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Abstract001

Multi-hop Question Generation (QG) effec-002
tively evaluates reasoning but remains confined003
to text; Video Question Generation (VideoQG)004
is limited to zero-hop questions over single005
segments. To address this, we introduce006
VideoChain, a novel Multi-hop Video Ques-007
tion Generation (MVQG) framework designed008
to generate questions that require reasoning009
across multiple, temporally separated video010
segments. VideoChain features a modular ar-011
chitecture built on a modified BART back-012
bone enhanced with video embeddings, cap-013
turing textual and visual dependencies. Us-014
ing the TVQA+ dataset, we automatically con-015
struct the large-scale MVQ-60 dataset by merg-016
ing zero-hop QA pairs, ensuring scalability017
and diversity. Evaluations show VideoChain018
strong performance across standard genera-019
tion metrics: ROUGE-L (0.6454), ROUGE-020
1 (0.6854), BLEU-1 (0.6711), BERTScore-021
F1 (0.7967), and semantic similarity (0.8110).022
These results highlight the model’s ability to023
generate coherent, contextually grounded, and024
reasoning-intensive questions. To facilitate fu-025
ture research, we publicly release our code and026
dataset1.027

1 Introduction028

The field of Question Generation (QG) has gar-029

nered substantial attention for its potential to cre-030

ate interactive and informative learning environ-031

ments, educational tools, and intelligent systems.032

Traditionally, QG systems focused on generating033

questions based on textual passages, with applica-034

tions spanning from educational quizzes (Krishna035

et al., 2015) to interview questions and clarifica-036

tion prompts (Kumar and Black, 2020). However,037

the exploration of QG in video-based content re-038

mains significantly underdeveloped compared to039

its text-based counterpart.040

1https://anonymous.4open.science/r/
VideoChain-7ED9

Video Question Generation (VideoQG) involves 041

generating questions based on the visual and textual 042

information available in video content. This task 043

is particularly important for assessing a model’s 044

ability to understand and reason over dynamic and 045

temporal data, as videos often present information 046

across multiple frames, segments, and visual cues. 047

Despite its potential, existing VideoQG research 048

has mostly focused on generating zero-hop ques- 049

tions from transcripts or basic visual elements in 050

videos, limiting the scope of reasoning required 051

from the model. In contrast to zero-hop questions, 052

multi-hop question generation requires reasoning 053

across multiple, often non-contiguous, segments of 054

data. Although this has been extensively explored 055

in the text domain through datasets like HotpotQA 056

(Yang et al., 2018b), it remains relatively under- 057

explored in video-based tasks. Multi-hop ques- 058

tions challenge the model to synthesize information 059

across several frames or segments in a video, thus 060

requiring a more in-depth understanding of both 061

visual and textual modalities. 062

To address this gap in the literature, we introduce 063

the task of Multi-hop Video Question Generation 064

(MVQG), where the goal is to generate questions 065

that require reasoning over multiple, temporally- 066

separated segments of a video. To facilitate this 067

task, we construct a new MVQG dataset (MVQ-60) 068

by merging zero-hop questions from the TVQA+ 069

dataset (Lei et al., 2020a). Inspired by the MusiQue 070

paper (Trivedi et al., 2022), which demonstrated 071

the effectiveness of merging simple questions to 072

create multi-hop questions in the text domain, we 073

extend this concept to videos. This dataset is de- 074

signed to challenge models to process and integrate 075

information from different parts of a video, com- 076

bining both visual frames and textual transcripts. 077

Additionally, we fine-tune the BART (Lewis et al., 078

2020), enhanced with video embeddings, to gen- 079

erate coherent, contextually rich multi-hop ques- 080

tions that span multiple video segments. The fine- 081
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tuned models developed in this work demonstrate082

a significant improvement in generating complex,083

multi-hop video-based questions both in terms of084

automatic evaluation metrics and human judgment.085

We summarize the contributions of our work as:086

(1) We contribute the first MVQG system by fine-087

tuning a customized BART architecture, incorporat-088

ing text and video embeddings, to generate multi-089

hop questions requiring reasoning across video seg-090

ments. (2) We introduce MVQ-60, the first dataset,091

specifically designed for MVQG, created by merg-092

ing zero-hop questions from the TVQA+ dataset,093

enabling complex reasoning over multiple video094

segments.095

2 Related Work096

2.1 Text-based Question Generation097

Question Generation (QG) in text has been ex-098

tensively studied, with works focusing on vari-099

ous levels of textual granularity. These include100

document-level QG (Pan et al., 2020a), paragraph-101

level QG (Zhang et al., 2017), sentence-level QG102

(Ali et al., 2010), and keyword-based QG (Pan103

et al., 2020b). Early works employed rule-based104

approaches, but recent advancements leverage deep105

learning models, particularly sequence-to-sequence106

architectures and pre-trained transformers (Pan107

et al., 2019). Techniques, such as semantic pars-108

ing and reinforcement learning have further en-109

hanced the quality of generated questions (Chatter-110

jee et al., 2020). While text-based QG has matured111

significantly, the shift towards multimodal domains112

presents new challenges, particularly in reasoning113

over both visual and temporal modalities.114

2.2 Visual Question Generation115

Visual Question Generation (VQG), introduced by116

(Mostafazadeh et al., 2016), generates questions117

from images and encompasses three types: Visu-118

ally Grounded (answerable from the image (Antol119

et al., 2015)), Commonsense-Based (requiring ex-120

ternal knowledge (Wang et al., 2017)), and World121

Knowledge-Based (integrating factual knowledge122

bases (Shah et al., 2019)). Proposed methods in-123

clude encoder-decoder (Mostafazadeh et al., 2016),124

compositional (Liu et al., 2018), and generative125

models (Jain et al., 2017), enhanced by reinforce-126

ment learning (Yang et al., 2018a) and bilinear127

pooling (Fukui et al., 2016). Domain-specific ap-128

plications (e.g., medical imaging, education (Mehta129

et al., 2024)) exist, but challenges persist in visual130

grounding, multi-object reasoning, and extending 131

these challenges to video. 132

2.3 Video Question Generation 133

VideoQG is inherently more challenging than text 134

or visual QG due to the temporal structure and mul- 135

timodal nature of videos. Early works (Yang et al., 136

2021) primarily focused on generating questions 137

based on video transcripts or static object and at- 138

tribute descriptions (Gupta and Gupta, 2022), but 139

fell short of addressing more complex reasoning 140

requirements. Multi-hop reasoning in video QG 141

presents unique challenges: Contextual Integration: 142

Generating self-contained questions that require 143

linking temporally distant events in a video. Entity- 144

Action Mapping: Associating visual entities with 145

their respective actions or interactions in a coherent 146

manner. Multimodal Fusion: Effectively leverag- 147

ing signals from various modalities (e.g., video 148

frames, audio, and textual subtitles) to generate 149

questions that reflect comprehensive reasoning. Ex- 150

isting VideoQG datasets (Gupta and Gupta, 2022; 151

Acharya et al., 2019) target zero-hop question gen- 152

eration, lacking support for reasoning across multi- 153

ple video segments. While recent video-language 154

models like Flamingo (Alayrac et al., 2022) and 155

Vid2Seq (Yang et al., 2023) advance video under- 156

standing, they remain limited for multi-hop ques- 157

tion generation evaluation. 158

Our work addresses these gaps by introducing 159

a novel dataset MVQ-60 and developing method 160

specifically designed for multi-hop reasoning over 161

videos (see table 3). 162

3 Datasets 163

VideoQA progress stems from datasets with dis- 164

tinct challenges. Existing datasets, such as MSR- 165

VTT (Xu et al., 2016b) (open-domain video cap- 166

tioning), HowTo100M (Miech et al., 2019b) (in- 167

structional videos), TVQA+ (Lei et al., 2020a) 168

(narrative comprehension), ActivityNet-QA (Yu 169

et al., 2019b)(grasping complex videos), and oth- 170

ers have been useful in evaluating the performance 171

of VideoQA models. While existing datasets fo- 172

cus on zero-hop questions (answerable from single 173

events), multi-hop reasoning across video segments 174

remains underexplored. 175

3.1 Dataset Creation 176

Recognizing the lack of multi-hop VideoQA 177

datasets, we opted to create a new dataset. Given 178
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the scalability and reproducibility challenges of179

