
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MOFFLOW: FLOW MATCHING FOR STRUCTURE PRE-
DICTION OF METAL-ORGANIC FRAMEWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Metal-organic frameworks (MOFs) are a class of crystalline materials with
promising applications in many areas such as carbon capture and drug delivery.
In this work, we introduce MOFFLOW, the first deep generative model tailored
for MOF structure prediction. Existing approaches, including ab initio calcu-
lations and even deep generative models, struggle with the complexity of MOF
structures due to the large number of atoms in the unit cells. To address this limi-
tation, we propose a novel Riemannian flow matching framework that reduces the
dimensionality of the problem by treating the metal nodes and organic linkers as
rigid bodies, capitalizing on the inherent modularity of MOFs. By operating in
the SE(3) space, MOFFLOW effectively captures the roto-translational dynam-
ics of these rigid components in a scalable way. Our experiment demonstrates
that MOFFLOW accurately predicts MOF structures containing several hundred
atoms, significantly outperforming conventional methods and state-of-the-art ma-
chine learning baselines while being much faster.

1 INTRODUCTION

Metal-organic frameworks (MOFs) are a class of crystalline materials that have recently received
significant attention for their broad range of applications, including gas storage (Li et al., 2018), gas
separations (Qian et al., 2020), catalysis (Lee et al., 2009), drug delivery (Horcajada et al., 2012),
sensing (Kreno et al., 2012), and water purification (Haque et al., 2011). They are particularly valued
for their permanent porosity, high stability, and remarkable versatility due to their tunable structures.
In particular, MOFs are tunable by adjusting their building blocks, i.e., metal nodes and organic
linkers, to modify pore size, shape, and chemical characteristics to suit specific applications (Wang
et al., 2013). Consequently, there is a growing interest in developing automated approaches to
designing and simulating MOFs using computational algorithms.

Crystal structure prediction (CSP) is a task of central importance for automated MOF design and
simulation. The importance of this task lies in the fact that the important functions of MOFs, such
as pore size, surface area, and stability, are directly dependent on the crystal structure. The conven-
tional approach to general CSP is based heavily on ab initio calculations using density functional
theory (DFT; Kohn & Sham, 1965), often combined with optimization algorithms such as random
search (Pickard & Needs, 2011) and Bayesian optimization (Yamashita et al., 2018) to iteratively
explore the energy landscape. However, the reliance on DFT for such computations can be compu-
tationally expensive, especially for large and complex systems such as MOFs.

Deep generative models are promising solutions to accelerate the prediction of the MOF structure.
Especially, diffusion models (Ho et al., 2020) and flow-based models (Lipman et al., 2023) have
shown success in similar molecular structure prediction problems, e.g., small molecules (Xu et al.,
2022; Jing et al., 2022), folded proteins (Jing et al., 2024; Lin et al., 2023), protein-ligand complex
(Corso et al., 2023), and general crystals without the building block constraint (Gebauer et al.,
2022; Xie et al., 2022; Jiao et al., 2024a; Miller et al., 2024). These models iteratively denoise the
random structure using neural networks that act similar to force fields guiding atom positions toward
a minimum energy configuration.

Contribution. In this work, we introduce MOFFLOW, the first deep generative model tailored
for MOF structure prediction. MOFFLOW leverages the modular nature of MOFs, which can be
decomposed into metal nodes and organic linkers (Figures 1 and 2). This decomposition enables

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

MOF building blocks

(Metal nodes, organic linkers)

𝑡 = 0

MOFFLOW

𝑡 = 1

Assembled MOF structure

0 < 𝑡 < 1

MOF building blocks

(Metal nodes, organic linkers)

𝑡 = 0

MOFFLOW

𝑡 = 1

Assembled MOF structure

Figure 1: Overview of MOFFLOW. MOFFLOW is a continuous normalizing flow that exploits
the modular nature of MOFs by modeling the building blocks (i.e., metal nodes and organic linkers)
as rigid bodies. It learns the vector fields for rotation (q), translation (τ), and the lattice (ℓ) that
assembles the building blocks into a complete MOF structure.

...

Figure 2: Inference trajectory of MOFFLOW. Visualization of the inference trajectory of MOF-
FLOW from t = 0 to t = 1, showing the progressive assembly of building blocks. We wrap building
block centroids inside the lattice for visual clarity.

us to design a generative model that predicts the roto-translation of these building blocks to match
the ground truth structure. To achieve this, based on Riemannian flow matching (Chen & Lipman,
2024), we propose a new framework that generates rotations, translations, and lattice structure of
the building blocks. We design the underlying neural network as a composition of building block
encoder parameterized by an equivariant graph neural network based on a new attention module for
encoding roto-translations and lattice parameters of the MOF.

We note that our method competes with existing deep-generative models (Gebauer et al., 2022;
Xie et al., 2022; Jiao et al., 2024a; Miller et al., 2024) for general CSP that encompass MOFs as
special members. However, our method is specialized for MOF structure prediction by exploiting the
domain knowledge that the local structures of the MOF building blocks are shared across different
MOF structures. This is particularly useful for reducing the large search space of MOF structures;
We consider MOFs up to 2,200 atoms per unit cell (Boyd et al., 2019), whereas crystals for general
CSP consist of up to 52 atoms per unit cell (Jain et al., 2013; Jiao et al., 2024a). In fact, as confirmed
in our experiments, the recent deep generative model (Jiao et al., 2024a) for general CSP fails to
scale to the large system size of MOFs. This also aligns with how torsional diffusion (Jing et al.,
2022) improved over existing molecular conformer generation algorithms (Xu et al., 2021; 2022) by
eliminating the redundant degree of freedom.

We benchmark our algorithm with the MOF dataset compiled by Boyd et al. (2019), consisting of
324,426 structures. We compare with conventional and deep learning-based algorithms for crys-
tal structure prediction. Notably, MOFFLOW achieves a match rate of 31.69% on unseen MOF
structures, whereas existing methods, despite being more computationally expensive, barely match
any. We also demonstrate that MOFFLOW captures key MOF properties and scales efficiently to
structures containing hundreds of atoms.

2 RELATED WORK

Crystal structure prediction (CSP). Traditional approaches to CSP rely on density functional the-
ory (DFT) to identify energetically stable structures. To generate candidate structures, heuristic
techniques such as random sampling (Pickard & Needs, 2011) and simple substitution rules (Wang
et al., 2021) have been employed, alongside more sophisticated optimization algorithms such as
Bayesian optimization (Yamashita et al., 2018), genetic algorithms (Yamashita et al., 2022), and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

particle swarm optimization (Wang et al., 2010). To address the computational burden with DFT
calculations, many studies used machine learning as surrogates for energy evaluation (Jacobsen
et al., 2018; Podryabinkin et al., 2019; Cheng et al., 2022).

Recently, deep generative models have emerged as a promising alternative to optimization-based
methods (Court et al., 2020; Hoffmann et al., 2019; Noh et al., 2019; Yang et al., 2021; Hu et al.,
2020; 2021; Kim et al., 2020; Ren et al., 2022). Notably, Jiao et al. (2024a) proposes an equivari-
ant diffusion-based model to capture the periodic E(3)-invariance of crystal structure distributions,
while Lin et al. (2024) and Jiao et al. (2024b) additionally consider lattice permutations and space
group constraints, respectively. Miller et al. (2024) uses Riemannian flow matching to generate high-
quality samples with fewer integration steps. However, these methods face significant challenges in
predicting the MOFs structures, which often consist of hundreds of atoms per unit cell.

MOF structure prediction. Unlike general CSP, where a variety of algorithms have been de-
veloped, MOF structure prediction remains a significant challenge. Conventional MOF structure
prediction methods heavily rely on predefined topologies to connect MOF building blocks (Mar-
leny Rodriguez-Albelo et al., 2009; Wu & Jiang, 2024), restricting the discovery of structures with
new topologies. To address this limitation, Darby et al. (2020) proposes to combine ab initio ran-
dom structure searching (AIRSS; Pickard & Needs, 2011) with the Wyckoff alignment of molecules
(WAM) method; however, the reliance on AIRSS makes it computationally expensive. We also note
that a recent work (Fu et al., 2023) considered a related, yet different problem of MOF generation
based on a deep generative model which does not include the structure generation.

