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Abstract

Uncertainty-aware user modeling is crucial for de-
signing Al systems that adapt to users in real-time
while addressing privacy concerns. This paper pro-
poses a novel framework for privacy-preserving
probabilistic user modeling that integrates un-
certainty quantification and differential privacy
(DP). Building on neural processes (NPs), a scal-
able latent variable probabilistic model, we en-
able meta-learning for user behaviour prediction
under privacy constraints. By employing differ-
entially private stochastic gradient descent (DP-
SGD), our method achieves rigorous privacy guar-
antees while preserving predictive accuracy. Un-
like prior work, which primarily addresses privacy-
preserving learning for convex or smooth func-
tions, we establish theoretical guarantees for non-
convex objectives, focusing on the utility-privacy
trade-offs inherent in uncertainty-aware models.
Through extensive experiments, we demonstrate
that our approach achieves competitive accuracy
under stringent privacy budgets. Our results show-
case the potential of privacy-preserving probabilis-
tic user models to enable trustworthy Al systems
in real-world interactive applications.

1 INTRODUCTION

Understanding and modeling user behaviour [[Yuan et al.|
2020, [Yu et al.| [2019] is essential for designing adaptive
Al systems in real-world interactive scenarios. Many re-
cent Al-assistant applications, e.g. [De Peuter et al., 2024,
Moon et al., 2023 |Oulasvirta et al.| [2022]], are based on em-
ploying parametric user simulators to reason about humans
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via Bayesian inference. Using such simulators allows data-
efficient modeling, but their computational cost has typically
prevented their practical application. Fortunately, more re-
cent works [Hamaldinen et al., 2023l Moon et al., [2023]]
have proposed integrating amortized inference to mitigate
this issue, enabling real-time user modeling via precompu-
tations.

Despite the proven effectiveness of these user modeling ap-
proaches, their lack of formal privacy guarantees limits their
deployment in sensitive environments. Existing approaches
to privacy-preserving user modeling primarily rely on Feder-
ated Learning (FL) [McMahan et al| 2017} [Liu et al.| 2024,
2023]] or meta-learning [Finn et al.,|2017]]. FL enables dis-
tributed centralised training while preserving data locality.
However, in FL setup as shown in Fig.[T] (left) imposes sig-
nificant communication and infrastructure overhead, and
often results in global models that underperform on user-
specific tasks, particularly in heterogeneous environments
with high variability in user behaviour. Differential Privacy
meta-learning [Li et al., [2020} Zhou and Bassilyl} [2022]], on
the other hand, protects task-specific updates in a federated
setting but has not been adapted to uncertainty-aware user
models.

To address these challenges, we propose a novel privacy-
preserving probabilistic user modeling framework. Our pro-
posed approach leverages Neural Processes for their abil-
ity to perform amortized inference, enabling fast, few-shot
personalization and uncertainty-aware predictions at the
user level. NPs naturally support modeling structured user
behavior without requiring centralized orchestration, mak-
ing them especially well-suited for decentralized privacy-
preserving settings. Our framework integrates differentially-
private stochastic gradient descent (DP-SGD)[Abadi et al.
2016]] with privacy loss distribution (PLD) [[Doroshenko
et al 2022] accounting and applies them to Neural Pro-
cess (NP) [Garnelo et al.l 2018]|] based differentiable user
modeling inspired by [Hamaldinen et al.|[2023]]. Unlike prior
privacy-aware meta-learning approaches, our method pro-
vides tight privacy guarantees through PLD-based composi-



In-depth view of Privacy-preserved Probabilistic User Modeling

Collaborative environment

Env Env'
Federated Learning @ e |
Central Server L a2 az

~_ 7 Env1
@% BB BB

/// \\\\ }77;7;7{’" (Ii—f—ﬁ
/ /// \ Y el
o s | )

Env' Env2
Endt User Modeling

Privacy-preserved Probabilistic

T User (S, A, 0) User (', A', 0')
@) 9 ~ p(r]6) mor ~ p(ml6")
i °
Env2 o ) o
S 1 w \I\ >
& s o R
2 3 3
m m 3
S 9 =
TR G
(hy, g5, M) (hyy, g5)

Figure 1: Comparison of Federated Learning (FL)-based user modeling (left) and our proposed Privacy-preserved Proba-
bilistic User Modeling (middle). In FL, a central server aggregates model updates from multiple environments, requiring
continuous communication and centralized coordination. In contrast, our framework enables privacy-preserving probabilistic
user modeling, where environments can request and share differentially private user models without direct data exchange (a

fine-level view of the Env and Env’ is shown on the right).

tion accounting, offering more accurate privacy loss estima-
tion than moment-based techniques [[Abadi et al.,[2016| and
Rényi DP [Mironovl 2017, |[Feldman and Zrnic, 2020]. Addi-
tionally, unlike PATE [Papernot et al., | 2018]], which requires
large datasets for teacher-student learning, our approach is
well-suited for small-data, high-sensitivity environments.

To concretize the impact of our contribution, consider a
scenario where Al assistants in multiple healthcare centers
personalize treatment plans. Direct data sharing is infeasible
due to privacy constraints, and while FL could train a global
model via encrypted updates, we do not use this central-
ized FL coordination mechanism. In contrast, our approach
leverages meta-learning with neural processes, where each
assistant trains a privacy-protected amortized surrogate user
model, which can be selectively shared upon request, en-
abling optional collaboration (not essentially bi-directional)
without direct data exchange. Also, these healthcare centers
have the autonomy to decide whether to use the shared sur-
rogate model as it is or further fine-tune it with their local
data for enhanced performance. For example, an assistant
trained on diabetic patients’ data can share its surrogate
model with another assistant treating metabolic disorders,
enabling effective and voluntary collaboration without ex-
posing sensitive data. An elaborated real-world example is
discussed in Section 311

The main contributions of this paper are:

* Privacy-preserving probabilistic user modeling via DP-
SGD and PLD-based privacy accounting for neural pro-
cesses, ensuring strong privacy guarantees with adap-
tive user representations.

* New utility and privacy bounds under non-convex op-
timization, advancing theoretical insights in privacy-
aware meta-learning.

* Scalable and efficient training across diverse user tasks,

maintaining high accuracy even under stringent privacy
constraints.

¢ Empirical validation on cognitively justified user mod-
eling tasks, demonstrating competitive accuracy com-
pared to non-private baselines.

Our extensive experiments on diverse user modeling tasks,
including grid-world navigation and cognitively justified
menu search modeling under various privacy regimes vali-
date our approach, showing its effectiveness in real-world
privacy-sensitive applications.

2 RELATED WORKS

User modeling [Fischer, 2001} Strouse et al.,|2021]] in AI-
driven systems requires both uncertainty quantification and
privacy guarantees to ensure adaptive and trustworthy in-
teractions while protecting sensitive data. Traditional ap-
proaches rely on centralized aggregation, posing significant
privacy risks. Recent research in privacy-preserving learn-
ing has explored federated learning (FL) [McMahan et al.,
2017], differential privacy (DP) [Dwork et al., 2014]], and
meta-learning [Finn et al.| 2017} Zhou and Bassilyl, 2022]]
to address these challenges.

