0.38 85.83±0.13
photo 88.95±1.08 80.78±3.59 89.91±0.88 90.18±1.30 89.63±0.48
pubmed 74.56±0.13 75.12±0.89 76.46±0.08 74.98±0.56 78.96±0.43
questions 97.16±0.06 97.13±0.05 97.07±0.03 97.02±0.01 97.14±0.01
roman-empire 69.37±0.66 69.80±4.18 63.34±0.58 66.36±1.02 74.12±0.28
squirrel 43.32±0.66 38.16±1.04 49.74±0.47 41.81±0.80 65.71±0.13
texas 76.76±1.48 81.62±6.45 71.35±2.16 73.51±4.01 81.08±2.09
tolokers 78.59±0.66 78.22±0.37 78.20±0.03 78.12±0.09 82.82±0.15
usa 43.93±1.16 43.03±2.08 43.35±1.62 42.34±2.12 60.50±0.80
wiki-attr 74.23±0.89 68.91±9.50 60.27±3.06 69.89±1.31 70.09±0.92
wiki-cs 71.97±1.70 74.99±0.59 74.11±0.60 74.16±2.07 79.07±0.54
wisconsin 74.12±12.20 73.33±8.27 59.61±5.77 61.18±11.38 83.14±1.33

Average (28 graphs) 65.50±1.75 65.55±2.82 65.56±1.86 65.78±2.28 73.10±0.15

Results. TAG displays strong performance across all datasets, either matches or surpasses MeanGNN,
GAT, GraphAny and TS-Mean, leading to an over 7% accuracy increase over state-of-the-art
performance. This establishes TAG as, to our knowledge, the first foundation model with substantial
improvements over end-to-end training across a broad suite of graphs (Q1).

We observe the largest gains on two families of datasets. (i) Small-scale geospatial “airline” graphs,
comprising brazil, europe, and usa, where TAG achieves an average improvement of 22% over the
best competing GFM. This is likely because in these datasets, the signal is primarily structural, and
node features are minimally informative (see Section 5.3). As a result, existing GFM and GNN, which
overly rely on message-passing without explicit structure encodings, struggle to capture the relevant
topology, whereas TAG’s structure encodings make the signal directly accessible. (ii) Small-scale
heterophilic benchmarks, namely wisconsin, cornell, and texas, where TAG improves by 12% on
average. In heterophilous regimes, neighbors tend to have different classes, and the message-passing
mechanisms used by GraphAny and TS-Mean can propagate misleading label information. TAG
instead leverages a strong tabular prior and variance reduction via ensembling over subsampled tables,
which yields stable zero-shot transfer. Although the most pronounced improvements occur on small
graphs, TAG also improves performance on larger graphs such as arxiv, albeit with smaller margins.

We believe that the overall significant difference in performance can be attributed to the much larger
scale of training data available for training the tabular foundation models at the core of TAG. For
instance, TabPFN was trained on 130 million synthetic datasets, which allows it to experience a
larger data distribution. In contrast, the GFM pretrained on the largest number of datasets to date is
a variant of TS-Mean, which was trained only on nine datasets. While training on additional datasets
does increase its performance (Finkelshtein et al., 2025), TS-Mean’s average accuracy of 68.57%
remains substantially below TAG’s mean accuracy of 74.39% on the remaining 20 datasets. We
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therefore view TAG’s advantage as evidence that larger and more diverse pretraining distributions,
whether synthetic or real, can substantially improve downstream accuracy.

5.2 FINE-TUNING TABULAR FOUNDATION MODELS FOR NODE CLASSIFICATION

Table 2: Accuracy of pretrained vs. fine-tuned
TAG on 20 unseen datasets.

