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ABSTRACT

Metal-organic frameworks (MOFs) are a class of crystalline materials with
promising applications in many areas such as carbon capture and drug delivery.
In this work, we introduce MOFFLOW, the first deep generative model tailored
for MOF structure prediction. Existing approaches, including ab initio calcu-
lations and even deep generative models, struggle with the complexity of MOF
structures due to the large number of atoms in the unit cells. To address this limi-
tation, we propose a novel Riemannian flow matching framework that reduces the
dimensionality of the problem by treating the metal nodes and organic linkers as
rigid bodies, capitalizing on the inherent modularity of MOFs. By operating in
the SE(3) space, MOFFLOW effectively captures the roto-translational dynam-
ics of these rigid components in a scalable way. Our experiment demonstrates
that MOFFLOW accurately predicts MOF structures containing several hundred
atoms, significantly outperforming conventional methods and state-of-the-art ma-
chine learning baselines while being much faster.

1 INTRODUCTION

Metal-organic frameworks (MOFs) are a class of crystalline materials that have recently received
significant attention for their broad range of applications, including gas storage (Li et al., 2018), gas
separations (Qian et al., 2020), catalysis (Lee et al., 2009), drug delivery (Horcajada et al., 2012),
sensing (Kreno et al., 2012), and water purification (Haque et al., 2011). They are particularly valued
for their permanent porosity, high stability, and remarkable versatility due to their tunable structures.
In particular, MOFs are tunable by adjusting their building blocks, i.e., metal nodes and organic
linkers, to modify pore size, shape, and chemical characteristics to suit specific applications (Wang
et al., 2013). Consequently, there is a growing interest in developing automated approaches to
designing and simulating MOFs using computational algorithms.

Crystal structure prediction (CSP) is a task of central importance for automated MOF design and
simulation. The importance of this task lies in the fact that the important functions of MOFs, such
as pore size, surface area, and stability, are directly dependent on the crystal structure. The conven-
tional approach to general CSP is based heavily on ab initio calculations using density functional
theory (DFT; Kohn & Sham, 1965), often combined with optimization algorithms such as random
search (Pickard & Needs, 2011) and Bayesian optimization (Yamashita et al., 2018) to iteratively
explore the energy landscape. However, the reliance on DFT for such computations can be compu-
tationally expensive, especially for large and complex systems such as MOFs.

Deep generative models are promising solutions to accelerate the prediction of the MOF structure.
Especially, diffusion models (Ho et al., 2020) and flow-based models (Lipman et al., 2023) have
shown success in similar molecular structure prediction problems, e.g., small molecules (Xu et al.,
2022; Jing et al., 2022), folded proteins (Jing et al., 2024; Lin et al., 2023), protein-ligand complex
(Corso et al., 2023), and general crystals without the building block constraint (Gebauer et al.,
2022; Xie et al., 2022; Jiao et al., 2024a; Miller et al., 2024). These models iteratively denoise the
random structure using neural networks that act similar to force fields guiding atom positions toward
a minimum energy configuration.

Contribution. In this work, we introduce MOFFLOW, the first deep generative model tailored
for MOF structure prediction. MOFFLOW leverages the modular nature of MOFs, which can be
decomposed into metal nodes and organic linkers (Figures 1 and 2). This decomposition enables
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MOF building blocks

(Metal nodes, organic linkers)

𝑡 = 0

MOFFLOW

𝑡 = 1

Assembled MOF structure

0 < 𝑡 < 1

MOF building blocks

(Metal nodes, organic linkers)

𝑡 = 0

MOFFLOW

𝑡 = 1

Assembled MOF structure

Figure 1: Overview of MOFFLOW. MOFFLOW is a continuous normalizing flow that exploits
the modular nature of MOFs by modeling the building blocks (i.e., metal nodes and organic linkers)
as rigid bodies. It learns the vector fields for rotation (q), translation (τ ), and the lattice (ℓ) that
assembles the building blocks into a complete MOF structure.

...

Figure 2: Inference trajectory of MOFFLOW. Visualization of the inference trajectory of MOF-
FLOW from t = 0 to t = 1, showing the progressive assembly of building blocks. We wrap building
block centroids inside the lattice for visual clarity.

us to design a generative model that predicts the roto-translation of these building blocks to match
the ground truth structure. To achieve this, based on Riemannian flow matching (Chen & Lipman,
2024), we propose a new framework that generates rotations, translations, and lattice structure of
the building blocks. We design the underlying neural network as a composition of building block
encoder parameterized by an equivariant graph neural network based on a new attention module for
encoding roto-translations and lattice parameters of the MOF.

We note that our method competes with existing deep-generative models (Gebauer et al., 2022;
Xie et al., 2022; Jiao et al., 2024a; Miller et al., 2024) for general CSP that encompass MOFs as
special members. However, our method is specialized for MOF structure prediction by exploiting the
domain knowledge that the local structures of the MOF building blocks are shared across different
MOF structures. This is particularly useful for reducing the large search space of MOF structures;
We consider MOFs up to 2,200 atoms per unit cell (Boyd et al., 2019), whereas crystals for general
CSP consist of up to 52 atoms per unit cell (Jain et al., 2013; Jiao et al., 2024a). In fact, as confirmed
in our experiments, the recent deep generative model (Jiao et al., 2024a) for general CSP fails to
scale to the large system size of MOFs. This also aligns with how torsional diffusion (Jing et al.,
2022) improved over existing molecular conformer generation algorithms (Xu et al., 2021; 2022) by
eliminating the redundant degree of freedom.