Federated learning [McMahan et al.| 2017} [Liu et al.| 2023]
allows decentralized learning while keeping data local, but
centralized aggregation remains a privacy risk. In [Liu et al.,
2023|), a personalized federated learning technique enhances
user adaptability by leveraging hierarchical structures for
improved task-specific generalization. Cross-silo FL [Liu
et al.,|2024] deals with record-level personalized differential
privacy, enabling flexible privacy-utility trade-offs while
preserving decentralized model training. Personalized FL al-
lows tailored user models but still relies on continuous com-
munication, limiting adaptability. Our approach eliminates



Method Model Update Flow ]?ata Co-ordinator Privacy User-. .
requirement adaptability
FL Global Bi-directional Large Central Server None None
Cross-silo FL Global Bi-directional Large Central Server  record/user-specific None
Personalized FL. Local  Bi-directional Large Central Server None None
Neural Process (Ours)  Local Local Small None Environment-specific High

Table 1: Key differences of our proposed work with existing approaches.

this centralized aggregation by enabling privacy-preserving
surrogate user models that can be shared securely across
environments.

Meta-learning [Finn et al., 2017]] enables fast adaptation
to new tasks by leveraging prior knowledge. DP meta-
learning [Li et al.l |2020] and clustering-based regulariza-
tion|Zhou and Bassily| [2022] for task adaptations, protects
task-specific updates in a federated setting but does not con-
sider uncertainty-awareness that can model user behaviours
probabilistically. We extend this by integrating probabilistic
NPs with DP, ensuring flexible, privacy-preserving few-shot
adaptation. Neural Processes [Garnelo et al., 2018]| provide a
probabilistic approach to adaptive user modeling [Hamaldi{
nen et al., [2023]], but existing work does not account for pri-
vacy risks. Our method incorporates DP-SGD [Song et al.|
2013] with Privacy Loss Distribution [Doroshenko et al.|
2022], enabling scalable, private uncertainty estimation for
interactive Al systems. So, we introduce a novel privacy-
preserving framework for adaptive and uncertainty-aware
user modeling, facilitating efficient decentralized learning
with strong privacy guarantees in complex, non-convex set-
tings. Unlike federated learning, our approach eliminates
centralized coordination, enabling Al assistants to securely
exchange privacy-protected representations rather than raw
model updates.

3 PRELIMINARIES

In this section, we introduce the details needed to formal-
ize and understand our proposed method privacy protected
probabilistic user modeling. We first examine this problem
from the general perspective of building privacy-protected
differentiable surrogates for behavioural models. Then, we
cast it into differentially private learning of neural processes,
and finally discuss the user-level DP notion to address the
privacy of users’ behavioural datasets.

3.1 PRIVACY-PROTECTED PROBABILISTIC
USER MODELING

We consider a setting, as shown in Fig. [I] (middle), consist-
ing of a set of collaborative environments. The detailed view
of two environments Env (base) and Env’ (target), each with

an Al-assistant, AS and AS’, trying to simulate the behaviour
of their set of users in some decision-making tasks as shown
Fig.|l|(right). Users are characterised by their internal states
6., following the distribution p(6), v € U, which govern
their behaviour in a specific task described by parameters
s, t € T, following distribution p(6;). A specific user with
parameters 6, and task parameters 6; is described by the
parameter 6 = (6,,,0;) € © with distribution p (6). For a
given parameter 0, the behavioural policy of a specific user
in a task is described by the implicit stochastic process my
drawn from the family of probabilistic user models P(7|6)
reflecting uncertainties in the behaviour of users.

Based on this user model, each user in Env who makes a de-
cision about a task, executes a stochastic behavioural policy
g on the state sy € S of the environment to generate an
action ag = mp(sp) € A. The sequence of states and actions
generated over a horizon of length ngy constitutes the user’s
datasetas Dy = |JI%; {dj},dj = (sh,a}) € Sx.A, which
is observed by AS. The database of all users’ trajectories
is D = UyDy. With D, AS learns a surrogate user model,
enabling computation of the posterior predictive distribution
Q(m(s)|s,a) = [p(0|s,a)P(m(s')|0)dd over behaviour
policy m ~ P. Surrogates enable better assistance by an-
ticipating the behaviour of a new user in a new task based
only on few observed steps of a trajectory, the so-called
context set D§ = {d}}"¢,. Our goal is now to have AS
help AS’ learn better surrogates of user model, from Env,
in similar or related tasks. This could be done, in principle,
by sharing parameters of the surrogate user model trained
by AS using database Dy from Env. However, to prevent
extracting users’ sensitive information from parameters of
the surrogate model [Fredrikson et al.| 2015] |[Shokri et al.|
2017]), AS learns and transfers a privacy-protected variant of
the surrogate model parameters to AS’ for utilisation toward
learning new surrogates on Env’.

An illustrating real-world example case of this setting is two
healthcare centres (environments), each with their own pa-
tients, treatment team and Al-assistant. Each treatment team
(users) performs the task of giving personalised treatment
for specific types of diseases. The treatment team needs to
choose actions, including prescription of various types of
medication, radiotherapy, etc. by observing the EHR and
health status of patients’ (corresponding to the states), the
centre’s medical equipment and also the specialists’ knowl-



edge of the specific disease. The Al-assistant of each centre
helps their experts design effective treatments for the pa-
tients with similar or related diseases. To this end, the two
Al-assistants interact to learn from each other’s experience
by exchanging information on the diagnostic and treatment
actions taken by experts without revealing sensitive infor-
mation. This sensitive information includes the state of the
environment which can be the health status and records of
patients (also reflecting their personal identity) under treat-
ment by specialists can be considered private information.

Formally, the objective of AS is to ensure privacy while
learning predictive distribution @, parameterised by w €
Q) C RY, defining a distribution over function 74 (s) for
target states s € Dj = {s}*,  given Djj where 7y ~ P
and Ty : S — A. The intention is for the learning is to
adapt well when predicting actions of a new population
of users in similar/related tasks and for the target states of
Env’. Toward this end, AS learns a privacy-protected model
parameter w € () that helps AS’ learn a low risk w’ when
testing on new population of users in similar/related tasks.
These two goals can be viewed as the training and testing
phases of a meta-learning algorithm for few-shot prediction
of users’ behavioural policies that are performed by AS
and AS’, respectively. While the former trains and transfers
a privacy-protected parameter w of surrogate user models
from Env, the latter receives and adapts it for learning new
surrogate user models that can predict on target data from
Env'.

We cast the problem of privacy-protected user modeling into
privacy-preserving meta-learning for few-shot stochastic
regression of users’ behavioural policies. Toward this end,
we consider differentially-private learning of neural process
models as a latent variable probabilistic model.