Flow matching. Flow matching is a simulation-free approach for training continuous normalizing
flows (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023). Since its introduc-
tion, various extensions have been proposed, such as generalization to Riemannian manifolds (Chen
& Lipman, 2024) and efficiency improvements through optimal transport (Tong et al., 2024; Poola-
dian et al., 2023). Due to its flexibility and computational efficiency, flow matching has made notable
progress in several related domains, including protein generation (Yim et al., 2023a;b; 2024; Bose
et al., 2024), molecular conformation generation (Song et al., 2024), and CSP (Miller et al., 2024).

3 PRELIMINARIES

3.1 REPRESENTATION OF MOF STRUCTURES

MOF representation. The 3D crystal structure of a MOF can be represented with the periodic
arrangement of the smallest repeating unit called the unit cell. A unit cell containing N atoms can
be represented with the tuple S = (X,a, ℓ) where X = [xn]

N
n=1 ∈ RN×3 is the atom coordi-

nates, a = [an]
N
n=1 ∈ AN is the atom types with A denoting the set of possible elements, and

ℓ = (a, b, c, α, β, γ) ∈ R3
+ × [0, 180]3 is the lattice parameter that describes the periodicity of the

structure (Miller et al., 2024; Luo et al., 2024). In particular, the lattice parameter ℓ can be trans-
formed into a standard lattice matrix L = (l1, l2, l3) ∈ R3×3, which defines the infinite crystal
structure:

{(a′n, x′
n)|a′n = an, x

′
n = xn + kL⊤, k ∈ Z1×3} (1)

where k = (k1, k2, k3) is the set of integers representing the periodic translation of the unit cell.

Block-wise representation of MOFs. Here we introduce the blockwise representation of MOFs
that decompose a given unit cell into constituent building blocks, i.e., the metal nodes and organic
linkers. The blockwise representation is a tuple S = (B, q, τ , ℓ) where B = {Cm}Mm=1 corresponds
to M building blocks and q = [qm]Mm=1, τ = [τm]Mm=1 corresponds to set of M building block
roto-translations (qm, τm) ∈ SE(3) . Moreover, each block Cm = (am,Ym) has Nm atoms with
atom types am = [an]

Nm
n=1 ∈ ANm and local coordinates Ym = [yn]

Nm
n=1 ∈ RNm×3 (defined

in Section 4.1). Our main assumption is that the building blocks can be composed by the roto-
translations to form the MOF structure, i.e., the atomwise representation (X,a, ℓ) can be expressed
by the blockwise representation (q, τ ,B, ℓ):

X = Concat(X1, . . . ,XM), Xm = (qm, τm) · Ym,

where Xm is the result of the roto-translated local coordinate represented by group action ·. We
express the global coordinate X as the concatenation Xm’s without loss of generality.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 FLOW MATCHING ON RIEMANNIAN MANIFOLDS

Flow matching is a method to train continuous normalizing flow (CNF; Chen et al., 2018) with-
out expensive ordinary differential equation (ODE) simulations (Lipman et al., 2023). Here, we
introduce the flow matching generalized to Riemannian manifolds (Chen & Lipman, 2024).

CNF in Riemannian manifold. We consider a smooth and connected Riemann manifoldM with
metric g where each point x ∈ M is associated with tangent space TxM and inner product ⟨·, ·⟩g .
We consider learning a CNF ϕt : M → M defined with the ODE d

dtϕt(x) = ut(ϕt(x)) where
ϕ0(x) = x and ut(x) ∈ TxM is the time-dependent smooth vector field. The vector field ut(x)
transforms a prior distribution p0 to pt according to the following push-forward equation:

pt(x) = [ϕt]∗p0(x)− p0(ϕ
−1
t (x)) exp

(
−
∫ t

0

∇ · ut(xs)ds

)
, t ∈ [0, 1], (2)

where∇· is the divergence operator and xs = ϕs(ϕ
−1
t (x)).

Conditional flow matching on Riemannian manifold. The goal of CNF is to learn a vector field
ut(·) that transforms a simple prior distribution p0 so that p1 closely approximates some target
distribution q. Given a vector field ut(·) and the corresponding probability paths {pt}t∈[0,1], one
can train a neural network vt(x; θ) with the flow matching objective:

LFM(θ) = Et,pt(x)[∥vt(x; θ)− ut(x)∥2g], (3)

where t ∼ U [0, 1], x ∼ pt(x), and ∥·∥g is the norm induced by the metric g. However, the flow
matching objective lacks analytic form of ut(x) that transforms the prior p0 into the target q. The key
insight of conditional flow matching objective is to instead learn a conditional vector field ut(x|x1)
for a data point x1 defined as follows:

LCFM(θ) = Et,p1(x),pt(x|x1)[∥vt(x; θ)− ut(x|x1)∥2g], (4)

where we let p0(x|x1) = p0(x) and p1(x|x1) ≈ δ(x − x1) with δ(·) being the Dirac distribution.
The key idea of conditional flow matching is that one can derive the conditional vector field ut(x|x1)
that marginalizes over data points x1 ∼ q accordingly to induce the vector field ut(x) transforming
the prior p0 into the desired distribution q. To construct ut(x|x1), Chen & Lipman (2024) proposes
defining conditional flow xt = ϕt(x0|x1) from the geodesic path (minimum length curve) connect-
ing two points x0, x1 ∈ M by xt = expx0

(t logx0
(x1)) for t ∈ [0, 1], where expx and logx are the

exponential and logarithmic map at point x ∈ M, respectively. Then the desired conditional vector
field can be derived as the time derivative, i.e., u(xt|x1) =

d
dtϕt(x0|x1).

At optimum, vθ generates pθt = pt with starting point pθ0 = p0 and end point pθ1 = p1. At inference,
we sample from the prior pθ0 and propagate t from 0 to 1 using one of the existing ODE solvers. Note
that each training step is faster than the methods based on adjoint sensitivity (Chen et al., 2018) since
conditional flow matching does not require solving the ODE defined by the neural network.

4 METHODS

In this section, we introduce MOFFLOW, a novel approach for MOF structure prediction based on
the rigid-body roto-translation of building blocks to express the global atomic coordinates. To this
end, using the Riemannian flow matching framework, we learn a CNF pθ(q, τ , ℓ|B) that predicts
the blockwise roto-translations and the lattice parameter from the given building blocks. Compared
to conventional CSP approaches defined on atomic coordinates (Jiao et al., 2024a;b; Lin et al.,
2024; Miller et al., 2024), MOFFLOW enjoys the reduced search space, i.e., the dimensionality of
blockwise roto-translation and the atomic coordinates are 6M and 3N , respectively (6M ≪ 3N).

4.1 CONSTRUCTION OF LOCAL COORDINATES

To incorporate the MOF symmetries, we devise a scheme to consistently define the local coordinate
Y regardless of the initial pose of the building block. Given a building block C = (a,Y), our
goal is to define a global-to-local function f : A × RN×3 → RN×3 that defines a consistent local
coordinate system; that is, the function should satisfy

f(a,XQ⊤ + 1N t⊤) = f(a,X), ∀Q ∈ SO(3), t ∈ R3. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where X is a random conformation of the building block. We can then define Y = f(a,X). Such
property can be satisfied by a composition of (1) translation by subtracting the centroid and (2)
rotation by aligning with the principal component analysis (PCA) axes:

f(a,X) = C(X)R(a, C(X)), C(X) = X − 1N

(
1

N

N∑
n=1

x⊤
n

)
. (6)

Here, C(X) denotes subtraction of the centroid andR(a,X) denotes rotation to align the building
block with the PCA axes whose sign is fixed by a reference vector, following Gao & Günnemann
(2022). See Appendix E for more details.

4.2 FLOW MATCHING FOR MOF STRUCTURE PREDICTION

In this section, we present our approach to training the generative model pθ(q, τ , ℓ|B) using the flow
matching framework. We first explain how our method ensures SE(3)-invariance and introduce a
metric for independent treatment of the components q, τ , and ℓ. Next, we outline the key elements
for flow matching – i.e., the definition of priors, conditional flows, and the training objective.

To preserve crystal symmetries, we design the framework such that the generative model is invari-
ant to rotation, translation, and permutation of atoms and building blocks. Rotation invariance is
guaranteed by using the rotation-invariant lattice parameter representation and canonicalizing the
atomic coordinates based on the standard lattice matrix (Miller et al., 2024; Luo et al., 2024). Trans-
lation invariance is achieved by operating on the mean-free system where the building blocks are
centered at the origin – i.e., 1

M

∑M
m=1 τm = 0. This is the only way to ensure translation invari-

ance on SE(3)M as no R3 invariant probability measure exists (Yim et al., 2023b). Permutation
invariance is addressed using equivariant graph neural networks (Satorras et al., 2021) and Trans-
formers (Vaswani, 2017) as the backbone.