Dataset Pretrained Fine-tuned

arxiv 66.63±0.57 67.06±0.56
full-cora 45.20±2.62 51.23±1.48
citeseer 59.80±2.30 60.02±0.68
full-DBLP 69.81±4.20 69.79±2.78
pubmed 78.20±1.20 78.70±0.19
wiki-attr 67.88±1.43 68.94±1.57
wiki-cs 78.60±1.13 79.31±0.69
blogcatalog 67.87±2.23 70.22±2.66
last-fm-asia 85.56±0.62 85.75±0.45
deezer 52.71±3.64 52.94±3.12
co-cs 86.46±0.39 86.66±0.55
co-physics 90.00±0.97 90.24±1.49
cornell 69.19±3.08 68.11±2.96
wisconsin 74.51±6.04 74.12±8.48
brazil 76.92±7.69 76.15±7.40
chameleon 71.84±2.41 72.46±3.14
squirrel 66.38±0.63 66.21±0.40
amazon-ratings 44.21±0.55 44.30±0.28
minesweeper 85.61±0.22 85.62±0.43
questions 97.04±0.04 97.02±0.00

Average 71.72±0.74 72.24±0.78
Figure 3: Mean accuracy of TAG with varying
feature encoder depth.

Zero-shot transfer is attractive for out-of-the-box deployment, but practitioners often have a few
labeled graphs on hand. Here we ask whether lightly adapting a tabular FM on a small set of source
graphs improves its out-of-domain performance on unseen targets (Q2).

Setup. We fine-tune the underlying TabPFN on nine node classification datasets and evaluate on the
remaining 20 datasets. To isolate the effect of fine-tuning over TabPFN, both variants (pretrained vs.
fine-tuned) exclude LinearGNNs and use 10 subsampled tables.

We do not compare the finetuned TAG with GFMs trained on additional graphs, since such a
comparison conflates two training data sources: TAG benefits from pretraining and additional graph
data, whereas GFMs are trained from scratch and only receive graph data. Here, we isolate the
within-model effect of adapting a pretrained TFM. By contrast, Section 5.1 reports the cross paradigm
comparison, with TAG pretrained on synthetic tabular data and GFMs trained solely on graph data.

Results. We observe that fine-tuning yields a modest but consistent average gain of 0.52% across the
20 unseen datasets in Table 2, implying that light adaptation can improve out-of-domain accuracy
(Q2). Notably, a few datasets (e.g., wisconsin and cornell) exhibit small declines as they are feature-
dominated, with node features contributing far more than topology. As a result, such adaptation
toward graph data will induce mild negative transfer.

5.3 THE IMPORTANCE OF DEPTH IN FEATURE ENCODERS

Setup. To assess the effect of feature encoder depth, we vary the maximum depth k ∈ {1, 2, 3, 4}
in a TAG model with 10 subsampled tables and 8 LinearGNNs. For each k, we include all feature
encoders {ϕ(i)}ki=0 together with the three structure encoders {ψ(j)}3j=1. LinearGNNs associated
with feature encoders deeper than k are omitted.

Results. Figure 3 presents the accuracy over 28 tested datasets. On average, TAG with only structure
encoders significantly underperforms compared with all other variants, confirming that features are
highly informative for the node classification task. Increasing aggregation depth further improves
accuracy when k increases from 0 to 2, while the gain plateaus and slightly regresses beyond k = 2.

8
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Moreover, we observe two clear dataset-dependent patterns. For the geospatial “airline” graphs (brazil,
europe, usa), structural encodings alone suffice: adding k-hop features brings little to no benefit, sug-
gesting that node attributes in this family are less informative. In contrast, on heterophilic benchmarks
(wisconsin, cornell, texas), informative node features are crucial. Immediate neighbors often have con-
flicting labels and attributes, so incorporating information from more distant nodes refines each node’s
embedding, leading to improved performance. Together, these results show that TAG can adapt to both
structure-dominated and feature-dominated datasets, emphasizing structural patterns when features
contain less signal, while relying more on features and long-range context under heterophilic settings.

5.4 THE EFFECT OF THE NUMBER OF SUBSAMPLED TABLES ON THE PERFORMANCE OF TAG

Figure 4: Average accuracy of TAG across 28
datasets vs. the number of subsampled tables.