3.2 DIFFERENTIAL PRIVACY IN USER
MODELING

3.2.1 Definiton of Differential Privacy

Formally, DP is defined as follows:

Definition 1 ((¢,d) — DP mechanism). A probabilistic
mechanism M : D — O is (e, d)-differentially private
if for some ¢ > 0 and 6 € [0, 1], any measurable subset
O C O and for all neighbouring datasets D', D" € D
differing in just one Dy,

Pr[M(D') € O] <ePr[M(D") € O] +6. (1)

3.2.2 User-Level Differential Privacy

AS runs a privacy-preserving mechanism M during train-
ing to satisfy user-level DP. This matches our threat model
(see Sec.[3.1)) in contrast to record-level DP which would

only protect a single trajectory [Levy et al.,|2021} |Xu et al.,
2022, Jain et al.l 2021]]. The notion of user-level privacy
enters via the definition of the neighbouring relationship of
the datasets. We consider two datasets D’ = {Dj, }4, and
D" = {Dy }e, as neighbouring if for some 0, € ©, D’
and D" differ only in the dataset related to a specific user
ie. Déu = Dgu, V6., # 6.,. This guarantees that AS’ cannot
distinguish if any specific user dataset was utilised. The ¢
is the bound on the the privacy loss of database D and 4
denotes a small amount of slack in terms of the probabil-
ity mass difference of regions where this € bound may be
violated.

Algorithm 1: DP-SGD Training of Neural Process

Input: Population of users U/ with distribution p(6,,)
and corresponding task parameter distribution
p(0;) constituting the user-task parameters
0 = (0., 0;) with distribution p(6)
Input: behaviour generative process p(7|6)
Input: Step size hyperparameter ~, Clipping bound c,
Number of iterations 7', User sampling rate
q € (0, 1], Privacy budget § < 1/|U| and &
Init: Encoder 7 and decoder ¢ for hy, and gy
Compute required privacy noise:
o + privacy_oracle(T,q,¢,d)
fort =1toT do
Sample, with probability ¢, a batch B; of user-task
parameters
foreach 6 € 5; do
Generate a trajectory Dy of length ny
Split Dy into D (context) and D, (target)
Encode D§ as w = ﬁ > dyep, M (de)
Compute user-specific gradients:
g0 = (86,4, 80.6) = Vi,sLo (¥, §)
Clip gradients: gg , = min{1, ¢/||gs,v ||} 80,4
Perturb gradient: 8¢ 4 = 8¢ + N (0, 20I)

Average gradients: g,, = ﬁ deBl €0,
_ 1
86 = 1B 2-0eB, 80,6
B Update parameters: ¢ < 1 — Y8y, ¢ < ¢ — Y8¢

3.3 DIFFERENTIALLY PRIVATE NEURAL
PROCESS

Neural Process are computationally-efficient models,
combining Gaussian processes and neural networks,
which we use to approximate parameterised surro-
gates that compute an amortised version of the predic-
tive posterior distribution as Q. (m¢(Dg)|Dg,Dj) =
[ 40(2lD§)p (o (DY D] 2)dz, w = (1, ). of the user
behaviour 7y at target unseen states. This is performed by
considering a joint Gaussian distribution over the values of
the policy 7y at target states of interest, given the context



dataset, followed by a NN to learn the mean and variance
parameters of the surrogate distributions in the following
three steps that builds the NP model \Garnelo et al.| [2018]]:

1. A parameterised encoder hy, : S x A —+ R, R C
R¢, embedding samples (s}, a}) of observed context
dataset D¢ to a fixed-dimension representation rj =
hy (al), al)) of user and task parameters 6.

2. A permutation invariant aggregator, Agg, comput-
ing an order-invariant global representation ry =
Agg({ry}i) = D% rl/me of the context dataset.
This parameterises generation of a global latent vari-
able z ~ N (u(rg), o(rp)).

3. A parameterised decoder gy : S x Z — A predicting
the actions for states of interest in target set D} as
a=gy(s,z),s€D,.

The NP model builds a surrogate posterior py(z|(sg,ag))
and likelihood p,(ag|sg,z), by implementing the map-
pings of encoder hy and decoder g4 with optimisable
parameters ¢ and ¢. The goal is to optimise the loss
function L(¢,¢) = Egp(0),ro~p(rlo)lo (¥, @) with re-
spect to parameters i) and ¢ for generalisation of the
surrogates over the user/task population. Lg(v,¢) =
E(so,a0)~mo [L (o (a080), Qu (ag]sg, DF))] is the loss func-
tion for specific user-task parameters, and L is the loss
between simulated and ground-truth behaviours of the users
formulated in terms of the evidence lower bound (ELBO) as

L(mg(aglse), Qu(ag|se, D)) 2
ng C
i qw(Z|D9)>
=E, (5 E log(ps(ag|sy,z))+lo ( .
qy (2|Do) Rt g( ¢( 9| 0 )) g q¢(Z|DG)

Here, gy (z|-) is a variational posterior of the latent variable
z given the respective dataset.

AS performs differentially-private optimisation for this prob-
lem to protect privacy of the users’ datasets D while trans-
ferring the optimised parameters v and ¢ to AS’ for meta-
testing. These parameters are utilised by AS’ as an initialisa-
tion that performs well when running the few-shot optimisa-
tion process on new user/task populations while not leaking
sensitive information about the users’ data to AS'.

4 METHOD AND NON-CONVEX
THEORETICAL GUARANTEES

In this section, we propose an algorithm to address the
optimization process of the privacy-protected user modeling
problem based on training a NP model [Garnelo et al.,2018]
using DP-SGD [Abadi et al., [2016]. DP-SGD provides a
scalable and computationally-efficient differentially-private
method to accomplish stochastic gradient descent for non-
convex optimisation and is generally applicable with privacy
properties that are well understood. This proposes building

privacy-protected surrogates while being differentiable and
generalisable over user/task population. This will extend the
non-private solution for user modeling problem discussed
by Hiamaldinen et al.|[2023].

Our main contribution is to apply this method in a new appli-
cation, with provable statistical guarantees, for DP few-shot
stochastic prediction toward probabilistic user modeling.
We present results on utility and privacy guarantees, as well
as their trade-off, of the proposed algorithm as a solution for
DP meta-learning of the (non-convex) ELBO loss function.
For this, we make use of an optimality result of the ELBO
given by Damm et al.|[2023]].

4.1 DP-SGD TRAINING OF NEURAL PROCESSES

For training the NP, a set of policies {7y }¢ are sampled
from distribution P, and are executed by the simulator at
the base environment to generate pairs of states and actions
Dy = {(s}),a})}; with ajj = my(s),). During training, this

dataset is split into a context dataset D§ = {(s},a})}"
and target dataset Dj = {(s},a})}; ., that are fed

into the encoder and decoder of the NP as described in
Subsection [3.3] We utilise the DP-SGD algorithm for train-
ing this NP as described in Alg. [I] First, a batch of users
are sampled, with fixed batch size and sampling rate of g,
and then the gradient is computed for each user within the
batch using samples of data points. Second, the gradient
components gy (1)), with respect to weights of encoder, are
clipped to bound ¢>-norm sensitivity followed by perturba-
tion with a calibrated Gaussian noise vector to guarantee
privacy. It should be noticed that encoder weights are re-
quired to preserve privacy as they are subsequently utilised
to generate a latent variable for use at the decoder during
testing. Accordingly, the gradient components with respect
to the weights of the decoder are not obfuscated. To charac-
terise the noise level o required to achieve the desired level
of privacy parameters in Alg. |1} we resort to a recently estab-
lished principled way for privacy accounting, based on PLD,
over subsequent accesses to the dataset through training it-
erations. This privacy accountant enables establishing tight
upper bounds on the real privacy loss [Doroshenko et al.|
2022] to efficiently compute a tight 6 given the privacy loss
budget ¢ (and the hyperparameters of the composed privacy
mechanisms over 7' training iterations, 2), i.e., d(¢; 2). In
our case, 2 = (T, 0,q).