Metric for SE(3). Following Yim et al. (2023b), we treat SO(3) and R3 independently by defining
an additive metric on SE(3) as

⟨(q, τ), (q′, τ ′)⟩SE(3) = ⟨q, q′⟩SO(3) + ⟨τ, τ ′⟩R3 . (7)

Here, ⟨q, q′⟩SO(3) and ⟨τ, τ ′⟩R3 are inner products defined as ⟨q, q′⟩SO(3) = tr(qq′⊤)/2 and
⟨τ, τ ′⟩R3 = τ⊤τ ′ for q, q′ ∈ so(3) with so(3) denoting the Lie algebra of SO(3) and τ, τ ′ ∈ R3.

Priors. For each rotation q and translation τ , the prior are chosen as the uniform distribution on
SO(3) and standard normal distribution on R3, respectively. For the lattice parameter ℓ, we fol-
low Miller et al. (2024) and use log-normal and uniform distributions. Specifically, for the lengths,
we let p0(a, b, c) =

∏
λ∈{a,b,c} LogNormal(λ;µλ, σλ) where the parameters are learned with the

maximum-likelihood objective (Appendix C). For the angles, we use Niggli reduction (Grosse-
Kunstleve et al., 2004) to constrain the distribution to the range p0(α, β, γ) = U(60, 120).
Conditional flows. Following Chen & Lipman (2024), we train the model to match the conditional
flow defined along the geodesic path of the Riemannian manifold:

q(t) = expq(0)(t logq(0)(q
(1))), τ (t) = (1− t)τ (0) + tτ (1), ℓ(t) = (1− t)ℓ(0) + tℓ(1). (8)

Here, expq is the exponential map and logq is the logarithmic map at point q. From this definition,
the conditional vector fields are derived from the time derivatives:

ut(q
(t)|q(1)) =

logq(t)(q
(1))

1− t
, ut(τ

(t)|τ (1)) = τ (1) − τ (t)

1− t
, ut(ℓ

(t)|ℓ(1)) = ℓ(1) − ℓ(t)

1− t
. (9)

Training objective. Instead of directly modeling the vector fields, we leverage a closed-form ex-
pression that enables re-parameterization of the network to predict the clean data q1, τ1, ℓ1 from the
intermediate MOF structure S(t) = (qt, τt, ℓt,B). To achieve this, we train a neural network to
approximate the clean data, expressed as (q̂1, τ̂1, ℓ̂1) = F(S(t); θ) with regression on clean data:

L(θ) =EM(1)∼DEt∈U(0,1)

[
λ1∥q̂1 − q1∥SO(3) + λ2∥τ̂1 − τ1∥R3 + λ3∥ℓ̂1 − ℓ1∥R3

]
, (10)

whereD is the dataset, U(0, 1) is the uniform distribution defined on an interval [0, 1], and λ1, λ2, λ3

are loss coefficients (see Appendix C).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

NodeUpdate

BackboneUpdate

EdgeUpdate

LatticeUpdate

... ...

Atom-level update layers Block-level update layers

Figure 3: Overview of our neural network architecture. Our architecture follows a hierarchi-
cal structure, starting with atom-level update layers that encode building block representations into
atomic-resolution embeddings. These are followed by block-level update layers, which iteratively
refine the roto-translations (q, τ), block features H , pairwise features Z, and lattice parameters ℓ.
The final output is a prediction of the clean data (q̂1, τ̂1, ℓ̂1).

4.3 MODEL ARCHITECTURE

Here, we describe the architecture of our neural network F(S(t); θ) used to predict clean data
(q1, τ 1, ℓ1). We have two key modules: (1) the atom-level update layers to obtain the building
block embeddings from atomic resolution, and (2) the building block-level update layers that aggre-
gate and update information over MOF on building block resolution and predict q1, τ 1, and ℓ1 from
the final building block embeddings. In what follows, we describe each module one-by-one.

Atom-level update layers. The atom-level update layers (Figure 3) process the building block
representation Cm = (am,Ym) for m = 1, . . . ,M to output the building block embedding hm.
They are graph neural networks operating on an undirected graph Gm = (Vm, Em) constructed from
adding an edge between a pair of atoms within the cutoff distance of 5Å. It initializes the atom-wise
features {vk : k = 1, . . . , Nm} from atom types and the edge features {ek,k′ : {k, k′} ∈ E} from
atomic distances. Each layer updates the atom features {vk : k = 1, . . . , Nm} as follows:

v′k = vk + ϕv

(
vk,

∑
k′∈N (k)

ϕe (vk, vk′ , ek,k′)

)
, (11)

where {v′k : k = 1, . . . , Nm} is the set of updated atom features, N (k) denotes the neighbor of
atom k in the graph Gm, and ϕv , ϕe are multi-layer perceptrons (MLPs). Finally, the building block
embedding hm is obtained from applying mean pooling of the node embeddings at the last layer
followed by concatenation with sinusoidal time embedding of t (Vaswani, 2017) and an MLP.

Block-level update layers. Each layer of the update module (Figure 3) iteratively updates its pre-
diction of (q, τ) ∈ SE(3)M and ℓ along with the block features H = [hm]Mm=1 ∈ RM×dh and the
pairwise features Z = [zmm′]Mm,m′=1 ∈ RM×M×dz . The predictions are initialized by the inter-
mediate flow matching output qt, τt, ℓt, the node features are initialized from the atom-level update
layers, and the edge features are initialized as follows:

zmm′ = ϕz(hm, hm′ ,dgram(∥τm − τm′∥2),dgram(∥τ̂m − τ̂m′∥2)), (12)
where dgram computes a distogram binning the pairwise distance into equally spaced intervals
between 0Å and 20Å. Finally, the block-level update module is defined as follows:

H ′ = NodeUpdate(H,Z, q, τ , ℓ), Z ′ = EdgeUpdate(Z,H ′), (13)

(q′, τ ′) = BackboneUpdate(q, τ ,H ′), ℓ′ = LatticeUpdate(ℓ,H ′), (14)
where q′, τ ′,H ′,Z ′, ℓ′ are the updated predictions and the features. Importantly, NodeUpdate
operator consists of the newly designed MOFAttention module followed by pre-layer nor-
malization Transformers (Xiong et al., 2020) and MLP with residual connections in between.
The EdgeUpdate, BackboneUpdate modules are implemented as in Yim et al. (2023b) and
LatticeUpdate is identity function for the lattice parameter except for the last layer. At the fi-
nal layer, the lattice parameter is predicted from mean pooling of the block features followed by an
MLP. Complete details of each update module are in Appendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 MOFAttention module
Input: Node features H = [hm]Mm=1, edge features Z = [zmm′]Mm,m′=1, rotations q = [qm]Mm=1,
translations τ = [τm]Mm=1, lattice parameter ℓ, number of building blocks M , number of heads Nh,
number of non-rotating channels Nc, and number of rotating channels Nr.
Output: Updated node features H ′ = [h′

m]Mm=1.
1: for h ∈ {1, . . . , Nh} do
2: for m ∈ {1, . . . ,M} do ▷ Query, key, values.
3: qmh, kmh, vmh = Linearh(hm). ▷ qmh, kmh, vmh ∈ RNc .
4: q̃mhp, k̃mhp, ṽmhp = (qm, τm) · Linearh(hm). ▷ q̃mh, k̃mh, ṽmh ∈ R3Nr .
5: end for
6: lh = Linearh(ℓ). ▷ Lattice structure encoding lh ∈ R.
7: bmm′h = Linearh(zmm′) for m,m′ ∈ {1, . . . ,M}. ▷ Attention bias bmm′h ∈ R.
8: γh = SoftPlus(Linearh(1)). ▷ Learnable coefficient γh ∈ R
9: C1 = 1√

Nc
and C2 =

√
2

9Nr
. ▷ Coefficients C1, C2 ∈ R.

10: for m,m′ ∈ {1, . . . ,M} do ▷ Attention amm′h ∈ R.
11: amm′h = SoftMax

(
1
2

(
C1q

⊤
mhkm′h + bmm′h + lh − C2γh

2 ∥q̃mhp − k̃m′hp∥2
))

.
12: end for
13: omh =

∑
m′ amm′hvm′h and õmh =

∑
m′ amm′hṽm′h for m ∈ {1, . . . ,M}. ▷ Aggregate.

14: end for
15: h′

m = Linear(Concath,p(omh, õmhp, ℓ)) for m ∈ {1, . . . ,M} ▷ Update the node features.