Setup. We vary the number of TabPFN models and
associated subsampled tables from 1 to 10 to under-
stand their impact on TAG’s performance. We report
the average accuracy of TAG with 8 LinearGNNs
over 28 datasets against the number of subsampled
tables (per-dataset results in Section A.2).

Results. As expected, TAG’s performance increases
with the number of subsampled tables, although the
rate of improvement gradually flattens. This sug-
gests that additional subsampled tables provide use-
ful complementary information, which our ensemble
aggregation mechanism effectively integrates. We
hypothesize that increasing redundancy among
subsampled tables causes the diminishing gains.

5.5 THE IMPORTANCE OF ENSEMBLE SELECTION AND LINEARGNNS

Table 3: Accuracy of TAG
with and without ensemble
selection and LinearGNNs.

Method Accuracy

TAG 73.26±0.14
TAGequal 71.61±0.10
TAGpure 71.03±0.31

Setup. We initialize TAG with an ensemble comprising 10 TabPFN
models and 8 LinearGNNs, and ablate the use of ensemble selection
and LinearGNNs to assess their contributions. Specifically, we evalu-
ate two variants: (i) TAGequal, which replaces ensemble selection with
uniform averaging; and (ii) TAGpure, which removes the LinearGNNs,
retaining only the tabular foundation models.

Results. Table 3 reports mean test set accuracies across the 28 datasets
described in Section 5. In all cases, the ablated variants underperform
the full TAG model. While LinearGNNs exhibit lower standalone
accuracy, their architectural diversity yields error patterns that are
less correlated with those of TabPFNs, enabling ensemble selection to construct stronger ensembles.
However, the gains from such diversity are fully realized only when ensemble weights are optimized
in a principled manner, as naive averaging markedly reduces performance.

6 CONCLUSIONS

We introduced TAG, a tabular approach to graph learning that reformulates node classification as
a tabular classification problem. TAG represents nodes as rows in a table through a combination of
feature and structural encodings, and leverages pretrained tabular foundation models (TFMs), which
are applied to subsampled tables and aggregated through ensemble selection. Despite requiring no
pretraining on graph data, it outperforms state-of-the-art GFMs and task-specific GNNs by 7%.

We presented initial evidence that fine-tuning TFMs on collections of graph datasets is feasible. A key
direction for future work is to scale this process to larger and more diverse collections, comprising
both synthetic and real-world graphs, to fully leverage the capacity of TFMs. Another promising
avenue is to extend fine-tuning beyond the TFMs themselves to also include the feature and structural
encoders, enabling the entire pipeline to adapt jointly to graph-specific structures and representations.
Finally, broadening the scope of TAG to tasks such as link prediction and graph classification would
further move it towards a general-purpose approach for solving graph tasks.
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This paper presents work aimed at advancing the field of graph machine learning through the devel-
opment of a tabular approach for graphs, aiming to solve node classification. Potential applications
of such models include social network analysis, recommendation systems, fraud detection, and
knowledge graph completion. These applications can have significant societal impacts, ranging from
improved information retrieval and decision support to risks such as bias amplification, privacy con-
cerns, or the reinforcement of misinformation. However, we do not identify any specific, immediate
concerns requiring special attention in the context of this work. We acknowledge and adhere to the
ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide the full details of our method in Appendix 4 and Section C, along with an anonymous
repository containing all scripts and configuration files required to reproduce the results in both the
main paper and the appendix. Experiments can be executed on a single NVIDIA RTX PRO 6000
Blackwell GPU with an AMD EPYC 9554 CPU. Unless stated otherwise, all results are reported as
the mean accuracy over five random seeds, with the corresponding standard errors.

Baseline results were not reimplemented and are taken directly from Finkelshtein et al. (2025), who
evaluated on the same datasets and splits.
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A ADDITIONAL RESULTS

A.1 THE IMPORTANCE OF STRUCTURE ENCODINGS

Table 4: Average per-dataset accuracy of TAG with and without structure encoders. TAG without
structure encoders still uses all feature encoders.