We can use these techniques to determine the noise level
o for a set of desired privacy parameters (&, d) and known
number of iterations TE] In Alg. 1} we abstract away the de-
tails of this and simply assume that we have a function
privacy_oracle(T,q,¢,0) that outputs a suitable o.
We choose § = [U|~2 following the common advice that

'By inverting 6(e; T, o) for o using any (numerical) root-
finding technique.



§ < |U|~t as it would otherwise allow the leakage of arbi-
trary raw data points through the algorithm [Dwork et al.,
2014]). Alg.[I]is an instantiation of DP-SGD to train NP
using PLD accountant. The model weights ¢/ optimise the
loss of generalising the privacy-protected user surrogates
over the users population while ¢ optimise the loss of gen-
eralisation over the task of predicting unseen states. These
weights are transferred to AS’ from Env’ for meta-testing on
a new user-task and have to predict actions for new target
datasets containing states of interest.

4.2 UTILITY AND PRIVACY GUARANTEES

In this section, we present our results on the utility and pri-
vacy guarantees, as well as their trade-off, for the proposed
Algorithm I|that leverages DP-SGD method [Abadi et al.|
2016] for training the NP model [Garnelo et al., 2018]]. For
the utility guarantee, we derive a new bound on the norm
of stochastic gradient vectors, based on the stochastic non-
convex optimization analysis of [Ghadimi and Lan| 2013
Agarwal et al. 2018]], to account for the noise variance
of the perturbed gradients with respect to weights . This
enables us to investigate the convergence of the proposed
algorithm for DP-SGD learning of the NP toward building
privacy-protected probabilistic user models. We also discuss
how the perturbed gradients affect the convergence of the
algorithm compared with non-private gradients.

These results show that we are able to build differentiable
user models that can efficiently adapt to similar or related
users/tasks while preserving the privacy of users’ datasets
for further use in another environment. The impact of this
is to facilitate faster adaptation by releasing a privacy-
protected experience from one environment to another.

Theorem 1 (Utility Guarantee). Suppose the neural net-
work has differentiable non-linearities contributing to the
A-smoothness of the loss function L with bounded gra-
dients ||VLy (¥, @) < ¢ Y, ¢, and the step sizes

t At — o~ — ind 1 V2ALF
Vo =V = = mln{)\,%m}, t € [T]. Then the
gradients of the loss function after T iterations of learning

can be bounded as

E VoL@, ¢")II° + [VsL(v", ¢")|1?]
2AL* A [2AAL*
< +2 70\/6111,0'1/, (3)
T T

where E [||g, — VLy (¢, 9)|1?] < dyc*ay, and dy is the
dimension of the encoder weight vector. AL* is such that
L(to, o) — L* < AL* with L* = Egp(9)[Ly] being the
optimal loss. L} is given by the sum of entropy values of the

prior and surrogates for the posterior and likelihood as

1 d. §2('DC) 1 ng—mda
* J 2 i
L0= 30, 218\ "3 [y 2 2 VB Cneri @)
i=1 ) i=1 j=1

“4)

(gf, e ,qi) and (7'12, ce T(?A) correspond to the diagonal
elements of the encoder and decoder covariance matrices,
respectively. See Appendix [A]for the proof.

The utility guarantee implies that the gradient norm (as used
for the convergence analysis of non-convex stochastic opti-
misation [Ghadimi and Lan, 2013]) decreases as the num-
ber of training iterations increases and hence the training
method conducts the model toward the optimal value. This
is while the increase in noise variance to preserve stricter
privacy slows down the convergence.

Next, we present privacy guarantees based on the subsam-
pled Gaussian privacy-preserving mechanism. We lever-
age recent PLD results for accounting privacy loss over
compositions of elementary mechanisms [Doroshenko
et al) 2022] to show that, for any ¢ computed by the
privacy_oracle(T,¢,q,0), the algorithm is (e, §)-DP.
We consider the substitution neighbouring relation and fixed-
sized batch sampling (with rate g) without replacement to
derive this result.

Privacy accountants enable us to first find the tightest pri-
vacy parameter ¢ (¢) as a function of the total privacy leakage
budget € over 7' iterations. Second, this helps adjusting the
amount of additive artificial noise such that a convergent
learning is guaranteed that does not exceed the given privacy
leakage budget e through T-fold sequential composition of
the privacy-preserving mechanisms during continual obser-
vation of the mechanism output. It should be noted that
compared to other accountants, PLD-based accounting has
been found superior in earlier work of [Doroshenko et al.,
2022] by providing tighter bounds on the DP parameters
through high-accuracy estimation of the overall privacy pa-
rameters after 7'-fold sequential composition as is the case
in iterative learning methods [Sommer et al.,[2019].

Theorem 2 (Privacy Guarantee). DP-SGD training of the
NP is user-level (g,0)-DP, using the subsampled Gaussian
mechanism with variance o = = 1(¢,8;T,q), and fixed
batch sampling of rate q at each iteration for the T-iteration
learning algorithm|I] Proof is provided in Appendix [B]

Finally, to find the trade-off between utility and privacy
guarantees in this problem, we first provide an analytical
upper bound on the variance of the noise that satisfies the
privacy budget. To this end, first, we use the known result
that subsampling amplifies privacy [Kasiviswanathan et al.,
2008|, to analytically bound §(¢) of the subsampled mecha-
nism with that of the pure Gaussian mechanism [[Sommer|
et al.,[2019],

1 eoc—T/20\ . 50+T/20>}
T lerfc (72129 peerfe (50
5(65 , 4, O-)Sz |:er C< \/ﬁ > e er C< \/ﬁ .
Serfc <6U—T/20) )
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Figure 2: Performance of user models trained with different
number of users (500 to 15,000) in a non-differentially
private setting (black) and differentially private setting with
e =1 (red), 3 (orange), 5 (green), and 10 (blue).

The above holds for g < ;:;%_11; see Appendixfor further
details. Then, the upper bound on o is obtained by solving

@) for o as

oy =04< \/\/gz {erfc1 (20)+1/e+ (erfc1(26))2} . (6)

Accordingly, we can now state the following result for the
trade-off rule by inserting into Eq. (3):

Corollary 1 (Trade-off analysis). Supposing the ELBO
function is A\-smooth and has bounded gradients, then for
the step sizes vy, and 74 as in Thm. E] the gradients of the
loss function can be bounded as

E[IVw.aL@", "] (7)
SQAL*A +4cy/ )\A:*d {erfc_l(%)—i- e+ (erfc_1(25))2]

S EXPERIMENTS

In this section, we include three experiments for compar-
ing the accuracy of the DP-protected user model surrogates
against their non-DP counterparts under various privacy bud-
gets. We provide analysis on the method’s performance in
terms of accuracy (not expressed in percentage) for different
numbers of new users (# users) seen as well as the amount
of their user behaviour data seen. We use a fixed clipping
bound of ¢ = 2 as a hyperparameter in our experiments.

