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ABSTRACT

Human beings naturally utilize multiple reasoning modalities to learn and solve log-
ical problems, i.e., different representational formats such as natural language, code,
and symbolic logic. In contrast, most existing LLM-based approaches operate with
a single reasoning modality during training, typically natural language. Although
some methods explored modality selection or augmentation at inference time, the
training process remains modality-blind, limiting synergy among modalities. To
fill in this gap, we propose Mixture-of-Thought (MoT), a framework that enables
LLMs to reason across three complementary modalities: natural language, code,
and a newly introduced symbolic modality, truth-table, which systematically enu-
merates logical cases and partially mitigates key failure modes in natural language
reasoning. MoT adopts a two-phase design: (1) self-evolving MoT training, which
jointly learns from filtered, self-generated rationales across modalities; and (2)
MoT inference, which fully leverages the synergy of three modalities to produce
better predictions. Experiments on logical reasoning benchmarks including FOLIO
and ProofWriter demonstrate that our MoT framework consistently and signifi-
cantly outperforms strong LLM baselines with single-modality chain-of-thought
approaches, achieving up to +11.7pp average accuracy gain. Further analyses
show that our MoT framework benefits both training and inference stages; that it
is particularly effective on harder logical reasoning problems; and that different
modalities contribute complementary strengths, with truth-table reasoning helping
to overcome key bottlenecks in natural language inference.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress in logical reasoning tasks,
especially propelled by methods like Chain-of-Thought (CoT) prompting (Wei et al., 2022). However,
these CoT approaches predominantly rely on single reasoning modality, i.e., natural language, even
when employing ensemble methods (Li et al., 2023; Wang et al., 2025; 2022; Brown et al., 2024;
Snell et al., 2025; Liang et al., 2023). Here we refer to a modality as a distinct thought paradigm1 (e.g.
natural language, symbolic, or code), which differs in representation and inference process. On the
other hand, neuro-symbolic methods (Pan et al., 2023; Olausson et al., 2023; Ryu et al., 2025) utilize
LLMs as translators and delegate reasoning to external symbolic solvers. Recent work combines CoT
with symbolic reasoning via either selecting a single modality per instance (Xiong et al., 2024) or
augmenting one modality with the other—while keeping reasoning confined to symbolic (Xu et al.,
2024a) or natural language (Liu et al., 2024). These methods combine modalities only during
inference and ignore the synergy of different modalities during training, thus failing to fully
exploit the complementary strengths of different reasoning modalities.

This limitation contrasts sharply with human cognition: Humans naturally employ multiple reasoning
modalities, flexibly switching among natural language explanations, code-based procedural thinking,
and formal symbolic manipulation, both when learning complex logical skills and when solving
novel problems (Newell et al., 1972; Gentner, 1983; Larkin & Simon, 1987; Goldin, 1998). This
cognitive versatility, the ability to represent and process information in diverse formats, is crucial for
robust reasoning. Current LLMs, largely confined to single-modality training and inference, lack this

1We use the terms thought paradigm and reasoning modality interchangeably.
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Figure 1: (a) Qwen-2.5-7B-Instruct solves ≃20% of FOLIO and ≃35% of ProofWriter exclusively per paradigm.
(b) Code+NL+truth-table yields higher upper-bound coverage than code+NL alone (Xiong et al., 2024). (c) In
NL modes, invalid-converse (IC) and missing-branch (MB) errors comprise ≃66% of failures (CS: commonsense
injection; FM: factual misquote). Percentages sum to more than 100% because some cases exhibit multiple error
types. We provide illustrative examples in Appendix H.1

flexibility. It raises a critical question: Can LLMs achieve more robust and versatile logical reasoning
by explicitly learning to operate across multiple complementary reasoning modalities?

Addressing this question requires tackling two challenges: 1) It is still unclear which reasoning
modalities should be included; the selected modalities must be complementary to make joint learning
worthwhile. 2) Teaching an LLM with multiple modalities is non-trivial, as large aligned reasoning
trajectories are scarce. Without those high-quality reasoning trajectories, we cannot teach LLMs to
reason via multiple modalities. Our investigation reveals crucial insights for modality selection.

• Natural language bottleneck. Figure 1 (c) shows that nearly two thirds of CoT errors arise from
missing branches and invalid converse, i.e., poor exhaustive enumeration and complex inference
(See examples in Appendix H.1). Truth-table reasoning, which systematically lists all possibilities,
naturally complements this weakness; therefore, we incorporate a symbolic truth-table paradigm.

• Code–NL complementarity. Inspired by HybridMind (Yue et al., 2024; Xiong et al., 2024), where
they show preliminary results that a code paradigm could complement NL reasoning, we also
incorporate code as one reasoning modality into our framework.

• Paradigm overlap & uniqueness. Figure 1 (a-b) shows that 35.8% of ProofWriter items and
16.7% of FOLIO items are solved by exactly one paradigm, while the union of three reasoning
modalities covers up to 85% of all instances—evidence that combining NL, code, and truth-table
reasoning is necessary, outperforming the simple combination of code and NL (Xiong et al., 2024).

Building on these insights, we propose Mixture-of-Thought (MoT), a human-inspired framework that
enables LLMs to reason via three complementary reasoning modalities: NL, code, and symbolic; an
example is shown in table 1 to illustrate each modality. Notably, we introduce a new truth-table-based
symbolic reasoning where LLMs ground propositional variables, construct a partial truth table by
pruning assignments that violate any premise, and infer the final answer by checking the truth table.
Our MoT consists of two parts. One part is training: we propose a self-evolving MoT training
algorithm, which improves the model’s reasoning ability in each modality through joint iterative
optimization (Figure 2 (a)). Another part is inference, where we generate responses under each
modality and leverage a voting mechanism to produce the final answer (Figure 2 (b)). This simple
strategy allows the model to combine diverse perspectives and make robust predictions.

Empirically, we show that across three base models—Gemma-2-2B-IT, Gemma-2-9B-IT, and Qwen-
2.5-7B-Instruct—our MoT consistently surpasses the CoT baseline on ProofWriter (Tafjord et al.,
2021) and FOLIO (Han et al., 2024), with an average accuracy gain of up to +11.7pp. Notably, our
9B-parameter MoT matches the results of GPT-4 + Logic-LM on FOLIO. Additional analyses show
that 1) MoT training outperforms single-thought training; 2) Mixture-of-Thought sampling yields
a higher oracle upper bound than single-thought sampling under the same inference budget 3) The
gains grow with problem difficulty: MoT helps most on depth-5 and other harder problems; and 4) A
fine-grained error study reveals a key natural-language bottleneck, i.e., missing branches and frequent
invalid converse errors, while the truth-table paradigm help resolve some cases of exactly these types.

2 THE MIXTURE-OF-THOUGHT FRAMEWORK

In this section, we introduce 1) three complementary reasoning modalities for logical reasoning (Sec.
2.1); 2) our self-evolving training framework that jointly improves these reasoning modalities (Sec.
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Table 1: Illustration of the three complementary reasoning modalities, i.e., natural-language CoT, code-based
reasoning, and truth-table reasoning. We provide the corresponding outputs of LLMs in section G.

Premise: Peter Parker is either a superhero or a civilian. The Hulk wakes up when he is angry. If he wakes up, he will break a bridge. If a
destroyer breaks a bridge, Peter is not a civilian. Peter wears a uniform when he is a superhero. Thor is a god. A god is not a destroyer. Thor will
break a bridge when he is happy. If Thor is happy, the Hulk is angry.
Question: If Thor is happy, does Peter Parker wear a uniform? Options: (A) True (B) False (C) Uncertain

Natural Language Reasoning Code-Based Reasoning (Abstract) Truth Table Reasoning

<nl_cot>
Step 1: given premises ”If Thor is happy, the Hulk
is angry.” and ”The Hulk wakes up when he is an-
gry.”, we can know ”If Thor is happy, then hulk
wakes up.”
...
Step 5: given premise ”Peter Parker is either a
superhero or a civilian.” and derivation ”If Thor
is happy, then Peter Parker is not a civilian”, we
can know ”If Thor is happy, then Peter Parker is a
superhero.”
Step 6: given premise ”Peter Parker wears a uni-
form when he is a superhero.” and derivation ”If
Thor is happy, then Peter Parker is a superhero.”,
we can know ”If Thor is happy, then Peter Parker
wears a uniform”
<end_of_nl_cot>
<answer>
Answer: (A)
<end_of_answer>

<code>
class Hulk:

def __init__(self, angry): ...
def wakes_up(self): ...
def breaks_bridge(self): ...

class Thor:
def __init__(self, happy): ...
def breaks_bridge(self): ...

class PeterParker:
def __init__(self, is_superhero):

...
def wears_uniform(self): ...

def apply_premises(thor, hulk, peter):
...

def run_inference(thor, hulk, peter):
...

def check_conclusion(...): ...
thor = Thor(happy=True)
hulk = Hulk(angry=False)
peter = PeterParker(...)
result = check_conclusion(...)
<end_of_code>
<answer>Answer: (A)<end_of_answer>

<truth_table>
Let: T = Thor happy, H = Hulk angry, A = wakes
up, B = bridge breaks, C = Peter is civilian, S =
superhero, U = wears uniform.

Premises:
S ∨ C, H → A, A → B, T → H, T → B,
B → ¬C, S → U .

Logical Chain (assume T = True):
T ⇒ H ⇒ A ⇒ B
B ⇒ ¬C ⇒ C = False
S ∨ C ⇒ S = True ⇒ U = True

Truth Table:

T H A B C S U

True True True True False True True

<end_of_truth_table>
<answer>Answer: (A)<end_of_answer>

2.2); and 3) our mixture-of-thought inference strategy that combines diverse but complementary
reasoning paths to derive robust final predictions (Sec. 2.3).

2.1 HUMAN-INSPIRED COMPLEMENTARY REASONING MODALITIES

Drawing inspiration from human cognition and error analysis in Figure 1, we argue that no single
reasoning modality suffices for all logical challenges. Therefore, we equip a single model with
three complementary modalities: natural language CoT, code CoT, and truth table CoT. Specifically,
because natural-language CoT often misses branches or makes invalid-converse errors, we design
a truth-table approach that explicitly enumerates truth assignments and thus complements these
weaknesses. Table 1 illustrates how the three modalities solve a representative problem.

• Natural Language CoT: The model explains its reasoning in plain natural language, decomposing
the problem into step-by-step justifications. This format is flexible and interpretable.

• Code CoT: The model first transforms a logical problem to a PYTHON code and then derives the
answer based on the PYTHON code. We do not execute the code; instead, we treat it as a way to
describe logic in a structured form.