Dataset w/o structure encoders with structure encoders

actor 31.24±0.15 31.18±0.16

amazon-ratings 43.63±0.21 44.34±0.29

arxiv 66.67±0.16 66.70±0.18

blogcatalog 79.41±1.59 79.77±0.94

brazil 63.08±4.16 73.08±3.61

chameleon 73.60±0.69 72.94±1.01

citeseer 67.40±0.77 68.08±0.54

co-cs 91.11±0.11 90.97±0.24

co-physics 92.39±0.28 92.33±0.19

computers 84.11±0.42 84.33±0.30

cornell 77.84±0.90 75.14±1.93

deezer 52.33±1.40 52.99±1.48

europe 55.88±2.17 55.38±2.06

full-DBLP 72.84±0.69 71.92±1.30

full-cora 58.85±0.23 58.45±0.22

last-fm-asia 85.09±0.33 85.47±0.26

minesweeper 85.73±0.10 85.83±0.12

photo 90.65±0.71 89.63±0.43

pubmed 78.74±0.34 78.96±0.39

questions 97.11±0.01 97.14±0.01

roman-empire 72.42±0.20 74.12±0.25

squirrel 67.22±0.40 65.71±0.12

texas 81.08±1.32 81.08±1.87

tolokers 82.24±0.19 82.82±0.13

usa 58.38±1.05 60.50±0.71

wiki-attr 70.96±0.97 70.09±0.82

wiki-cs 79.08±0.44 79.07±0.48

wisconsin 82.35±1.75 83.14±1.19

Average 72.91±0.78 73.26±0.76

Setup. To assess the effect of the structure encoder’s depth, We evaluate a variant of the TAG model
by omitting the structure encoder within 10 subsampled tables and 8 LinearGNNs, and compared it
with the standard TAG model. In both cases, we include all feature encoders up to a depth of four.

Results. Table 4 shows that incorporating structure encodings consistently improves performance
across datasets. In particular, on the “airline” datasets (brazil, europe, and usa), we observe some
of the largest gains from adding structure encoders. We attribute these improvements to two com-
plementary benefits of structural encodings. First, while the feature encodings implicitly capture
information up to a 4-hop neighborhood around each node, structural encodings make local structural
information directly accessible, which may otherwise be difficult to recover from features alone.
Second, structural encodings extend the receptive field by enabling access to long-range interactions
beyond four hops, which is another likely cause for the observed performance gains.

A.2 PER-DATASET RESULTS FOR FIGURE 4

In this experiment, we vary the number of subsampled tables and corresponding TabPFN models
B ∈ {0, 1, 4, 7, 10}. For inference, we ensemble predictions from the B subsampled tables and 8
LinearGNN variants. Per-dataset are reported in Table 5, while Figure 4 visualizes the overall trend
together with standard errors.
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Table 5: Zero-shot per-dataset accuracy of TAG, with varying TabPFN models B.

