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ABSTRACT

Due to their lack of a specific structure and dynamical nature, targeting of epitopes
that are part of an intrinsically disordered region of a protein is a notoriously diffi-
cult task. Here, we describe a computational approach to overcome this problem,
based on the use of a protein folding algorithm within a Monte Carlo optimization
pipeline to generate peptide binders that bind by co-folding with their epitope.
For different protein targets, we show by accurate free-energy calculations that
our approach is able to design strong binders, with binding free energies of the or-
der of tens of kBT (i.e. stronger than 50 kJmol−1), corresponding to KD values
in the nM regime or lower. Direct observation of the molecular structures during
the binding process shows the binder and targeted epitope fold upon binding and
acquire a structure not presented in their unbound state, suggesting that co-folding
is the implied mechanism, and that the latter is correctly described by the protein
folding algorithm we employ. Given the ubiquitous presence of unstructured re-
gions in proteins, our results suggest a potential pathway to design drugs targeting
a large variety of previously untargetable epitopes and opens new possibilities for
therapeutic intervention in diseases where disordered proteins play a key role.

1 INTRODUCTION

Despite lacking a stable structure, intrinsically disordered regions (IDRs) of proteins play critical
roles in cellular processes, including cell signaling, regulation, and molecular recognition (Babu
et al., 2011; Wright & Dyson, 2014; Holehouse & Kragelund, 2023). These regions are highly
dynamic and participate in transient but specific interactions with other biomolecules, making them
essential for biological functions. However, it is exactly their dynamical nature that complicates our
understanding of their behavior, hindering the rational design of molecules that could selectively
bind to specific epitopes in IDRs. Therefore, exploiting them as drug targets remains a challenge.

Traditional structure-based design strategies, which rely on well-defined binding pockets and stable
secondary structures, are intrinsically inadequate for IDRs due to their dynamic nature. To under-
stand how proteins fold into their native structures, we hypothesize that protein-folding algorithms
must learn how arbitrary amino acid sequences interact and thus lead to co-folding, i.e, a behavior
where a binder-target pair undergoes a coordinated transition into a bound stable conformation. No-
tably, co-folding mediates protein interactions (Kussie et al., 1996; Davidson et al., 1998) and has
been proposed as a mechanism for binding specificity and signaling activation via interacting IDRs
(Wright & Dyson, 2014). This principle parallels findings in RNA-targeting drugs, where molecules
achieve specificity by stabilizing a particular conformation (Ganser et al., 2020; Tong et al., 2024).
Based on these premises, we view peptides and small proteins as promising candidates that can bind
and induce folding in the target IDRs. Specifically, this paper presents three key contributions:

• We extend the Monte Carlo algorithm to optimize protein sequences by Hie et al. (2022)
with new loss function terms that favour binders inducing co-folding and also implement
simulated tempering that speeds up the search for an optimal binder.

• Using this protocol, we design novel peptide binders to intrinsically disordered epitopes,
opening up the possibility to bind previously considered undruggable protein targets.
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• We carry out free-energy calculations with well-tempered metadynamics to estimate the
binding affinity in silico and thus validate the binders as a proof-of-concept.

For the related works, see Appendix A.

2 METHOD

Figure 1: A) Graph representation used in the protocol in Section 2.1 of the energy terms describing
the design for a peptide (B) binding to an IDR (T2). 0-body terms apply to all the residues in the
system, 1-body terms apply to point residues, and 2-body terms apply a constraint in a pair-wise
fashion. B) Comparison of structures and pLDDT for the protein in its apo (unbound) and holo
(bound) states. The presence of the binder (magenta) increases the pLDDT across the sequence, but
especially for residues 120 to 140. The bar plot shows the pLDDT score as an average of 5-residue
segments. C) Definition of the collective variables for the free energy calculations described in
Section 2.2. Firstly, the contact map c (upper) is used between the IDR (teal) and the binder (light
pink). Secondly, the distance r (bottom) is biased between the centres of masses - depicted by the
spheres - of the binder (limon) and non-IDR part of the target (orange). Notice a coil on the left of
the binder (darker colour) that is not considered a contact, i.e. is not considered to participate in the
binding. The bottom visualization shows this clearly with the magenta residues, which are not a part
of c, nor of r.