5.1 GRIDWORLD ENVIRONMENT

The first experiment is the benchmark setting used by
Hamaliinen et al.|[2023]], evaluating the method’s ability to
act as a surrogate for a model describing simulated agents

(users) on a 10 x 10 gridworld environment. The gridworld
environment is defined as a POMDP with deterministic tran-
sition dynamics. Here, the behaviour of agents in the agent
population are assumed to emerge as a result of Monte Carlo
Tree Search (MCTS)-based optimization. Each agent is de-
fined by an individual reward function, observations and
MCTS parameters. This results in a wide variety of different
behaviours over the full population. We train the method
on data generated by sampling individual users, as detailed
in Section [3.1] The environment state captures the current
location of the user, which the user can change by moving
into one of its adjacent states. The reward function, unique
to each user, always assigns one environment state with a
positive reward and a negative reward. The initial user loca-
tion for each episode is chosen at random. Further details
are included in Appendix The modeling task for the
Al assistant is to predict the subsequent behaviour of a user,
given access to some previous context behaviour of that
particular user in different tasks, and the behaviour during
the current task. The context observations correspond to the
trajectories of state-action pairs performed by the user. Each
task is assumed to correspond to an episode in the same envi-
ronment (sampled independently), but each starting from a
different initial state. The number of context trajectories and
trajectory length can vary between each agent and task. All
other information, such as the reward function and MCTS
parameters, are hidden from the assistant.

5.1.1 On users seen

Fig.[2| shows the performance of the models when trained
with different numbers of users. The lower the number of
users, the gap between the accuracy of the private with
tighter privacy restriction, and non-private model is higher.
However, it is also clear that for small data, the models with
less privacy restrictions have comparable performance with-
out sacrificing the actual accuracy. As we have more users,
the gap between private neural process with tighter privacy
restrictions is reduced significantly. The model trained with
5000 users achieves a comparable performance in tighter
to lighter differential privacy bound. The differentially pri-
vate models which have more users than 5000 have similar
behaviour of a non-private model. This means one can guar-
antee privacy along with same utility of a non-private neural
process. The consistent behaviour of a non-DP neural pro-
cess that uses more users for training can have diminishing
benefits as evident from Fig. [2| This reduces the transfer
risk of the trained user models in one environment to the
other even under a strict privacy regime.

5.1.2 On behaviours seen

Fig. [3|shows the generalization of the user models trained
with 500, 2000 and 5000 users and prediction of their be-
haviours. Unsurprisingly, as the number of observed be-
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haviours per user increases, the accuracy also increases for
all privacy budgets and for all the user models.

For smaller ¢, the difference between the non-private model
is larger. However, this gap tends to decrease as the num-
ber of trajectories increases. The model performance also
is quite similar to the non-private models as we increase
the number of users to train the user models. It is worth
noticing that the amount of data received from an individual
user is very small and training models with data only from
individual users results in significantly poorer performance,
as implied by the decreasing modeling performance when
the amount of users decreases.

5.1.3 On convergence

The utility bound of Theorem [I]implies that the norm of the
gradient (as used for convergence analysis of non-convex
stochastic optimization |Ghadimi and Lan| [2013]]) decreases
as the number of training iterations (No: of training epochs)
increases. As evident from Fig. [5| and Fig. ] where both
the norm of the gradient and the training loss converge (sta-
bilize) with increase in training epochs (No: of training
epochs). The initial increase in the gradient norm is asso-
ciated with stability issues early in training. However, as
training progresses, the norm values gradually converge.
It is also important to note that the convergence becomes

slower when we target stricter privacy, which is obvious in
differential privacy. Also, the trend of the gradient norm
across epochs aligns with the loss curves, supporting our ob-
servation that models with fewer users require more training
epochs to converge, while increasing the number of users
leads to faster convergence.

5.2 MENU SEARCH ENVIRONMENT

In our second experiment, we test our method with simu-
lated users following the Menu Search model of |[Kangas{
radsio et al.|[2017]]. This cognitive model captures the gen-
erative process behind human search behaviour, when they
are searching for a specific item in a computer dropdown
menu. This model is based on computational rationality
[[Gershman et al.| 2015]] and models how the user behaviour
emerges as optimal behaviour that is constrained by the
cognitive limitations of the users. For further details of the
menu search environments, see Appendix [D.2]and [D.2.2]of
the supplementary material and [Hamaéladinen et al.| 2023
Kangasraisio et al.| [2017].

Similarly as in the first experiment, the tasks consider mod-
eling the behaviours of individual users, here generated by
the Menu Search model. In each task, observations come
from multiple simulations performed by each user in differ-
ent menu layouts. We evaluate the method’s ability to model
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the user behaviour in previously unseen menu layouts.

‘We train user models with 50, 100, 150, 300, 600, 900, 1200,
1500, and 1800 users under strict to modest privacy budgets
of e = 1,3,5,10 and a non-DP Neural process model for
each. The results are illustrated in terms of test accuracy
evaluations when presented with 5000 new users (test) is
shown in Fig.[6] In this setup we can see there is no major
gap in accuracy differences exists between non-DP and DP
Neural processes. It also important to note that the DP based
user model with tighter to relaxed privacy trained with 50
users even have slightly better test accuracy.

5.2.1 Menu Search Al-assistant

We examine the integration of a differentially private Al
assistant into an interactive system within a simulated
environment (refer Appendix [D.2.2)and [Haméldinen et al.|
2023]]). Our study enhances a structured search space
with hierarchical navigation and adaptive guidance. The

assistant models user intent through observed behaviours
while balancing assistance and autonomy via interaction
constraints. Using data from 300 users, we compare
accuracy between non-DP (0.718) and DP models with
e = 1,3,5,10(0.685,0.689,0.67,0.681). Results show
minimal accuracy differences across privacy settings.

Limitation and Challenges : The reported results use AC-
NPs [Kim et al.,[2019] although ANPs achieve the highest
accuracy in [Hamaildinen et al., [2023]]. Our experiments
identified instability caused by exploding gradients, even in
non-DP training. The introduction of differential privacy fur-
ther exacerbated this issue, intensifying gradient explosions
and significantly degrading model performance. While the
choice of the NP design does not affect our conclusions, fu-
ture work might want to consider recent alternatives such as
Transformer Neural Processes [Nguyen and Grover, [2022]]
due to the known stability issues with the NP-ELBO loss.

6 CONCLUSION

We proposed a privacy-preserving probabilistic user mod-
eling framework that integrates neural processes with DP-
SGD, enabling differentially private few-shot predictions
while maintaining real-time inference. Our approach bal-
ances privacy and utility, achieving competitive accuracy
under strict privacy constraints across diverse user modeling
tasks. Empirical results showed that as user data increases,
the performance gap between private and non-private mod-
els diminishes, supporting the feasibility of privacy-aware
surrogates. Additionally, we established theoretical guaran-
tees on privacy-utility trade-offs in non-convex optimization.
This work advances privacy-conscious Al assistants for sen-
sitive applications like healthcare and personalization, with
potential for further improvements in adaptability and ro-
bustness.
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Supplementary Material

The proofs of our theorems are provided in Sections [A]through [C| and the experiment details are presented in Section

A PROOF OF THEOREM

In this section, the convergence of the DP-SGD meta-learning algorithm is discussed for learning nonconvex ELBO
loss function to build DP probabilistic user model. To this end, we need to investigate the gradient of the loss function
E[VL(¢", ¢")] or the optimality gap E[L (7, ¢7)] — L(¢*, ¢*) after T  rounds of training iterations. As the loss function
is not convex in terms of the parameters v and ¢, the common analysis of the DP-SGD meta-learning for convex functions
[Zhou and Bassily, 2022} |Li et al., | 2020], can not be extended to this setting straightforwardly. We provide a convergence
analysis based on the DP-SGD method of [|Agarwal et al.,|2018]] for stochastic non-convex optimization studied in [|[Ghadimi
and Lan, 2013|]. We modify this analysis to consider the optimization in terms of both v and ¢.