We benchmark our algorithm with the MOF dataset compiled by Boyd et al. (2019), consisting of
324,426 structures. We compare with conventional and deep learning-based algorithms for crys-
tal structure prediction. Notably, MOFFLOW achieves a match rate of 31.69% on unseen MOF
structures, whereas existing methods, despite being more computationally expensive, barely match
any. We also demonstrate that MOFFLOW captures key MOF properties and scales efficiently to
structures containing hundreds of atoms.

2 RELATED WORK

Crystal structure prediction (CSP). Traditional approaches to CSP rely on density functional the-
ory (DFT) to identify energetically stable structures. To generate candidate structures, heuristic
techniques such as random sampling (Pickard & Needs, 2011) and simple substitution rules (Wang
et al., 2021) have been employed, alongside more sophisticated optimization algorithms such as
Bayesian optimization (Yamashita et al., 2018), genetic algorithms (Yamashita et al., 2022), and
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particle swarm optimization (Wang et al., 2010). To address the computational burden with DFT
calculations, many studies used machine learning as surrogates for energy evaluation (Jacobsen
et al., 2018; Podryabinkin et al., 2019; Cheng et al., 2022).

Recently, deep generative models have emerged as a promising alternative to optimization-based
methods (Court et al., 2020; Hoffmann et al., 2019; Noh et al., 2019; Yang et al., 2021; Hu et al.,
2020; 2021; Kim et al., 2020; Ren et al., 2022). Notably, Jiao et al. (2024a) proposes an equivari-
ant diffusion-based model to capture the periodic E(3)-invariance of crystal structure distributions,
while Lin et al. (2024) and Jiao et al. (2024b) additionally consider lattice permutations and space
group constraints, respectively. Miller et al. (2024) uses Riemannian flow matching to generate high-
quality samples with fewer integration steps. However, these methods face significant challenges in
predicting the MOFs structures, which often consist of hundreds of atoms per unit cell.

MOF structure prediction. Unlike general CSP, where a variety of algorithms have been de-
veloped, MOF structure prediction remains a significant challenge. Conventional MOF structure
prediction methods heavily rely on predefined topologies to connect MOF building blocks (Mar-
leny Rodriguez-Albelo et al., 2009; Wu & Jiang, 2024), restricting the discovery of structures with
new topologies. To address this limitation, Darby et al. (2020) proposes to combine ab initio ran-
dom structure searching (AIRSS; Pickard & Needs, 2011) with the Wyckoff alignment of molecules
(WAM) method; however, the reliance on AIRSS makes it computationally expensive. We also note
that a recent work (Fu et al., 2023) considered a related, yet different problem of MOF generation
based on a deep generative model which does not include the structure generation.

Flow matching. Flow matching is a simulation-free approach for training continuous normalizing
flows (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023). Since its introduc-
tion, various extensions have been proposed, such as generalization to Riemannian manifolds (Chen
& Lipman, 2024) and efficiency improvements through optimal transport (Tong et al., 2024; Poola-
dian et al., 2023). Due to its flexibility and computational efficiency, flow matching has made notable
progress in several related domains, including protein generation (Yim et al., 2023a;b; 2024; Bose
et al., 2024), molecular conformation generation (Song et al., 2024), and CSP (Miller et al., 2024).

3 PRELIMINARIES

3.1 REPRESENTATION OF MOF STRUCTURES

MOF representation. The 3D crystal structure of a MOF can be represented with the periodic
arrangement of the smallest repeating unit called the unit cell. A unit cell containing N atoms can
be represented with the tuple S = (X,a, ℓ) where X = [xn]

N
n=1 ∈ RN×3 is the atom coordi-

nates, a = [an]
N
n=1 ∈ AN is the atom types with A denoting the set of possible elements, and

ℓ = (a, b, c, α, β, γ) ∈ R3
+ × [0, 180]3 is the lattice parameter that describes the periodicity of the

structure (Miller et al., 2024; Luo et al., 2024). In particular, the lattice parameter ℓ can be trans-
formed into a standard lattice matrix L = (l1, l2, l3) ∈ R3×3, which defines the infinite crystal
structure:

{(a′n, x′
n)|a′n = an, x

′
n = xn + kL⊤, k ∈ Z1×3} (1)

where k = (k1, k2, k3) is the set of integers representing the periodic translation of the unit cell.

Block-wise representation of MOFs. Here we introduce the blockwise representation of MOFs
that decompose a given unit cell into constituent building blocks, i.e., the metal nodes and organic
linkers. The blockwise representation is a tuple S = (B, q, τ , ℓ) where B = {Cm}Mm=1 corresponds
to M building blocks and q = [qm]Mm=1, τ = [τm]Mm=1 corresponds to set of M building block
roto-translations (qm, τm) ∈ SE(3) . Moreover, each block Cm = (am,Ym) has Nm atoms with
atom types am = [an]

Nm
n=1 ∈ ANm and local coordinates Ym = [yn]

Nm
n=1 ∈ RNm×3 (defined

in Section 4.1). Our main assumption is that the building blocks can be composed by the roto-
translations to form the MOF structure, i.e., the atomwise representation (X,a, ℓ) can be expressed
by the blockwise representation (q, τ ,B, ℓ):

X = Concat(X1, . . . ,XM ), Xm = (qm, τm) · Ym,

where Xm is the result of the roto-translated local coordinate represented by group action ·. We
express the global coordinate X as the concatenation Xm’s without loss of generality.
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3.2 FLOW MATCHING ON RIEMANNIAN MANIFOLDS

Flow matching is a method to train continuous normalizing flow (CNF; Chen et al., 2018) with-
out expensive ordinary differential equation (ODE) simulations (Lipman et al., 2023). Here, we
introduce the flow matching generalized to Riemannian manifolds (Chen & Lipman, 2024).