Dataset B=0 B=1 B=4 B=7 B=10

actor 31.24±0.25 30.84±0.15 31.16±0.23 31.22±0.12 31.18±0.18
amazon-ratings 43.61±0.28 43.90±0.15 44.16±0.25 44.29±0.33 44.34±0.32
arxiv 58.43±0.05 58.43±0.05 58.43±0.05 65.72±0.27 66.70±0.21
blogcatalog 79.13±1.01 80.25±0.99 79.31±0.94 80.09±1.16 79.77±1.06
brazil 53.08±3.73 71.54±4.65 76.92±4.55 73.85±1.88 73.08±4.03
chameleon 70.66±1.23 72.72±0.85 72.11±1.05 73.20±1.16 72.94±1.13
citeseer 64.68±1.03 65.38±1.23 67.10±0.32 67.12±0.75 68.08±0.61
co-cs 90.90±0.14 90.90±0.14 90.97±0.19 91.04±0.20 90.97±0.27
co-physics 92.27±0.27 92.14±0.26 92.14±0.28 92.15±0.20 92.33±0.22
computers 82.18±0.17 84.03±0.68 84.34±0.31 83.94±0.48 84.33±0.33
cornell 75.14±1.58 74.05±1.83 75.68±2.09 76.76±1.38 75.14±2.16
deezer 52.08±1.28 51.72±1.39 51.68±1.40 51.67±1.61 52.99±1.65
europe 43.25±2.72 55.88±1.49 54.50±2.53 53.50±3.12 55.38±2.30
full-DBLP 70.31±1.08 72.43±0.79 73.40±1.09 72.17±1.03 71.92±1.46
full-cora 57.18±0.25 57.18±0.25 57.18±0.25 58.44±0.17 58.45±0.24
last-fm-asia 84.68±0.28 84.68±0.28 85.12±0.29 85.61±0.31 85.47±0.29
minesweeper 82.11±0.17 85.17±0.15 85.74±0.10 85.75±0.09 85.83±0.13
photo 90.78±0.38 90.51±0.40 90.80±0.62 90.41±0.60 89.63±0.48
pubmed 75.66±0.71 77.68±0.67 76.64±1.73 76.52±1.77 78.96±0.43
questions 97.04±0.03 97.03±0.03 97.05±0.03 97.10±0.02 97.14±0.01
roman-empire 67.59±0.17 67.59±0.17 73.65±0.17 73.86±0.23 74.12±0.28
squirrel 56.64±0.47 64.94±0.35 65.46±0.41 65.57±0.14 65.71±0.13
texas 82.70±2.78 82.16±2.36 80.00±1.08 81.08±2.09 81.08±2.09
tolokers 79.03±0.10 82.21±0.22 82.82±0.16 82.84±0.15 82.82±0.15
usa 50.45±2.49 61.44±0.76 59.78±0.92 60.54±0.86 60.50±0.80
wiki-attr 66.18±1.88 66.18±1.88 69.66±0.75 70.26±0.98 70.09±0.92
wiki-cs 77.62±0.26 78.96±0.60 79.01±0.64 79.08±0.53 79.07±0.54
wisconsin 78.04±2.66 81.57±2.29 85.10±0.48 81.18±1.00 83.14±1.33

Average 69.74±0.24 72.20±0.18 72.85±0.23 73.03±0.09 73.26±0.14

B DATASET STATISTICS

Dataset statistics for all 28 datasets used in Section 5 are presented in Table 6.

C IMPLEMENTATION DETAILS

All reported results are averages across seeds 0, 1, 2, 3, and 4.

TAG node-level embeddings. For the GPSE embeddings (Cantürk et al., 2024) (see section 4.1), we
use the checkpoint trained on ChEML Gaulton et al. (2012). For RandomWalkPE (Dwivedi et al.,
2022) and LaplacianEigenvectorPE (Dwivedi et al., 2023), we pick k = 20. Due to computational
constraints, we only compute RandomWalkPE for graphs with fewer than or equal to 5000 nodes.
TAG filters out the LinearGNN based on RandomWalkPE for datasets with more than 5000 nodes.

TabPFN. For all our experiments, we use the newest version of TabPFN at the time of writing. For
each TabPFN model, we subsample 2500 random labelled rows and 400 columns. To account for
the imbalance in the number of feature-encoding columns vs. the number of structure-encoding
columns, 300 of 400 columns are sampled from feature encodings and 100 are sampled from structure
encodings.

Since TabPFN natively supports at most ten classes, we adopt the error-correcting output code
(ECOC) strategy (Dietterich & Bakiri, 1994) suggested by Hollmann et al. (2025), which splits tasks
with more than ten classes into B subtasks of at most ten classes each. Our subsampling strategy is
applied independently to each subtask and aggregated outputs form one predictor in the ensemble
selection. Given C classes, the ECOC-strategy generally needs at least ⌈C/9⌉ subproblems to ensure
coverage, we do not apply TabPFN models on the dataset with B < ⌈C/9⌉.
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Table 6: Statistics of the 28 node classification datasets.