2.1 GUIDED OPTIMIZATION USING SIMULATED TEMPERING

Even for short sequences of 30 amino acids, the number of potential candidates for effective peptide
binders that would fold the epitope upon binding is immense, i.e. 2030 possibilities. Whereas this
large selection increases the possibility that at least one candidate with the right properties exists,
it is also an impossibly large space to search without any type of guidance. We solve this issue by
using a purpose built loss function to drive the search process, employed within a modified version
of a classical Monte Carlo algorithm (Metropolis et al., 1953), called simulated tempering (Marinari
& Parisi, 1992), to help sampling of the sequence space in search of the optimal solution.

The practical implementation of our protocol builds on ideas and tools presented by the former FAIR
team, as described by Hie et al. (2022). In practice, we used their so-called high-level programming
language for proteins that helps us to easily define a loss (energy) function that depends on structural
constraints imposed on different parts of the protein-binder complex. We minimize this loss by sam-
pling random sequences and folding them into a structure using a deep learning prediction model,
specifically ESMFold (Lin et al., 2023) (see pseudo-code of the protocol in Appendix B.1). Our
work differs from Hie et al. (2022) by using simulated tempering instead of simulated annealing,
something that we found of extreme importance to achieve low-energy solutions. The loss function
contains seven different terms, linearly combined with specific weights. Detailed description of the
different terms is reported in Table 1 in Appendix B.1. Apart from the previously used design met-
rics such as predicted Template Modeling score (pTM) or predicted Local Distance Difference Test
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(pLDDT), we used interface Predicted Aligned Error (iPAE) and the distance between the target-
binder pair to promote binding. More interestingly, we used a secondary structure content energy
term and a local pLDDT term with high weighting on the IDR to achieve an effective folding upon
binding. Fig. 1A shows the loss function as a graph representation.

2.2 FREE-ENERGY CALCULATIONS OF BINDING USING METADYNAMICS

To validate our protocol results, we employed free-energy calculations via the well-tempered meta-
dynamics algorithm (Barducci et al., 2008). We describe the interactions with the Amber ff14SB
forcefield (Maier et al., 2015) and an implicit water model (Nguyen et al., 2013). While this sol-
vent choice is suboptimal to describe the energetics compared to an explicit water model, statistical
sampling of the collective variable (CV) space and convergence of the free-energy profile is im-
proved. Coarse-graining was necessary to sample bound states with the IDR stretched, otherwise
the simulation box would be prohibitively large. Regardless of the several kbT inaccuracy in binding
affinity, our aim is to qualitatively confirm the presence of a deep minima. We experimented with
constraining the disordered region to reduce the simulation box size, but that introduced artifacts,
such as self-interaction with the neighbouring image, or overestimation of the binding affinity as it
artificially folded the IDR, requiring further analytical correction.

We bias the system along two CVs shown in Fig. 1C. First, a contact map c(x⃗target, x⃗binder) measuring
the number of native contacts, defined by a close-proximity selection of carbon alpha atom positions
from the well-structured, high-pLDDT part of the target, x⃗target, and the binder, x⃗binder. Second,
a distance r(x⃗target, x⃗binder) between the centres of masses (COMs) of x⃗target and x⃗binder. We chose
this set of simple CVs to account for both specific and non-specific binding. More importantly, the
position of disordered residues is excluded from the computation of x⃗target in order to prevent artifacts
introduced by large thermal fluctuations in their position on the COM of x⃗target. This would often lie
outside of the rigid domain of the target, leading to degeneracies in r. Throughout the simulation we
deposited a time-dependent bias, whose magnitude decays with time, following the well-established
well-tempered metadynamics. As shown by Barducci et al. (2008), the bias accumulated is directly
proportional to the real FES (at convergence), according to:

F (r, c) = −T +∆T

∆T
V (r, c) (1)

where F is the FES, T is the temperature and ∆T represents the effective excess temperature experi-
enced by the system along the CVs due to the bias introduced. For the purpose of this investigation,
we estimate the relative free energy difference by

∆G = −kBT ln
Zbound

Zunbound
, (2)