• Truth Table CoT: The model first explicitly generates a truth table by defining predicates based
on the premises and conclusion, then enumerating possible truth assignments, and finally checking
which ones satisfy the conclusion.

These complementary modalities are jointly exploited in our self-evolving training (Sec. 2.2) and
majority-vote inference (Sec. 2.3). We now detail the design of the Truth Table CoT approach.

Truth-Table CoT: Challenges and Design. Two main challenges arise when enabling LLMs
to reason with truth tables: 1) Exponential blow-up: the number of rows grows exponentially
with the propositional variables, easily exceeding the context window and compute budget; 2)
First-order grounding: practical tasks are given in first-order logic; one must ground variables, select
a finite predicate set, and still ensure that the resulting (partial) truth table remains tractable. To
address these challenges, we propose a two-step strategy: (i) grounding, which instantiates first-order
formulas into a finite set of propositional predicates (Clarke et al., 2001; Wittocx et al., 2010), and
(ii) reason to prune, which eliminates rows that violate any premise through reasoning via LLMs,
keeping partial truth table (see Table 1 and Appendix G.3). Finally, the LLMs derive the final
output with the following rule: True if every surviving assignment satisfies the conclusion, False
if none do, and Uncertain otherwise. Moreover, we assign modality-specific tags (e.g., <code> ...
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Figure 2: Illustration of our MoT Framework. (a) Training phase with three key steps: 1) Rationale
Generation where given an initial seed dataset, LLM generates rationales across reasoning modalities (NL,
Code, and Truth Table); 2) Quality Checking and Merging where generated rationales are checked for
correctness and format consistency, then merged into high-quality MoT training data; and 3) Finetuning where
the model is trained using the MoT data. These steps iteratively repeats, forming a self-evolving training cycle.
(b) Inference phase: the trained model generates outputs for each reasoning modality and applies majority
voting to yield the final prediction (e.g., A).

<end of code>) to explicitly indicate the format during training and inference. The prompts are
detailed in Appendix F.

2.2 SELF-EVOLVING MIXTURE-OF-THOUGHT TRAINING

Explicitly learning to reason across multiple complementary modalities, such as natural language,
code, and symbolic truth tables, is non-trivial. A key challenge lies in the lack of annotated reasoning
trajectories for each modality, especially for our newly introduced truth-table approach. Collecting
labeled CoT traces for all of these modalities is also costly and often infeasible. To address this, we
propose a self-evolving MoT training approach, which enables the model to operate across multiple
complementary reasoning modalities by iteratively learning from its own generated reasoning traces.

Given the policy M , our goal is to maximize the following objective across the problems x and
modalities T ∈ {NL,Code,TruthTable} :

E (xi,yi)∼D, t∼T , (zt
i ,ŷ

t
i)∼M(·|xi,t,Et)

[
R(zti , ŷ

t
i , yi; t)

]
, (1)

where D = {(xi, yi)}Di=1 is the dataset with problem xi and corresponding ground-truth yi; zti and ŷti
be model-generated reasoning trace/answer with modality t for i-th problem. To elicit the reasoning
modality t, we design a small few-shot example set Et for each t, and prepend the exemplar from
the set to each problem xi. Conditioned on (xi, t, Et), zi is sampled from policy M , followed by the
prediction of the final answer ŷi. R is the reward function and the design is detailed in the following.

Reward Function R. In preliminary experiments, we observe mismatch between tags and reasoning
traces. This error leads to performance degradation, as different modalities negatively interfere with
each other. Notably, this error is especially prevalent in the code modality. We define the reward as:

R(z, ŷ, y; t) =

{
1, y = ŷ ∧ isValid(z, t),

0, otherwise,
(2)

where the isValid function checks the format consistency by two standards: a) each trace should
correctly include its modality’s structural tag (e.g., <end of nl cot> for nl) and b) for code traces,
ensuring the presence of both a valid function definition (def) and a class definition (class);
Following (Zelikman et al., 2022), we also filter out the traces with incorrect answer. We do not
perform step-level verification of intermediate reasoning, as this would require additional external
tools, e.g., LLMs judge (Zheng et al., 2023) and greatly slow down training. Instead, we find that
simple checks (e.g., modality tags, basic code structures) already yield significant performance gains.

Training. We conduct multiple rounds of self-evolving training until performance saturates. Mn

is used to denote the policy in the n-th round with trainable parameters θn. Leveraging the

4
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policy-gradient (Sutton et al., 1999) trick, we can easily obtain the gradient of eq. (1) as
∇J = E (xi,yi)∼D,t∼T

(zt
i ,ŷ

t
i)∼Mn−1(·|xi,t,Et)

[
R(zti , ŷ

t
i , yi; t)∇θn−1

logMn−1(z
t
i , ŷ

t
i | xi, t, Et)

]
. (3)

Algorithm 1 Self-Evolving MoT Training
Input: an LLM M ; dataset D = {(xi, yi)}Di=1;
reasoning modality T = {NL,Code,TruthTable},
Sampling times S, few-shot examples E =
{ENL, ECode, ETruthTable}
Output: Mixture-of-Thought enhanced model MN

1: M0 ←M
2: for n = 1 to N do
3: Initialize Dgen

all,n ← ∅; D
gen
NL,n ← ∅; D

gen
Code,n ←

∅; Dgen
TruthTable,n ← ∅

4: for all t ∈ T do
5: for i = 1 to D do
6: if n = 1 then
7: zti , ŷ

t
i ←Mn−1(xi; t; Et;S)

8: else
9: zti , ŷ

t
i ←Mn−1(xi; t;S)

10: end if
11: if R(zti , ŷ

t
i , yi; t)=1 then

12: Dgen
t,n ← D

gen
t,n ∪ {(xi, z

t
i , yi)}

13: end if
14: end for
15: end for
16: Dgen

all,n ← Mix(Dgen
NL,n,D

gen
Code,n,D

gen
TruthTable,n)

17: Mn ← Train(Mn−1,Dgen
all,n)

18: end for
19: return MN

In our current setting, the reward is binary
(Eq. 2). This reduces the framework to a
degenerate case of RL that can be equiva-
lently seen as rejection sampling plus su-
pervised finetuning, closely related to self-
evolving or STaR training (Zelikman et al.,
2022). Algorithm 1 and Figure 2 illus-
trate our multi-round training procedure.
At round n, we prompt the model Mn−1

to generate a reasoning trace zti and a pre-
dicted answer ŷti for each xi across all rea-
soning modalities t ∈ T (Line 4-9). It is
worth noting that we use few-shot prompt-
ing only in the first round (Line 7); once
the model has bootstrapped its own reason-
ing ability, all subsequent rounds run in
zero-shot mode without additional exem-
plars (Line 9). We retain a sample only
if it passes the quality filter (Line 11-13)
and merge all surviving traces into Dgen

all,n
(Line 16). The updated model Mn, which
is finetuned from Mn−1 on the filtered
dataset Dgen

all,n (Line 17). Unlike (Zelikman
et al., 2022), which restarts from the base
model each round, our training proceeds
on-policy—learning from its own validated
outputs. We demonstrate the effectiveness
of this change in Appendix E.3.

2.3 MIXTURE-OF-THOUGHT INFERENCE

To leverage the complementary strengths of three modalities, for each problem, we have three
outputs corresponding to three modalities elicited by tagging, i.e., <nl cot>, <code>, and
<truth table>, then we apply majority voting over outputs to decide the final answer. In
case of ties, we randomly pick up the answer from one reasoning modality. We further explore the
test-time scaling of MoT, and analyze its effectiveness in section 3.4.

3 EMPIRICAL EVALUATIONS

3.1 EXPERIMENTAL SETUPS

Models. To validate the effectiveness of our MoT, we select three widely-used LLMs across
different sizes and model families: Qwen-2.5-7B-Instruct (Yang et al., 2024) and Gemma-2-2B-
It/Gemma-2-9B-It (Team et al., 2024) as base models.

Baselines. Our approach is a kind of chain-of-thought approach. To this end, we select baselines
from two folds: 1) neuro-symbolic approach and 2) chain-of-though approach. In the first category,
we select Logic-LM (Pan et al., 2023) as a comparison. For the CoT approach, we select CoT (Wei
et al., 2022) as a comparison. Since these approaches heavily rely on strong instruction-following
capabilities, we directly cite their performance results from the original papers based on GPT-4.

Dataset. We select two logical reasoning benchmarks: ProofWriter (Tafjord et al., 2021) and
FOLIO (Han et al., 2024) for evaluation. For ProofWriter, we select the hardest subset, which consists
of 600 questions with reasoning depths of 5, the same as Pan et al. (2023). FOLIO is recognized for
its high-quality export-made realistic test cases with more diverse reasoning depths ranging from 1-8.
It consists of 203 questions. We utilize accuracy and pass@k as metrics.
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Table 2: Accuracy (%) on the FOLIO and ProofWriter benchmarks. Our MoT training consistently improves
the performance of each base model. Applying MoT inference further enhances performance across both
benchmarks and all models. @3 denotes Self-Consistency approach (Wang et al., 2022) with three votes. We
provide full results of extra baselines (e.g., LoT) in Appendix E.1 & E.2.

Model Method Type Reasoning Modality FOLIO ProofWriter Avg

(A) Prior SOTA Approach

GPT-4 Logic-LM - 78.9 79.7 79.3
CoT (Vanilla) - 70.6 68.1 69.4

(B) Base Model: Gemma-2-2B-It
Gemma-2-2B-It (3-Shot) Single-Thought Best (nl) 42.4 39.8 41.1
Gemma-2-2B-It @ 3 (3-Shot) Single-Thought Best (nl) 45.3 38.8 42.1
MoT (0-Shot) Single-Thought Best 61.1 62.7 61.9
MoT (0-Shot) Mixture-of-Thought All 62.6 65.0 63.8

(C) Base Model: Gemma-2-9B-It
Gemma-2-9B-It (3-shot) Single-Thought Best (nl) 69.5 61.2 65.4
Gemma-2-9B-It @ 3 (3-shot) Single-Thought Best (nl) 72.9 62.7 67.8
MoT (0-shot) Single-Thought Best 76.9 69.5 73.2
MoT (0-shot) Mixture-of-Thought All 78.9 70.7 74.8

(D) Base Model: Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct (3-shot) Single-Thought Best (nl) 71.9 60.5 66.2
Qwen2.5-7B-Instruct @ 3 (3-shot) Single-Thought Best (nl) 73.4 65.8 69.6
MoT (0-shot) Single-Thought Best 75.9 69.2 72.6
MoT (0-shot) Mixture-of-Thought All 78.3 71.8 75.1

Training/Inference Details. For each dataset, we collect 1000 training samples from the training
set. We perform 2 or 3 rounds of self-evolving training. In each round, the model is fine-tuned for two
epochs using a learning rate of 2e-5 and a batch size of 128. During the trajectory collection phase, the
temperature, max tokens, and sample count are set to 1.0, 2048, and 10, respectively. Notably, we use
a high temperature (1.0) to encourage diverse trajectories. We sample each problem 10 times during
trajectory collection to maximize coverage. Of all the generated traces, only the first single trajectory
that satisfies our quality criteria is retained for the final training set. For evaluation, the temperature
and max tokens are configured to 0.7 and 2048, respectively. We do not perform hyperparameter
tuning, so further optimization may yield even better performance. We run all experiments on 4 H100
GPUs. We employ vLLM engine (Kwon et al., 2023) to improve inference efficiency.