Considering the ELBO function is A\-smooth (having Lipschitz continuous gradients), i.e. V1), 1’ € R% and ¢, ¢/ € R%
we have |[VL(¢’, ¢") — VL(¢, ¢)|| < A|[(¢', ¢') — (¢, ¢)||, the gap of loss function for two consecutive iterations can be

formulated as follows considering parameter updates ¢! = ¢* —v, 8!, ¢! = ¢'*! —74g!, and £ £ VLt ¢t)— g
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where (a) follows by the smoothness condition, (b) follows by the SGD updates of learning rates -, and . Considering

v = max{yy, ¢} < 1/, and taking the summation over the whole iterations, then the sum of the norm of the gradient
vectors with respect to both parameters can be bounded as
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According to the perturbation in Alg. g, and g}, are unbiased estimators of the true gradients and so E[¢)] = E[¢}] = 0.
Taking the expectation of both sides of the above inequality, we have
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where (d) follows by the assumption of v = min{+, A\”}T} for step size and (e) follows since Ay, = y/2AL* /Adyc and
oy

tightens the bound. L (¢*, ¢*) is the optimal value of the loss function that can be related to the parameters of the surrogates
as follows.

In our setting, ELBO can be specified and simplified to account for the encoding and decoding mappings of the user
modeling problem as

\ i (i qy (2D
L = Ezwq,d,(z|D9)[ Z log (pe(aplsy,z)) + log (M

R qy(2|Dg)
ng
EZNQw(Z|De)[ > log (po(ajlsh,2)) + log (¢y (2/D5)) | +H (44 (2 Ds)) (1
i=meg+1

where H is the entropy function, and the surrogate posterior (Gaussian encoder) and likelihood (Gaussian decoder) are given
by
qy (21D5) = N (up(D5), Ky(D5))
po (aglsy.z) = N (vo(z,55), By(2,55)) - (12)
The mean p,(D§) and covariance K, (D) of the encoder are parameterised by two NNs (neural network), NN, and NN¢

with parameters V and T, respectively, consisting of all the weight matrices and biases of the corresponding NN for the
mean and variance of the encoder:

1 . _ _
po(Df) = o > by (dg), bhy(dy) = NN, (dj; V)

¥ ayeDs
K, (D§) = diag(3(D§),....<2.(D§)). (F.....s3)" = NN,(D§; T) (13)

Accordingly, the parameters of the two NNs contribute to the all parameters of the encoder as ¢ = (V, T). Similarly, the
mean and variance of the decoder can be parameterised by two NNs, NN, and NN with parameters W and M, respectively,



implying all the weight matrices and biases of the corresponding conditional NN for the mean and variance of the decoder:

ve(a,s) = gg(a,s), go(a,s) =NN, (a,s; W)

Ss(a,s) = diag(ri(a,s),... ,ngA(a, s)), (1,... TdA) = NN, (a,s; M). (14)
For the structure of the NN, a concatenation of linear mappings followed by point-wise nonlinear mappings is considered as
NN, Y)=y'f (y'"7'f (... f(y°x+Db°)...) + b!=!) + bl where y' and b' are the weight matrix and bias of the layer

[, and f is the nonlinear pointwise function considered invariant between layers. Also, x and Y represent the input vector
and the weights of the NN, respectively, and are set according to the encoder or decoder side, as inferred from the context.

Applying this setting for the encoder and decoder to build the surrogate posterior and likelihood, the ELBO in (IT]) can be
characterised as
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i=me+1 i=1
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By adapting the arguments in [Damm et al.,|2023], it can be shown that the ELBO converges to the sum of the three entropy
functions of the Gaussian distributions at the stationary points as given in (I3). So, optimal value L* can be expressed in
terms of the mean and variance parameters of the posterior and likelihood surrogates as
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where H(.) denotes the entropy function of the Gaussian distributions considered for the surrogates and the prior z ~

N(0,T).

B DETAILS ON PRIVACY GUARANTEE THEOREM

We formally establish privacy bounds and find the required variance for the subsampled Gaussian privacy-preserving
mechanism applied on the true gradients in Algorithm [I| We leverage recent results for accounting privacy loss over
compositions of elementary mechanisms [Doroshenko et al., 2022]]. We consider the substitution neighbouring relation and
fixed-sized batch sampling without replacement. For any o, the privacy loss random variable for a single iteration ¢ can be

established as oy -1
26T 41 —
[P = (%) —In (qe+q> |

T a7
ge 227 +1—¢q

where Y; ~ gN(1,02) + (1 — ¢)JN(0,0?) and ¢ is the subsampling ratio [Koskela et al., [2020]. For any ¢ we then obtain a
corresponding ¢ such that the algorithm is (¢, §)-DP from the following expectation that is derived from the hockey-stick
divergence (cf. [Doroshenko et al.| 2022]))

0(g;T,q,0)=E [max{o,es_zgzlﬁ"}} ) (18)

Analytical evaluation of this equation is intractable for the subsampled Gaussian mechanism, but a number of methods
for numerical approximations of tight upper bounds have been developed in recent literature, e.g., [Koskela et al., 2020,
Doroshenko et al.,[2022]. To obtain the required o for desired values of ¢, 6 and T', we rely on a (numerical) root-finding
technique to invert §(g; T, o).



C DETAILS ON THE UTILITY-PRIVACY TRADE-OFF RESULT OF CORROLLARY

Privacy amplification by subsampling states that for any (e, §)-DP mechanism M, the composition M o S,, where S is a
subsampling routine that includes any element with probability ¢ is (O(q)e, O(q)d)-DP. Intuitively this is due to the privacy
loss random variable being smaller for a given mechanism output value = and thus more concentrated at smaller value. We
further generalise this to arrive at a bound on ¢ for the same ¢ as follows:

Lemma 1. Let £} = LY(X1) and L5 = L£5(X5) be privacy loss random variables where X1 ~ f1 and Xo ~ fo for
corresponding probability density function f1, fo. If xo exists such that for all x > xq it holds that L (x) < L5(x),

sign( L (v)) = sign(42 (x)) = const, and fy(x)sign(“L (2)) < fo(w)sign (2 (), then 5.7 (LE(w0)) < dzg (L5 (wo))-

Proof.
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The second inequality holds since for all z > x¢ and s > L5 (z0):

_eﬁg(ﬂco)—ﬁf(ﬁgil(s)) < _Lh(wo)—s
& L5(Ch (s) < (20)
L@ < L)

The third inequality follows from 1 — e£2(=0)=5 < 0 for all s > £} (1) and £5(zo) < £§(£1{71 (L%(x0))) which in turn
follows from the assumptions. O