manual annotation, we pursued the development of180

an automated process to generate multi-hop ques-181

tions by using existing datasets. This decision182

was inspired by the MUSIQUE dataset (Trivedi183

et al., 2022), which successfully generated tex-184

tual multi-hop questions through automated merg-185

ing techniques. Our methodology involved merg-186

ing two zero-hop video questions to form a multi-187

hop video question. Among the 40 datasets re-188

viewed, TVQA+ (Lei et al., 2020a) consisting of189

152,545 QA pairs from 21,793 clips, spanning190

over 460 hours of videos based on 6 popular TV191

shows(The Big Bang Theory, How I Met Your192

Mother, Friends, House M.D., Grey’s Anatomy,193

and Castle), emerged as the optimal base for dataset194

construction. Its advantages include:195

High Annotation Quality: Questions and an-196

swers are manually crafted, ensuring accuracy and197

relevance. Contextual Richness: Includes subti-198

tles, video frames, and metadata (e.g., episodes,199

seasons). Widespread Use: Recognized as a200

benchmark in VideoQA research, ensuring broad201

compatibility with existing methods. the TVQA+’s202

extensive coverage of temporally rich, real-world203

scenarios provided an ideal foundation for our204

multi-hop dataset.205

3.2 Automated multi-hop Question206

Generation207

To generate multi-hop questions, we developed208

a rule-based merging algorithm inspired by the209

MUSIQUE dataset’s textual question generation210

strategy (Trivedi et al., 2022), that combines pairs211

of zero-hop questions into coherent multi-hop ques-212

tions. The key steps in the algorithm are:213

Question Filtering: Short questions with con-214

cise answers were prioritized to maintain readabil-215

ity and prevent excessive length in merged multi-216

hop questions. Based on the empirical distribution217

of the TVQA+ dataset and experimental valida-218

tion, we set the length thresholds to 15 words for219

questions and 3 words for answers. These thresh-220

olds ensured broad coverage of the dataset while221

avoiding verbosity, and led to the most effective222

generation of coherent multi-hop questions.223

Temporal and Contextual Matching: The224

questions were grouped based on the shared225

metadata, specifically the episode. Let,M =226

{m1,m2, . . . ,mk} represent the metadata at-227

tributes, where m includes the episode (e) and seg-228

ment (s). Two questions qi and qj are considered229

Figure 1: Example: Merged Multi-hop Question

Temporally and contextually aligned if they share 230

the same episode but have different segments: 231

Match(qi, qj) =
{

1, if ei = ej and si ̸= sj
0, otherwise 232

This ensures that only questions referring to the 233

same episode but different segments are considered 234

for merging. 235

Overlap Detection: Overlap between two ques- 236

tions is defined as instances where the answer to 237

one question forms a semantic part of another ques- 238

tion. Let q1 and q2 be two questions with answers 239

a1 and a2, respectively. Overlap is defined as: 240

Overlap(q1, a2) =
{

1, if a2 ∈ q1
0, otherwise 241

Question Pairing and Merging: Pairs of over- 242

lapping questions were merged to create multi-hop 243

questions by replacing the overlap in first question 244

q1 and second answer a2 with the second question 245

q2. The merged question qmerged is defined as: 246

qmerged = q1 \ a2 + q2 247

where q1 \ a2 denotes the replacement of a2 in q1 248

with q2’s context. An example of this process is 249

shown in Figure 1. 250

3.3 Quality Evaluation Metrics 251

To assess the quality of the generated questions, we 252

evaluate them using a range of metrics: Fluency: 253

Grammatical correctness and natural language qual- 254

ity. Multi-Hop Reasoning: Complexity of reason- 255

ing required to answer the question. Video Rele- 256

vance: Degree of relevance to one or both videos. 257

Engagingness: How captivating and interesting 258

the question is. Factual Correctness: Logical 259
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and factual accuracy of the question-answer pairs.260

Inclusiveness: How well the questions covered261

diverse aspects of the video content. Each metric262

was scored on a scale of 0 to 3, where 3 indicated263

the highest quality. For example:264

Fluency: “What is Chandler’s wife cooking?”265

→ Score: 3 (Excellent) Relevance: “Compare the266

styles of dance by people in both videos.” → Score:267

3 (Highly Relevant)268

For scalability, we conducted evaluation on a ran-269

dom sample of 200 questions. According to statisti-270

cal sampling theory, such a subset can provide reli-271

able estimates of overall dataset characteristics. To272

further validate the dataset’s quality and ensure its273

appropriateness for multi-hop video QA tasks, we274

performed manual human evaluation on the sam-275

pled set. Annotators scored each question across276

the above six criteria using predefined rubrics. The277

average scores were: Fluency(2.92), Multi-hop278

Reasoning(3.00), Engagingness(2.80), Factual Cor-279

rectness(3.00). The high scores, particularly in rea-280

soning and factual correctness, are attributed in part281

to the use of high-quality human annotated TVQA282

base questions, which were merged to construct283

MVQ-60. All annotations were done by multiple284

trained annotators following strict rubrics to en-285

sure objectivity and inter-rater reliability. These286

results reinforce the validity and challenge-level287

of MVQ-60 for future multi-hop video reasoning288

research. Finally, we introduce MVQ60, the first289

large-scale dataset of multi-hop video questions,290

consisting of over 60,000 questions based on six291

popular TV shows (Friends, The Big Bang The-292

ory, How I Met Your Mother, House M.D., Grey’s293

Anatomy, Castle), with an average question length294

of 27 words.295

4 Methodology296

Video Embedding Generation: A key aspect of297

our methodology was the generation of expres-298

sive video embeddings to encode spatio-temporal299

dynamics. We used VideoMAE, a masked au-300

toencoder for self-supervised video representation301

learning (Wang et al., 2023). VideoMAE embed-302

dings effectively capture both motion and appear-303

ance features while maintaining computational ef-304

ficiency. These embeddings served as the founda-305

tional representation for all the subsequent experi-306

ments and models.307

Initial Exploration with Video-Based Models:308

We began by finetuning state-of-the-art video-309

based models, pretrained on tasks, such as video 310

captioning and VideoQA, to adapt them for MVQG. 311

These models were trained using VideoMAE em- 312

beddings and textual inputs (e.g., video transcripts). 313

This approach was inspired by works like (Lei 314

et al., 2020a), which emphasized the use of spatio- 315

temporal features for question answering, and (Yu 316

et al., 2019b), which demonstrated the benefits of 317

video pretraining for understanding complex nar- 318

ratives. While these models showed promise in 319

zero-hop reasoning tasks, they struggled with multi- 320

hop questions. Their large sizes and monolithic 321

architectures resulted in slow processing times and 322

difficulty scaling to higher-hop reasoning. These 323

limitations prompted us to explore lightweight, text- 324

based alternatives. 325

Transition to Text-Based Models: Inspired by 326

(Phukan et al., 2024) that text-based models can 327

generate high-quality video questions with video 328

embeddings, we explored using T5 (Raffel et al., 329

2020), BART (Lewis et al., 2020), and similar 330

models. We modified these text-based models to 331

accept VideoMAE embeddings as additional in- 332

put alongside textual data. During finetuning, the 333

models were provided with both embeddings and 334

transcripts. While this setup improved efficiency, 335

the generated questions occasionally failed to in- 336

tegrate information across video segments coher- 337

ently. These challenges, highlighted the need for 338

explicit architectural modifications to handle multi- 339

hop reasoning. Modular Two-Component Archi- 340

tecture: To address the observed limitations, we 341

develop a model with two-component architecture 342

tailored for multi-hop question generation. This 343

modular design was inspired by the principles of 344

(Andreas et al., 2016), which demonstrated the ben- 345

efits of task decomposition for reasoning tasks, and 346

(Trivedi et al., 2022), which emphasized modu- 347

lar frameworks for multistep reasoning. The first 348

component generates zero-hop questions from in- 349

dividual video segments. It accepts as input the 350

VideoMAE embedding of a video clip, its corre- 351

sponding transcript, and a prompt that guides the 352

question generation process. The model outputs a 353

concise, contextually grounded question. For ex- 354

ample, given a clip where Monica is cooking, this 355

component generates the question “What is Monica 356

cooking?”. This step isolates relevant information 357

from each video segment, forming a foundation for 358

multi-hop reasoning. The second component inte- 359

grates information from multiple video segments 360

to generate multi-hop questions. It accepts as in- 361
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:

Figure 2: Proposed Model Architecture

put the zero-hop question produced by the first362

component, along with the VideoMAE embedding363

and transcript of a second video segment. The364

model refines and expands the question, producing365

a multi-hop question, such as “What is Chandler’s366

wife cooking?”. This process can be repeated itera-367

tively, allowing the model to generate higher-hop368

questions (e.g., three-hop or four-hop questions)369

by forwarding the output question to subsequent370

iterations with new inputs.371

Two-Component Approach: The modular nature372

of the two-component architecture offers several373

key benefits. By decoupling zero-hop and multi-374

hop reasoning, the system scales efficiently to375

higher-hop questions without overwhelming model376

capacity. Each component specializes in a spe-377

cific task, improving both precision and contextual378

grounding.379

5 Model Architecture380

The proposed architecture for MVQG (figure 2)381

centers around VideoChain, a version of the BART-382

large CNN model (Lewis et al., 2020) we modified383

to process both video and textual inputs as distinct384

modalities. It integrates the spatio-temporal dynam-385

ics of video content through VideoMAE embed-386

dings (Wang et al., 2023) while preserving BART’s387

generative capabilities for text-based reasoning.388

VideoChain processes two primary input types:389

video embeddings and text embeddings. Video390

embeddings are generated using VideoMAE, a self-391

supervised video representation learning model392

that encodes video segments into R1568×1024 di-393

mensional feature vectors. These embeddings cap-394

ture both motion and appearance features, provid-395

ing a compact representation of the video’s spatio- 396

temporal content. Text embeddings are derived 397

from video transcripts and prompts. Notably, the 398

prompts differ between components; the first com- 399

ponent uses prompts to generate zero-hop ques- 400

tions (e.g., “Generate a question about this clip”), 401

while the second component uses prompts to guide 402

the generation of multi-hop questions (e.g., “Gen- 403

erate a multi-hop question based on the previous 404

question and this clip”). The architecture builds 405

upon BART-large CNN by introducing modifica- 406

tions that enable it to handle multimodal inputs ef- 407

fectively. First, the encoder is extended to include 408

dual input streams for video and text embeddings. 409

The video embeddings are processed through dedi- 410

cated multi-head attention and feedforward layers 411

designed for spatio-temporal data, while the text 412

embeddings are processed through the standard 413

BART encoder layers. A cross-modal attention 414

mechanism is introduced to fuse the outputs of the 415

video and text streams, enabling VideoChain to 416

reason jointly over both modalities. The decoder 417

attends to the fused multimodal representation, gen- 418

erating the output question token by token. We use 419

this VideoChain in both modules of our architec- 420

ture. 421

Module 1:Zero-hop Question Generation: The 422

zero-hop question generation component consti- 423

tutes the first stage of the architecture. This com- 424

ponent generates a concise question based on the 425

content of a single video segment. The video em- 426

beddings, transcripts, and prompts are processed 427

independently through their respective streams in 428

VideoChain’s encoder. The cross-modal attention 429

mechanism aligns the visual and textual represen- 430
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tations, producing a unified multimodal encoding431

that informs the decoder’s generation process. For432

example, given a video clip where Monica is cook-433

ing, the model generates the question “What is434

Monica cooking?”. The training process for this435

component employs cross-entropy loss. By focus-436

ing on zero-hop reasoning, this component ensures437

that VideoChain can effectively extract and repre-438

sent information from individual video segments.439

Module 2:Multi-hop Question Composition:440

The second stage of the architecture, the composi-441

tion of multi-hop questions, extends the zero-hop442

question by incorporating additional information443

from subsequent video segments. This component444

takes as input the zero-hop question generated by445

the first component, along with the video embed-446

ding, transcript, and a multi-hop-specific prompt447

corresponding to the second video segment. The448

encoder processes these inputs in their respective449

streams, and the cross-modal attention mechanism450

aligns the zero-hop question with the visual and451

textual context of the second segment. The decoder452

refines and expands the zero-hop question into a453

multi-hop question. For instance, if the zero-hop454

question is “What is Monica cooking?” and the455

second segment provides context about Monica’s456

relationship with Chandler, Module-2 generates the457

multi-hop question “What is Chandler’s wife cook-458

ing?”. This iterative design enables the architecture459

to handle reasoning tasks of arbitrary complexity460

by recursively invoking the second component with461

new inputs.462

Training Strategy: Our model is trained in two463

stages to optimize its performance for zero-hop and464

multi-hop tasks. The zero-hop Question Genera-465

tion component is trained on zero-hop question-466

answer pairs using cross-entropy loss, while the467

multi-hop Question Composition component is468

trained on multi-hop question-answer pairs, with469

ground-truth intermediate questions provided dur-470

ing training. A composite loss function is used for471

the second component, combining cross-entropy472

loss with alignment loss to ensure effective multi-473

modal fusion. During inference, our model uses474

beam search to enhance the fluency and coherence475

of the generated questions, particularly for higher-476

hop reasoning tasks where maintaining logical con-477

sistency is critical. Scalability and Adaptabil-478

ity: Our model’s modularity ensures scalability by479

isolating reasoning subtasks into distinct compo-480

nents. The recursive nature of the multi-hop com-481

ponent allows the system to handle increasingly482

complex tasks without requiring additional archi- 483

tectural changes. VideoChain’s flexibility allows it 484

to integrate with other pre-trained generative mod- 485

els. While BART-large CNN serves as the base in 486

this implementation, the modifications applied to 487

handle video and text inputs can be extended to 488

models, such as T5 (Raffel et al., 2020) or mBART 489

(Liu et al., 2020), enabling the framework to adapt 490

to a wide range of datasets and applications. This 491

adaptability is crucial for advancing multimodal 492

reasoning in VideoQA (Zellers et al., 2019). 493

6 Experiments, Results and Analysis 494

6.1 Experiment Setup 495

For our experiments, we used the MVQ-60 dataset, 496

which comprises 60,000 multi-hop questions paired 497

with video segments and corresponding transcripts. 498

The dataset was split into 80% training, 10% val- 499

idation, and 10% test, ensuring no episode level 500

overlap between these splits to prevent data leak- 501

age and overfitting. During the fine-tuning step, we 502

used the input IDs and attention masks of the in- 503

puts, which consisted of concatenated prompts and 504

transcripts representing the questions, and passed 505

the video embeddings as a separate entity into our 506

model. The model was trained on 2 Tesla T4 GPUs 507

on kaggle for a total of 8 hours. Hyperparameters: 508

a learning rate of 3e-5, a batch size (4)suitable 509

for the available hardware, and gradient accumu- 510

lation steps set to 4. Training was conducted for 511

50 epochs. We used a mixed precision training 512

approach with FP16 enabled for compatibility with 513

CUDA, and we monitored performance using the 514

evaluation strategy set to run every 100 steps. The 515

maximum gradient norm was clipped to 1.0 to en- 516

sure stable training, while unnecessary columns 517

were removed to optimize memory usage. De- 518

spite being a compact architecture ( 406M parame- 519

ters, using BART-large), our model delivers strong 520

multi-hop reasoning performance with significantly 521

lower training time and resource requirements com- 522

pared to large-scale vision-language models. For 523

example, Qwen2-VL-2B requires approximately 524

28 hours of training on similar data, whereas our 525

VideoChain-based model achieves competitive re- 526

sults with just 8 hours of training, highlighting the 527

efficiency and scalability of our approach. 528

6.2 Experiments 529

As VideoChain represents the first dedicated archi- 530

tecture for MVQG, there are no prior models ex- 531
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Table 1: Results on Human Evaluation

Model Fluency Relevance Multi-Hop Reasoning Engagingness Factual Correctness Inclusiveness
VideoChain (Ours) 2.89 2.91 2.81 2.75 2.92 2.78
ECIS (Finetuned) 2.90 2.85 2.72 2.63 2.84 2.65
Qwen2-VL-2B-Instruct 2.71 2.32 1.54 2.25 2.56 2.05
SmolVLM 2.51 2.09 1.24 1.82 1.98 2.24
MGM-2B 2.80 2.54 1.64 2.21 2.24 1.97
PaliGemma 2.95 2.60 1.77 2.41 2.18 2.14