3.2 MAIN RESULTS

Table 2 displays the results on FOLIO and ProofWriter benchmarks. First, our Mixture-of-Thought
(MoT) training with Single-Thought inference outperforms the corresponding base models by an
average of 11.7pp (from 41.1% to 61.9% for Gemma-2-2b-It, from 65.4% to 73.2% for Gemma-2-
9b-It and from 66.2% to 72.6% for Qwen-2.5-7b-Instruct), demonstrating the effectiveness of our
training strategy. When we further apply MoT inference, the MoT-trained model yields consistent
additional gains of up to 2.0pp. Notably, our 9B model achieves 78.9% accuracy on FOLIO, matching
the performance of Logic-LM, which uses an external solver and focuses on close-sourced SoTA
LLMs. We provide a detailed performance of both base models and the corresponding MoT models,
as well as stronger baselines, in Appendix E.1 & E.2.

3.3 MIXTURE-OF-THOUGHT TRAINING VS. SINGLE-THOUGHT TRAINING

In this section, we try to answer the key question: Does MoT training truly offer benefits over
Single-Thought training? We have two baselines: 1) models trained on single-thought data and 2)
models trained on partially MoT data, e.g., Code + NL. We evaluate both in-mode accuracy and
cross-mode generalization. To enhance model’s format following ability, we use 3-shot prompting to
make model output the specific reasoning modality. Table 3 illustrates the results on FOLIO.

SoT vs. MoT. First, MoT training achieves the highest average accuracy across all three modalities,
beating single-thought trained model, which indicates that our MoT training can jointly improve
reasoning ability across all modalities. Second, MoT training can further push the performance
boundary for each reasoning modality. For example, by using two of the three modalities, i.e., Code
and NL CoT, the trained models outperform all single-thought baselines. This clearly indicates
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Table 3: Accuracy (%) of different training strategies across reasoning modalities (Same Round). Shaded cells
denote in-domain evaluation, i.e., testing on the same modalities during training. Avg. refers to the average
performance using three modalities while Ensemble means the majority vote results on three modalities. Values
underlined indicate that the model did not follow the instruction (e.g., when asked to use Code, it still used NL).

Training Approach Param Data Code NL CoT Truth Table Avg. Ensemble

w/o Training

- 9B N/A 56.7 69.5 63.6 63.3 66.0

Single-Thought Training

Single-Thought (Code) 9B - 61.6 59.1 64.0 61.6 70.4
Single-Thought (NL CoT) 9B - 52.7 73.9 69.0 65.2 73.4
Single-Thought (Truth Table) 9B - 53.2 69.0 71.9 64.7 71.9
Single-Thought (Three Models Combined) 3x9B ∼ 3× 61.6 73.9 71.9 69.1 77.3

Mixture-of-Thought Training
Mixture-of-Thought (NL CoT + Truth Table) 9B ∼ 2× 65.5 72.9 69.5 69.3 72.9
Mixture-of-Thought (Truth Table + Code) 9B ∼ 2× 70.0 71.4 62.1 67.8 72.4
Mixture-of-Thought (Code + NL CoT) 9B ∼ 2× 70.9 70.0 74.4 71.8 74.9
Mixture-of-Thought (Default, All) 9B ∼ 3× 73.9 76.9 70.0 73.6 78.9
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Figure 3: Pass@k vs. Sample Budget on FOLIO. (a) MoT-trained model with MoT sampling outperforms the
base model (Gemma-2-9b-It) with SoT sampling. (b) Within the MoT-trained model, MoT sampling yields
higher Pass@k than SoT sampling (NL CoT, Truth Table, Code).

synergy between these three complementary modalities during training. Third, deploying one
model for each modality is resource-expensive. In contrast, MoT training enables a single model to
seamlessly switch among reasoning modalities based on prompts.

Partial MoT vs. MoT. Our default Mixture-of-Thought setting yields the best average performance
and achieves the best accuracy by using two combined reasoning paradigms, which indicates that all
the modalities are useful. This superiority is further reflected in the ensemble accuracy, where MoT
achieves 78.9%. We provide more evidence in Sec. 4.2 and Appendix E.7.

Additional Ablations for MoT Training. We further give more analysis to show 1) robust and
optimal design of the MoT framework (Appendix E.3); 2) MoT training is better than single-thought
training with distillation data (Appendix E.4) and 3) MoT data outperform an equivalent amount of
diverse single-thought CoT data (Appendix E.5). These results underscore the practical and broader
value of our MoT framework.

3.4 TEST-TIME SCALING ACROSS REASONING MODALITIES

We investigate how different single-thought and MoT inference scale with an increased test-time
budget. To do this, we first generate 128 responses from each model with each modality. Then we
evaluate two sampling strategies: 1) Single-Thought Sampling: We randomly select k responses from
the 128 generated responses. and 2) MoT Sampling: Assuming there are NT reasoning modalities,
we sample k

NT
responses from each modality (so that the total number of responses is k). We choose

k ranging from 3 to 24 and have 10 runs for each setting.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MoT framework vs. Single-thought Baseline. We compare our Gemma-2-9b-It-MoT with
Gemma-2-9b-It. Figure 3 (a) shows our MoT model with MoT sampling consistently outperforms
Gemma-2-9b-It with single-thought sampling. When the sample budget is less than 20, the perfor-
mance gap is significant. It suggests that our MoT approach significantly increases the response
diversity, leading to a more efficient use of inference compute. We observe a consistent phenomenon
in terms of averaged accuracy (Appendix E.6, Figure 6).

Comparison of different modalities. We further plot the scaling curves of our MoT model (based
on Gemma-2-9B-It) under three reasoning modalities in Figure 3 (b). Here are insights: 1) While NL
significantly outperforms the truth-table paradigm at low k, their theoretical upper bounds converge
as k increases; 2) The code paradigm exhibits the lowest upper bound among the three; 3) Across
all values of k, our MoT framework consistently achieves the highest pass@k and attains the largest
upper bound, indicating the largest potential of MoT trained models in test-time scaling.

4 FURTHER ANALYSIS

4.1 MIXTURE-OF-THOUGHT INFERENCE BENEFITS MORE FOR DIFFICULT PROBLEMS

1-5 5–8

60

70

80

90

MoT benefits more

for deeper reasoning.

86.4

67.0

80.6

67.0

78.6

61.0

85.4

73.0

Reasoning Depth

A
cc

ur
ac

y
(%

)

NL Code Truth Table MoT

Figure 4: Performance comparison of different
thought paradigms across reasoning depths. On FO-
LIO, MoT inference exhibits better performance on
difficult problems.

We further identify the types of problems that ben-
efit most from the proposed MoT inference ap-
proach. Specifically, we focus on problem diffi-
culty, which can be effectively measured by the
depth of reasoning. We conduct analysis on FOLIO
and ProverQA (Qi et al., 2025). Figure 4 shows
the performance of our MoT model with different
reasoning modalities across reasoning depths.

We can see that MoT inference benefits more in
solving more difficult logical problems. Our MoT
model with MoT inference achieves an accuracy of
73.0% on challenging logical tasks with reasoning
depths ranging from 5 to 8, outperforming each
modality by a significant margin, with an average
improvement of 9% points. However, such per-
formance gains turn into slight degradation when
dealing with easy problems. Similar phenomenon can be observed in ProverQA (See Figure 7 ).

4.2 COMPLEMENTARY, UNIQUENESS AND ERROR ANALYSIS

In this section, we quantify the complementary and uniqueness of our reasoning modalities and the
training dynamics of our self-evolving MoT training. We focus on three metrics: 1) Unique coverage,
i.e., examples solved by exactly one modality; 2) Complementarity coverage, i.e., examples solved
by at least two modalities; and 3) Oracle upper bound, i.e., examples solved by at least one modality.

Figure 1(a),(b) shows each modality’s solve rate and oracle upper bound on ProofWriter and FOLIO.
We further give a detailed unique and complementarity coverage and oracle upper bound in Table
8 in the Appendix. First, although our approach slightly reduces unique coverage compared to the
baseline, both methods still achieve strong performance in this metric. Second, in terms of comple-
mentarity, our method increases the number of examples solved by multiple modalities—particularly
on ProofWriter—demonstrating enhanced synergy. Third, by incorporating the truth-table paradigm
alongside Code and NL, our model attains a higher oracle upper bound than prior work using only
Code+NL, underscoring the benefit and necessity of the truth-table paradigm.

Bottleneck of NL reasoning modality. We perform a human evaluation of model outputs generated
by natural language reasoning on the FOLIO dataset. We identify two major error patterns in the
incorrectly solved cases: 1) failure to consider multiple cases when handling disjunction operations,
such as ”either/or”; 2) failure to utilize the transposition inference rule. For example, given A →
B, the model might sometimes incorrectly produce ¬A → ¬B. Motivated by these observations and
error types identified in prior work (Han et al., 2024; Olausson et al., 2023), we define four error
categories: (i) invalid converse; (ii) missing branch; (iii) factual misquote; and (iv) incorporation of

8
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commonsense knowledge and design an automatic pipeline to assess model rationales. Figure 1(c)
presents the results, showing that invalid converse and missing-branch errors together account for
nearly 66% of all errors. These findings underscore the value of the Truth Table thought paradigm.

Scenarios that Truth Table excels in. We manually analyze all 13 examples (Table 8) that were
solved only using the truth table paradigm and find that 1) 5 out of 13 problems require transposition;
2) 5 out of 13 problems contain disjunction or similar operations (e.g., ’Rock can fly, or is a bird,
or cannot breathe’) and 3) 2 out of 13 problems contain both. This indicates that Truth Table may
indeed complement the NL paradigm to some extent. We give two examples in Appendix H.2.