Zbound

Zunbound
=

∫ r∗

0

e
−(F (r)−Funbound)

kBT dr (3)

where kB is the Boltzmann constant and r∗ is the cutoff distance defining the boundary between the
bound and unbound states. To compute the bound/unbound partition functions, we first marginalized
F (r, c) over c to obtain F (r). Then we defined the unbound state spatially, as the region of space
beyond the transition point r∗, where interaction between the binder and the target are negligible
(i.e. F (r) is flat). The average free energy of the system in this region is Funbound, acting as the
reference energy in the estimation of ∆G. To avoid excessive sampling of the unbound region, we
used an upper wall bias Vuw(r) for r > ruw. While the use of molecular simulations does not allow
us to measure the binding energy at the same level of accuracy that could be attained in experiments,
it still provides a very detailed view of the mechanics of the binding process, and thus achieve (albeit
in silico) a proof-of-concept. Details of the simulation procedure and specific parameters used are
in Appendix B.2.
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3 RESULTS

As a proof of principle, we report the results of the design protocol on four different proteins:
α-synuclein (ASYN), CD28, p53 (P53) and SUMO. We chose these proteins because of the presence
of an unstructured region and their potential of being used as drug targets in various therapies (see
Appendix A for details). We name the systems after the target, followed by a binder-related tag
reflecting its design parameters used in optimization.

Figure 2: Four examples of peptide-binder (magenta) designs. The structures are colored based on
the pLDDT score – with high pLDDT residues being blue, medium pLDDT values being white, and
low pLDDT being red. The bottom bar plots for each structure also show the pLDDT as an average
of 5-residue segments with the same colour scheme.

Firstly, we present one optimized binder per target in Fig. 2. Notice we are able to find binders
for all targets, despite them showing different behaviours. The low pLDDT of α-synuclein across
its entire sequence suggests there is no single stable tertiary conformation despite the secondary
structure observed. However, after co-folding with the ASYN-G binder, the pLDDT across the entire
sequence is increased significantly, potentially correlating with increasing the likelihood of obtaining
a single dominating conformation. A similar situation occurs with CD28-A and SUMO-1A binders,
yet there one can see that there are very specific disordered regions (residues 120 to 140 for CD28
and residues 1 to 15 for SUMO) for which the binders increase the pLDDT, presumably folding
them upon binding. For P53, the binder successfully induces order in residues 1-5, but unexpectedly
decreases the pLDDT score in the IDR region (residues 200-230). This effect could arise from
either a genuine physical mechanism of induced disorder motivating further investigation, or from
limitations in the pLDDT metric itself. Since pLDDT conflates model confidence with structural
order, the presence of the binder might might require ESMFold to attempt to predict complexes
from sequence space farther away from its training data, making it thus predict structures with
lower confidence, particularly in regions already prone to disorder. Lastly, our binders can target
the formation of both alpha-helices (ASYN-G) and beta-sheets (CD28-A, SUMO-1A) on the target,
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while designing beta-sheet binders (SUMO-1A) is something that popular protein design pipelines
are known to struggle with (Watson et al., 2023; Pacesa et al., 2024).

Figure 3: A–D) Free energy profiles along the distance r (as depicted in Fig. 1C). These were
computed from the deposited bias using Eq. 1. The dashed vertical lines represent the cutoff r∗.
Note that we do not remove the upper wall from F (r) and rather highlight it by using the densely
dotted line for r > ruw (see Eq. 6). E) An example of a 2D FES in the CV space for ASYN-A.
Example conformations are provided for three of the modes observed: i) high c value, ii) deepest
minima at c ≈ 200 and iii) an unbound state. F) Binding affinities (∆G) for each system computed
from the FES projections in A–D) using Eq. 2, grouped in color by the protein target.