CNF in Riemannian manifold. We consider a smooth and connected Riemann manifoldM with
metric g where each point x ∈ M is associated with tangent space TxM and inner product ⟨·, ·⟩g .
We consider learning a CNF ϕt : M → M defined with the ODE d

dtϕt(x) = ut(ϕt(x)) where
ϕ0(x) = x and ut(x) ∈ TxM is the time-dependent smooth vector field. The vector field ut(x)
transforms a prior distribution p0 to pt according to the following push-forward equation:

pt(x) = [ϕt]∗p0(x)− p0(ϕ
−1
t (x)) exp

(
−
∫ t

0

∇ · ut(xs)ds

)
, t ∈ [0, 1], (2)

where∇· is the divergence operator and xs = ϕs(ϕ
−1
t (x)).

Conditional flow matching on Riemannian manifold. The goal of CNF is to learn a vector field
ut(·) that transforms a simple prior distribution p0 so that p1 closely approximates some target
distribution q. Given a vector field ut(·) and the corresponding probability paths {pt}t∈[0,1], one
can train a neural network vt(x; θ) with the flow matching objective:

LFM(θ) = Et,pt(x)[∥vt(x; θ)− ut(x)∥2g], (3)

where t ∼ U [0, 1], x ∼ pt(x), and ∥·∥g is the norm induced by the metric g. However, the flow
matching objective lacks analytic form of ut(x) that transforms the prior p0 into the target q. The key
insight of conditional flow matching objective is to instead learn a conditional vector field ut(x|x1)
for a data point x1 defined as follows:

LCFM(θ) = Et,p1(x),pt(x|x1)[∥vt(x; θ)− ut(x|x1)∥2g], (4)

where we let p0(x|x1) = p0(x) and p1(x|x1) ≈ δ(x − x1) with δ(·) being the Dirac distribution.
The key idea of conditional flow matching is that one can derive the conditional vector field ut(x|x1)
that marginalizes over data points x1 ∼ q accordingly to induce the vector field ut(x) transforming
the prior p0 into the desired distribution q. To construct ut(x|x1), Chen & Lipman (2024) proposes
defining conditional flow xt = ϕt(x0|x1) from the geodesic path (minimum length curve) connect-
ing two points x0, x1 ∈ M by xt = expx0

(t logx0
(x1)) for t ∈ [0, 1], where expx and logx are the

exponential and logarithmic map at point x ∈ M, respectively. Then the desired conditional vector
field can be derived as the time derivative, i.e., u(xt|x1) =

d
dtϕt(x0|x1).

At optimum, vθ generates pθt = pt with starting point pθ0 = p0 and end point pθ1 = p1. At inference,
we sample from the prior pθ0 and propagate t from 0 to 1 using one of the existing ODE solvers. Note
that each training step is faster than the methods based on adjoint sensitivity (Chen et al., 2018) since
conditional flow matching does not require solving the ODE defined by the neural network.

4 METHODS

In this section, we introduce MOFFLOW, a novel approach for MOF structure prediction based on
the rigid-body roto-translation of building blocks to express the global atomic coordinates. To this
end, using the Riemannian flow matching framework, we learn a CNF pθ(q, τ , ℓ|B) that predicts
the blockwise roto-translations and the lattice parameter from the given building blocks. Compared
to conventional CSP approaches defined on atomic coordinates (Jiao et al., 2024a;b; Lin et al.,
2024; Miller et al., 2024), MOFFLOW enjoys the reduced search space, i.e., the dimensionality of
blockwise roto-translation and the atomic coordinates are 6M and 3N , respectively (6M ≪ 3N ).

4.1 CONSTRUCTION OF LOCAL COORDINATES

To incorporate the MOF symmetries, we devise a scheme to consistently define the local coordinate
Y regardless of the initial pose of the building block. Given a building block C = (a,Y ), our
goal is to define a global-to-local function f : A × RN×3 → RN×3 that defines a consistent local
coordinate system; that is, the function should satisfy

f(a,XQ⊤ + 1N t⊤) = f(a,X), ∀Q ∈ SO(3), t ∈ R3. (5)
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where X is a random conformation of the building block. We can then define Y = f(a,X). Such
property can be satisfied by a composition of (1) translation by subtracting the centroid and (2)
rotation by aligning with the principal component analysis (PCA) axes:

f(a,X) = C(X)R(a, C(X)), C(X) = X − 1N

(
1

N

N∑
n=1

x⊤
n

)
. (6)

Here, C(X) denotes subtraction of the centroid andR(a,X) denotes rotation to align the building
block with the PCA axes whose sign is fixed by a reference vector, following Gao & Günnemann
(2022). See Appendix E for more details.

4.2 FLOW MATCHING FOR MOF STRUCTURE PREDICTION

In this section, we present our approach to training the generative model pθ(q, τ , ℓ|B) using the flow
matching framework. We first explain how our method ensures SE(3)-invariance and introduce a
metric for independent treatment of the components q, τ , and ℓ. Next, we outline the key elements
for flow matching – i.e., the definition of priors, conditional flows, and the training objective.