Table 2: Results on Automatic Evaluation

Model Bert score F1 Generation length Semantic similarity Rouge-1 Rouge-L Bleu-1 Distinct-1 Distinct-2
VideoChain (Ours) 0.7967 53.2 0.8110 0.6854 0.6454 0.6711 0.7911 0.9850
ECIS (Finetuned) 0.6253 47.5 0.5291 0.4006 0.3174 0.4203 0.7430 0.9553
Qwen2-VL-2B-Instruct 0.5120 75.3 0.4547 0.2746 0.2451 0.3712 0.7230 0.9370
SmolVLM 0.4881 78.1 0.5154 0.2819 0.2482 0.3574 0.7115 0.9260
MGM-2B 0.5046 70.7 0.5627 0.3004 0.2627 0.3861 0.7250 0.9410
PaliGemma 0.5287 82.6 0.4987 0.2912 0.2519 0.4021 0.7340 0.9505

plicitly trained for this task. To establish meaning-532

ful baselines, we conducted zero-shot evaluations533

using recent general-purpose multimodal mod-534

els: Qwen2-VL-2B-Instruct, SmolVLM, MGM-535

2B, and PaliGemma. These models were selected536

for their ability to process video and language537

inputs without task-specific fine-tuning. In addi-538

tion, to assess the adaptability of existing VideoQA539

models, we finetuned the ECIS model (Phukan540

et al., 2024) on our MVQ-60 dataset. This pro-541

vides a strong baseline from the VideoQA domain.542

This evaluation highlights the limitations of generic543

vision-language models and repurposed QA mod-544

els in generating coherent, compositional video-545

grounded questions.546

6.3 Evaluation Setup547

For Human Evaluation: To ensure a robust and di-548

verse evaluation, we recruited human annotators549

from various demographic backgrounds. Our an-550

notators consisted of individuals proficient in En-551

glish, with a mix of undergraduate and graduate552

students. Each evaluator was tasked with assessing553

a randomly sampled subset of multi-hop questions554

based on predefined quality metrics. To maintain555

fairness and ethical considerations, all the anno-556

tators were compensated at a competitive rate in557

accordance with the standard research compensa-558

tion guidelines.559

For zero-shot evaluation, we provided each560

model with pairs of video segments, corresponding561

transcripts, and prompts designed to elicit multi-562

hop reasoning. The prompts were standardized563

across models to ensure fair comparison. For exam-564

ple: “Based on the two video segments and their565

transcripts, generate a question that requires inte-566

grating information from both videos.” The mod-567

els’ outputs were evaluated on both automated and568

human evaluation metrics, including fluency, rel- 569

evance, multi-hop reasoning, factual correctness, 570

engagingness and inclusiveness. 571

6.4 Results Analysis 572

As summarized in Tables 1 and 2, our proposed 573

VideoChain model consistently outperforms re- 574

cent multimodal baselines across both human and 575

automatic evaluation metrics. In human evalu- 576

ation, while all models demonstrate strong flu- 577

ency and engagingness due to their pretrained lan- 578

guage modeling capabilities,VideoChain achieves 579

the highest scores in relevance (2.91), multi-hop 580

reasoning (2.81), and factual correctness (2.92). 581

The fine-tuned ECIS model also shows strong per- 582

formance, particularly in fluency (2.90) and cor- 583

rectness (2.84), but falls slightly short in relevance 584

and multi-hop depth. The relatively low factual 585

correctness scores of models, such as Qwen2-VL 586

(2.56), PaliGemma (2.20), and SmolVLM (1.98) 587

suggest hallucination and external knowledge leak- 588

age, likely caused by exposure to the same TV 589

shows during pretraining. In contrast, VideoChain 590

is explicitly trained on grounded supervision, en- 591

couraging content-aligned generation. The inclu- 592

siveness metric further highlights the strength of 593

our architecture. As most baselines treat both 594

video segments jointly, they often produce ques- 595

tions grounded in only one clip. VideoChain’s 596

modular dual-stage design processes each clip in 597

separate stages, enabling more inclusive question 598

generation (2.78 compared to 2.05 for Qwen2-VL 599

and 2.14 for PaliGemma). For multi-hop reason- 600

ing, baseline models frequently concatenate mul- 601

tiple independent zero-hop questions rather than 602

forming a coherent multi-hop question. Our model, 603

trained with explicit multi-hop supervision, demon- 604

strates better temporal and semantic integration 605
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across clips. In automatic evaluation, VideoChain606

leads across all metrics, BERTScore F1 (0.7967),607

semantic similarity (0.8110), ROUGE-1 (0.6854),608

ROUGE-L (0.6454), BLEU-1 (0.6711), Distinct-609

1 (0.7911), and Distinct-2 (0.9850). These gains610

show that VideoChain generates fluent, diverse, and611

semantically aligned multi-hop questions. ECIS612

also shows competitive performance, especially613

in fluency-aligned metrics, confirming the bene-614

fits of fine-tuning on MVQ-60. while the other615

Baseline models often generate overly long ques-616

tions (e.g., PaliGemma: 82.6 tokens, SmolVLM:617

78.1), which negatively impacts lexical and seman-618

tic alignment, the stricter length-controlled finetun-619

ing of VideoChain and ECIS, helped them produce620

more concise and accurate questions.621

6.5 Discussion622

The zero-shot evaluation highlights the limita-623

tions of current pre-trained models in addressing624

multi-hop VideoQA tasks without specialized train-625

ing. While models like Qwen2-VL-2B-Instruct626

and PaliGemma show promise in handling gen-627

eral vision-language tasks, their performance on628

multi-hop reasoning remains suboptimal compared629

to our fine-tuned model. This suggests that while630

general-purpose multimodal models offer flexibil-631

ity, task-specific architectures like VideoChain are632

essential to achieve state-of-the-art performance in633

complex reasoning tasks, such as MVQG.634

6.6 Ablation Study635

We assess the contribution of VideoChain’s core636

components through two ablations: (1) Text-only637

variant: Removing video embeddings to isolate638

text reliance caused significant performance drops,639

particularly in video relevance (2.91 to 2.09) and640

multi-hop reasoning (2.85 to 1.54). This confirms641

visual grounding is essential for contextually rich642

question generation. (2) Single-component vari-643

ant: Replacing the modular pipeline with direct644

multi-hop generation severely degraded reasoning645

capability (multi-hop: 1.24 vs. 2.85) and factual646

correctness (1.98 vs. 2.97), often yielding shallow647

or concatenated questions. Both variants showed648

substantial overall performance degradation (0.69649

text-only; 0.76 single-component) versus the full650

model. These results validate the necessity of mul-651

timodal inputs for visual grounding and modular652

decomposition for complex reasoning. Detailed653

metrics and analysis are provided in the appendix654

section D.1.655

6.7 Error Analysis 656

To better illustrate the strengths and limitations of 657

our MVQG model, we present qualitative exam- 658

ples across the six TVQA+ shows in Table 5. Each 659

row provides one example from a distinct TV show, 660

categorized into four groups: (1) Correct Gener- 661

ations, (2) Multi-Hop Reasoning Failures, (3) 662

External Knowledge Leakage, and (4) Halluci- 663

nation. Detailed Error Analysis is discussed in the 664

Appendix section E 665

7 Conclusion and Future Work 666

We introduced VideoChain, the first modular ar- 667

chitecture for MVQG. We created MVQ-60, a 668

large-scale multihop video question dataset span- 669

ning six TV shows. VideoChain’s modular design 670

ensures scalability for complex reasoning. Eval- 671

uations demonstrated its strong performance in 672

generating fluent, relevant, and coherent video- 673

grounded multihop questions, validating our ap- 674

proach. Future work includes expanding to diverse 675

domains (e.g., education, surveillance), developing 676

domain-specific MVQG systems, enabling multi- 677

lingual generation, and integrating emerging vision- 678

language models for enhanced reasoning and nu- 679

ance. 680

8 Limitations 681

Despite the advancements demonstrated in this 682

work, several limitations warrant further investi- 683

gation. Expanding to diverse video domains (e.g., 684

educational, surveillance) requires tackling distinct 685

features and QA demands, likely needing domain- 686

specific adaptations. Second, our system gener- 687

ates questions only in English. Enabling multi- 688

lingual question generation is crucial for broader 689

accessibility but involves complex cross-lingual 690

understanding and generation. Third, the modu- 691

lar pipeline risks error propagation; factual errors 692

from Module-1 often persist despite Module-2’s 693

mitigation of grammatical/semantic issues mitiga- 694

tion. While not significantly impacting overall 695

quality, explicit error correction or joint optimiza- 696

tion could help. Finally, rapidly evolving vision- 697

language models offer potential for more powerful 698

representations, reasoning, and nuanced question 699

generation. Future work should integrate these to 700

achieve deeper video understanding. Addressing 701

these limitations is vital for MVQG’s advancement. 702
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A Appendix 1102