Dataset #Nodes #Edges #Feats #Classes Train/Val/Test (%)

actor 7,600 30,019 932 5 48.0/32.0/20.0
amazon-ratings 24,492 186,100 300 5 50.0/25.0/25.0
arxiv 169,343 1,166,243 128 40 53.7/17.6/28.7
blogcatalog 5,196 343,486 8,189 6 2.3/48.8/48.8
brazil 131 1,074 131 4 61.1/19.1/19.8
chameleon 2,277 36,101 2,325 5 48.0/32.0/20.0
citeseer 3,327 9,104 3,703 6 3.6/15.0/30.1
co-cs 18,333 163,788 6,805 15 1.6/49.2/49.2
co-physics 34,493 495,924 8,415 5 0.3/49.9/49.9
computers 13,752 491,722 767 10 1.5/49.3/49.3
cora 2,708 10,556 1,433 7 5.2/18.5/36.9
cornell 183 554 1,703 5 47.5/32.2/20.2
deezer 28,281 185,504 128 2 0.1/49.9/49.9
europe 399 5,995 399 4 20.1/39.8/40.1
full-DBLP 17,716 105,734 1,639 4 0.5/49.8/49.8
full-cora 19,793 126,842 8,710 70 7.1/46.5/46.5
last-fm-asia 7,624 55,612 128 18 4.7/47.6/47.6
minesweeper 10,000 78,804 7 2 50.0/25.0/25.0
photo 7,650 238,162 745 8 2.1/49.0/49.0
pubmed 19,717 88,648 500 3 0.3/ 2.5/ 5.1
questions 48,921 307,080 301 2 50.0/25.0/25.0
roman-empire 22,662 65,854 300 18 50.0/25.0/25.0
squirrel 5,201 217,073 2,089 5 48.0/32.0/20.0
texas 183 558 1,703 5 47.5/31.7/20.2
tolokers 11,758 1,038,000 10 2 50.0/25.0/25.0
usa 1,190 13,599 1,190 4 6.7/46.6/46.6
wiki 2,405 17,981 4,973 17 14.1/42.9/43.0
wiki-cs 11,701 431,206 300 10 5.0/15.1/49.9
wisconsin 251 900 1,703 5 47.8/31.9/20.3

LinearGNNs. The eight additional LinearGNNs in TAG are each based on one of the eight node-
level encodings presented in Section 4.1. We normalize the outputs l = (lc)c∈C of the LinearGNNs
before ensembling using the following proportional scaling, which maps the smallest logit to 0

l′c = lc −min
i
li + ϵ ∀c ∈ [C],

p =
l′∑
i l

′
i

.

This ensures that ensemble models with low weights cannot overrule other ensemble members by
predicting unbounded logits with high amplitude.

Ensemble selection. Our implementation of ensemble selection (Caruana et al., 2004) samples
models with replacement, breaks ties (during the greedy selection) randomly and implements early
stopping, i.e. it picks the first model configuration in the history that achieved the best possible
(accuracy) score on the held-out predictions. We used k-fold cross-validation to generate held-out
predictions for all labeled nodes L. For TabPFN-based models, we use two folds and five folds for
LinearGNNs.

Finetuning. We use the cora, texas, tolokers, photo, roman-empire, usa, actor, computers, europe
datasets for the finetuning experiment in Section 5.2. We finetune TabPFN for 5000 steps using the
Adam optimizer with a learning rate of 10−6 and standard cross-entropy loss. At each step, we sample
three datasets and randomly split them into context and query sets according to their original train/test
proportions. Before passing the resulting tables to TabPFN, we apply our subsampling strategy
described in Section 4.2. For datasets with more than 10 classes, we employ the error-correcting
output codes (ECOC) strategy and randomly sample one subproblem, which is then subsampled.
These steps ensure that the finetuning tasks resemble the subsampled tables provided to TabPFN
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within TAG. We adopt early stopping by holding out each dataset’s test set: from the remaining
nodes, we select a fixed subset of columns and labeled rows to predict the held-out samples. If the
loss on these samples does not improve for 500 consecutive steps, the run is terminated.
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