In particular, our MOFAttention module is modification of the invariant point attention module
proposed by Jumper et al. (2021) for processing protein frames. Our modification consists of adding
the lattice parameter as input and simplification by removing the edge aggregation information. In
particular, the lattice parameter is embedded using a linear layer and added as an offset for the
attention matrix between the building blocks. We provide more details in Algorithm 1.

5 EXPERIMENTS

The goal of our experiments is to address two questions. Accuracy: How does the structure predic-
tion accuracy of MOFFLOW compare to other approaches? Scalability: How does the performance
of MOFFLOW vary with an increasing number of atoms and building blocks?

To address the first question, Section 5.1 compares the structure prediction accuracy of MOFFLOW
against both conventional and deep learning-based methods. Furthermore, Section 5.2 evaluates
whether MOFFLOW can capture essential MOF properties, further validating the accuracy of its
predictions. The second question is answered in Section 5.3, where we analyze the performance of
MOFFLOW with increasing system size. Additionally in Section 5.4, we compare MOFFLOW to
the self-assembly algorithm (Fu et al., 2023) by integrating it with our approach.

5.1 STRUCTURE PREDICTION

Dataset. We use the dataset from Boyd et al. (2019), containing 324,426 MOF structures. Follow-
ing Fu et al. (2023), we apply the metal-oxo decomposition of MOFid (Bucior et al., 2019) to
decompose each structure into building blocks. After filtering structures with fewer than 200 blocks,
we split the data into train/valid/test sets in an 8:1:1 ratio. Full data statistics are in Appendix A.

Baselines. We compare our model with two types of methods: optimization-based algorithms and
deep learning-based methods. For traditional approach, we use CrySPY (Yamashita et al., 2021) to
implement the random search (RS) and evolutionary algorithm (EA). For deep learning, we bench-
mark against DiffCSP (Jiao et al., 2024a), which generates structures based on atom types. MOF-
specific methods are excluded due to lack of public availability.

Metrics. We evaluate using match rate (MR) and root mean square error (RMSE). We compare the
samples to the ground truth using StructureMatcher class of pymatgen (Ong et al., 2013).
Two sets of threshold for stol, ltol, and angle tol are used: (0.5, 0.3, 10.0) in alignment with the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Structure prediction accuracy. We compare optimization-based methods (RS, EA), a
deep generative model (DiffCSP), and our method, MOFFLOW. Due to computational constraints,
RS and EA were tested on 100 and 15 samples, respectively, while DiffCSP and MOFFLOW were
evaluated on the full test set (30,880 structures). MR is the match rate and RMSE is the root mean
squared error; - indicates no match. stol is the site tolerance for matching criteria. The reported time
is the average per structure. MOFFLOW outperforms all baselines in MR, RMSE, and generation
time.

of samples stol = 0.5 stol = 1.0 Avg. time (s)↓
MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓

RS (Yamashita et al., 2021) 20 0.00 - 0.00 - 332
EA (Yamashita et al., 2021) 20 0.00 - 0.00 - 1959

DiffCSP (Jiao et al., 2024a) 1 0.09 0.3961 23.12 0.8294 5.37
5 0.34 0.3848 38.94 0.7937 26.85

MOFFLOW (Ours) 1 31.69 0.2820 87.46 0.5183 1.94
5 44.75 0.2694 100.0 0.4645 5.69

Cu2H4C28N10O8 Zn2H8C32N6O16 Cu2H18C26N2O8F2 Cu2H24C44N6O8 Zn2H24C48N6O12 Zn8H46C72O27

Ground
Truth

Ours

DiffCSP

Figure 4: Visualization of the predicted MOF structures. We select structures from the 20 candi-
dates with the lowest RMSE. The lattice is scaled to reflect the relative sizes. MOFFLOW accurately
generates high-quality predictions with accurate atomic positions and lattice configuration.

general CSP literature (Jiao et al., 2024a;b; Chen & Lipman, 2024) and (1.0, 0.3, 10.0) to account
for the difficulty of predicting large structures. MR is the proportion of matched structures and
RMSE is the root mean squared displacement normalized by the average free length per atom. We
also measure the time required to generate k samples, averaged across all test sets.

Implementation. Both RS and EA use CHGnet (Deng et al., 2023) for structure optimization. We
generate 20 samples for RS, while EA starts with 5 initial, 20 populations, and 20 generations.
Due to the high computational cost for large crystals, generating more samples was not feasible.
For DiffCSP, we follow the hyperparameters from Jiao et al. (2024a) and train for 200 epochs.
Our method uses an AdamW optimizer (Loshchilov, 2017) with a learning rate of 10−4 and β =
(0.9, 0.98). We use a maximum batch size of 160 and run inference with 50 integration steps (see
Appendix G for analysis on integration steps). We generate 1 and 5 samples for DiffCSP and our
method. Implementation details are in Appendix C.

Results. Table 1 presents the results, where MOFFLOW outperforms all baselines. Optimization-
based methods yield zero MR, highlighting the challenge of using the conventional atom-based ap-
proach for large systems. DiffCSP also performs poorly, underscoring the need to incorporate build-
ing block information in MOF structure prediction. While we achieve a 100% MR at stol = 1.0, this
threshold is too lenient for practical application; however, we include it for multi-level comparison.
Visualizations comparing samples from MOFFLOW and DiffCSP are shown in Figure 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3
Volumetric Surface Area

0

1

Pr
ob

. d
en

sit
y

1e 3 unit: 1e3 m2/cm3

Ground-truth
DiffCSP
MOFFLow

0 2 4 6 8
Gravimetric Surface Area

0

1

2

1e 4 unit: 1e3 m3/g

0.0 0.2 0.4 0.6 0.8 1.0
Accessible Volume

0

2

4
1e 4 unit: 1e4 Å3

0.0 0.2 0.4 0.6 0.8 1.0
Unit Cell Volume

0

1

2

1e 4 unit: 1e4 Å3

0.0 0.2 0.4 0.6 0.8 1.0
Void Fraction

0

1

2

Pr
ob

. d
en

sit
y

0 1 2 3
Pore Limiting Diameter

0

1

1e 1 unit: 1e1 Å

0 1 2 3
Largest Cavity Diameter

0

1

1e 1 unit: 1e1 Å

0 1 2 3
Density

0

1

unit: g/cm3

Figure 5: Property distributions. We compare the distributions of key MOF properties for ground-
truth, MOFFLOW, and DiffCSP. The distributions are histograms smoothed by kernel density esti-
mation. Property units are displayed in the top-right corner of each plot. MOFFLOW (red) closely
aligns with the ground-truth distribution (blue), while DiffCSP (yellow) shows noticeable deviations.
These results highlight that MOFFLOW’s ability to accurately capture essential MOF properties.

5.2 PROPERTY EVALUATION

In this section, we demonstrate that MOFFLOW accurately captures the key properties of ground-
truth MOF structures, offering a more detailed assessment of prediction quality beyond match rate
and RMSE. These properties are crucial for various MOF applications, such as gas storage and
catalysis. Specifically, we evaluate volumetric surface area (VSA), gravimetric surface area (GSA),
largest cavity diameter (LCD), pore limiting diameter (PLD), void fraction (VF), density (DST),
accessible volume (AV), and unit cell volume (UCV). Definitions and the details of each property
are provided in Appendix B.

Table 2: Property evaluation. Average
RMSE computed between the ground-
truth and generated structures for MOF-
FLOW and DiffCSP. MOFFLOW achieve
lower error across all properties, demon-
strating its ability to generate high-quality
samples that accurately capture MOF
properties.

RMSE ↓
MOFFLOW DiffCSP

VSA (m2/cm3) 264.5 796.9
GSA (m2/g) 331.6 1561.9
AV (Å3) 530.5 3010.2
UCV (Å3) 569.5 3183.4
VF 0.0285 0.2167
PLD (Å) 1.0616 4.0581
LCD (Å) 1.1083 4.5180
DST (g/cm3) 0.0442 0.3711

We compare our model to DiffCSP as a representative
general CSP approach. We exclude optimization-based
baselines as they did not yield meaningful results. For
each test structure in Section 5.1, we generate a sin-
gle sample with 50 integration steps, then evaluate the
properties of predicted and ground-truth structures us-
ing Zeo++ (Willems et al., 2012). We evaluate the
models with RMSE and distributional differences. We
do not filter our samples with the match criteria from
Section 5.1.