B Automated MVQ-60 Dataset 1103

Generation 1104

We propose a rule-based algorithm for generating 1105

multi-hop questions by merging zero-hop question- 1106

answer pairs, inspired by MUSIQUE (Trivedi et al., 1107

2022): 1108

Algorithm 1 MVQ-60 Generation

Require: Set of zero-hop QA pairs {(qi, ai,mi)}
with metadata mi = (ei, si)

Ensure: Set of multi-hop questions Qmulti
1: Filter QA pairs: Qfiltered ← {(q, a) | len(q) ≤

15, len(a) ≤ 3}
2: for each episode e do
3: Group pairs: Ge ← {(qi, ai, si) | ei = e}
4: for each pair (q1, a1, s1), (q2, a2, s2) ∈

Ge × Ge do
5: if s1 ̸= s2 and a2 is substring of q1 then
6: qmerged ← replace(q1, a2, q2)
7: Qmulti ← Qmulti ∪ {qmerged}
8: end if
9: end for

10: end for

The algorithm processes filtered QA pairs (len(q) 1109

≤15, len(a) ≤3) grouped by episode. For valid 1110

pairs from different segments where a2 appears in 1111

q1, it replaces a2 in q1 with q2 to form multi-hop 1112

questions requiring cross-segment reasoning. 1113

C Models Evaluated 1114

We evaluate the following pretrained models for 1115

MVQG: 1116
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Table 3: Comparison of Different Approaches

Approach Text Video Multihop Reasoning Video Relevance
Text QG ✓ × ✓ ×

Video QG ✓ ✓ × ✓
Zeroshot ✓ ✓ ✓ ×

Our Approach ✓ ✓ ✓ ✓

Qwen2-VL-2B-Instruct (Wang et al., 2024): A1117

vision-language model optimized for instruction-1118

following tasks, capable of integrating visual inputs1119

with complex text prompts. It was tested using raw1120

video frames and associated transcripts.1121

SmolVLM (Marafioti et al., 2025): A1122

lightweight multimodal large language model de-1123

signed for efficient inference on vision-language1124

tasks. Despite its compact size, SmolVLM demon-1125

strated strong performance on zero-hop VQA tasks,1126

but its ability to handle multi-hop reasoning re-1127

mained untested prior to our evaluation.1128

MGM-2B (Li et al., 2023b): A 2-billion pa-1129

rameter multimodal generative model designed for1130

cross-modal understanding and generation tasks. It1131

processes video frame embeddings and textual data1132

simultaneously, offering a comprehensive baseline1133

for multimodal reasoning.1134

PaliGemma (Beyer et al., 2024): A recent mul-1135

timodal model designed by Google DeepMind for1136

VQA and vision-language reasoning tasks. Al-1137

though It excels in vision-language alignment, its1138

capacity for multi-hop reasoning with video con-1139

tent was tested in our experiments.1140

ECIS-VQG (Phukan et al., 2024): A VideoQG1141

model, which was designed to produce entity-1142

centric, information-seeking questions grounded1143

in video content. Originally proposed for Zero-hop1144

VideoQA tasks, we include ECIS-VQG to evalu-1145

ate its capacity for generalizing to the multi-hop1146

setting when finetuned on our MVQ-60 dataset.1147

D Datasets Explored1148

To contextualize the need for a dedicated multi-1149

hop video question answering (MVQG) dataset1150

and to inform our design choices, we conducted a1151

comprehensive survey of existing video question1152

answering (VideoQA) datasets. This exploration1153

encompassed approximately 40 publicly available1154

datasets, each with varying characteristics in terms1155

of scale, domain, question type, and associated an-1156

notations. A summary of these datasets, including1157

their approximate size, primary focus, and question1158

types, is provided in Table 9.1159

While these datasets have significantly advanced1160

the field of VideoQA, they primarily focus on zero- 1161

hop questions that can be answered by directly 1162

attending to specific segments or elements within a 1163

single video clip. As highlighted in Table 9, these 1164

datasets cover a diverse range of domains. 1165

Our analysis of these existing resources revealed 1166

a critical gap: the absence of datasets specifically 1167

designed to evaluate and drive research in multihop 1168

video question answering. As detailed in the main 1169

body, multihop questions require reasoning across 1170

multiple temporal segments or understanding the 1171

relationships between different events or entities 1172

within and potentially across video clips. The exist- 1173

ing datasets, while valuable for zero-hop VideoQA, 1174

do not adequately support the investigation of these 1175

more complex reasoning capabilities. 1176

To address this limitation and facilitate research 1177

into MVQG, we undertook the creation of a novel 1178

dataset, leveraging the TVQA+ dataset as a foun- 1179

dation, as described in Section:dataset-creation in 1180

main paper. Our approach to automatically gener- 1181

ating multihop questions aimed to create a scalable 1182

resource for evaluating models capable of perform- 1183

ing temporal and relational reasoning across video 1184

content. 1185

Human Evaluation Metrics 1186

To assess the quality of the generated multihop 1187

video questions, we employed a comprehensive 1188

human evaluation protocol using the following set 1189

of metrics. Each metric was evaluated on a 4-point 1190

scale(0 to 3), with higher scores indicating better 1191

quality according to the specific criterion. 1192

Fluency: Evaluates the grammatical correctness 1193

and naturalness of the generated question. 1194

• 0: Poor (Grammatical errors and awkward 1195

phrasing). Example: "What doing is Chandler 1196

wife cooking?" 1197

• 1: Fair (Some grammatical errors but under- 1198

standable). Example: "What Chandler wife 1199

cooking?" 1200

• 2: Good (Grammatically correct). Example: 1201

"What is the wife of Chandler cooking?" 1202

• 3: Excellent (Fluent and natural language with 1203

no errors). Example: "What is Chandler’s 1204

wife cooking?" 1205

Relevance: Assesses the extent to which the 1206

generated question pertains to the content of the 1207

provided video clips. 1208
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• 0: Irrelevant (Does not relate to the video).1209