To preserve crystal symmetries, we design the framework such that the generative model is invari-
ant to rotation, translation, and permutation of atoms and building blocks. Rotation invariance is
guaranteed by using the rotation-invariant lattice parameter representation and canonicalizing the
atomic coordinates based on the standard lattice matrix (Miller et al., 2024; Luo et al., 2024). Trans-
lation invariance is achieved by operating on the mean-free system where the building blocks are
centered at the origin – i.e., 1

M

∑M
m=1 τm = 0. This is the only way to ensure translation invari-

ance on SE(3)M as no R3 invariant probability measure exists (Yim et al., 2023b). Permutation
invariance is addressed using equivariant graph neural networks (Satorras et al., 2021) and Trans-
formers (Vaswani, 2017) as the backbone.

Metric for SE(3). Following Yim et al. (2023b), we treat SO(3) and R3 independently by defining
an additive metric on SE(3) as

⟨(q, τ), (q′, τ ′)⟩SE(3) = ⟨q, q′⟩SO(3) + ⟨τ, τ ′⟩R3 . (7)

Here, ⟨q, q′⟩SO(3) and ⟨τ, τ ′⟩R3 are inner products defined as ⟨q, q′⟩SO(3) = tr(qq′⊤)/2 and
⟨τ, τ ′⟩R3 = τ⊤τ ′ for q, q′ ∈ so(3) with so(3) denoting the Lie algebra of SO(3) and τ, τ ′ ∈ R3.

Priors. For each rotation q and translation τ , the prior are chosen as the uniform distribution on
SO(3) and standard normal distribution on R3, respectively. For the lattice parameter ℓ, we fol-
low Miller et al. (2024) and use log-normal and uniform distributions. Specifically, for the lengths,
we let p0(a, b, c) =

∏
λ∈{a,b,c} LogNormal(λ;µλ, σλ) where the parameters are learned with the

maximum-likelihood objective (Appendix C). For the angles, we use Niggli reduction (Grosse-
Kunstleve et al., 2004) to constrain the distribution to the range p0(α, β, γ) = U(60, 120).
Conditional flows. Following Chen & Lipman (2024), we train the model to match the conditional
flow defined along the geodesic path of the Riemannian manifold:

q(t) = expq(0)(t logq(0)(q
(1))), τ (t) = (1− t)τ (0) + tτ (1), ℓ(t) = (1− t)ℓ(0) + tℓ(1). (8)

Here, expq is the exponential map and logq is the logarithmic map at point q. From this definition,
the conditional vector fields are derived from the time derivatives:

ut(q
(t)|q(1)) =

logq(t)(q
(1))

1− t
, ut(τ

(t)|τ (1)) = τ (1) − τ (t)

1− t
, ut(ℓ

(t)|ℓ(1)) = ℓ(1) − ℓ(t)

1− t
. (9)

Training objective. Instead of directly modeling the vector fields, we leverage a closed-form ex-
pression that enables re-parameterization of the network to predict the clean data q1, τ1, ℓ1 from the
intermediate MOF structure S(t) = (qt, τt, ℓt,B). To achieve this, we train a neural network to
approximate the clean data, expressed as (q̂1, τ̂1, ℓ̂1) = F(S(t); θ) with regression on clean data:

L(θ) =EM(1)∼DEt∈U(0,1)

[
λ1∥q̂1 − q1∥SO(3) + λ2∥τ̂1 − τ1∥R3 + λ3∥ℓ̂1 − ℓ1∥R3

]
, (10)

whereD is the dataset, U(0, 1) is the uniform distribution defined on an interval [0, 1], and λ1, λ2, λ3

are loss coefficients (see Appendix C).
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NodeUpdate

BackboneUpdate

EdgeUpdate

LatticeUpdate

... ...

Atom-level update layers Block-level update layers

Figure 3: Overview of our neural network architecture. Our architecture follows a hierarchi-
cal structure, starting with atom-level update layers that encode building block representations into
atomic-resolution embeddings. These are followed by block-level update layers, which iteratively
refine the roto-translations (q, τ ), block features H , pairwise features Z, and lattice parameters ℓ.
The final output is a prediction of the clean data (q̂1, τ̂1, ℓ̂1).

4.3 MODEL ARCHITECTURE

Here, we describe the architecture of our neural network F(S(t); θ) used to predict clean data
(q1, τ 1, ℓ1). We have two key modules: (1) the atom-level update layers to obtain the building
block embeddings from atomic resolution, and (2) the building block-level update layers that aggre-
gate and update information over MOF on building block resolution and predict q1, τ 1, and ℓ1 from
the final building block embeddings. In what follows, we describe each module one-by-one.

Atom-level update layers. The atom-level update layers (Figure 3) process the building block
representation Cm = (am,Ym) for m = 1, . . . ,M to output the building block embedding hm.
They are graph neural networks operating on an undirected graph Gm = (Vm, Em) constructed from
adding an edge between a pair of atoms within the cutoff distance of 5Å. It initializes the atom-wise
features {vk : k = 1, . . . , Nm} from atom types and the edge features {ek,k′ : {k, k′} ∈ E} from
atomic distances. Each layer updates the atom features {vk : k = 1, . . . , Nm} as follows:

v′k = vk + ϕv

(
vk,

∑
k′∈N (k)

ϕe (vk, vk′ , ek,k′)

)
, (11)

where {v′k : k = 1, . . . , Nm} is the set of updated atom features, N (k) denotes the neighbor of
atom k in the graph Gm, and ϕv , ϕe are multi-layer perceptrons (MLPs). Finally, the building block
embedding hm is obtained from applying mean pooling of the node embeddings at the last layer
followed by concatenation with sinusoidal time embedding of t (Vaswani, 2017) and an MLP.