5 RELATED WORK

LLMs for Symbolic Reasoning. Prior work has explored adapting LLMs to symbolic reasoning.
One common approach treats LLMs as nl-to-fol translators, and then use an external symbolic
prover to derive the final answer (Pan et al., 2023; Olausson et al., 2023; Callewaert et al., 2025;
Ryu et al., 2025). While effective, this pipeline largely bypasses the model’s internal reasoning
capabilities, which our work seeks to fully leverage. To alleviate this problem, another line of work
seeks to directly leverage LLMs’ reasoning ability via CoT prompting (Wei et al., 2022). However,
natural language remains inherently flexible and sometimes insufficient for structured reasoning. To
bridge the gap between flexibility and formal rigor, recent work has explored combining natural and
symbolic reasoning (Xu et al., 2024a; Liu et al., 2024; Xiong et al., 2024). These approaches often
either rely on a primary reasoning modality (e.g., symbolic or NL), augmented with auxiliary signals
from other representations (Xu et al., 2024a; Liu et al., 2024) or select one from multiple reasoning
modalities (Xiong et al., 2024) at inference time. In contrast, our work 1) explicitly defines three
kinds of reasoning paradigms covering natural language, symbolic and code-based reasoning. 2) goes
beyond modality selection by jointly learning and inferring with all modalities, via a self-evolving
MoT training and inference framework.

Encouraging Diverse Thinking in Chain-of-Thoughts. Previous work diversifies the CoT
to further improve reasoning performance. A common strategy is to sample multiple outputs
with higher temperatures (Wang et al., 2022; Brown et al., 2024), but this cannot guarantee true
diversity (Wang et al., 2025). To address this, some work uses varied prompts—by task type (Wang
et al., 2025), difficulty (Li et al., 2022), or strategy (Li et al., 2023; He et al., 2024)—and agent-based
prompting via multi-agent debate (Liang et al., 2023; Hegazy, 2024) or self-reflection (Zhang
et al., 2024) to elicit diverse CoTs. These methods diversify within one modality (NL or code).
In contrast, we systematically introduce modality-level diversity—truth table, natural language,
and code reasoning—which better aligns with the structural requirements of symbolic tasks and
complements existing approaches. Recent work has also explored training smaller models on diverse
CoTs generated by large LLMs (Ho et al., 2022; Puerto et al., 2024), though these approaches
are limited to single-modality supervision and rely on external teacher models. In contrast, our
method introduces modality-level diversity and requires no external supervision. We demonstrate
that inter-modality diversity yields greater benefits for self-training than intra-modality diversity in
Appendix E.5. Concurrent to our work, Chain-of-Reasoning (CoR) (Yu et al., 2025) also studies
synergy of multiple reasoning modalities. However, CoR focuses on sequential synergy and targets
mathematical reasoning. In contrast, our approach (i) focuses on logical reasoning and introduces
truth table–based reasoning, (ii) develops a self-evolving Mixture-of-Thought training algorithm to
bootstrap multi-modality capabilities, and (iii) exploits parallel synergy across modalities during both
training and inference.

6 CONCLUSION

We presented Mixture-of-Thought (MoT), a unified framework for improving logical reasoning
by enabling LLMs to reason through natural language, code-based, and symbolic (truth table)
paradigms within a single system. Unlike previous work, our approach combines a self-evolving
training process that fosters cross-paradigm synergy with an inference-time voting mechanism that
aggregates complementary reasoning strategies. Extensive experiments on two challenging logical
reasoning benchmarks, FOLIO and ProofWriter, demonstrate that MoT substantially outperforms
strong baselines, particularly on complex, high-depth problems.
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ETHICS STATEMENT

Our Mixture-of-Thought (MoT) framework is designed to improve logical reasoning by integrating
multiple complementary modalities (natural language, code, truth tables). We do not foresee any
risks related to ethics issues.

REPRODUCIBILITY STATEMENT

We include detailed information about our approach in Section 2 and include experimental settings in
Section 3 and Appendix D. We have give details in Section 3 and Appendix D to reproduce our results
and we will open-source the code as soon as we collect our scripts for an easy way to reproduce our
results.

REFERENCES

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
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A THE USE OF LLMS

We only use LLMs to polish the paper writing.

B LIMITATIONS AND FUTURE WORK

While our Mixture-of-Thought (MoT) framework demonstrates strong performance on logical rea-
soning tasks, we have not evaluated its effectiveness on other types of reasoning tasks, such as
mathematical or commonsense reasoning. Additionally, our test-time scaling experiments suggest
promising directions—such as dynamic mixture-of-thought sampling under budget constraints—but
our current work still has not fully explored the benefits of complementary reasoning modalities.
Further exploring these aspects could be important to further push the performance boundary of
open-source models on reasoning.

We plan to further explore them in the two aspects:

• Extended to boarder tasks: currently our work cannot directly applied to reasoning tasks out of
logical reasoning. This is because the reasoning modality we define in our work is specific for
logical reasoning, e.g., Truth Table. Therefore, we plan to define more general but complementary
reasoning modality that can be applied to more general broader of reasoning tasks and further
show how our MoT framework can further improve performance of reasoning tasks beyond logical
reasoning.

• Adaptive parallel thinking via mixture-of-thoughts. An interesting question is How can we fully
leverage the benefits of complementary reasoning modalities during inference? Recent work
has shown that reinforcement learning can instill parallel thinking in LLMs (Zheng et al., 2025),
enabling models to dynamically activate and coordinate multiple reasoning paths. This opens
up a natural opportunity to integrate such adaptive parallel thinking with our MoT framework:
treating each reasoning modality as an atomic unit, and allowing the model to dynamically trigger,
combine, or prune modalities during inference. We believe that this unified view, blending MoT’s
modality-level diversity with dynamic parallelism, can lead to more flexible and efficient reasoning
systems.

C BROADER RELATED WORK: SELF-EVOLVING TRAINING.

Self-evolving training techniques have been widely adopted to improve reasoning ability in LLMs,
especially when there is lack of reasoning trajectories. Notably, Zelikman et al. (2022) propose a
bootstrapping framework that iteratively generates and verifies reasoning trajectories based on the
derived final answer, then fine-tunes the model on these self-labeled examples to improve reasoning
performance with minimal human supervision. Following this idea, several works adapt self-evolving
training to a wider range of tasks (Hosseini et al., 2024; Xiong et al., 2024; Zelikman et al., 2024b;
Wang et al., 2024; Lin et al., 2024; Zelikman et al., 2024a; Poesia et al., 2024; Guan et al., 2025;
Li et al., 2025). Additionally, researchers also explore improving the high-quality of rationales
during STaR algorithm (Poesia et al., 2024; Guan et al., 2025; PENG et al., 2025), incorporating
techniques such as formal verification, monte carlo tree search, and abstract-to-concrete prompting.
While previous work primarily focuses on generating higher-quality reasoning paths within a single
modality, our work explores a complementary direction: how to jointly evolve and coordinate
reasoning across multiple thought paradigms.

D DETAILED EXPERIMENTAL SETTINGS

D.1 DATASETS

In this work, we adopt three logical reasoning datasets: 1) FOLIO (Han et al., 2024), 2)
ProofWriter (Tafjord et al., 2021), and 3) ProverQA (Qi et al., 2025), to evaluate the effective-
ness of our MoT framework.

FOLIO (Han et al., 2024). FOLIO provides both the training and validation subsets, consisting of
1003 and 203 samples, respectively. There are two subsets with different difficulties: 1) HybLogic:
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contains 100 complex logical problems (5 – 8 reasoning steps) and 2) WikiLogic: contains 103
simper logical problems (1 – 5 reasoning steps). In this work, we sample 1000 training samples from
the FOLIO training set as seed dataset for our self-evovling MoT training and evaluate both baselines
and our trained model on the FOLIO validation set.

ProofWriter (Tafjord et al., 2021). ProofWriter is a synthetic dataset designed for evaluating the
logical reasoning abilities of language models. It consists of multiple subsets, each containing logical
reasoning problems of varying reasoning depths—from depth 0 (direct inference) up to depth 5
(requiring multi-step logical deductions). Following Pan et al. (2023), we select the most challenging
subset (reasoning depth 5) to construct our training and test data. Specifically, we sample 1,000
instances from the training set provided by Pan et al. (2023) as our training data and adopt their
original test set directly for fair evaluation.

ProverQA (Qi et al., 2025). ProverQA is a recently proposed logical reasoning benchmark, notable
for its large scale, high quality, and diversity. It consists of three subsets, each corresponding to a
different reasoning difficulty level (i.e., reasoning depth). We select these subsets to evaluate the
performance of our MoT framework across varying levels of reasoning complexity.

D.2 TRAINING DETAILS

We conduct all experiments on 4 H100 GPUs with Alignment Handbook (Tunstall et al.). For each
dataset, we sample 1,000 training examples and perform 2–3 rounds of self-evolving training. In each
round, the model is fine-tuned for 2 epochs with a learning rate of 2e-5 and a batch size of 128. We do
not perform hyperparameter tuning. Further tuning may lead to better performance. All experiments
are run with a fixed seed, i.e., 42, for reproducibility.

D.3 INFERENCE DETAILS

We employ vLLM (Kwon et al., 2023) for efficient inference. During trajectory collection, we
generate 10 reasoning traces per example using temperature 1.0, max tokens 2048, and sampling
count 10. To maximize coverage while ensuring quality, we retain only the first generated trace that
passes our quality check. For evaluation, we set the temperature to 0.7 and max tokens to 2048. All
experiments are run with a fixed seed, i.e., 42, for reproducibility.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EVALUATING LLM PERFORMANCE ACROSS REASONING MODALITIES ON FOLIO AND
PROOFWRITER

Table 4: Performance of three models across reasoning modalities on FOLIO and ProofWriter.