Results. Table 2 shows that MOFFLOW consistently
yields lower errors than DiffCSP across all evalu-
ated properties. This demonstrates its ability to pro-
duce high-quality predictions while preserving essen-
tial MOF characteristics. Additionally, Figure 5 visual-
izes the property distributions, where our model closely
reproduces the ground-truth distributions and captures
key characteristics. In contrast, DiffCSP frequently re-
duces volumetric surface area and void fraction to zero,
highlighting the limitations of conventional approaches
in accurately modeling MOF properties.

5.3 SCALABILITY EVALUATION

Here, we demonstrate that MOFFLOW enables structure prediction for large systems, which is a
challenge for general CSP methods. To evaluate how performance scales with system size, we
analyze match rates as a function of the number of atoms and building blocks. We compare our
results with DiffCSP as the representative of the general CSP approach. We generate single samples
for each test structure and use thresholds (1.0, 0.3, 10.0) for visibility.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 8001000
Number of atoms

0

20

40

60

80

M
at

ch
 ra

te
 (%

)

MOFFlow
DiffCSP

2 3 4 6 7 8 9 1214161820
Number of building blocks

0

20

40

60

80

100

Figure 6: Scalability evaluation. (left) Match
rate comparison between MOFFLOW and
DiffCSP by atom count. MOFFLOW pre-
serves high match rates across all bins, while
DiffCSP drops sharply beyond 200 atoms.
(right) Match rate of MOFFLOW by build-
ing block count, with our method performing
well even for complex structures with many
blocks. These results highlight the scalability
of our approach.

Results. Figure 6 presents our findings, with the
x-axis representing the number of atoms, binned
in ranges of (t, t + 200]. The final bin includes
all atom counts beyond the last range, without an
upper limit. MOFFlow consistently outperforms
DiffCSP across all atom ranges. While our ap-
proach shows only gradual performance degrada-
tion as atom count increases, DiffCSP suffers a
sharp decline for systems with more than 100 atoms
and fails to predict structures with over 200 atoms.
In contrast, our method maintains a high match
rate even for structures exceeding 1,000 atoms per
unit cell, highlighting the effectiveness of lever-
aging building block information for MOF struc-
ture prediction. Additionally, Figure 6 shows how
our match rate scales with the number of build-
ing blocks. The results show minimal performance
degradation, demonstrating that our model effec-
tively handles larger numbers of building blocks
and efficiently scales to large crystal structures.

5.4 COMPARISON TO SELF-ASSEMBLY ALGORITHM

Table 3: Comparison with self-assembly
(SA) algorithm. Since SA can only pre-
dict rotations, we provide translations and
lattice predicted by MOFFLOW for fair
comparison. MOFFLOW alone achieves
higher accuracy and faster inference times
than SA.

MR (%) ↑ RMSE ↓ Time (s) ↓
SA 30.04 0.3084 4.75
Ours 31.69 0.2820 1.94

To make our evaluation more comprehensive, we also
consider the self-assembly algorithm used by Fu et al.
(2023) as a baseline, although the performance is not
directly comparable. The self-assembly (SA) algorithm
is an optimization-based method that predicts the ro-
tation q by maximizing the overlap between building
block connection points. Since the algorithm requires
τ , ℓ, and C as input, it is not directly applicable for
structure prediction on its own. Therefore, we conduct
an ablation by combining the self-assembly algorithm
with our predicted values of τ and ℓ. We note that the
self-assembly algorithm defines the centroid as the cen-
ter of mass of the connection points, and we account for
this offset in our implementation.

Results. Table 3 shows that MOFFlow alone outperforms the combination with the self-assembly
algorithm, indicating that learning the building block orientations leads to more accurate MOF struc-
ture predictions than heuristic-based overlap optimization. Additionally, our method offers faster
inference, further demonstrating its efficiency compared to optimization-based approaches. A com-
prehensive comparison is provided in Appendix H.

6 CONCLUSION

We propose MOFFLOW, a building block-based approach for predicting the structure of metal-
organic frameworks (MOFs). Our approach significantly outperforms general crystal structure pre-
diction algorithms – in both quality and efficiency – that fail to account for the modularity of MOFs.
Additionally, MOFFLOW is scalable, successfully predicting structures composed of up to thou-
sands of atoms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

We describe experimental details and hyperparameters in Appendix C. We provide our codes and
model checkpoint in https://anonymous.4open.science/r/MOFFlow-3547.

ETHIC STATEMENT

Our framework targets to advance porous material discovery, which is deeply related to carbon
capturing, catalysis design, and drug discovery. We believe our work can improve the quality of
human life by assisting in resolving global warming and drug design. However, they should notice
the caution due to the misuse in developing hazardous materials or products that may be harmful for
specific usage.

REFERENCES

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. 3

Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander
Tong. Se (3)-stochastic flow matching for protein backbone generation. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 3

Peter G Boyd, Arunraj Chidambaram, Enrique Garcı́a-Dı́ez, Christopher P Ireland, Thomas D Daff,
Richard Bounds, Andrzej Gładysiak, Pascal Schouwink, Seyed Mohamad Moosavi, M Mercedes
Maroto-Valer, et al. Data-driven design of metal-organic frameworks for wet flue gas co2 capture.
Nature, 576(7786):253–256, 2019. doi: 10.24435/materialscloud:2018.0016/v3. 2, 7, 16

Benjamin J Bucior, Andrew S Rosen, Maciej Haranczyk, Zhenpeng Yao, Michael E Ziebel, Omar K
Farha, Joseph T Hupp, J Ilja Siepmann, Alán Aspuru-Guzik, and Randall Q Snurr. Identifica-
tion schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis.
Crystal Growth & Design, 19(11):6682–6697, 2019. 7

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 2, 3, 4, 5, 8

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018. 4

Guanjian Cheng, Xin-Gao Gong, and Wan-Jian Yin. Crystal structure prediction by combining
graph network and optimization algorithm. Nature communications, 13(1):1492, 2022. 3

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In The Eleventh International Conference
on Learning Representations, 2023. 1, 18

Callum J Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 2020. 3

James P Darby, Mihails Arhangelskis, Athanassios D Katsenis, Joseph M Marrett, Tomislav Friscic,
and Andrew J Morris. Ab initio prediction of metal-organic framework structures. Chemistry of
Materials, 32(13):5835–5844, 2020. 3

Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel,
and Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-
informed atomistic modelling. Nature Machine Intelligence, pp. 1–11, 2023. doi: 10.1038/
s42256-023-00716-3. 8, 18

Xiang Fu, Tian Xie, Andrew S Rosen, Tommi Jaakkola, and Jake Smith. Mofdiff: Coarse-grained
diffusion for metal-organic framework design. arXiv preprint arXiv:2310.10732, 2023. 3, 7, 10,
18, 23

11

https://anonymous.4open.science/r/MOFFlow-3547

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicholas Gao and Stephan Günnemann. Ab-initio potential energy surfaces by pairing gnns with
neural wave functions. In International Conference on Learning Representations, 2022. 5, 20

Niklas WA Gebauer, Michael Gastegger, Stefaan SP Hessmann, Klaus-Robert Müller, and Kristof T
Schütt. Inverse design of 3d molecular structures with conditional generative neural networks.
Nature communications, 13(1):973, 2022. 1, 2

Ralf W Grosse-Kunstleve, Nicholas K Sauter, and Paul D Adams. Numerically stable algorithms
for the computation of reduced unit cells. Acta Crystallographica Section A: Foundations of
Crystallography, 60(1):1–6, 2004. 5

Enamul Haque, Jong Won Jun, and Sung Hwa Jhung. Adsorptive removal of methyl orange and
methylene blue from aqueous solution with a metal-organic framework material, iron terephtha-
late (mof-235). Journal of Hazardous materials, 185(1):507–511, 2011. 1

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 1

Jordan Hoffmann, Louis Maestrati, Yoshihide Sawada, Jian Tang, Jean Michel Sellier, and Yoshua
Bengio. Data-driven approach to encoding and decoding 3-d crystal structures. arXiv preprint
arXiv:1909.00949, 2019. 3

Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K Allan, Guillaume Maurin, Patrick
Couvreur, Gérard Férey, Russell E Morris, and Christian Serre. Metal–organic frameworks in
biomedicine. Chemical reviews, 112(2):1232–1268, 2012. 1

Jianjun Hu, Wenhui Yang, and Edirisuriya M Dilanga Siriwardane. Distance matrix-based crystal
structure prediction using evolutionary algorithms. The Journal of Physical Chemistry A, 124
(51):10909–10919, 2020. 3