Example: "What is the capital of France?"1210

• 1: Slightly relevant (Partially relates to the1211

video). Example: "Are there any people in the1212

video?"1213

• 2: Mostly relevant (Mostly relates to the1214

Videos). Example: "Are there people dancing1215

in these videos?"1216

• 3: Highly relevant (Directly relates to the im-1217

ages). Example: "What is the connection be-1218

tween the people dancing in these Videos?"1219

Multi-Hop Reasoning: Evaluates the complex-1220

ity of reasoning required to answer the generated1221

question based on the provided video clips.1222

• 0: Single-hop (Only needs one Video for the1223

answer). Example: “Is Monica dancing in the1224

first video?"1225

• 1: Simple multi-hop (Requires basic informa-1226

tion from both videos). Example: "Are People1227

dancing in both Videos?"1228

• 2: Intermediate multi-hop (Requires more1229

complex connections between images). Ex-1230

ample: "Are the same people dancing in both1231

videos?"1232

• 3: Advanced multi-hop (Involves detailed rea-1233

soning using both images). Example: "what1234

is the relation between the common people1235

dancing in both videos?"1236

Engagingness: Evaluates how interesting and1237

captivating the generated question is to a human1238

observer.1239

• 0: Not engaging (Boring or uninteresting).1240

Example: "Are there hats in the videos?"1241

• 1: Slightly engaging (Mildly interesting). Ex-1242

ample: "What colours are the hats in the1243

videos?"1244

• 2: Moderately engaging (Interesting and en-1245

gaging). Example: "How do the styles of hats1246

in the videos differ?"1247

• 3: Highly engaging (Very interesting and cap-1248

tivating). Example: "What do the hats in the1249

videos reveal about the event going on and1250

time period of the scenes depicted?"1251

Factual Correctness: Evaluates whether the 1252

generated question contains any factual inaccura- 1253

cies. 1254

• 0: Incorrect (factually incorrect). Example: 1255

"Why does Chandler want to leave after hang- 1256

ing out with the group, which includes Amy 1257

and Emma?" 1258

• 3: Factually correct. Example: "Why does 1259

Chandler want to leave after hanging out with 1260

the group, which includes joey and monica?” 1261

Inclusiveness: Evaluates whether the generated 1262

question is inclusive and avoids any potentially 1263

biased or discriminatory language. 1264

• 0: Not inclusive (The question contains biased 1265

or discriminatory language or assumptions). 1266

Example: "Why are the women in the video 1267

acting emotionally?" 1268

• 1: Slightly inclusive (The question is mostly 1269

neutral but could be phrased more inclusively). 1270

Example: "What are the people in the video 1271

doing?" (If the context strongly implies a spe- 1272

cific gender) 1273

• 2: Moderately inclusive (The question at- 1274

tempts to use neutral language but might still 1275

have some underlying assumptions). Exam- 1276

ple: "What is the role of each person in the 1277

scene?" 1278

• 3: Highly inclusive (The question uses neutral 1279

and respectful language, avoiding any biased 1280

or discriminatory assumptions about gender, 1281

race, age, etc.). Example: "What actions are 1282

the individuals performing in the video?" 1283

Examples from Our Multihop Video 1284

Question Generation Dataset 1285

To illustrate the characteristics of the multihop 1286

questions within our newly created dataset MVQ- 1287

60, we present a selection of examples in Table 4. 1288

Each row includes the constituent questions, their 1289

respective answers, the involved video clip names, 1290

and the resulting initial multihop question. It is 1291

important to note that these are the initial multihop 1292

(merged) questions generated by our system, after 1293

paraphrasing they often exhibit improved fluency 1294

and naturalness. 1295

Note: Due to space constraints, we have pre- 1296

sented a subset of the generated multihop questions. 1297
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The full dataset contains a diverse range of ques-1298

tions requiring various forms of temporal and re-1299

lational reasoning across different video segments1300

from the TV show "Friends". The structure of these1301

examples demonstrates how our dataset links in-1302

formation across potentially non-contiguous video1303

clips through the composition of simpler questions1304

D.1 Ablation Study1305

To better understand the contributions of various1306

components in VideoChain, we conducted an abla-1307

tion study by modifying the model in two key ways:1308

(1) removing the video embeddings to evaluate the1309

reliance on textual information, and (2) simplifying1310

the architecture into a single-component system to1311

directly generate multi-hop questions. These exper-1312

iments highlight the significance of both the multi-1313

modal input and the modular design in enhancing1314

the model’s performance on multi-hop question1315

generation tasks. The results are shown in Table 71316

Text-Only Model: In this configuration, we re-1317

moved video embeddings and trained the model1318

using only textual data—transcripts and prompts.1319

This setup was designed to assess how much the1320

model relies on visual information versus language1321

alone when generating coherent and contextually1322

grounded multi-hop questions. Compared to the1323

full model, the text-only version showed a drop1324

across all metrics. Most notably, video relevance1325

fell from 2.91 → 2.09, and multi-hop reasoning1326

dropped from 2.85 → 1.54. While fluency re-1327

mained relatively high (2.81 → 2.66), the absence1328

of visual grounding led to decreased factual cor-1329

rectness (2.97 → 2.36) and overall inclusiveness1330

(2.78 → 2.05). This suggests that visual informa-1331

tion plays a critical role in enabling richer, more1332

contextually grounded question generation.1333

Single-Component Multi-Hop Generation (Di-1334

rect Multihop Generation): In this variant, we1335

removed the modular design and trained the model1336

to generate multi-hop questions in a single stage, di-1337

rectly from paired video segments and transcripts.1338

While this setting retained multimodal inputs, it1339

lacked the iterative structure of the full model. As1340

shown in Table 7, this led to a sharp drop in perfor-1341

mance, particularly in multi-hop reasoning (1.241342

vs. 2.85) and factual correctness (1.98 vs. 2.97).1343

The model often produced concatenated or shallow1344

questions, failing to perform genuine multi-step1345

reasoning. This highlights the importance of struc-1346

tured decomposition for handling complex, compo-1347

sitional question generation.1348

Evaluation and Comparative Metrics: Both abla- 1349

tion settings were evaluated using the same metrics 1350

as the full model: fluency, relevance, multi-hop 1351

reasoning complexity, and factual correctness. Let 1352

Sfull, Stext-only, and Sdirect-mh denote the average 1353

scores for the full model, the text-only model, and 1354

the single-component model, respectively. The rel- 1355

ative performance drop ∆S for each ablation is 1356

computed as: 1357

∆Stext-only = Sfull−Stext-only, ∆Sdirect-mh = Sfull−Sdirect-mh.
(1) 1358

We observe δSdirect-mh to be 0.76 and δStext-only 1359

to be 0.69, the significant performance degradation 1360

in the text-only model, is due to tasks requiring 1361

visual grounding. Similarly, the single-component 1362

model is observed to underperform on tasks re- 1363

quiring complex multi-hop reasoning due to the 1364

absence of iterative refinement. The results of abla- 1365

tion study shown in table 7, underscores the critical 1366

role of video embeddings in grounding questions 1367

in visual context and highlights the effectiveness of 1368

our model’s modular design in handling multi-hop 1369

reasoning. 1370

E Qualitative Examples of MVQG Error 1371

Types 1372

We conducted a detailed error analysis to under- 1373

stand the common failure modes in our MVQG 1374

framework. Table 8 summarizes the frequency of 1375

each error category before and after applying miti- 1376

gation strategies. Below, we elaborate on the nature 1377

of each error, provide examples, and describe how 1378

each was addressed. 1379

Multi-Hop Reasoning Failures: The model 1380

often concatenated two zero-hop questions using 1381

"and" instead of forming a meaningful reasoning 1382

chain. 1383

Incorrect: “What was Amy holding when she is 1384

talking to Penny and who was with Sheldon in the 1385

car?” 1386

Expected: “What was Amy holding when she is 1387

talking to the girl who was in the car with Shel- 1388

don?” 1389

We mitigated this by refining training prompts with 1390

clearer examples and post-processing rules, reduc- 1391

ing the error rate from 24% to 6%. 1392

Factual Inaccuracy: Some questions in- 1393

troduced incorrect or unsupported claims not 1394

grounded in the video.Example: “What did Rachel 1395

say when she got the job offer in Paris?” (scene not 1396

present). 1397
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Table 4: Examples from Our Multihop Video Question Generation Dataset

Question 1 Answer 1 Video Clip 1 Question 2 Answer 2 Video Clip 2 Merged Question

Who was talking
on the phone before
Joey picked up the
phone the first time?

Ross friends_s02e01_seg02_clip_07Who was Joey talk-
ing with when Ross
went inside?

Joey was talking
with his dad

friends_s02e01_seg02_clip_21Who was Joey talking with
when , the person Who was
talking on the phone before
Joey picked up the phone the
first time?, went inside?

Who was talking
on the phone before
Joey picked up the
phone the first time?

Ross friends_s02e01_seg02_clip_07Where did Ross
went after the
conversation with
Rachel?

Ross went inside the
house

friends_s02e01_seg02_clip_21Where did , the person Who
was talking on the phone be-
fore Joey picked up the phone
the first time?, went after the
conversation with Rachel?

Who does Charlie
disagree knows art
when Ross mentions
him/her?

Joey friends_s09e21_seg02_clip_18Why does Joey joke
with Ross after he
gives suggestions for
his date?

Joey jokes becasue
Ross has detailed
ideas specific to
Joey’s date’s prefer-
ences.

friends_s09e21_seg02_clip_08Why does , the person Who
does Charlie disagree knows
art when Ross mentions
him/her?, joke with Ross after
he gives suggestions for his
date?

Who does Charlie
disagree knows art
when Ross mentions
him/her?

Joey friends_s09e21_seg02_clip_18Why doesn’t Joey
know what he just
said after getting
asked by Ross?

His brain is thinking
about monster trucks

friends_s09e21_seg02_clip_12Why doesn’t , the person
Who does Charlie disagree
knows art when Ross men-
tions him/her?, know what he
just said after getting asked by
Ross?

Who came to the
room when Castle
was talking?

Ryan castle_s06e21_seg02_clip_16Who comes looking
for Ryan after he
hangs up the phone?

Esposito comes
looking for Ryan.

castle_s06e21_seg02_clip_11Who comes looking for , the
person Who came to the room
when Castle was talking?, after
he hangs up the phone?

Who came to the
room when Castle
was talking?

Ryan castle_s06e21_seg02_clip_16What is Lanie wav-
ing around in her
hand when she is fac-
ing Ryan and Espos-
ito?

A pen. castle_s06e21_seg02_clip_18What is Lanie waving around
in her hand when she is facing
, the person Who came to the
room when Castle was talking?,
and Esposito?

Who follows beck-
ett out of mont-
gomerys office af-
ter she leaves mont-
gomerys office?

Castle castle_s03e22_seg02_clip_03What type of cup
does Castle sit by
when he clasps his
hands?