Block-level update layers. Each layer of the update module (Figure 3) iteratively updates its pre-
diction of (q, τ ) ∈ SE(3)M and ℓ along with the block features H = [hm]Mm=1 ∈ RM×dh and the
pairwise features Z = [zmm′ ]Mm,m′=1 ∈ RM×M×dz . The predictions are initialized by the inter-
mediate flow matching output qt, τt, ℓt, the node features are initialized from the atom-level update
layers, and the edge features are initialized as follows:

zmm′ = ϕz(hm, hm′ ,dgram(∥τm − τm′∥2),dgram(∥τ̂m − τ̂m′∥2)), (12)
where dgram computes a distogram binning the pairwise distance into equally spaced intervals
between 0Å and 20Å. Finally, the block-level update module is defined as follows:

H ′ = NodeUpdate(H,Z, q, τ , ℓ), Z ′ = EdgeUpdate(Z,H ′), (13)

(q′, τ ′) = BackboneUpdate(q, τ ,H ′), ℓ′ = LatticeUpdate(ℓ,H ′), (14)
where q′, τ ′,H ′,Z ′, ℓ′ are the updated predictions and the features. Importantly, NodeUpdate
operator consists of the newly designed MOFAttention module followed by pre-layer nor-
malization Transformers (Xiong et al., 2020) and MLP with residual connections in between.
The EdgeUpdate, BackboneUpdate modules are implemented as in Yim et al. (2023b) and
LatticeUpdate is identity function for the lattice parameter except for the last layer. At the fi-
nal layer, the lattice parameter is predicted from mean pooling of the block features followed by an
MLP. Complete details of each update module are in Appendix F.
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Algorithm 1 MOFAttention module
Input: Node features H = [hm]Mm=1, edge features Z = [zmm′ ]Mm,m′=1, rotations q = [qm]Mm=1,
translations τ = [τm]Mm=1, lattice parameter ℓ, number of building blocks M , number of heads Nh,
number of non-rotating channels Nc, and number of rotating channels Nr.
Output: Updated node features H ′ = [h′

m]Mm=1.
1: for h ∈ {1, . . . , Nh} do
2: for m ∈ {1, . . . ,M} do ▷ Query, key, values.
3: qmh, kmh, vmh = Linearh(hm). ▷ qmh, kmh, vmh ∈ RNc .
4: q̃mhp, k̃mhp, ṽmhp = (qm, τm) · Linearh(hm). ▷ q̃mh, k̃mh, ṽmh ∈ R3Nr .
5: end for
6: lh = Linearh(ℓ). ▷ Lattice structure encoding lh ∈ R.
7: bmm′h = Linearh(zmm′) for m,m′ ∈ {1, . . . ,M}. ▷ Attention bias bmm′h ∈ R.
8: γh = SoftPlus(Linearh(1)). ▷ Learnable coefficient γh ∈ R
9: C1 = 1√

Nc
and C2 =

√
2

9Nr
. ▷ Coefficients C1, C2 ∈ R.

10: for m,m′ ∈ {1, . . . ,M} do ▷ Attention amm′h ∈ R.
11: amm′h = SoftMax

(
1
2

(
C1q

⊤
mhkm′h + bmm′h + lh − C2γh

2 ∥q̃mhp − k̃m′hp∥2
))

.
12: end for
13: omh =

∑
m′ amm′hvm′h and õmh =

∑
m′ amm′hṽm′h for m ∈ {1, . . . ,M}. ▷ Aggregate.

14: end for
15: h′

m = Linear(Concath,p(omh, õmhp, ℓ)) for m ∈ {1, . . . ,M} ▷ Update the node features.

In particular, our MOFAttention module is modification of the invariant point attention module
proposed by Jumper et al. (2021) for processing protein frames. Our modification consists of adding
the lattice parameter as input and simplification by removing the edge aggregation information. In
particular, the lattice parameter is embedded using a linear layer and added as an offset for the
attention matrix between the building blocks. We provide more details in Algorithm 1.

5 EXPERIMENTS

The goal of our experiments is to address two questions. Accuracy: How does the structure predic-
tion accuracy of MOFFLOW compare to other approaches? Scalability: How does the performance
of MOFFLOW vary with an increasing number of atoms and building blocks?

To address the first question, Section 5.1 compares the structure prediction accuracy of MOFFLOW
against both conventional and deep learning-based methods. Furthermore, Section 5.2 evaluates
whether MOFFLOW can capture essential MOF properties, further validating the accuracy of its
predictions. The second question is answered in Section 5.3, where we analyze the performance of
MOFFLOW with increasing system size. Additionally in Section 5.4, we compare MOFFLOW to
the self-assembly algorithm (Fu et al., 2023) by integrating it with our approach.

5.1 STRUCTURE PREDICTION

Dataset. We use the dataset from Boyd et al. (2019), containing 324,426 MOF structures. Follow-
ing Fu et al. (2023), we apply the metal-oxo decomposition of MOFid (Bucior et al., 2019) to
decompose each structure into building blocks. After filtering structures with fewer than 200 blocks,
we split the data into train/valid/test sets in an 8:1:1 ratio. Full data statistics are in Appendix A.