Jianjun Hu, Wenhui Yang, Rongzhi Dong, Yuxin Li, Xiang Li, Shaobo Li, and Edirisuriya MD
Siriwardane. Contact map based crystal structure prediction using global optimization. Crys-
tEngComm, 23(8):1765–1776, 2021. 3

TL Jacobsen, MS Jørgensen, and B Hammer. On-the-fly machine learning of atomic potential in
density functional theory structure optimization. Physical review letters, 120(2):026102, 2018. 3

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin a. Persson.
The Materials Project: A materials genome approach to accelerating materials innovation. APL
Materials, 1(1):011002, 2013. ISSN 2166532X. doi: 10.1063/1.4812323. URL http://
link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi. 2

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024a. 1, 2, 3, 4, 7, 8, 18

Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
generation. In The Twelfth International Conference on Learning Representations, 2024b. 3, 4, 8

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
fusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022. 1, 2

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. In Forty-first International Conference on Machine Learning, 2024. 1

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021. 7, 21

Sungwon Kim, Juhwan Noh, Geun Ho Gu, Alan Aspuru-Guzik, and Yousung Jung. Generative
adversarial networks for crystal structure prediction. ACS central science, 6(8):1412–1420, 2020.
3

12

http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical review, 140(4A):A1133, 1965. 1

Lauren E Kreno, Kirsty Leong, Omar K Farha, Mark Allendorf, Richard P Van Duyne, and Joseph T
Hupp. Metal–organic framework materials as chemical sensors. Chemical reviews, 112(2):1105–
1125, 2012. 1

Aditi S Krishnapriyan, Maciej Haranczyk, and Dmitriy Morozov. Topological descriptors help
predict guest adsorption in nanoporous materials. The Journal of Physical Chemistry C, 124(17):
9360–9368, 2020. 17

JeongYong Lee, Omar K Farha, John Roberts, Karl A Scheidt, SonBinh T Nguyen, and Joseph T
Hupp. Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5):1450–
1459, 2009. 1

Hao Li, Kecheng Wang, Yujia Sun, Christina T Lollar, Jialuo Li, and Hong-Cai Zhou. Recent
advances in gas storage and separation using metal–organic frameworks. Materials Today, 21(2):
108–121, 2018. 1

Peijia Lin, Pin Chen, Rui Jiao, Qing Mo, Cen Jianhuan, Wenbing Huang, Yang Liu, Dan Huang,
and Yutong Lu. Equivariant diffusion for crystal structure prediction. In Forty-first International
Conference on Machine Learning, 2024. 3, 4

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023. 1

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t. 1, 3,
4

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.
3

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 8

Youzhi Luo, Chengkai Liu, and Shuiwang Ji. Towards symmetry-aware generation of periodic
materials. Advances in Neural Information Processing Systems, 36, 2024. 3, 5

L Marleny Rodriguez-Albelo, A Rabdel Ruiz-Salvador, Alvaro Sampieri, Dewi W Lewis, Ariel
Gómez, Brigitte Nohra, Pierre Mialane, Jérôme Marrot, Francis Sécheresse, Caroline Mellot-
Draznieks, et al. Zeolitic polyoxometalate-based metal- organic frameworks (z-pomofs): Com-
putational evaluation of hypothetical polymorphs and the successful targeted synthesis of the
redox-active z-pomof1. Journal of the American Chemical Society, 131(44):16078–16087, 2009.
3

Richard Luis Martin and Maciej Haranczyk. Construction and characterization of structure models
of crystalline porous polymers. Crystal growth & design, 14(5):2431–2440, 2014. 17

Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generat-
ing materials with riemannian flow matching. In Forty-first International Conference on Machine
Learning, 2024. 1, 2, 3, 4, 5, 18, 22

Juhwan Noh, Jaehoon Kim, Helge S Stein, Benjamin Sanchez-Lengeling, John M Gregoire, Alan
Aspuru-Guzik, and Yousung Jung. Inverse design of solid-state materials via a continuous repre-
sentation. Matter, 1(5):1370–1384, 2019. 3

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, and Gerbrand Ceder. Python
materials genomics (pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68:314–319, 2013. doi: 10.1016/j.commatsci.2012.10.028.
7

13

https://openreview.net/forum?id=PqvMRDCJT9t

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of Physics: Condensed
Matter, 23(5):053201, 2011. 1, 2, 3

Evgeny V Podryabinkin, Evgeny V Tikhonov, Alexander V Shapeev, and Artem R Oganov. Acceler-
ating crystal structure prediction by machine-learning interatomic potentials with active learning.
Physical Review B, 99(6):064114, 2019. 3

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. In International Conference on Machine Learning, pp. 28100–28127. PMLR, 2023. 3

Qihui Qian, Patrick A Asinger, Moon Joo Lee, Gang Han, Katherine Mizrahi Rodriguez, Sharon
Lin, Francesco M Benedetti, Albert X Wu, Won Seok Chi, and Zachary P Smith. Mof-based
membranes for gas separations. Chemical reviews, 120(16):8161–8266, 2020. 1

Zekun Ren, Siyu Isaac Parker Tian, Juhwan Noh, Felipe Oviedo, Guangzong Xing, Jiali Li, Qiaohao
Liang, Ruiming Zhu, Armin G Aberle, Shijing Sun, et al. An invertible crystallographic repre-
sentation for general inverse design of inorganic crystals with targeted properties. Matter, 5(1):
314–335, 2022. 3

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021. 5, 18

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. Advances in Neural Information Processing Systems, 36, 2024. 3

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024. 3

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
5, 6

Cheng Wang, Demin Liu, and Wenbin Lin. Metal–organic frameworks as a tunable platform for
designing functional molecular materials. Journal of the American Chemical Society, 135(36):
13222–13234, 2013. 1

Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline compounds
using chemical similarity. npj Computational Materials, 7(1):12, 2021. 2

Yanchao Wang, Jian Lv, Li Zhu, and Yanming Ma. Crystal structure prediction via particle-swarm
optimization. Physical Review B—Condensed Matter and Materials Physics, 82(9):094116, 2010.
3

Thomas F Willems, Chris H Rycroft, Michaeel Kazi, Juan C Meza, and Maciej Haranczyk. Al-
gorithms and tools for high-throughput geometry-based analysis of crystalline porous materials.
Microporous and Mesoporous Materials, 149(1):134–141, 2012. 9, 17

Xiaoyu Wu and Jianwen Jiang. Precision-engineered metal–organic frameworks: fine-tuning reverse
topological structure prediction and design. Chemical Science, 2024. 3

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi S. Jaakkola. Crys-
tal diffusion variational autoencoder for periodic material generation. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
03RLpj-tc_. 1, 2

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. 6, 21

Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli,
and Jian Tang. An end-to-end framework for molecular conformation generation via bilevel pro-
gramming. In International conference on machine learning, pp. 11537–11547. PMLR, 2021.
2

14

https://openreview.net/forum?id=03RLpj-tc_
https://openreview.net/forum?id=03RLpj-tc_

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
PzcvxEMzvQC. 1, 2

Tomoki Yamashita, Nobuya Sato, Hiori Kino, Takashi Miyake, Koji Tsuda, and Tamio Oguchi.
Crystal structure prediction accelerated by bayesian optimization. Physical Review Materials, 2
(1):013803, 2018. 1, 2

Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Kei Terayama, Hikaru Sawahata,
Takumi Sato, Futoshi Utsuno, Koji Tsuda, Takashi Miyake, et al. Cryspy: a crystal structure
prediction tool accelerated by machine learning. Science and Technology of Advanced Materials:
Methods, 1(1):87–97, 2021. 7, 8, 18

Tomoki Yamashita, Hiori Kino, Koji Tsuda, Takashi Miyake, and Tamio Oguchi. Hybrid algorithm
of bayesian optimization and evolutionary algorithm in crystal structure prediction. Science and
Technology of Advanced Materials: Methods, 2(1):67–74, 2022. 2

Wenhui Yang, Edirisuriya M Dilanga Siriwardane, Rongzhi Dong, Yuxin Li, and Jianjun Hu. Crystal
structure prediction of materials with high symmetry using differential evolution. Journal of
Physics: Condensed Matter, 33(45):455902, 2021. 3

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.
3, 18

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
In Proceedings of the 40th International Conference on Machine Learning, pp. 40001–40039,
2023b. 3, 5, 6, 18, 19, 21

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, Jose
Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe, Regina
Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with SE(3) flow matching. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.
net/forum?id=fa1ne8xDGn. 3, 18

15

https://openreview.net/forum?id=PzcvxEMzvQC
https://openreview.net/forum?id=PzcvxEMzvQC
https://openreview.net/forum?id=fa1ne8xDGn
https://openreview.net/forum?id=fa1ne8xDGn

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DATA STATISTICS

In this section, we present the data statistics to represent the characteristics of the MOF dataset.
We consider the MOF dataset from Boyd et al. (2019) and the dataset is generated by the MOF-
generating algorithms based on the topology from graph theory. The dataset is distributed on the
MATERIALSCLOUD. As mention in Section 5.1, we uses filtered strucutures with fewer than 200
blocks. The dataset is divided into train, valid and test in an 8:1:1 ratio. The statistic of data splits
are represented in the Tables 4, 5 and 6.