Secondly, we show the results of the metadynamics simulation for 10 binders in Fig. 3 with their
estimated binding affinity. Figs. 3A to 3D show clear deep minima at low r across all systems,
confirming the presence of a stable binding mode. The variability in the dimension of the bound
state across the target-binder pairs can be explained by the IDR moving away from the centre of
mass of the rigid part of the protein, while still being bound to the binder. This effect can then
be different for each target-binder pair. On the other hand, we need to address a few limitations.
First, these simulations come from a lower temperature run (T = 300 K) than the body-relevant
temperature (T = 310 K). Second, we observe an artifact due to the upper wall bias V (r)uw, which
creates an apparent second minima near ruw. It is likely that high stiffness of the wall leads to
unphysical forces. We ignore the artifact for the purposes of this paper as it does not significantly
contribute to ∆G. We also omit the volume correction due to entropic contributions on the FES
at large r. Lastly, many of these simulations end up being stuck in the local basin, suggesting we
do not sufficiently sample the CV space, as at convergence we would expect almost-free diffusion
through the CV space without any significant energy barriers (see Appendix C for the trajectories).
We believe this is due to the bias deposition rate decaying too fast. That leads to an incomplete
reconstruction of the FES. We are continuing with these simulations, running with a lower decay on
the bias deposition rate, less stiff upper wall, and parallel tempering to address these limitations and
yield more accurate estimates for ∆G. Either way, for the purposes of this paper, we believe these
preliminary results greatly support our argument of being able to design peptide binders to IDRs
with binding affinity of tens of kBT , an affinity relevant in the clinical biomedical setting.
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4 CONCLUSION

In this paper we have shown a proof-of-concept protein design protocol for peptide binders targeting
disordered regions on clinically important protein targets. We have extended a previously developed
Monte Carlo optimization technique, which we are currently reformalizing into a standalone pack-
age. Our preliminary in silico validation shows promising binding affinities that could be later
experimentally tested in a lab. Having the ability to design such binders on demand to previously
unconsidered domains opens up the range of possibilities across the field of applied biotechnology.
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A RELATED WORKS

Protein Design. Since the formalization of the inverse protein folding problem in the 1990s Yue &
Dill (1992), the field of protein binder design has converged into a workflow where one first sam-
ples the protein backbone (RFDiffusion (Watson et al., 2023)) followed by sampling the sequence
that would fold into such shape (ProteinMPNN (Dauparas et al., 2022; Goverde et al., 2024)). Af-
terwards, one can use a filtration step to validate the designs (Rosetta (Leaver-Fay et al., 2011) or
AlphaFold2-Multimer (Evans et al., 2021)). Another approach is directly leveraging the power of
deep learning algorithms, such as AlphaFold2 (Jumper et al., 2021), and hallucinating the optimal
sequence through a gradient-based backward optimization (Goverde et al., 2023). Recently pub-
lished BindCraft (Pacesa et al., 2024) has formalized such gradient-based workflow with impressive
in vitro success for finding novel binders.

Intrinsically Disordered Proteins. IDPs are prelevant across the human proteome, accounting for
roughly 30% of the human proteome (van der Lee et al., 2014). Their structural flexibility makes
them take on multitude of complex functions, including cell signaling, transcriptional regulation, and
chromatin remodeling (Babu et al., 2011; Wright & Dyson, 2014; Holehouse & Kragelund, 2023).
α-synuclein has been shown to aggregate into toxic species that are implicated in the pathogenesis
of Parkinson’s disease. CD28 can provide a co-stimulatory signal necessary for T-cell activation
and survival, making it relevant in modulating immune responses in various diseases (Xia et al.,
2020). The tumor suppressor protein (p53) can have its function restored by inactiving its interaction
with negative regulators like MDM2 prevalent in many cancers, resulting in the inhibition of tumor
growth (Peuget et al., 2024). Lastly, Small Ubiquitin-like Modifier (SUMO) protein is an attractive
drug target because its modification of various substrates is involved in key cellular processes, and
dysregulation of SUMOylation has been linked to diseases including cancer (Kukkula et al., 2021).

Given the lack of structure, modeling IDPs is not straightforward. Deep learning models of protein
structure, such as AlphaFold2 and ESMFold (Lin et al., 2023), have been shown to predict dynamical
nature of residues indirectly through the pLDDT metric. This predicted quantity was originally
designed to convey the confidence in the prediction of the underlying model, but it has been shown
to also correlate with disorder (Guo et al., 2022; Wilson et al., 2022). One can, however, never
decouple these two behaviours, so it remains indecipherable whether a folding model is unconfident
or predicts an unstructured region. On the other hand, molecular simulations provide an orthogonal
method to study IDPs, including their dynamics and mechanistic behaviour Tesei & Lindorff-Larsen
(2023).