Baselines. We compare our model with two types of methods: optimization-based algorithms and
deep learning-based methods. For traditional approach, we use CrySPY (Yamashita et al., 2021) to
implement the random search (RS) and evolutionary algorithm (EA). For deep learning, we bench-
mark against DiffCSP (Jiao et al., 2024a), which generates structures based on atom types. MOF-
specific methods are excluded due to lack of public availability.

Metrics. We evaluate using match rate (MR) and root mean square error (RMSE). We compare the
samples to the ground truth using StructureMatcher class of pymatgen (Ong et al., 2013).
Two sets of threshold for stol, ltol, and angle tol are used: (0.5, 0.3, 10.0) in alignment with the
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Table 1: Structure prediction accuracy. We compare optimization-based methods (RS, EA), a
deep generative model (DiffCSP), and our method, MOFFLOW. Due to computational constraints,
RS and EA were tested on 100 and 15 samples, respectively, while DiffCSP and MOFFLOW were
evaluated on the full test set (30,880 structures). MR is the match rate and RMSE is the root mean
squared error; - indicates no match. stol is the site tolerance for matching criteria. The reported time
is the average per structure. MOFFLOW outperforms all baselines in MR, RMSE, and generation
time.

# of samples stol = 0.5 stol = 1.0 Avg. time (s)↓
MR (%) ↑ RMSE ↓ MR (%) ↑ RMSE ↓

RS (Yamashita et al., 2021) 20 0.00 - 0.00 - 332
EA (Yamashita et al., 2021) 20 0.00 - 0.00 - 1959

DiffCSP (Jiao et al., 2024a) 1 0.09 0.3961 23.12 0.8294 5.37
5 0.34 0.3848 38.94 0.7937 26.85

MOFFLOW (Ours) 1 31.69 0.2820 87.46 0.5183 1.94
5 44.75 0.2694 100.0 0.4645 5.69

Cu2H4C28N10O8 Zn2H8C32N6O16 Cu2H18C26N2O8F2 Cu2H24C44N6O8 Zn2H24C48N6O12 Zn8H46C72O27

Ground
Truth

Ours

DiffCSP

Figure 4: Visualization of the predicted MOF structures. We select structures from the 20 candi-
dates with the lowest RMSE. The lattice is scaled to reflect the relative sizes. MOFFLOW accurately
generates high-quality predictions with accurate atomic positions and lattice configuration.

general CSP literature (Jiao et al., 2024a;b; Chen & Lipman, 2024) and (1.0, 0.3, 10.0) to account
for the difficulty of predicting large structures. MR is the proportion of matched structures and
RMSE is the root mean squared displacement normalized by the average free length per atom. We
also measure the time required to generate k samples, averaged across all test sets.

Implementation. Both RS and EA use CHGnet (Deng et al., 2023) for structure optimization. We
generate 20 samples for RS, while EA starts with 5 initial, 20 populations, and 20 generations.
Due to the high computational cost for large crystals, generating more samples was not feasible.
For DiffCSP, we follow the hyperparameters from Jiao et al. (2024a) and train for 200 epochs.
Our method uses an AdamW optimizer (Loshchilov, 2017) with a learning rate of 10−4 and β =
(0.9, 0.98). We use a maximum batch size of 160 and run inference with 50 integration steps (see
Appendix G for analysis on integration steps). We generate 1 and 5 samples for DiffCSP and our
method. Implementation details are in Appendix C.

Results. Table 1 presents the results, where MOFFLOW outperforms all baselines. Optimization-
based methods yield zero MR, highlighting the challenge of using the conventional atom-based ap-
proach for large systems. DiffCSP also performs poorly, underscoring the need to incorporate build-
ing block information in MOF structure prediction. While we achieve a 100% MR at stol = 1.0, this
threshold is too lenient for practical application; however, we include it for multi-level comparison.
Visualizations comparing samples from MOFFLOW and DiffCSP are shown in Figure 4.
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Figure 5: Property distributions. We compare the distributions of key MOF properties for ground-
truth, MOFFLOW, and DiffCSP. The distributions are histograms smoothed by kernel density esti-
mation. Property units are displayed in the top-right corner of each plot. MOFFLOW (red) closely
aligns with the ground-truth distribution (blue), while DiffCSP (yellow) shows noticeable deviations.
These results highlight that MOFFLOW’s ability to accurately capture essential MOF properties.

5.2 PROPERTY EVALUATION

In this section, we demonstrate that MOFFLOW accurately captures the key properties of ground-
truth MOF structures, offering a more detailed assessment of prediction quality beyond match rate
and RMSE. These properties are crucial for various MOF applications, such as gas storage and
catalysis. Specifically, we evaluate volumetric surface area (VSA), gravimetric surface area (GSA),
largest cavity diameter (LCD), pore limiting diameter (PLD), void fraction (VF), density (DST),
accessible volume (AV), and unit cell volume (UCV). Definitions and the details of each property
are provided in Appendix B.

Table 2: Property evaluation. Average
RMSE computed between the ground-
truth and generated structures for MOF-
FLOW and DiffCSP. MOFFLOW achieve
lower error across all properties, demon-
strating its ability to generate high-quality
samples that accurately capture MOF
properties.