Property (number of samples = 247, 066) Min Mean Max
number of species / atoms 3 / 20 5.3 / 151.5 8 / 2208
working capacity (vacuum) [10−3mol/g] -0.2618 0.4177 4.8355
working capacity (temperature) [10−3mol/g] -0.2712 0.2843 4.4044
volume [Å3] 534.5 5496.7 193341.7
density [atoms/Å3] 0.0737 0.7746 4.0966
lattice a, b, c [Å] 6.13 / 8.27 / 8.56 13.81 / 16.47 / 20.39 57.83 / 57.80 / 61.62
lattice α, β, γ [◦] 59.76 / 59.99 / 59.97 91.08 / 91.05 / 90.75 120.29 / 120.01 / 120.02

Table 4: The statistics of the train split of MOF dataset.

Property (number of samples = 30, 883) Min Mean Max
number of species / atoms 3 / 16 5.3 / 152.4 8 / 2256
working capacity (vacuum) [10−3mol/g] -0.2510 0.4163 5.1152
working capacity (temperature) [10−3mol/g] -0.1210 0.2834 4.4589
volume [Å3] 534.5 5538.1 118597.4
density [atoms/Å3] 0.11 0.77 4.33
lattice a, b, c [Å] 6.86 / 8.43 / 8.57 13.85 / 16.53 / 20.39 48.29 / 55.11 / 60.97
lattice α, β, γ [◦] 59.98 / 59.99 / 59.99 91.08 / 91.00 / 90.73 120.11 / 120.01 / 120.02

Table 5: The statistics of the valid split of MOF dataset.

Property (number of samples = 30, 880) Min Mean Max
number of species / atoms 3 / 22 5.3 / 149.3 8 / 2368
working capacity (vacuum) [10−3mol/g] -0.1999 0.4193 4.6545
working capacity (temperature) [10−3mol/g] -0.1318 0.2858 3.9931
volume [Å3] 536.4 5401.1 124062.6
density [atoms/Å3] 0.108 0.777 4.074
lattice a, b, c [Å] 6.86 / 8.34 / 8.56 13.74 / 16.39 / 20.26 49.86 / 49.88 / 60.95
lattice α, β, γ [◦] 59.91 / 60.00 / 59.99 91.00 / 90.98 / 90.76 120.16 / 120.01 / 120.01

Table 6: The statistics of the test split of MOF dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B GLOSSARY

Structural properties. In this section, we introduce the structural properties we measured. These
properties were calculated using the Zeo++ software package developed by Willems et al. (2012).
Zeo++ provides high-throughput geometry-based analysis of crystalline porous materials, calculat-
ing critical features such as pore diameters, surface area, and accessible volume, all of which are
essential for evaluating material performance in applications such as gas storage and catalysis.

Specifically, we calculated properties including volumetric surface area (VSA), the surface area
per unit volume; gravimetric surface area (GSA), which represents the surface area per unit mass;
the largest cavity diameter (LCD), which represents the diameter of the largest spherical cavity
within the material; the pore limiting diameter (PLD), defined as the smallest passage through which
molecules must pass to access internal voids; the void fraction (VF) (Martin & Haranczyk, 2014),
which is the ratio of total pore volume in the structure to the total cell volume; the density (DST),
which refers to the mass per unit volume of the material; the accessible volume (AV), indicating the
volume available to the center of a given probe molecule within the pores; and the unit cell volume
(UCV), representing the total volume of the repeating unit cell in the crystal structure. These param-
eters provide critical insights into the MOF’s porosity, surface area, and ability to store and transport
gases, and recent study shows the correlation with these properties with the bulk material (Krish-
napriyan et al., 2020).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

Training details. We use the TimestepBatch algorithm (Yim et al., 2023b) to simplify batch
construction. This method generates a batch by applying multiple noise levels t ∈ [0, 1] to a single
data instance, ensuring uniform batch size. To manage memory constraints, we cap the batch size
with N2, where N is the number of atoms.

Hyperparameters. Table 7 and Table 8 shows model and training hyperparameters for MOFFLOW,
respectively. In practice, we generate q, k, and v from h independently, allowing each to have a
distinct dimension. The non-rotating channels are represented as a tuple, with qk and v specified in
that order. We set the log-normal distribution parameters for lattice lengths to µ = (2.55, 2.75, 2.96)
and σ = (0.3739, 0.3011, 0.3126), computed from the training data with the closed-form maximum
likelihood estimation.

Baselines. Here, we provide the implementation details of the baselines. Unless specified otherwise,
all hyperparameters follow their default settings.

• DiffCSP (Jiao et al., 2024a): To address memory constraints, we replaced fully connected
edge construction with a radius graph (cutoff: 5Å) and used a batch size of 8. The model
was trained on a 24GB NVIDIA RTX 3090 GPU for 5 days until convergence.

• FlowMM (Miller et al., 2024): Similar to DiffCSP, we used a radius graph (cutoff 5Å) for
edge construction. Due to higher memory demands, FlowMM was trained on an 80GB
A100 GPU with a batch size of 16.

• RS & EA: Both random search (RS) and the evolutionary algorithm (EA) were im-
plemented with CRYSPY (Yamashita et al., 2021) and energy-based optimization with
CHGNet (Deng et al., 2023). For RS, we generated 20 structures per sample with a
symmetry-based search. EA began with 5 initial RS runs and performed up to 20 gen-
erations with a population size of 20, 10 crossovers, 4 permutations, 2 strains, and 2 elites.
A tournament selection function with a size of 4 was employed.

Computational resources. Table 9 summarizes the computational resources required to train
learning-based models. Notably, the TimestepBatch implementation of MOFFLOW requires
longer training times in terms of GPU hours. To address this inefficiency, we also release a refactored
Batch version of MOFFLOW with details in Appendix D.

Codebase. Our implementation is built on https://github.com/gcorso/DiffDock,
https://github.com/vgsatorras/egnn, https://github.com/microsoft/
MOFDiff, and https://github.com/microsoft/protein-frame-flow. We appre-
ciate the authors (Yim et al., 2023a;b; 2024; Fu et al., 2023; Corso et al., 2023; Satorras et al., 2021)
for their contributions.

Table 7: Model hyperparameters of MOFFLOW

Hyperparameter Value
Atom-level node dimension 64
Atom-level edge dimension 64

Atom-level cutoff radius 5
Atom-level maximum atoms 100

Atom-level update layers 4
Block-level node dimension 256
Block-level edge dimension 128
Block-level time dimension 128

Block-level update layers 6
MOFAttention number of heads 24
MOFAttention rotating channels 256

MOFAttention non-rotating channels (8, 12)

18

https://github.com/gcorso/DiffDock
https://github.com/vgsatorras/egnn
https://github.com/microsoft/MOFDiff
https://github.com/microsoft/MOFDiff
https://github.com/microsoft/protein-frame-flow

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Training hyperparameters of MOFFLOW

Hyperparameter Value
loss coefficient λ1 (q) 1.0
loss coefficient λ2 (τ) 2.0
loss coefficient λ3 (ℓ) 0.1

batch size 160
maximum N2 1,600,000

optimizer AdamW
initial learning rate 0.0001

betas (0.9, 0.98)
learning rate scheduler ReduceLROnPlateau

learning rate patience 30 epochs
learning rate factor 0.6

Table 9: Computational resources. Comparison of batch size, GPU type (× number), GPU mem-
ory utilization (GB), and training time (d: days, h: hours) for training learning-based models.