Wine glass. castle_s03e22_seg02_clip_15What type of cup does , the
person Who follows beckett
out of montgomerys office af-
ter she leaves montgomerys of-
fice?, sit by when he clasps his
hands?

Who follows beck-
ett out of mont-
gomerys office af-
ter she leaves mont-
gomerys office?

Castle castle_s03e22_seg02_clip_03Who started jump-
ing onto Beckett af-
ter Castle opened the
door?

Seeger castle_s03e22_seg02_clip_22Who started jumping onto
Beckett after , the person Who
follows beckett out of mont-
gomerys office after she leaves
montgomerys office?, opened
the door?

We applied negative sampling and semantic filters1398

to reduce such cases from 12% to 7%.1399

Semantic Drift: The model occasionally pro-1400

duced abstract or off-topic questions. Example:1401

“How do characters reflect on their past experi-1402

ences?”1403

Prompt refinement and focused sampling during1404

fine-tuning reduced this issue from 11% to 5%.1405

Grammatical Errors: Syntax or fluency issues1406

such as tense mismatch or fragmented clauses. Ex-1407

ample: “What do Monica was cooking when Ross1408

came in?”1409

Due to consistent training and BART’s language1410

generation strength, these errors decreased from1411

5% to 3%.1412

Redundancy: Some questions repeated the1413

same concepts across hops. Example: “Who was1414

with Rachel and who was talking to Rachel in the1415

kitchen?”1416

We filtered such patterns post-merging, reducing 1417

redundancy from 9% to 4%. 1418

Ambiguity or Vagueness: Questions lacked 1419

clarity or contained poorly grounded references. 1420

Example: “What did he do after she left?” 1421

This was addressed through coreference-aware 1422

sampling, reducing such errors from 14% to 6%. 1423

External Knowledge Leakage: The model oc- 1424

casionally used memorized facts beyond input 1425

scope. Examples: 1426

“What does Sheldon say to Leonard before they 1427

move to their new apartment?”, “How does Ross 1428

react when Rachel leaves for Paris?” 1429

By constraining context and refining prompts, hal- 1430

lucination was reduced from 20% to 8%, and leak- 1431

age from 32% to 8%. 1432

Correct generations demonstrate well-formed 1433

multi-hop questions that refer to grounded visual- 1434

textual content and follow the long-form template 1435
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Table 5: Qualitative examples of MVQG generations.

Series Correct Generation Multi-Hop Failure External Knowledge Leakage Hallucination
BBT What did , the person who wishes

Sheldon a happy Valentines Day af-
ter he opens the door?, do after Shel-
don told her he was being selfish?

What does the person who is eating
with Sheldon say and who knocks on
the door when Sheldon is talking?

What does , the person who is talk-
ing to Amy about moving in to-
gether after returning from Prince-
ton?, say when they discuss their liv-
ing arrangements?

What does , the person who gives
Sheldon a Star Wars gift during his
birthday party?, say when he opens
the present?

Friends What is , the person who came into
the apartment when Leonard was on
the phone?, holding when she is talk-
ing to Leonard?

What is the person who is sitting
next to Monica doing and what does
Rachel say when she enters the
room?

What does , the person who is talk-
ing to Rachel when she says she got
off the plane?, do after hearing her
decision?

What does , the person who is cook-
ing Thanksgiving dinner with Mon-
ica?, do when Joey accidentally
drops the turkey?

HIMYM What does , the person who is in
charge when Howard and Sheldon
work together?, do when he is talk-
ing to Howard and Raj?

What does the person who gives Ted
a drink say and who walks into the
apartment when Barney is talking?

What does , the person who is sit-
ting in front of Ted when he starts
telling the story about how he met
their mother?, say when he gives
them something?

What does , the person who plays
the guitar during Robin’s farewell
party?, say when Ted offers a toast?

Grey’s Anatomy What did , the person who is playing
the piano when everyone is singing
to Bernadette?, say when he was
talking to Raj?

What does the patient who is lying
on the bed do and who enters the
room when Meredith is looking at
the monitor?

What does , the person who is talk-
ing to Meredith before Derek’s ac-
cident?, say when she expresses her
concern?

What does , the person who ar-
gues with Cristina about the heart
surgery?, do when the patient flat-
lines?

Castle What did , the person who is wearing
a brown trench coat when Beckett
enters the alley?, say when she finds
the second clue?

What is the person who found the
evidence doing and what does Beck-
ett say when she enters the office?

What does , the person who is con-
fronting Castle when he finds out
who killed his mother?, do when
Castle reacts?

What does , the person who brings
evidence to Beckett during the
rooftop chase?, say when she finds
the clue?

House What does , the person who walks
into the patient’s room after House
finishes speaking with the nurse?, do
when he notices the charts are miss-
ing?

What does the nurse who checks the
IV bag say and what is House doing
when he talks to Wilson?

What does , the person who is in-
side the house when House crashes
his car into it?, say when House ap-
proaches?

What does , the person who chal-
lenges House’s diagnosis in the op-
erating room?, do when the patient
wakes up?

Table 6: Examples of structured prompts and their outputs. These structured prompts often confused the model or
led to verbose, incoherent generation.

Prompt Generated Output
“Think step by step. First, look
at the first video. Then, look
at the second. Now generate a
question that connects both.”

“Okay. First video: Sheldon is holding something. Sec-
ond video: Raj is cooking. What is happening in both?”
(Fails to form a coherent multi-hop link)

“Understand what happens in
the first clip, then the second,
and finally write a question
that links them.”

“In the first clip, someone is talking. In the second, there
is a kitchen. Can you describe both?”
(Vague; no reasoning or question structure)

“Let’s think carefully. Break
down the events and create a
multi-hop question based on
them.”

“Hmm. First event: someone holding sword. Second
event: Raj in kitchen. What’s the question here?”
(Fails to produce a question; stays in meta-mode)

Table 7: Performance Comparison of Ablations

Model Fluency Video Relevance Multi-Hop Reasoning Engagingness Factual Correctness Inclusiveness
Full Model 2.81 2.91 2.85 2.75 2.92 2.78
Without Video 2.66 2.09 1.54 2.25 2.36 2.05
Single Component 2.31 2.39 1.24 2.32 1.98 2.24

described in Section 6.4. Multi-hop reasoning fail-1436

ures typically involve the incorrect use of conjunc-1437

tions (e.g., “and”) instead of forming compositional1438

reasoning chains. External knowledge leakage re-1439

veals the model’s tendency to rely on memorized1440

facts from the broader TV series rather than the1441

provided scene. Hallucination refers to entirely1442

fabricated content not grounded in the input video1443

or known series lore.1444

These examples highlight the diversity of errors1445

our model encounters and the necessity for strong 1446

grounding and compositional reasoning mecha- 1447

nisms in MVQG systems. 1448

E.1 Prompt Variants and Failure Cases 1449

As part of our baseline prompt engineering study, 1450

we investigated the impact of structured prompt- 1451

ing strategies inspired by chain-of-thought reason- 1452

ing. While such approaches have proven effective 1453

in text-based reasoning tasks, we found that they 1454
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Table 8: Improvements in Error categories

Error Category Error before Error After
improvement (%) improvement (%)

Multihop Reasoning failure 24 6
Factual Inaccuracy 12 7
Semantic Drift 11 5
Grammatical Errors 5 3
Redundancy 9 4
Ambiguity or Vagueness 14 6
External Knowledge Leakage 32 8

were not beneficial in our setting due to the combi-1455

nation of a smaller base model (BART-large) and1456

the inherent complexity of the MVQG task.1457

Despite our initial expectations, prompts de-1458

signed to simulate step-by-step reasoning often re-1459

sulted in incoherent, vague, or incomplete outputs.1460

Table 6 shows representative examples highlighting1461

these failure cases.1462

These findings informed our final choice of us-1463

ing clear and direct prompts, such as: “Based on1464

the two video segments and their transcripts, gener-1465

ate a question that requires integrating information1466

from both videos.” This prompt yielded more sta-1467

ble and contextually grounded outputs, particularly1468

when paired with a well-trained zero-hop module.1469

We include these prompt examples and results in1470

the supplementary material for transparency and1471

reproducibility.1472
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Table 9: Summary of Explored Video Question Answering Datasets

No. Dataset Name Primary Focus Short Description
1 MSR-VTT (Xu

et al., 2016a)
Open Domain Captioning A large-scale dataset primarily for video captioning, containing 10,000 videos with 20 human-

annotated captions per video. It’s also used as a base for VQA tasks.
2 HowTo100M (Miech

et al., 2019a)
Instructional Videos A massive dataset of over 1 million narrated instructional videos, focusing on explaining how

to perform various tasks.
3 TVQA (Lei et al.,

2018)
TV Shows (6) A large-scale VideoQA dataset built upon 6 popular English-language TV shows, featuring

multiple-choice questions and answers, along with subtitles and video frames.
4 ActivityNet-QA (Yu

et al., 2019a)
Activity Understanding Contains human-annotated question-answer pairs on videos from the ActivityNet dataset,

designed to test models’ long-term spatio-temporal reasoning abilities.
5 NExT-QA (Xiao

et al., 2021)
Explanation of Video A VideoQA benchmark specifically created to evaluate the explanation of video content,

requiring models to reason about causal and temporal relationships between actions and
objects.