RMSE ↓
MOFFLOW DiffCSP

VSA (m2/cm3) 264.5 796.9
GSA (m2/g) 331.6 1561.9
AV (Å3) 530.5 3010.2
UCV (Å3) 569.5 3183.4
VF 0.0285 0.2167
PLD (Å) 1.0616 4.0581
LCD (Å) 1.1083 4.5180
DST (g/cm3) 0.0442 0.3711

We compare our model to DiffCSP as a representative
general CSP approach. We exclude optimization-based
baselines as they did not yield meaningful results. For
each test structure in Section 5.1, we generate a sin-
gle sample with 50 integration steps, then evaluate the
properties of predicted and ground-truth structures us-
ing Zeo++ (Willems et al., 2012). We evaluate the
models with RMSE and distributional differences. We
do not filter our samples with the match criteria from
Section 5.1.

Results. Table 2 shows that MOFFLOW consistently
yields lower errors than DiffCSP across all evalu-
ated properties. This demonstrates its ability to pro-
duce high-quality predictions while preserving essen-
tial MOF characteristics. Additionally, Figure 5 visual-
izes the property distributions, where our model closely
reproduces the ground-truth distributions and captures
key characteristics. In contrast, DiffCSP frequently re-
duces volumetric surface area and void fraction to zero,
highlighting the limitations of conventional approaches
in accurately modeling MOF properties.

5.3 SCALABILITY EVALUATION

Here, we demonstrate that MOFFLOW enables structure prediction for large systems, which is a
challenge for general CSP methods. To evaluate how performance scales with system size, we
analyze match rates as a function of the number of atoms and building blocks. We compare our
results with DiffCSP as the representative of the general CSP approach. We generate single samples
for each test structure and use thresholds (1.0, 0.3, 10.0) for visibility.
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Figure 6: Scalability evaluation. (left) Match
rate comparison between MOFFLOW and
DiffCSP by atom count. MOFFLOW pre-
serves high match rates across all bins, while
DiffCSP drops sharply beyond 200 atoms.
(right) Match rate of MOFFLOW by build-
ing block count, with our method performing
well even for complex structures with many
blocks. These results highlight the scalability
of our approach.

Results. Figure 6 presents our findings, with the
x-axis representing the number of atoms, binned
in ranges of (t, t + 200]. The final bin includes
all atom counts beyond the last range, without an
upper limit. MOFFlow consistently outperforms
DiffCSP across all atom ranges. While our ap-
proach shows only gradual performance degrada-
tion as atom count increases, DiffCSP suffers a
sharp decline for systems with more than 100 atoms
and fails to predict structures with over 200 atoms.
In contrast, our method maintains a high match
rate even for structures exceeding 1,000 atoms per
unit cell, highlighting the effectiveness of lever-
aging building block information for MOF struc-
ture prediction. Additionally, Figure 6 shows how
our match rate scales with the number of build-
ing blocks. The results show minimal performance
degradation, demonstrating that our model effec-
tively handles larger numbers of building blocks
and efficiently scales to large crystal structures.

5.4 COMPARISON TO SELF-ASSEMBLY ALGORITHM

Table 3: Comparison with self-assembly
(SA) algorithm. Since SA can only pre-
dict rotations, we provide translations and
lattice predicted by MOFFLOW for fair
comparison. MOFFLOW alone achieves
higher accuracy and faster inference times
than SA.

MR (%) ↑ RMSE ↓ Time (s) ↓
SA 30.04 0.3084 4.75
Ours 31.69 0.2820 1.94

To make our evaluation more comprehensive, we also
consider the self-assembly algorithm used by Fu et al.
(2023) as a baseline, although the performance is not
directly comparable. The self-assembly (SA) algorithm
is an optimization-based method that predicts the ro-
tation q by maximizing the overlap between building
block connection points. Since the algorithm requires
τ , ℓ, and C as input, it is not directly applicable for
structure prediction on its own. Therefore, we conduct
an ablation by combining the self-assembly algorithm
with our predicted values of τ and ℓ. We note that the
self-assembly algorithm defines the centroid as the cen-
ter of mass of the connection points, and we account for
this offset in our implementation.

Results. Table 3 shows that MOFFlow alone outperforms the combination with the self-assembly
algorithm, indicating that learning the building block orientations leads to more accurate MOF struc-
ture predictions than heuristic-based overlap optimization. Additionally, our method offers faster
inference, further demonstrating its efficiency compared to optimization-based approaches. A com-
prehensive comparison is provided in Appendix H.

6 CONCLUSION

We propose MOFFLOW, a building block-based approach for predicting the structure of metal-
organic frameworks (MOFs). Our approach significantly outperforms general crystal structure pre-
diction algorithms – in both quality and efficiency – that fail to account for the modularity of MOFs.
Additionally, MOFFLOW is scalable, successfully predicting structures composed of up to thou-
sands of atoms.
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REPRODUCIBILITY

We describe experimental details and hyperparameters in Appendix C. We provide our codes and
model checkpoint in https://anonymous.4open.science/r/MOFFlow-3547.

ETHIC STATEMENT

Our framework targets to advance porous material discovery, which is deeply related to carbon
capturing, catalysis design, and drug discovery. We believe our work can improve the quality of
human life by assisting in resolving global warming and drug design. However, they should notice
the caution due to the misuse in developing hazardous materials or products that may be harmful for
specific usage.
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A DATA STATISTICS

In this section, we present the data statistics to represent the characteristics of the MOF dataset.
We consider the MOF dataset from Boyd et al. (2019) and the dataset is generated by the MOF-
generating algorithms based on the topology from graph theory. The dataset is distributed on the
MATERIALSCLOUD. As mention in Section 5.1, we uses filtered strucutures with fewer than 200
blocks. The dataset is divided into train, valid and test in an 8:1:1 ratio. The statistic of data splits
are represented in the Tables 4, 5 and 6.