Model FOLIO ProofWriter

NL Code Truth Table NL Code Truth Table

Gemma-2-2B-It 42.4 38.4 36.5 39.8 40.8 37.5
+ MoT training 61.1 (18.7↑) 61.1 (22.7↑) 58.6 (22.1↑) 62.7 (22.9↑) 61.7 (20.9↑) 60.2 (22.7↑)

Gemma-2-9B-It 69.5 56.7 63.6 61.2 39.5 55.8
+ MoT training 76.9 (7.4↑) 73.9 (17.2↑) 70.0 (6.4↑) 68.5 (7.3↑) 69.5 (30.0↑) 66.7 (10.9↑)

Qwen-2.5-7B-Instruct 71.9 62.1 69.0 60.5 42.3 53.0
+ MoT training 75.9 (4.0↑) 68.5 (6.4↑) 71.9 (2.9↑) 69.2 (8.7↑) 66.7 (24.4↑) 64.3 (11.3↑)

Table 4 displays detailed results of baselines across reasoning modalities on FOLIO and ProofWriter.
We can observe that LLMs owns uneven ability across these reasoning modalities. This also highlights
the necessary of our self-evolving MoT training, which can equip LLMs with three complementary
reasoning modalities. After self-evolving MoT training, all modalities show joint improvements. This
effect is especially significant in smaller models, i.e., Gemma-2-2B-It achieves up to a more than
20% increase in accuracy on average.
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E.2 COMPARISON WITH MORE BASELINES ON FOLIO AND PROOFWRITER

Table 5: Comparison with more baselines on FOLIO and ProofWriter

Method Base Model FOLIO (Acc %) ProofWriter (Acc %)
HybridMind (Xiong et al., 2024) GPT-3.5 76.6 –
LINC (Olausson et al., 2023) GPT-4 72.5 –
Symbolic CoT (Xu et al., 2024b) GPT-4 83.3 82.5
Logic-of-Thoughts @ 5 GPT-3.5 81.5 65.9
Logic-of-Thoughts @ 5 GPT-4 88.2 72.0
MoT Gemma-2-2b-It 62.6 65.0
MoT Gemma-2-9b-It 78.9 70.7
MoT Qwen2.5-7B-Instruct 78.3 71.8

Table 5 presents a comparison between our approach and prior state-of-the-art systems. It demon-
strates that our open-source MoT models nearly match the performance of leading closed-source
prompting methods (e.g., GPT-3.5 and GPT-4). This indicates that enabling LLMs to learn comple-
mentary reasoning modalities is a promising direction.

Table 6: Ablation studies on (1) policy strategy; and (2) mixing strategy.

Ablation Setting FOLIO Accuracy (%)

NL Code Truth Table MoT

1. Policy Strategy Off-policy MoT 55.2 54.7 53.7 56.7
On-policy MoT (default) 61.1 61.1 58.6 62.6

2. Mixing Strategy Random single-modality per question 49.8 50.3 48.3 53.7
Direct mixing (default) 61.1 61.1 58.6 62.6

E.3 ABLATION STUDIES

We perform ablation studies on three core components: 1) policy strategy, i.e., on-policy vs. off-
policy (Zelikman et al., 2022) and 2) mixing approach, i.e., direct mixture vs. mixture by unique
conclusion (randomly select single-modality per question).

Table 6 reports FOLIO accuracies under each setting. We make two key observations:

• On-policy training yields consistent gains. Switching from off-policy to on-policy increases
single-modality CoT accuracy by approximately 5–6 pp (e.g., NL CoT from 55.2% to 61.1%) and
raises MoT’s final accuracy from 56.7% to 62.6%. This demonstrates the importance of updating
the model with its most recent outputs.

• Direct mixing outperforms random single-modality sampling. Presenting all three modalities
together boosts accuracy by 8–10 pp compared to randomly picking one modality per question
(MoT: 62.6% vs. 53.7%). This indicates that joint exposure to multiple modalities provides stronger
complementary signals than isolated examples.

E.4 IMPACT OF QUALITY OF INITIAL TRAINING DATA: DISTILLATION + SINGLE-MODAL
TRAINING VS. RAW DATA + MOT TRAINING

Intuitively, the first-round data are crucial and have a strong impact on the efficacy of self-evolving
training. Therefore, we are interested in the following question: Can self-evolving single-thought
training enhanced by first-round distillation outperform our self-evolving mixture-of-thought training
without any distillation? To answer this question, we compare the following settings: 1) Self-evolving
single-thought (nl) training but with distillation data from o4-mini for first round training, which
can provide a better initialization; 2) our MoT training without any distillation data; and 3) Self-
evolving single-thought (nl) training without any distillation data. Figure 5 displays the results of
Gemma-2-2b-It on FOLIO benchmark.

The key observations are: adding distillation data from stronger LLMs is beneficial for improving
performance and convergence rate (blue line vs. orange line), but still lags behind our self-evolving
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Figure 5: Accuracy (%) over three self-evolving rounds on the FOLIO benchmark for: distilled
NL-CoT (first-round only), raw NL-CoT (no distillation), and MoT (no distillation). The performance
is evaluated with NL-based reasoning.

MoT training (blue line vs. green line). This suggests the advantages of our self-evolving MoT
training: 1) It requires no reliance on stronger—often more expensive—LLMs; 2) It provides a higher
upper bound accuracy.

E.5 FINETUNING WITH DIVERSE SINGLE-MODALITY COT VS. FINETUNING WITH MOT

Ho et al. (2022); Puerto et al. (2024) have explored that finetuning LLMs with diverse CoT can further
improve the performance. A natural question then is: given a fixed budget of training examples,
which strategy yields better results? (1) self-training with 3N natural-language CoT samples, or (2)
self-training with a total of 3N samples composed of N examples from each of three modalities (NL,
Code, Truth-Table)?

We consider two settings to answer this question: 1) Self-evolving training with 3N natural-language
CoT samples for 2 epochs per round over 3 rounds. We sample 10 reasoning traces per question with
temperature of 1.0 and keep the 3 reasoning traces that satisfy our filtering criteria; 2) Self-evolving
training with a total of 3N samples comprising N examples from each of the three modalities (NL,
Code, Truth-Table) for 2 epochs per round over 3 rounds. We evaluate those trained model with
natural language modality on FOLIO dataset.

Table 7: Accuracy (%) of Gemma-2-2b-It under three self-evolving regimes, with budgets of N or
3N training samples. The accuracy is evaluated with NL-based reasoning on FOLIO benchmark.
We can see self-evolving training with MoT achieves the best accuracy, demonstrating the benefit of
modality-level diversity.

# Setting Training Samples Accuracy (%)
1 NL CoT N 54.7
2 NL CoT 3N 57.1
3 MoT data 3N 61.1

Table 7 shows the results. We can have the following observations: 1) finetuning with diverse NL
CoT can indeed improve the performance (#1 vs. #2), which is consistent with findings from Ho et al.
(2022); Puerto et al. (2024). 2) Finetuning with MoT data is more efficient than finetuning with same
amount of diverse NL CoT data (#2 vs. #3). This indicates that the diversity of single-modality CoT
data obtained by sampling with high temperature is not sufficient. By contrast, our MoT data, which
leverages the complementarity of truth table, code and nl, can produce more diversity, and therefore
improve the training efficiency.
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E.6 ADDITIONAL RESULTS ON TEST-TIME SCALING ACROSS REASONING MODALITIES

MoT With Different Thought Paradigms Table 3 (b) illustrates the scaling behavior of our MoT
model across different thought paradigms under varying sample budgets. We observe that code-based
reasoning consistently lags behind all other paradigms, indicating its relatively poor performance and
limited scalability.

Another interesting phenomenon is that natural language-based reasoning achieves relatively strong
performance when the sample budget is small (e.g., k < 20), outperforming the truth table-based
paradigm in this regime. However, as the sample budget increases (e.g., k > 20), truth table reasoning
begins to match even outperform NL-based reasoning—highlighting its greater potential when more
inference resources are available.

Notably, our MoT (ALL) approach offers a favorable trade-off between these two paradigms: it
achieves strong performance under low-budget conditions, while delivering better performance when
the sample budget is large.
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Figure 6: Accuracy vs. Sample Budget for dif-
ferent modes

Accuracy vs. Sample Budget Figure 6 presents
accuracy-vs-sample-budget curves across different
reasoning paradigms. We find that our MoT (ALL)
model—trained and inferred under the mixture-of-
thought setting—consistently achieves the highest
accuracy, outperforming all other approaches re-
gardless of budget size. Additionally, our MoT
model can benefit better from increased sample bud-
get compared wiht all other approaches. Among
individual paradigms, NL-CoT performs best un-
der majority voting, while truth table reasoning is
more stable but shows limited improvement with
increased budget. Code-based reasoning remains
the least effective. These results reinforce the value
of our MoT framework.

E.7 DETAILED COMPLEMENTARY, UNIQUENESS ANALYSIS

Table 8: Prediction Category Distribu-
tion on Two Benchmarks (Qwen-2.5-7B-
Instruct vs Qwen-2.5-7B-Instruct-MoT).

Category ProofWriter FOLIO
Baseline Our Baseline Our

Single-paradigm only
Only NL correct 109 55 18 8
Only Code correct 40 32 5 6
Only TT correct 66 33 11 13

Pairwise overlap only
NL ∩ Code only 172 304 109 125
NL ∩ TT only 210 289 117 125
Code ∩ TT only 170 297 110 112

Code ∪ NL 445 511 163 168
Code ∪ NL ∪ TT 511 544 174 181

Across both ProofWriter and FOLIO benchmarks, our
Mixture-of-Thought (MoT) model shifts away from
single-paradigm reliance and toward multi-paradigm
collaboration. First, the number of examples solved
exclusively by the NL paradigm drops by over 50%
(ProofWriter: from 109 to 55; FOLIO: from 18 to 8),
and “Only TT correct” cases likewise decrease, indicating
that MoT reduces brittle, single-mode reasoning. Second,
pairwise overlaps (NL ∩ Code, NL ∩ TT, Code ∩ TT) all
increase substantially—NL ∩ Code on ProofWriter rises
by 76% (172 → 304), and similar gains appear on FO-
LIO—showing that MoT effectively combines different
reasoning formats on the same instance. Finally, the over-
all coverage (Code ∪ NL ∪ TT) improves from 511 to
544 (+6.5%) on ProofWriter and from 174 to 181 (+4%)
on FOLIO, demonstrating that MoT recovers difficult
cases missed by the baseline. The consistent trends across two datasets confirm that encourag-
ing multi-paradigm synergy yields more robust and comprehensive logical reasoning performance.

E.8 PERFORMANCE VS. DIFFICULTY ON PROVERQA (QI ET AL., 2025)

Figure 7 displays the results.
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Figure 7: Performance comparison of different thought paradigms across reasoning depths. On ProverQA,
MoT inference exhibits better performance on difficult problems.

F FULL PROMPTS FOR MOT

The full prompts we utilized in this work are illustrated as follows:

Full prompt used for Mixture-of-Thought

You are a rigorous and logically precise AI assistant. Your
task is to answer a logical reasoning problem strictly
following one of three modes, as explicitly specified in
the input. Only one mode will be present in the input.
Follow that mode exclusively.

- Code Mode (<code> ... <end_of_code> <answer> ... <
end_of_answer>)

- If the input contains <code>, translate the problem into
Python code.

- Execute the logic and derive the answer.

- Natural Language Chain-of-Thought Mode (<nl_cot> ... <
end_of_nl_cot> <answer> ... <end_of_answer>)

- If the input contains <nl_cot>, solve the problem step by
step in natural language.

- Truth Table Mode (<truth_table> ... <end_of_truth_table> <
answer> ... <end_of_answer>)

- If the input contains <truth_table>, construct a truth
table and derive the answer from it.