6 TGIF-QA (Jang
et al., 2017)

Animated GIFs Features question-answer pairs for animated GIFs from the TGIF dataset, suitable for evalu-
ating video-based Visual Question Answering techniques on short, dynamic visual content.

7 MovieQA (Tapaswi
et al., 2016)

Movies A dataset for question answering about movies, evaluating story comprehension from both
video and textual sources like plot synopses and subtitles, with multiple-choice answers.

8 MVBench (Li et al.,
2024)

Temporal Understanding A comprehensive benchmark designed to evaluate the temporal understanding capabilities of
multimodal large language models (MLLMs) across 20 diverse dynamic video tasks.

9 MSRVTT-QA (Xu
et al., 2017)

VQA on MSR-VTT A benchmark for Visual Question Answering created based on the MSR-VTT video caption-
ing dataset, evaluating the ability to answer questions grounded in video content described by
captions.

10 MSVD-QA (Xu
et al., 2017)

VQA from MSVD A VideoQA dataset generated from the descriptive sentences in the MSVD dataset, providing a
large set of question-answer pairs based on short video snippets and their textual descriptions.

11 TVQA+ (Lei et al.,
2021)

Visual Grounding in TVQA An extension of the TVQA dataset that includes detailed bounding box annotations, explicitly
linking depicted objects to visual concepts mentioned in the questions and answers for
enhanced visual grounding.

12 TGIF (Tumblr
GIF) (Li et al.,
2016)

GIF Descriptions A dataset of 100,000 animated GIFs collected from Tumblr, each accompanied by several
descriptive sentences provided by humans.

13 VideoInstruct (Maaz
et al., 2024b)

Video Instruction Following A dataset comprising high-quality video and instruction pairs, used to train models like
Video-ChatGPT to follow instructions presented in video format.

14 AGQA (Grunde-
McLaughlin et al.,
2021)

Spatio-Temporal Reasoning A benchmark designed to evaluate compositional spatio-temporal reasoning in videos, focus-
ing on understanding actions, their attributes, and their relationships within a scene.

15 VALUE (Li et al.,
2021)

General V&L Understanding A benchmark created to test the generalizability of video-and-language understanding models
across a wide range of tasks, domains, and existing datasets.

16 How2QA (Li et al.,
2020)

QA on HowTo100M A VideoQA dataset collected on the same videos as the HowTo100M dataset, featuring
multiple-choice questions and answers related to the instructional content of the videos.

17 iVQA (Liu et al.,
2018)

Instructional Video QA An open-ended VideoQA benchmark specifically for instructional videos, featuring multiple
correct answer annotations for each question and requiring detailed video understanding.

18 IntentQA (Li et al.,
2023a)

Social Activity Intents A dataset focusing on the diverse intents behind actions observed in daily social activities,
designed to evaluate models’ ability to understand the underlying motivations in videos.

19 SUTD-
TrafficQA (Xu
et al., 2021)

Traffic Video QA A dataset specifically focused on question answering related to traffic scenarios, requiring
understanding of various events, objects, and their interactions within traffic videos.

20 STAR Bench-
mark (Wu et al.,
2024)

Situated Reasoning A benchmark aimed at evaluating how well models can capture and utilize present knowledge
directly from the surrounding visual situations depicted in videos.

21 MSRVTT-MC (Yu
et al., 2018)

Multiple Choice VQA on
MSR-VTT

A multiple-choice video question-answering dataset created based on the MSR-VTT dataset,
offering a different evaluation format compared to open-ended QA.

22 TVBench (Cores
et al., 2024)

Temporal Understanding in
VQA

A benchmark specifically created to evaluate the temporal understanding capabilities of
VideoQA models, focusing on questions that require reasoning over time within the video.

23 Neptune (Nagrani
et al., 2024)

Long Video QA A dataset consisting of challenging question-answer-decoy sets for long-form videos (up to
15 minutes), pushing the limits of models’ ability to understand and reason over extended
video durations.

24 DramaQA (Choi
et al., 2021)

Dialogue and Narrative Under-
standing

A dataset focused on two key aspects of video understanding: comprehending character
dialogue and understanding the broader narrative flow in movies and TV series.

25 EgoTaskQA (Jia
et al., 2022)

Egocentric Video QA A benchmark containing balanced question-answer pairs for egocentric (first-person per-
spective) videos, primarily focusing on understanding the actions performed by the camera
wearer.

26 Perception Test (Pa-
traucean et al., 2023)

Perception and Reasoning A benchmark designed to evaluate the fundamental perception and reasoning skills of multi-
modal models when processing video content.

27 VLEP (Lei et al.,
2020b)

Video-and-Language Event
Prediction

Contains examples of future event prediction in videos along with their textual rationales,
testing the ability to anticipate what will happen next based on the observed context.

28 KnowIT VQA (Gar-
cia et al., 2020)

QA on The Big Bang Theory A video dataset with human-generated question-answer pairs specifically centered around
the content and characters of the popular TV show "The Big Bang Theory," focusing on
domain-specific knowledge.

29 MovieFIB (Maharaj
et al., 2017)

Movie Fill-in-the-Blank A benchmark featuring fill-in-the-blank style questions based on detailed descriptive video
annotations created for the visually impaired, testing fine-grained visual understanding.

30 HowToVQA69M (Yang
et al., 2021)

Large-Scale HowTo VQA A very large-scale VideoQA dataset built upon the HowTo100M video dataset, containing
approximately 69 million question-answer pairs.

31 TutorialVQA (Colas
et al., 2019)

Answer Spans in Tutorials A dataset designed for the task of finding specific answer spans within the transcripts of
tutorial videos, with questions and manually collected answer spans.

32 Video Localized
Narratives (Voigt-
laender et al., 2023)

Vision and Language Connec-
tion

A dataset that explicitly connects vision and language by providing detailed, localized
narratives describing objects and actions within specific regions of video frames.

33 CRIPP-VQA (Patel
et al., 2022)

Counterfactual Reasoning A dataset designed to evaluate counterfactual reasoning about implicit physical properties
through video question answering, requiring models to understand "what if" scenarios.

34 CausalChaos! (Par-
mar et al., 2024)

Causal Video QA A dataset specifically created for evaluating causal reasoning in video question answering, us-
ing animated content from Tom and Jerry cartoons to focus on cause-and-effect relationships.

35 CinePile (Rawal
et al., 2024)

Long Video QA (Movies) A question-answering-based dataset focused on the understanding of long-form video content,
specifically utilizing movie data.

36 RoadTextVQA (Tom
et al., 2023)

Text Understanding in Driving
Videos

A dataset focused on the task of understanding text and signs present in videos captured from
driving scenarios, crucial for applications in autonomous driving.

37 Social-IQ
2.0 (Zadeh et al.,
2019)

Social Intelligence in Video A dataset designed to evaluate the social intelligence of AI models in understanding videos,
focusing on social interactions, nonverbal cues, and human behavior.

38 VCG+112K (Maaz
et al., 2024a)

Video Instruction Following Another large-scale dataset for video instruction following, containing over 112,000 video-
instruction pairs for training models to execute tasks based on video instructions.

39 WildQA (Castro
et al., 2022)

VQA in Outside Settings A video understanding dataset comprising videos recorded in unconstrained, real-world
outside environments, designed to evaluate the robustness of models in more natural settings.

40 Vript (Yang et al.,
2024)

Fine-Grained Video-Text A fine-grained video-text dataset featuring high-resolution videos and detailed, rich anno-
tations, aiming for a deeper understanding of the relationship between visual and textual
information in videos.
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