Enhanced Sampling Free Energy Calculations. Molecular simulations provide a physics-based
method to estimating the binding affinity by sampling the free energy surface. Nevertheless, sam-
pling is computationally prohibitive, hence one has to employ enhanced sampling methods, such as
metadynamics (Laio & Parrinello, 2002), umbrella sampling (Torrie & Valleau, 1977), or replica ex-
change (Sugita & Okamoto, 1999). Some of these methods require manual fine-tuning and a careful
choice of collective variables that are biased in order to increase the sampling of the slow mode,
i.e. binding and unbinding. Well-tempered metadynamics (Barducci et al., 2008) is an extension of
metadynamics that achieves smoother convergence by decaying the amount of deposited bias.
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B DETAILED METHODS

B.1 MONTE CARLO PROTOCOL FOR GUIDED OPTIMIZATION

Below we explain the guided optimization algorithm with formal definitions. We used ESMFold as
the folding algorithm (Definition B.2), but any structure predictor, regardless of its implementation
could be used as a black-box. We formalize the Monte Carlo acceptance criteria according to the
(loss) energy function E. We choose a mutation protocol that samples uniformly, meaning U selects
a random residue position i in the sequence s and replaces si with a different amino acid, chosen
uniformly among the 20 types, i.e. each amino acid is chosen with probability 1

20 . This in turn leads
to a symmetric proposal distribution, and thus the transition probabilities q(s | s′) and q(s′ | s)
cancel out in the Metropolis acceptance probability (Definition B.4). Algorithm 1 shows the com-
plete implementation of the optimization procedure, primarily the simulated tempering, using the
definitions below. Note that after each run through a low- and high-temperature regimes we revert
to the best state found so far. This means we no longer obey detailed balance, which is on purpose,
as we use Monte Carlo as an optimization procedure, and not for sampling distributions and their
associated averages.

Definition B.1 (Energy Loss Function) Let X ∈ X be a folded structure. The energy function

E : X → R
is defined as a linear combination of loss terms:

E(X) =
∑
i

wi Li(X),

where Li(X) denotes the ith loss term and wi its corresponding weight.

Definition B.2 (Folding Function) Let s ∈ S be a protein sequence. The folding function

F : S → X
maps a sequence s to its corresponding structure X = F(s).

Definition B.3 (Mutation Operator) Let s ∈ S be a protein sequence, where

S = {s = (s1, s2, . . . , sL) | si ∈ A}
and the alphabet A consists of 20 amino acid identities. The mutation operator

U : S → S
generates a candidate sequence s′ = U(s) according to a specified mutation protocol.

Definition B.4 (Metropolis–Hastings Operator) Let s ∈ S be the current protein sequence, and
let s′ = U(s) be a candidate sequence generated by the mutation operator U . The Metropo-
lis–Hastings operatorM(s;T ) at the effective temperature T > 0 is defined as

M(s;T ) =

{
s′, with probability α(s→ s′;T ),

s, otherwise,

where the acceptance probability is given by

α(s→ s′;T ) = min

{
1, exp

(
−E(X ′)− E(X)

T

)
q(s | s′)
q(s′ | s)

}
.

Here, X = F(s) and X ′ = F(s′) are the folded structures corresponding to sequences s and s′, re-
spectively. The function E(X) gives the energy of a folded structure X , as defined in Definition B.1.
Lastly, q(s′ | s) is the transition probability of generating sequence s′ from s under U . Similarly,
q(s | s′) is the probability of proposing the reverse move.

In Table 1, we provide the energy terms of function E for this specific application of designing
binders to disordered epitopes. The exact weights wi need to be carefully considered and tuned to
achieve the desired behaviour. We have conceived of the terms and their weights through rational
design and trial-and-error.
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Algorithm 1 Simulated Tempering for Protein Sequence Design
1: Input:

• Initial sequence s0
• Temperatures: Tlow, Thigh

• Number of low-temperature steps nlow, high-temperature steps nhigh

• Total number of sweeps νtotal
2: Initialize: s← s0, sbest ← s0, Xbest ← F(sbest)
3: for ν = 1 to νtotal do
4: for i = 1 to nlow do ▷ Low-temperature optimization
5: s← U(s) ▷ Mutate the sequence
6: X ←M(s;Tlow)
7: if E(X) < E(Xbest) then
8: sbest ← s, Xbest ← X ▷ Update best state if lower energy
9: end if