Batch size GPU Type GPU memory (GB) Training time

DiffCSP 8 24GB 3090 (×1) 5d 2h
FlowMM 16 80GB A100 (×1) 40.67 - 67.43 8d 12h
EquiCSP
MOFFLOW (TimestepBatch) 160 24GB 3090 (×8) 6.67 - 23.95 5d 15h
MOFFLOW (Batch) 160 24GB 3090 (×8) 21.62 - 23.80 1d 17h

D BATCH IMPLEMENTATION OF MOFFLOW

While the TimestepBatch algorithm (Yim et al., 2023b) simplifies implementation, it slows con-
vergence due to its effective batch size of 1 (i.e., each batch contains noise-perturbed variants of
a single instance). To address this limitation, we introduce the Batch implementation, which pro-
cesses multiple data instances per batch, aligning with standard practice. As shown in Table 10,
Batch achieves comparable performance to TimestepBatch while significantly reducing training
time from 1087.25 to 332.74 GPU hours. It also reduces inference time from 1.94 to 0.1932 seconds.

Table 10: Comparison of TimestepBatch and Batch implementations of MOFFLOW. The
Batch implementation achieves comparable performance while significantly reducing training time
(GPU hours) and inference time (seconds). Inference time is reported as the average per test instance,
calculated by dividing the total elapsed time by the size of the test set.

Training time (h) Inference time (s) Match rate (%) RMSE

TimestepBatch 1087.25 1.94 31.69 0.2820
Batch 332.74 0.19 32.73 0.2743

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E DEFINING LOCAL COORDINATES OF BUILDING BLOCKS

Following, Gao & Günnemann (2022), we use principle component analysis (PCA) as our backbone
since it is SO(3)-equivariant up to a sign. Specifically, if we denote PCA(X) = [e1, e2, e3], in the
order of decreasing eigenvalues, ∀Q ∈ SO(3),

PCA(XQ⊤) = c⊙QPCA(X), c ∈ {−1,+1}3

that is, the sign is not preserved upon rotation. To define a consistent direction, Gao & Günnemann
(2022) suggests the use of an equivariant vector function v(a,X) as

ẽi =

{
ei, if v(a,X)⊤ei ≥ 0

−ei, otherwise.
(15)

Then, the final equivariant axes is defined asR = [ẽ1, ẽ2, ẽ3] where ẽ3 = ẽ1 × ẽ2.

However, we find that this definition is insufficient for our application where some building blocks
are 2-dimensional exhibit symmetry with respect to the origin and thus have v(a,X) = 0. For such
cases, we define

vsym(X) = argmin
x∈X

{∥x∥2|x ̸= 0}

– i.e., the vector from the centroid to the closest atom. Since the building blocks are symmetric, f
still fulfills Equation (5) up to permutation, which is handled by GNN and Transformers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F MODEL ARCHITECTURE

Here, we provide the details of the NodeUpdate, EdgeUpdate, and BackboneUpdate modules.
Our implementation follows Yim et al. (2023b); Jumper et al. (2021), with the exception of the
MOFAttention module and the Transformers, where we use a pre-layer normalized version (Xiong
et al., 2020). Each module is introduced with our notation. The function R(a, b, c, d) in Algorithm 4
is defined as

R(a, b, c, d) =

(
(an)2+(bn)2−(cn)2−(dn)2 2bncn−2andn 2bndn+2ancn

2bncn+2andn (an)2−(bn)2+(cn)2−(dn)2 2cndn−2anbn

2bndn−2ancn 2cndn−2anbn (an)2−(bn)2−(cn)2+(dn)2

)
.

(16)

Algorithm 2 NodeUpdate Module
Input: (q, τ ,H,Z, ℓ)
Output: H ′

1: H̃ ← LayerNorm(MOFAttention(q, τ ,H,Z, ℓ) +H)

2: H̃ ← Concat(H̃,Linear(H(0)))

3: H̃ ← Linear(Transformers(H̃)) +H(ℓ)

4: H ′ ← MLP(H̃)

Algorithm 3 EdgeUpdate Module
Input: (Z,H ′)
Output: Z ′

1: for m = 1, . . . ,M do
2: h̃m ← Linear(H(ℓ+1))
3: for m′ = 1, . . .M do
4: z̃mm′ ← Concat(h̃m, h̃m′ , zmm′)
5: end for
6: Z̃ ← [z̃mm′]Mm,m′=1

7: Z ′ ← LayerNorm(MLP(Z̃))
8: end for

Algorithm 4 BackboneUpdate Module
Input: (q, τ ,H ′)
Output: q′, τ ′

1: for m = 1, . . . ,M do
2: (b, c, d, τ̃m)← Linear(hm)
3: (a, b, c, d)← (1, b, c, d)/

√
1 + b+ c+ d

4: q̃m ← R(a, b, c, d)
5: (q′m, τ ′m)← (qm, τm) · (q̃, τ̃)
6: end for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G EFFECT OF INTEGRATION STEPS

Here, we investigate how the number of sampling integration steps affects MOFFLOW’s perfor-
mance. We randomly select 1,000 structures from the test set used in Section 5.1 and evaluate the
match rate, RMSE, and average sampling time for varying integration steps: (5, 10, 50, 100, 200).
For each structure, We generate a single sample and set the thresholds for stol, ltol, and angle tol
to (0.5, 0.3, 10.0).

Results. Figure 7 presents our results. Notably, the performance peaks around 10 and 50 integration
steps, with a slight decline observed for higher step counts. This aligns with the trends reported by
Miller et al. (2024). Based on these results, we use 50 integration steps in our main experiments,
which yield the highest match rate of 31.1%, a low RMSE of 0.2821, and a fast sampling time of
1.267 seconds.

0.0 0.2 0.4 0.6 0.8 1.0
Integration steps 1e3

1.5

2.0

2.5

3.0

M
at

ch
 ra

te
 (%

)

1e1

0.0 0.2 0.4 0.6 0.8 1.0
Integration steps 1e3

2.8

3.0

3.2

3.4
RM

SE
1e−1

0.0 0.2 0.4 0.6 0.8 1.0
Integration steps 1e3

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Ti
m

e
(s

)

1e1

Figure 7: Effect of integration steps on match rate, RMSE, and average sampling time. Per-
formance is highest at 10 and 50 integration steps. We select 50 integration steps for the main
experiments due to its optimal balance of the highest match rate, low RMSE, and efficient sampling
time.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H COMPARISON WITH SELF-ASSEMBLY ALGORITHM

We compare the scalability and sampling efficiency of the self-assembly algorithm (Fu et al., 2023)
with MOFFLOW, highlighting their respective strengths and limitations.

Scalability. Since both methods operate at the building block level, we compare their match rates as
a function of the number of building blocks. The experimental settings follow Section 5.4. Figure 8a
shows that while MOFFLOW achieves a higher overall match rate (31.69% vs. 27.14%), the self-
assembly algorithm scales better for structures with more building blocks.

Sampling efficiency. Figure 8b compares the assembly times of the two methods. MOFFLOW (left)
demonstrates significantly faster inference, assembling structures consistently in under 8 seconds.
In contrast, the self-assembly algorithm (right) often requires over 2000 seconds per sample. Ad-
ditionally, the self-assembly algorithm’s performance varies widely with initialization, with average
assembly times ranging from 4.75 to 14.62 seconds per trial, reflecting the sensitivity of its L-BFGS
optimization to initial conditions.

MOFFLOW, as a learning-based approach, offers significantly faster inference and generally higher
performance. However, the self-assembly algorithm demonstrates better scalability for highly com-
plex structures, highlighting an area where MOFFLOW could be improved in future work.

2 3 4 6 7 8 9 12 14 16 18 20
Number of building blocks

0

20

40

60

80

M
at

ch
 ra

te
 (%

) MOFFlow
Self-assembly

(a) Match rate by building block count

2 4 6 8
Assembly time (s)

0.0

0.2

0.4

0.6

0.8

De
ns

ity

0 1000 2000
Assembly time (s)

10 6

10 5

10 4

10 3

10 2

(b) Distribution of assembly time

Figure 8: Comparison of scalability and efficiency between MOFFLOW and the self-assembly
algorithm. (a) Match rate performance across varying building block counts. MOFFLOW achieves
higher match rates overall, but the self-assembly algorithm performs better for structures with a
large number of building blocks. (b) Assembly time distributions for (left) MOFFLOW and (right)
the self-assembly algorithm, highlighting the significantly faster inference speed of MOFFLOW.

23

	Introduction
	Related work
	Preliminaries
	Representation of MOF structures
	Flow matching on Riemannian manifolds

	Methods
	Construction of local coordinates
	Flow matching for MOF structure prediction
	Model Architecture

	Experiments
	Structure prediction
	Property evaluation
	Scalability evaluation
	Comparison to self-assembly algorithm

	Conclusion
	Data statistics
	Glossary
	Implementation details
	Batch implementation of MOFFlow
	Defining local coordinates of building blocks
	Model architecture
	Effect of integration steps
	Comparison with self-assembly algorithm