With the above lemma in place, we now simply insert the privacy loss variables for subsampled and plain Gaussian
mechanism, i.e., let

2X1—1

e 202 +1—
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where X ~ fi(x) = gN(z|1,0?) + (1 — q)N (2|0, o?) for the subsampled Gaussian mechanism where sampling is done

for a fixed batch without replacement. Further, let

1 1
Lh = LH(X3) = @(XE - 5) (22)



where Xo ~ fa(x) = N(z|1,0?) be the PRV for the pure (not subsampled) Gaussian mechanism. We have that for all =

(x) > 0 and dL (w) > 0. The condition f; () < fa(z) then holds for all x:
Hilx) < falx)
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We further have that £ (z) < £5(z) for all > z¢ with
1 1
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provided that ¢ < 1/2:
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The condition ¢ < 1/2 is required in (23) to avoid flipping the sign there.
Inserting into yields
1
so = L5(z0) = 3 (ln (l—q(l—i—e*a%) —ln(1—2q)) . (26)

and it can be shown that s <
Letting s1 > 1 (In(1—¢) —In

N[

= (In(1 — q) — In(1 — 2¢)) for all ¢ > 0 (where equality is obtained in the limit of ¢ — 0).
1 —2q)) > sg, solving for ¢ yields
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which reaches its maximum of % as s; — oo.
Putting everything together, we arrive finally at

Corollary 2. For any € > 0, the privacy profile dsGu for the subsampled Gaussian mechanism using sampling without
replacement for a fixed batch size qIN where N is the total number of samples in the dataset, is upper bound by the privacy
profile dgy of the plain Gaussian mechanism, d,6p(e) < dom(€), provided that
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D EXPERIMENT DETAILS

We acknowledge that the structure and content of the experimental details provided in Section [D]of our supplementary
material particularly Sections and[D.2] excluding Section[D.I.T]are closely inspired by the corresponding supplementary
presentation in [Hamaildinen et al.| [2023]]. We gratefully recognize the original authors, whose work meaningfully guided the
design and presentation of the experimental details in our supplementary materials.



D.1 EXPERIMENT 1: GRIDWORLD ENVIRONMENT

The first experiment scenario considers modeling MCTS agents in a 10 x 10 gridworld environment used in [Himaildinen
et al., 2023]]. The gridworld environment is defined as a POMDP with deterministic transition dynamics. The state and action
spaces, including the transition function, are shared across the full agent population, while each agent has their individual
reward and observation functions.

The state space S = {1,...,10}? is a set of possible agent locations in the grid. The action space A = {up, down, left, right}
corresponds to transitioning to grid states adjacent to the agent’s current location. The transition function 7 handles the
transitions accordingly, but does not allow the agent to exit the grid; any actions which would result in the agent exiting the
grid do not cause state transitions.

Each agent is described by their parameters 6 ~ p(6) which conditions the generative process for their behaviour (MCTS)
as m ~ p(7 | 6). The parameters and their corresponding population-level distributions are included in Table Here, the
reward function corresponds to two reward states, one with a positive and one with a negative reward, and are sampled
independently for each agent, such that the positive state cannot be the same state as the negative one. The observation
function corresponds to a binary value which determines if the agent’s vision is limited by a circular vision horizon, which
effectively blocks any perceptions about the reward states outside that horizon. For agents with this horizon, the radius of
the horizon is further controlled by the "tree depth" parameter, which simultaneously controls the MCTS planning depth.
Finally, the memory parameter controls if the agents are allowed to utilise the planning tree from previous time steps for
subsequent time steps instead of always starting from scratch.

Table 2: Uniform prior on user model parameters for the user population in the gridworld experiment.

User Parameter | Distribution
Reward States (z,y) | U{1,...,10}
Observation function | U4{0, 1}
Tree Depth ui{s,...,10}
Memory U{0,1}

The modeling task considers modeling individual users sampled from the population # ~ p(6). Each user 6 generates
n ~U{1,...,8} trajectories of length 10, each corresponding to one episode in the environment. In each episode, a new
initial state is sampled for the user’s location as z,y ~ U{1,...,10}. The resulting trajectories are divided into context and
target data for NP training as follows. One target trajectory is randomly selected and truncated at length [ ~ U{1,...9}.
The first half of this trajectory is concatenated with the other trajectories to construct the context dataset while the latter half
is held-out acting as the modeling target. Based on the available context data at each task, we evaluate the model’s ability to
predict the held-out target data.

D.1.1 Comparison with baselines and alternate models

Neural processes have been established with results in other works Hamaildinen et al.[[2023] (in Fig.1),Jha et al.| [2022]],
Nguyen and Grover|[2022]] to outperform alternatives in meta-learning |Finn et al.| [2017]] requiring uncertainty-awareness.
For our user modeling purposes, NPs fulfill two critical desiderata that other meta-learning paradigms lack.

First, interactive human-Al applications require instantaneous model adaptation to human feedback. NP models can
demonstrably achieve this by reducing the task-specific adaptation into a simple forward pass Hamaildinen et al.| [2023]],
Jha et al. [2022]] while other popular paradigms, such as MAML |[Finn et al.| [2017]], require expensive gradient-based
optimization which has been shown to be infeasible during online interaction|[Hamaélainen et al.[[2023]].

Second, calibrated uncertainty estimation is a critical part of many human-centric problems, ranging from Bayesian
optimization to experimental design problems. Unlike paradigms such as MAML, NPs are uncertainty-aware meta-learners
Jha et al.| [2022] that can demonstrably satisfy the requirements of such settings [Himaéldinen et al.[[2023]], Huang et al.
[2024].

In addition to these critical properties, previous literature on NPs has already shown alternative meta-learning paradigms to
empirically underperform in contrast to NPs, also in the context of user modeling tasks we use similar setting in[Himéalainen
et al.|[2023]].



We conducted a comparison with a PATE-style teacher-student baseline Papernot et al.|[2018]], and obtained favorable results
as shown in Table[3] In this setup, we trained disjoint teacher Neural Processes (NPs) on non-overlapping user subsets. Their
predictions were aggregated via averaging and perturbed using Gaussian noise with standard deviations o € 10, 50, 100. A
student NP was then trained on these noisy labels. We do not explicitly compute € in this experiment for PATE. Experiments
were conducted using training sets of 500, 2000, and 5000 users:

* For the 500-user setting, the data were split into five disjoint subsets: four were used to train teacher models, and the
fifth was used to train the student on the noisy teacher-averaged predictions.

* The 2000-user setting used four 500-user subsets: three for teachers and one for the student.

* The 5000-user setup followed the same protocol as the 500-user case (i.e., 4 teachers, 1 student).

Evaluation was performed using the same validation dataset as in Fig. [2]and 3] Our method shows comparable or slightly
better performance than the PATE-style baseline in the 500- and 5000-user scenarios. In the 2000-user case, the PATE-
style baseline performs slightly better, which we attribute in part to the smaller number of teacher models used in that
configuration.

However, the PATE-style approach becomes increasingly complex as more teacher models are introduced, requiring
additional computation and coordination. This makes it less scalable and more prone to underperformance in low-data
regimes, where each teacher is trained on limited data. In contrast, our method remains simple, scalable, and end-to-end
differentially private via user-level DP training.