10: end for
11: for i = 1 to nhigh do ▷ High-temperature exploration
12: s← U(s) ▷ Mutate the sequence
13: X ←M(s;Thigh)

14: if E(X) < E(Xbest) then
15: sbest ← s, Xbest ← X ▷ Update best state if lower energy
16: end if
17: end for
18: s← sbest, X ← Xbest ▷ Reset to best state found so far
19: end for
20: return sbest, Xbest ▷ Return the best sequence and corresponding folded structure

Table 1: Energy terms of the protein design guided optimization of a binder targeting an IDR.
Term Type Metric Description
L1 0-body global pTM Guides the complex toward high-confidence structures.
L2 0-body global pLDDT Encourages soluble and experimentally verifiable se-

quences.
L3 1-body hydrophobics Reduces hydrophobic residues on the surface, favour-

ing soluble sequences aiding expression and experi-
mental verification.

L4 2-body interface PAE Minimizes interface predicted alignment error,
i.e. having the binder and IDR behave as a single
body.

L5 2-body average distance Penalizes large distances between binder and the IDR.
L6 1-body secondary structure Promotes formation of a secondary structure (alpha-

helices, beta-sheets) on the IDR.
L7 1-body local pLDDT Enforces further ordering and rigidification of the IDR.

B.2 FREE-ENERGY CALCULATIONS PROTOCOL FOR BINDING AFFINITY

To simulate the system, we used OpenMM (Eastman et al., 2017) with PLUMED (Tribello et al.,
2014). The simulations were run for about 1 µs, where convergence was checked by relatively
low deposition rate of the bias, by visual inspection of the change in the FES, and by converged
computation of the binding affinity. After fixing the final structures from ESMFold with pdbfixer,
we minimize the bound complex with L-BFGS in two phases – first, we restrain the non-hydrogen
atoms and minimize the rest of the complex, second, we minimize all atoms together. We run 10 ns
of equilibriation in the NVT ensemble. Afterwards, we extract the final structure and compute the
CV definition. The contact map c is defined by any carbon alpha atoms closer than 1.5 nm. We used
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the RATIONAL switching function defined as

χ(x) =

1−
(

x

x0

)6

1−
(

x

x0

)8 (4)

where the threshold x0 is set to 0.8 nm. The exponents are chosen to achieve a slow decay for large
values of x to avoid a substantial degeneracy of conformations at c = 0. To define the distance r,
we manually annotate the IDR for each of the proteins based on the experimental structures. We
deposit the bias every 500 steps of integration with a timestep of 2 fs. We choose the decay of the
bias deposition rate by setting the bias factor to 10. As we used an implicit solvent, we do not utilize
the periodic boundary condition anywhere. We impose an upper wall bias on r defined as

Vuw(r) =

{
κ (r − ruw)

6 if r > ruw
0 if r ≤ ruw

(5)

where we set κ to 1000 kJmol−1 and ruw is programmatically defined for each protein target as

ruw = 0.38× Lbinder

2
+ LIDR − 1 (6)

where Lbinder is the length of the peptide-binder and LIDR is the length of the IDR in terms of number
of residues. All values here are in nanometer units.

C FURTHER RESULTS

We show examples of three trajectories in the CV space in Fig. 4, highlighting some of the issues
and behaviour we observe. We primarily focus on r during analysis. For ASYN-A, there is only
two binding/unbinding events, which is insufficient to make substantial claims about the results. For
CD28-B, similar to ASYN-A, the systems spends the majority of the simulation time very closely
bound, but once it fills up the basin to a certain extent, it is able to escape the basin and start to diffuse
in the unbound region as well. Lastly, SUMO-1A shows many binding/unbinding events, which can
make us more confident in the statistics of the FES reconstruction, but it still spends at least half of
the time in the local basin. All these trajectories suggest we need to increase the exploration and
sampling speed, even if it is at the cost of larger fluctuations in the estimated ∆G as a function of
simulation time. Otherwise our results are not fully conclusive.

Figure 4: Trajectories of the collective variables for three systems during the well-tempered meta-
dynamics simulation. The vertical left-axis (magenta) shows the contact map c and the vertical
right-axis shows the evolution in the distance r. The simulation times differ as these runs were com-
puted for a walltime of 6 days, rather than a pre-defined set of integration steps.
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