### Rules
- Only use the mode specified in the input. Do not switch modes

.
- Generate output strictly in the specified mode and format,

with no additional text.
- Enclose all reasoning strictly within the corresponding mode

tags.
- The final answer must be strictly enclosed in <answer> ... <

end_of_answer>.
- Do not provide any reasoning or explanations outside of the

designated mode tags.

The following is the problem you need to solve.

<premises>
{premises}
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</premises>

<conclusion>
{conclusion}
</conclusion>

<question>
Is the following statement true, false, or uncertain? {

conclusion}
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<{tag}>

Full prompt used for Error Detection

"You must determine whether a rationale faithfully justifies
the truth value of a conclusion given a set of premises.\n\
n"

"Faithful means all and only the steps actually used in
deriving the conclusion:\n"

"- are grounded in the given premises or prior derived
steps,\n"

"- apply valid inference rules (no illicit converse or
contraposition),\n"

"- cover every disjunction branch or quantifier case,\n"
"- use no unstated assumptions, external knowledge, or

background commonsense,\n"
"- and correctly assess whether the conclusion is

supported or contradicted by the premises.\n\n"
"You must also diagnose where and how the rationale fails

when it is unfaithful, allowing trivial unused
remarks to be overridden.\n\n"

"Error Types:\n"
"- Missing Branch: Failing to exhaustively consider all

branches of a disjunction, conditionals, or
quantified cases.\n"

"- Invalid Converse: Illicitly reversing the direction of
a conditional (e.g., mistaking ’A →B’ for ’B →A’).\

n"
"- Commonsense Injection: Using external background

knowledge or commonsense not entailed or implied by
the premises.\n"

"- Factual Misquote: Misrepresenting, distorting, or
misquoting the explicit content of the premises.\n\n"

"Input (JSON):\n"
"{\n"
’ "premises": "<string>",\n’
’ "conclusion": "<string>",\n’
’ "rationale": "<string>",\n’
’ "label": "<string>",\n’
’ "predict": "<string>"\n’
"}\n\n"
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"Output (JSON):\n"
"{\n"
’ "faithful": true | false,\n’
’ "error_type": "<missing branch | invalid converse |

commonsense injection | factual misquote>",\n’
’ "error_location": "<e.g., Step 3, Clause 2>",\n’
’ "override": true | false,\n’
’ "analysis": "<brief summary explaining why the

reasoning is faithful or unfaithful, citing specific
logical failures>"\n’

"}\n\n"

"Notes:\n"
"- If multiple error types apply, list them all separated

by commas.\n"
"- Always identify the first point in the rationale where

the faithfulness failure occurs.\n"
"- Be concise, precise, and consistent in your labeling.\

n\n"
"Input:\n"

G MORE EXAMPLES GENERATED BY OUR MOT

In this section, we show more examples generated by our MoT with different thought paradigms.

G.1 NATURAL LANGUAGE BASED REASONING

Examples of NL-based Reasoning generated by our models.

The following is the problem you need to solve.

<premises>
All rabbits that can be spotted near the campus are cute.
Some turtles can be spotted near the campus.
The only animals that can be spotted near the campus are

rabbits and squirrels.
If something is skittish, then it is not calm.
All the squirrels that can be spotted near the campus are

skittish.
Rockie can be spotted near the campus, and it is calm.
</premises>

<conclusion>
Rockie is a turtle or cute.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Rockie is

a turtle or cute.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>
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<nl_cot>
Step 1: We know from the premise "The only animals that can be

spotted near the campus are rabbits and squirrels." that
Rockie, being spotted near the campus, must be either a
rabbit or a squirrel.

Step 2: We also know from the premise "All rabbits that can be
spotted near the campus are cute" that if Rockie is a
rabbit, then Rockie is cute.

Step 3: The premise "All the squirrels that can be spotted near
the campus are skittish" and "If something is skittish,

then it is not calm" tell us that if Rockie is a squirrel,
then Rockie is not calm.

Step 4: The premise "Rockie can be spotted near the campus, and
it is calm" contradicts the conclusion from Step 3. This

means Rockie cannot be a squirrel.
Step 5: Therefore, Rockie must be a rabbit.
Step 6: Since Rockie is a rabbit and all rabbits spotted near

the campus are cute, we can conclude that Rockie is cute.

<end_of_nl_cot>
<answer>
The final answer is (A).
<end_of_answer>

G.2 CODE BASED REASONING

Examples of Code-based Reasoning generated by our models.

The following is the problem you need to solve.

<premises>
Everyone at the mixer is a Grand Slam champion or an Oscar-

nominated actor.
Every Grand Slam champion at the mixer is a professional tennis

player.
All Oscar-nominated actors at the mixer are celebrities.
All professional tennis players at the mixer are athletes.
If a person at the mixer is a celebrity, then they are well

paid.
If a person at the mixer is an athlete, then they are famous.
All well-paid people at the mixer live in tax havens.
Djokovic is at the mixer: if Djokovic is a famous athlete, then

Djokovic is well-paid.
</premises>

<conclusion>
Djokovic does not live in a tax haven.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Djokovic

does not live in a tax haven.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>
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<code>
from typing import Optional

class Person:
def __init__(self,

is_grand_slam_champion: Optional[bool] = None,
is_oscar_nominated_actor: Optional[bool] = None,
is_professional_tennis_player: Optional[bool] =

None,
is_celebrity: Optional[bool] = None,
is_athlete: Optional[bool] = None,
is_well_paid: Optional[bool] = None,
lives_in_tax_haven: Optional[bool] = None,
is_famous: Optional[bool] = None,
name: str = "Djokovic"):

self.is_grand_slam_champion = is_grand_slam_champion
self.is_oscar_nominated_actor = is_oscar_nominated_actor
self.is_professional_tennis_player =

is_professional_tennis_player
self.is_celebrity = is_celebrity
self.is_athlete = is_athlete
self.is_well_paid = is_well_paid
self.lives_in_tax_haven = lives_in_tax_haven
self.is_famous = is_famous

def apply_premises(person: Person) -> bool:
changed = False

# Premise 1
if person.is_grand_slam_champion is None and person.

is_oscar_nominated_actor is None:
person.is_grand_slam_champion = True
changed = True

# Premise 2
if person.is_grand_slam_champion is True and person.

is_professional_tennis_player is None:
person.is_professional_tennis_player = True
changed = True

# Premise 3
if person.is_oscar_nominated_actor is True and person.

is_celebrity is None:
person.is_celebrity = True
changed = True

# Premise 4
if person.is_professional_tennis_player is True and person.

is_athlete is None:
person.is_athlete = True
changed = True

# Premise 5
if person.is_celebrity is True and person.is_well_paid is

None:
person.is_well_paid = True
changed = True

# Premise 6
if person.is_athlete is True and person.is_famous is None:

person.is_famous = True
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changed = True

# Premise 7
if person.is_well_paid is True and person.lives_in_tax_haven

is None:
person.lives_in_tax_haven = True
changed = True

# Premise 8
if person.name == "Djokovic" and person.is_famous is True

and person.is_well_paid is None:
person.is_well_paid = True
changed = True

return changed

def run_inference(person: Person):
while apply_premises(person):

pass

def check_conclusion(person: Person) -> str:
run_inference(person)
if person.name == "Djokovic" and person.lives_in_tax_haven

is True:
return "False"

else:
return "True"

def func():
person = Person(

is_grand_slam_champion=None,
is_oscar_nominated_actor=None,
is_professional_tennis_player=None,
is_celebrity=None,
is_athlete=None,
is_well_paid=None,
lives_in_tax_haven=None,
is_famous=None,
name="Djokovic"

)
return check_conclusion(person)

if __name__ == ’__main__’:
result = func()
print("Conclusion: Djokovic does not live in a tax haven?",

result)
<end_of_code>
<answer>
The final answer is (B).
<end_of_answer>

G.3 TRUTH TABLE BASED REASONING

Examples of Truth Table-based Reasoning generated by our models.

The following is the problem you need to solve.

<premises>
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People in this club who perform in school talent shows often
attend and are very engaged with school events.

People in this club either perform in school talent shows often
or are inactive and disinterested community members.

People in this club who chaperone high school dances are not
students who attend the school.

All people in this club who are inactive and disinterested
members of their community chaperone high school dances.

All young children and teenagers in this club who wish to
further their academic careers and educational
opportunities are students who attend the school.

Bonnie is in this club and she either both attends and is very
engaged with school events and is a student who attends the
school or is not someone who both attends and is very

engaged with school events and is not a student who attends
the school.

</premises>

<conclusion>
Bonnie performs in school talent shows often.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Bonnie

performs in school talent shows often.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<truth_table>
Let:

T: Bonnie performs in school talent shows often.
E: Bonnie attends and is very engaged with school events.
S: Bonnie is a student who attends the school.
I: Bonnie is an inactive and disinterested community member.
C: Bonnie chaperones high school dances.

Premises:
1. E →S
2. T ∨I
3. C →¬S
4. I →C
5. S →E
6. (E ∧S) ∨(¬E ∧¬S)

Logical chain (assuming T = False):
From (2): T = False -> I = True
From (4): I = True -> C = True
From (3): C = True -> ¬S = True -> S = False
From (6): S = False -> ¬E = True -> E = False
From (1): E = False -> E→S holds vacuously
-> No contradiction if T = False

Logical chain (assuming T = True):
From (2): T = True -> I = False
From (4): I = False -> C = False
From (3): C = False -> ¬S = False -> S = True
From (5): S = True -> E = True
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From (6): E = True ∧S = True -> (E∧S) = True
-> No contradiction if T = True

Truth Table (remaining consistent rows):
| T | E | S | I | C |
|-------|-------|-------|-------|-------|
| True | True | True | False | False |
| False | False | False | True | True |

<end_of_truth_table>
<answer>
The final answer is (C).
<end_of_answer>

Examples of Truth Table-based Reasoning generated by our models.

The following is the problem you need to solve.

<premises>
All fir trees are evergreens.
Some objects of worship are fir trees.
</premises>

<conclusion>
Some evergreens are not objects of worship.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Some

evergreens are not objects of worship.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<truth_table>
Let:
- F: An object is a fir tree.
- E: An object is an evergreen.
- W: An object is an object of worship.

Premises:
1. All fir trees are evergreens.

F →E
2. Some objects of worship are fir trees.

∃x (W(x) ∧F(x))

Conclusion to Evaluate:
Some evergreens are not objects of worship.
∃x (E(x) ∧¬W(x))

Logical Chain:
1. From (1), F →E.
2. From (2), there exists some object a such that W(a) ∧F(a).
3. Since F(a) and F →E, it follows that E(a).
4. Therefore, we have E(a) and W(a).
5. We need ∃x (E(x) ∧¬W(x)).
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6. The premises do not provide any information about whether
there exists an evergreen that is not an object of worship.