Training data (Users) non-dp NP  PATE (o: 10, 50, 100)  dp-NP (Ours) (e: 10, 5, 3, 1)

500 0.83 0.42,0.46, 0.46 0.59, 0.50, 0.48, 0.44
2000 0.83 0.83,0.84,0.84 0.81,0.79,0.77, 0.51
5000 0.84 0.78, 0.80, 0.81 0.82, 0.82, 0.80, 0.76

Table 3: Performance comparison of non-dp NP, PATE [Papernot et al.| [2018]], and dp-NP.

D.2 EXPERIMENT 2
D.2.1 Menu Search Environment

The second experiment considers modeling simulated users following the Menu Search model of |[Kangasrisio et al.| [2017].
The Menu Search model is a cognitive model describing human search behaviour in terms of eye movements when searching
for a specific item in a computer dropdown menu. Motivated by computational rationality [Gershman et al.,2015], the model
simulates human behaviours as a result of RL-based optimization constrained by human cognitive limitations. Similarly as
in [Hidmildinen et al., [2023]], we implement the users as deep-Q learning agents.

The Menu Search environment is specified as POMDP where the environment states capture information about the internal
state of the user, including the current knowledge about the menu items, and the current gaze location of the user. Consistently
with [Hamalidinen et al., 2023|], we consider a menu of eight elements, where each element is described in terms of its
semantic relevance and length in comparison to the target item.

At each time step, the user can fixate their gaze on a specific menu element, or alternatively to quit the scenario. Fixating
on a specific menu item has a chance to reveal the information about the item while also having a chance to reveal the
information about adjacent items via peripheral vision. When fixating on the target element, a large positive reward is
emitted and the episode is ended.

Each modeling simulation considers a newly generated menu layout. The target item is not present in the menu in 10% of
the menus. If the user recognizes that the target element is not present and quits the menu, a large positive reward is emitted.
If the user quits the menu when the target is present, a large negative reward is given. Otherwise, the user is given a small
negative reward at each action based on the action duration; the action durations are controlled by the cognitive parameters
specified in Table E} In the first step of each episode, there is a small chance, p,..., that the user recalls the menu layout,
revealing the information about all menu elements.

Similarly as in the first experiment, each modeling task considers modeling individual users which have completed
n ~ U{L,...,8} search tasks in independently generated menu layouts with different target elements. We similarly truncate
one of the resulting trajectories to form context and target datasets.



Table 4: Distributions for user cognitive properties used in the second experiment.

User Parameter ‘ Distribution
Menu recall probability — p,.. | Beta(3.0,1.35)
Eye fixation duration  fg,,,» | M(3.0,1.0)
Target item selection delay  dse; | M(0.3,0.3)

D.2.2 Menu Search Al-assistant

In the third experiment, we simulate a more practical Al-assistant scenario by expanding the original menu search
environment. The interface now features a two-tiered hierarchy: each complete menu includes a primary layer with
items that function both as descriptors and as links to corresponding sub-menus. Within this setting, an Al assistant guided
by our proposed user modeling approach is introduced. Its goal is to recommend sub-menus that align with the user’s
preferences or intentions. A well-performing assistant is expected to steer users toward options that are likely to contain
their target, effectively minimizing the time spent searching.

Environment. The hierarchical menu search environment introduces an 8 x 8 two-level menu setting. Importantly, the
environment behaves otherwise similarly to the original non-hierarchical version, with the exception of introducing a
main menu that allows a user to navigate between multiple menus. In addition, we introduce a simple mapping between
user observations (semantic relevancies and lengths w.r.t. the target element) and assistant observations (logical groups).
Specifically, each scenario introduces a set of 8 logical groups Sz = 1,...,8 and 4 semantic relevance groups Syser =
{target(1),high(2),medium(3),low(4) }and an independently generated bidirectional mapping between S 47 and Sy The
mapping initializes an ordered set of relevancies as r= {4,4,4,3,3,2,3,3} and assigns a relevance for each logical group with
a randomized circular shift on r. The intuition of the mapping is simply to mask the semantic information regarding the
target element (via randomization) while allowing a soft prior heuristic for the assistant by conserving semantic similarity
between similar logical groups. We similarly mask the item lengths via randomization. After the mapping between the
observation spaces S 47 and Sy, is constructed, we sample two logical groups for each sub-menu (such that each group
occurs exactly twice in the full menu) and determine a semantic label for the menus summarizing the relevancies of their
respective logical groups. The target element is then assigned randomly into one of the sub-menus that includes a logical
group with highrelevance. The contents for each sub-menu are otherwise determined by mapping the semantic labels of
their logical groups into individual items according to the original menu search model specifications. The main menu
similarly follows the original specifications — however, we utilise the semantic labels of the corresponding sub-menus
as the relevancies for the main menu elements. At the main menu level, we also replace the item length information with
a binary variable denoting if the user has already opened the corresponding sub-menu. Finally, the transition dynamics
between the main menu and sub-menus are defined as follows: selecting an element at the main menu -level transitions the
user to the corresponding sub-menu, while quitting a sub-menu transitions the environment state back to the main menu.
Otherwise, all the transition and reward dynamics follow the original environment specifications.

Assistant. The hierarchical menu search environment is designed to include a basic search assistant that supports the user
only when necessary. Initially, the assistant remains passive, activating only if the user fails to locate the target within the
first sub-menu they visit. Upon activation, the assistant selects and highlights a specific item from the main menu when the
user returns to that level. This highlight is assumed to draw the user’s attention, subtly influencing their next choice.

We further assume the user places a degree of trust in the assistant’s recommendation, which in turn increases the perceived
semantic relevance of the highlighted option. Importantly, this does not prevent the user from disregarding the suggestion if
it seems unhelpful. The assistant itself is implemented as a straightforward rule-based system that dynamically updates
its model of the user as their behavior unfolds. While the assistant can observe where the user is looking, it does not have
access to the actual semantic relevance of menu items. Instead, it updates its internal beliefs about both viewed and unseen
options using the observation space described previously. Once triggered, the assistant simulates a possible user action at
the fully revealed main menu level, conditioned on the user’s ongoing search behavior: a ~ py(als, z, z ~ py(2|s, a). The
main menu element corresponding to the estimated most likely user action is then selected as the assistant’s suggestion

D.3 IMPLEMENTATION AND TRAINING DETAILS.

The code used in the experiments is largely based on the code of |[Hamaildinen et al.| [2023]]. The NP models utilised in
this experiment are implemented with the Neural process pytorch library, while all the MCTS agents are implemented



Table 5: Base-architecture of the NP model in experiments.

Encoder Decoder

Number of layers 6 | Number of layers 6
Activations Leaky ReLU | Activations Leaky ReLLU
Hidden dimensions 128 | Hidden dimensions 128
Latent distribution Gaussian | Output distribution Categorical

using the POMDPs. j1 library. All NP-models used in the experiments are trained on A100 and V100 gpus. Further
details of the NP architecture are summarized in Table[5] The code used to produce the results in our paper is available at
https://github.com/AI-Fundamentals/DiffPrivNPUserModelingl


https://github.com/AI-Fundamentals/DiffPrivNPUserModeling
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