7. Therefore, it is uncertain whether some evergreens are not
objects of worship.

Truth Table (Key Possibilities):

| F | E | W | E ∧¬W |
| True | True | True | False |
| True | True | False| True |
| False| True | True | False |
| False| True | False| True |

Rows omitted: any with E= False (irrelevant to E∧¬W) or with F
= True and E= False (violates F→E).

<end_of_truth_table>
<answer>
The final answer is (C).
<end_of_answer>

H ERROR ANALYSIS

H.1 EXAMPLES OF ERROR TYPE

Example 1 of Missing Branches

<premises>
All employees who schedule a meeting with their customers will

go to the company building today.
Everyone who has lunch in the company building schedules

meetings with their customers.
Employees have lunch either in the company building or at home.
If an employee has lunch at home, they are working remotely

from home.
All employees who are in other countries work remotely from

home.
No managers work remotely from home.
James will appear in the company today if and only if he is a

manager.
</premises>

<conclusion>
James has lunch in the company.
</conclusion>

<question>
Is the following statement true, false, or uncertain? James has

lunch in the company.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>
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<nl_cot>
Step 1: From the premise \"All employees who schedule a meeting

with their customers will go to the company building today
,\" we know that if an employee schedules a meeting with
their customers, they will be in the company building today.

Step 2: From the premise \"Everyone who has lunch in the
company building schedules meetings with their customers,\"
we can infer that if an employee has lunch in the company

building, they must schedule a meeting with their customers.

Step 3: From the premise \"Employees have lunch either in the
company building or at home,\" we know that an employee can
only choose one of these two options for lunch.

Step 4: From the premise \"If an employee has lunch at home,
they are working remotely from home,\" we can deduce that
having lunch at home means they are not in the company
building and are working remotely.

Step 5: From the premise \"All employees who are in other
countries work remotely from home,\" we know that employees
in other countries do not have lunch in the company

building.

Step 6: From the premise \"No managers work remotely from home
,\" we know that managers do not have lunch at home and
thus do not work remotely.

Step 7: From the premise \"James will appear in the company
today if and only if he is a manager,\" we can infer that
if James is not a manager, he will not appear in the
company today.

Step 8: Combining the information from steps 1-7, we can
conclude that if James is a manager, he will be in the
company today. Since James will only be in the company
today if and only if he is a manager, and managers do not
work remotely, James cannot be having lunch at home.

⇒Incorrect. It only considers the case where James is a
manger, missing another branch: James is not a manger.

Step 9: Therefore, if James is not having lunch at home, he
must be having lunch in the company building, and by step 2,
he must be scheduling meetings with his customers, which

means he will be in the company building today.

<end_of_nl_cot>
<answer>
The final answer is (A).
<end_of_answer>

<Label>
(C) Uncertain
</Label>
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Example 2 of Both Missing Branches and Invalid Converse

<premises>
People in this club who perform in school talent shows often

attend and are very engaged with school events.
People in this club either perform in school talent shows often

or are inactive and disinterested community members.
People in this club who chaperone high school dances are not

students who attend the school.
All people in this club who are inactive and disinterested

members of their community chaperone high school dances.
All young children and teenagers in this club who wish to

further their academic careers and educational
opportunities are students who attend the school.

Bonnie is in this club and she either both attends and is very
engaged with school events and is a student who attends the
school or is not someone who both attends and is very

engaged with school events and is not a student who attends
the school.

</premises>

<conclusion>
Bonnie performs in school talent shows often.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Bonnie

performs in school talent shows often.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<nl_cot>
Step 1: Analyze the given premises and the statement about

Bonnie.
- Premise 1: People in this club who perform in school

talent shows often attend and are very engaged with
school events.

- Premise 2: People in this club either perform in school
talent shows often or are inactive and disinterested
community members.

- Premise 3: People in this club who chaperone high school
dances are not students who attend the school.

- Premise 4: All people in this club who are inactive and
disinterested members of their community chaperone high
school dances.

- Premise 5: All young children and teenagers in this club
who wish to further their academic careers and
educational opportunities are students who attend the
school.

- Bonnie’s statement: Bonnie is in this club and she either
both attends and is very engaged with school events and
is a student who attends the school or is not someone
who both attends and is very engaged with school events
and is not a student who attends the school.

Step 2: Determine Bonnie’s status in the club.
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- According to Bonnie’s statement, she is either a very
engaged and attending member or not such a member. This
statement is a disjunction (or) of two conditions, which
means Bonnie can only fit into one of the two

categories described.
Step 3: Consider the implications for Bonnie based on her

status in the club.
- If Bonnie is a very engaged and attending member, she must

perform in school talent shows often (Premise 1).
⇒Incorrect (Invalid Converse). It incorrectly utilizes

"Bonnie is a very engaged and attending member ->
perform".

- If Bonnie is not a very engaged and attending member, she
must be an inactive and disinterested community member (
Premise 2). Inactive and disinterested members must
chaperone high school dances (Premise 4), which means
they cannot be students who attend the school (Premise
3).

⇒Incorrect (Missing Branches). It fails to enumerate all
possible cases stated in Premise.

Step 4: Evaluate the given statement.
- The statement claims that Bonnie performs in school talent

shows often.
- Given the conditions and implications, if Bonnie is not a

very engaged and attending member, she must be an
inactive and disinterested member, which means she would
be a chaperone and not a student, contradicting Premise
5. Therefore, Bonnie must be a very engaged and

attending member.
Step 5: Conclude based on the analysis.

- Since Bonnie must be a very engaged and attending member,
she performs in school talent shows often.

<end_of_nl_cot>
<answer>
The final answer is (A).
<end_of_answer>

<Label>
(C) Uncertain
</Label>

Example 3 of Missing Branches

<premises>
All of Zaha Hadid’s design styles that Max adores have

interesting geometries.
No brutalist buildings that Max adores have interesting

geometries.
Every style that Max adores is either Zaha Hadid’s design style

or Kelly Wearstler’s design style.
All of Kelly Wearstler’s design styles that Max adores are

evocative.
All of Kelly Wearstler’s design styles that Max adores are

dreamy.
If a design by Max that he adores has interesting geometries,

then the design is a brutalist building and evocative.
</premises>
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<conclusion>
A design by Max is evocative and dreamy.
</conclusion>

<question>
Is the following statement true, false, or uncertain? A design

by Max is evocative and dreamy.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<nl_cot>
Step 1: Analyze the premise \"All of Zaha Hadid’s design styles

that Max adores have interesting geometries.\" This means
if a design by Max adores is a Zaha Hadid design, then it
has interesting geometries.

Step 2: Analyze the premise \"No brutalist buildings that Max
adores have interesting geometries.\" This means if a
design by Max adores is a brutalist building, it does not
have interesting geometries.

Step 3: Analyze the premise \"Every style that Max adores is
either Zaha Hadid’s design style or Kelly Wearstler’s
design style.\" This means all designs by Max adores must
be either Zaha Hadid’s or Kelly Wearstler’s.

Step 4: Analyze the premise \"All of Kelly Wearstler’s design
styles that Max adores are evocative.\" This means if a
design by Max adores is a Kelly Wearstler design, then it
is evocative.

Step 5: Analyze the premise \"All of Kelly Wearstler’s design
styles that Max adores are dreamy.\" This means if a design
by Max adores is a Kelly Wearstler design, then it is

dreamy.

Step 6: Analyze the premise \"If a design by Max that he adores
has interesting geometries, then the design is a brutalist
building and evocative.\" This means if a design by Max

adores has interesting geometries, then it is both a
brutalist building and evocative.

Step 7: From Step 1 and Step 6, if a design by Max adores is a
Zaha Hadid design and has interesting geometries, it must
also be a brutalist building and evocative.

Step 8: From Step 2, if a design by Max adores is a brutalist
building, it does not have interesting geometries. So, a
design by Max adores cannot be both a brutalist building
and have interesting geometries.

Step 9: Since a design by Max adores cannot have both
interesting geometries (which would make it a brutalist and
evocative) and not have interesting geometries (which

would make it not a brutalist), the design by Max adores
cannot have interesting geometries.
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⇒Incorrect (Missing Branches). It fails to enumerate all
possible cases stated in Premise 3.

Step 10: Since the design by Max adores does not have
interesting geometries, according to Step 4 and Step 5, it
cannot be a Kelly Wearstler design. Therefore, it must be a
Zaha Hadid design.

Step 11: Since the design by Max adores is a Zaha Hadid design,
it must have interesting geometries (from Step 1), but

this contradicts the conclusion that it cannot have
interesting geometries (from Step 8).

Step 12: Given the premises, it is impossible for a design by
Max adores to be both evocative and dreamy, as it would
require having interesting geometries and not having them
at the same time.

<end_of_nl_cot>
<answer>
The final answer is (B).
<end_of_answer>

<Label>
(A) True
</Label>

H.2 EXAMPLES UNIQUELY SOLVED BY TRUTH TABLE

Examples uniquely solved by Truth Table

<premises>
"Stranger Things" is a popular Netflix show.
If a Netflix show is popular, Karen will binge-watch it.
If and only if Karen binge-watches a Netflix show, she will

download it.
Karen does not download "Black Mirror."
"Black Mirror" is a Netflix show.
If Karen binge-watches a Netflix show, she will share it with

Lisa.
</premises>

<conclusion>
"Black Mirror" is popular.
</conclusion>

<question>
Is the following statement true, false, or uncertain? "Black

Mirror" is popular.
</question>

<options>
(A) True
(B) False
(C) Uncertain
</options>

<nl_cot>
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Step 1: Given that \"Stranger Things\" is a popular Netflix
show and if a Netflix show is popular, Karen will binge-
watch it, we know that Karen would binge-watch \"Stranger
Things\" if it were popular. ⇒Correct.

Step 2: However, the popularity of \"Stranger Things\" does not
provide any direct information about the popularity of \"

Black Mirror.\" ⇒Correct.

Step 3: We know that \"Black Mirror\" is a Netflix show, but we
do not have any information that directly links its

popularity to Karen’s actions. ⇒Correct.

Step 4: The statement that if Karen binge-watches a Netflix
show, she will download it, and the fact that Karen does
not download \"Black Mirror,\" imply that Karen does not
binge-watch \"Black Mirror.\" ⇒Correct.

Step 5: Since Karen does not binge-watch \"Black Mirror,\" and
if a show is popular, Karen will binge-watch it, we cannot
conclude that \"Black Mirror\" is popular based on Karen’s
actions. ⇒Incorrect. Fail to utilize
Transposition.

Step 6: The conclusion \"Black Mirror\" is popular cannot be
definitively supported or refuted with the given premises.
⇒Incorrect.

<end_of_nl_cot>
<answer>
The final answer is (C). ⇒Incorrect.
<end_of_answer>"

<truth_table>
Let:

P: \"Stranger Things\" is a popular Netflix show.
Q: \"Black Mirror\" is a popular Netflix show.
B: Karen will binge-watch a Netflix show.
D: Karen will download a Netflix show.
S: Karen will share a Netflix show with Lisa.

Premises:
P = True (Given) ⇒Correct.
If P, then B (Given) ⇒Correct.
If B, then D (Given) ⇒Correct.
If and only if B, then D (Given) ⇒Correct.
\"Black Mirror\" is a Netflix show (Given) ⇒Correct.
If B, then S (Given) ⇒Correct.

Conclusion to Evaluate:
Q (Is \"Black Mirror\" popular?) ⇒Correct.

Logical Chain:
From (5), \"Black Mirror\" is a Netflix show. ⇒Correct.
From (2) and (3), if \"Black Mirror\" is popular (Q), then

Karen will binge-watch it (B). ⇒Correct.
From (4), if Karen binge-watches \"Black Mirror,\" then she

will download it (D). ⇒Correct.
However, from (6), we know that Karen does not download \"

Black Mirror,\" so D = False. ⇒Correct.
Since B implies D (from (3) and (4)), and D is False, B must

also be False. ⇒Correct.
Since B is False (Karen does not binge-watch \"Black Mirror

\"), Q (popularity of \"Black Mirror\") cannot be True.
⇒Correct.
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Truth Table (Key Possibilities):
| Q (Q: \"Black Mirror\" is popular) | B (B: Karen will binge-

watch \"Black Mirror\") | D (D: Karen will download \"Black
Mirror\") |

| False | False | False |
| True | True | True |
Given that D is False, Q must be False. ⇒Correct.
<end_of_truth_table>
<answer>
The final answer is (B). ⇒Correct.
<end_of_answer>

<code>
from typing import Optional

class Show:
def __init__(self, name: str, is_popular: Optional[bool] =

None, is_downloaded: Optional[bool] = None, is_binged:
Optional[bool] = None):
self.name = name
self.is_popular = is_popular
self.is_downloaded = is_downloaded
self.is_binged = is_binged

def apply_premises(show: Show) -> bool:
changed = False

# Premise 1: "Stranger Things" is a popular Netflix show.
if show.name == "Stranger Things": ⇒Correct.

if show.is_popular is None:
show.is_popular = True
changed = True

# Premise 2: If a Netflix show is popular, Karen will binge-
watch it.

if show.is_popular is True and show.name != "Black Mirror":
⇒Correct.
if show.is_binged is None:

show.is_binged = True
changed = True

# Premise 3: If and only if Karen binge-watches a Netflix
show, she will download it.

if show.is_binged is True: ⇒Correct.
if show.is_downloaded is None:

show.is_downloaded = True
changed = True

# Premise 4: "Black Mirror" is a Netflix show. ⇒Incorrect.
1. Do not encode Transposition. 2. It directly set
show.is popular = False., so even if it set it correctly, as
it do not include Transposition, code approach still
cannot work correctly.

if show.name == "Black Mirror":
if show.is_popular is None:

show.is_popular = False
changed = True

# Premise 5: If Karen binge-watches a Netflix show, she will
share it with Lisa.

if show.is_binged is True: ⇒Correct.
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if show.is_downloaded is True:
if show.name == "Black Mirror":

if show.is_popular is False:
show.is_popular = True
changed = True

return changed

def run_inference(show: Show):
while apply_premises(show):

pass

def check_conclusion(show: Show) -> str:
run_inference(show)
if show.name == "Black Mirror":

if show.is_popular is True:
return "True"

elif show.is_popular is False:
return "False"

else:
return "Uncertain"

else:
return "Uncertain"

def func():
show = Show(name="Black Mirror", is_popular=None,

is_downloaded=None, is_binged=None)
return check_conclusion(show)

if __name__ == ’__main__’:
result = func()
print("Conclusion: ’Black Mirror’ is popular?", result)

<end_of_code>
<answer>
The final answer is (C). ⇒Incorrect.
<end_of_answer>

Examples uniquely solved by Truth Table

<premises>
All of Peter’s pets that are mammals are also animals.
All monkeys are mammals.
Peter’s pets are all either monkeys or birds.
Peter’s birds can fly.
All animals that are Peter’s pets can breathe.
If Peter’s pet can fly, then it has wings.
Rock is Peter’s pet.
Rock can fly, or Rock is a bird, or Rock cannot breathe.
</premises>

<conclusion>
Rock is a monkey.
</conclusion>

<question>
Is the following statement true, false, or uncertain? Rock is a

monkey.
</question>
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<options>
(A) True
(B) False
(C) Uncertain
</options>

<nl_cot>
Step 1: From the premise \"All of Peter’s pets that are mammals

are also animals,\" we know that any mammal pet of Peter’s
is an animal.

Step 2: From the premise \"All monkeys are mammals,\" we know
that if something is a monkey, it is also a mammal.

Step 3: From the premise \"Peter’s pets are all either monkeys
or birds,\" we know that Rock, being a pet of Peter’s, must
be either a monkey or a bird.

Step 4: From the premise \"Peter’s birds can fly,\" we know
that if something is a bird, it can fly.

Step 5: From the premise \"All animals that are Peter’s pets
can breathe,\" we know that any pet of Peter’s, whether a
bird or a mammal, can breathe.

Step 6: From the premise \"If Peter’s pet can fly, then it has
wings,\" we know that if a pet of Peter’s can fly, it must
have wings.

Step 7: From the premise \"Rock can fly, or Rock is a bird, or
Rock cannot breathe,\" we have a disjunction. We need to
evaluate each part of this disjunction:\n- If Rock can fly,
then it must have wings (Step 6), and it must be a bird (

Step 4), because only birds can fly among Peter’s pets.\n-
If Rock is a bird, it can fly (Step 4), and it can breathe
(Step 5).\n- If Rock cannot breathe, this contradicts the
fact that all of Peter’s pets can breathe (Step 5).
⇒InCorrect. If Rock can fly, then it must have wings
(Step 6), and it must be a bird (Step 4): this step
incorrectly utilizes rule fly -> birds to derive rock must
be a bird.

Step 8: Given the disjunction in Step 7, the only consistent
option is that Rock is a bird, because if Rock can fly, it
must be a bird, and if Rock cannot breathe, it contradicts
the premises. Therefore, Rock is a bird.\n\nStep 9: Since
Rock is a bird, and all of Peter’s pets are either monkeys
or birds (Step 3), Rock cannot be a monkey.

<end_of_nl_cot>
<answer>
The final answer is (B).
<end_of_answer>

<truth_table>
Let:

M: Rock is a monkey
B: Rock is a bird
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F: Rock can fly
A: Rock is an animal
W: Rock has wings
R: Rock can breathe

Premises:
1. All of Peter’s pets that are mammals are also animals. (

Not directly about Rock)
2. All monkeys are mammals. (Not directly about Rock)
3. Peter’s pets are all either monkeys or birds. (Not

directly about Rock)
4. Peter’s birds can fly. (B →F)
5. All animals that are Peter’s pets can breathe. (A →R)
6. If Peter’s pet can fly, then it has wings. (F →W)
7. Rock is Peter’s pet.
8. Rock can fly, or Rock is a bird, or Rock cannot breathe.

(F ∨B ∨¬R)

Conclusion to Evaluate:
Rock is a monkey (M)

⇒ Correct. The model correctly produce two cases that lead to
different conclusions, i.e., True and False. Therefore, it
finally produces Uncertain as the final answer.

Truth Table (Key Possibilities):

| M (Monkey) | B (Bird) | F (Can Fly) | A (Animal) | W (Wings)
| R (Can Breathe) |

| True | False | True | True | True | True |
| False | True | True | True | True | True |
<end_of_truth_table>
<answer>
The final answer is (C).
</end_of_answer>

<code>
from typing import Optional

class Pet:
def __init__(self,

is_monkey: Optional[bool] = None,
is_bird: Optional[bool] = None,
can_fly: Optional[bool] = None,
has_wings: Optional[bool] = None,
is_animal: Optional[bool] = None):

self.is_monkey = is_monkey
self.is_bird = is_bird
self.can_fly = can_fly
self.has_wings = has_wings
self.is_animal = is_animal

def apply_premises(pet: Pet) -> bool:
changed = False

# Premise 1: All of Peter’s pets that are mammals are also
animals.

# Since all of Peter’s pets are either monkeys or birds, and
monkeys are mammals,

# this premise does not directly affect the state of the pet
.
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# Premise 2: All monkeys are mammals.
if pet.is_monkey is True and pet.is_animal is not True:

pet.is_animal = True
changed = True

# Premise 3: Peter’s pets are all either monkeys or birds.
if pet.is_monkey is None and pet.is_bird is None:

pet.is_monkey = False
pet.is_bird = False
changed = True

# Premise 4: Peter’s birds can fly.
if pet.is_bird is True and pet.can_fly is not True:

pet.can_fly = True
changed = True

# Premise 5: All animals that are Peter’s pets can breathe.
if pet.is_animal is True and pet.can_fly is not True:

pet.can_fly = True
changed = True

# Premise 6: If Peter’s pet can fly, then it has wings.
if pet.can_fly is True and pet.has_wings is not True:

pet.has_wings = True
changed = True

# Premise 7: Rock is Peter’s pet.
# This does not change the state of the pet but indicates

that the pet is Rock.

# Premise 8: Rock can fly, or Rock is a bird, or Rock cannot
breathe.

if pet.name == "Rock":
if pet.can_fly is None:

pet.can_fly = True
changed = True

if pet.is_bird is None:
pet.is_bird = True
changed = True

if pet.can_fly is True and pet.has_wings is not True:
pet.has_wings = True
changed = True

⇒ Incorrect. The model struggles to correctly interpret
premises that involve multiple possible branches of
reasoning, such as disjunctions (∨). It often commits
prematurely to one or more branches instead of
preserving logical uncertainty.

return changed

def run_inference(pet: Pet):
while apply_premises(pet):

pass

def check_conclusion(pet: Pet) -> str:
run_inference(pet)
if pet.name == "Rock" and pet.is_monkey is True:

return "True"
else:

return "False"

def func():
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pet = Pet(
is_monkey=None,
is_bird=None,
can_fly=None,
has_wings=None,
is_animal=None

)
pet.name = "Rock"
return check_conclusion(pet)

if __name__ == ’__main__’:
result = func()
print("Conclusion: Rock is a monkey?", result)

<end_of_code>
<answer>
The final answer is (B).
</end_of_answer>
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