Property (number of samples = 247, 066) Min Mean Max
number of species / atoms 3 / 20 5.3 / 151.5 8 / 2208
working capacity (vacuum) [10−3mol/g] -0.2618 0.4177 4.8355
working capacity (temperature) [10−3mol/g] -0.2712 0.2843 4.4044
volume [Å3] 534.5 5496.7 193341.7
density [atoms/Å3] 0.0737 0.7746 4.0966
lattice a, b, c [Å] 6.13 / 8.27 / 8.56 13.81 / 16.47 / 20.39 57.83 / 57.80 / 61.62
lattice α, β, γ [◦] 59.76 / 59.99 / 59.97 91.08 / 91.05 / 90.75 120.29 / 120.01 / 120.02

Table 4: The statistics of the train split of MOF dataset.

Property (number of samples = 30, 883) Min Mean Max
number of species / atoms 3 / 16 5.3 / 152.4 8 / 2256
working capacity (vacuum) [10−3mol/g] -0.2510 0.4163 5.1152
working capacity (temperature) [10−3mol/g] -0.1210 0.2834 4.4589
volume [Å3] 534.5 5538.1 118597.4
density [atoms/Å3] 0.11 0.77 4.33
lattice a, b, c [Å] 6.86 / 8.43 / 8.57 13.85 / 16.53 / 20.39 48.29 / 55.11 / 60.97
lattice α, β, γ [◦] 59.98 / 59.99 / 59.99 91.08 / 91.00 / 90.73 120.11 / 120.01 / 120.02

Table 5: The statistics of the valid split of MOF dataset.

Property (number of samples = 30, 880) Min Mean Max
number of species / atoms 3 / 22 5.3 / 149.3 8 / 2368
working capacity (vacuum) [10−3mol/g] -0.1999 0.4193 4.6545
working capacity (temperature) [10−3mol/g] -0.1318 0.2858 3.9931
volume [Å3] 536.4 5401.1 124062.6
density [atoms/Å3] 0.108 0.777 4.074
lattice a, b, c [Å] 6.86 / 8.34 / 8.56 13.74 / 16.39 / 20.26 49.86 / 49.88 / 60.95
lattice α, β, γ [◦] 59.91 / 60.00 / 59.99 91.00 / 90.98 / 90.76 120.16 / 120.01 / 120.01

Table 6: The statistics of the test split of MOF dataset.
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B GLOSSARY

Structural properties. In this section, we introduce the structural properties we measured. These
properties were calculated using the Zeo++ software package developed by Willems et al. (2012).
Zeo++ provides high-throughput geometry-based analysis of crystalline porous materials, calculat-
ing critical features such as pore diameters, surface area, and accessible volume, all of which are
essential for evaluating material performance in applications such as gas storage and catalysis.

Specifically, we calculated properties including volumetric surface area (VSA), the surface area
per unit volume; gravimetric surface area (GSA), which represents the surface area per unit mass;
the largest cavity diameter (LCD), which represents the diameter of the largest spherical cavity
within the material; the pore limiting diameter (PLD), defined as the smallest passage through which
molecules must pass to access internal voids; the void fraction (VF) (Martin & Haranczyk, 2014),
which is the ratio of total pore volume in the structure to the total cell volume; the density (DST),
which refers to the mass per unit volume of the material; the accessible volume (AV), indicating the
volume available to the center of a given probe molecule within the pores; and the unit cell volume
(UCV), representing the total volume of the repeating unit cell in the crystal structure. These param-
eters provide critical insights into the MOF’s porosity, surface area, and ability to store and transport
gases, and recent study shows the correlation with these properties with the bulk material (Krish-
napriyan et al., 2020).
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C IMPLEMENTATION DETAILS

Training details. We use the TimestepBatch algorithm (Yim et al., 2023b) to simplify batch
construction. This method generates a batch by applying multiple noise levels t ∈ [0, 1] to a single
data instance, ensuring uniform batch size. To manage memory constraints, we cap the batch size
with N2, where N is the number of atoms.

Hyperparameters. Table 7 and Table 8 shows model and training hyperparameters for MOFFLOW,
respectively. In practice, we generate q, k, and v from h independently, allowing each to have a
distinct dimension. The non-rotating channels are represented as a tuple, with qk and v specified in
that order. We set the log-normal distribution parameters for lattice lengths to µ = (2.55, 2.75, 2.96)
and σ = (0.3739, 0.3011, 0.3126), computed from the training data with the closed-form maximum
likelihood estimation.

Baselines. Here, we provide the implementation details of the baselines. Unless specified otherwise,
all hyperparameters follow their default settings.

• DiffCSP (Jiao et al., 2024a): To address memory constraints, we replaced fully connected
edge construction with a radius graph (cutoff: 5Å) and used a batch size of 8. The model
was trained on a 24GB NVIDIA RTX 3090 GPU for 5 days until convergence.

• FlowMM (Miller et al., 2024): Similar to DiffCSP, we used a radius graph (cutoff 5Å) for
edge construction. Due to higher memory demands, FlowMM was trained on an 80GB
A100 GPU with a batch size of 16.

• RS & EA: Both random search (RS) and the evolutionary algorithm (EA) were im-
plemented with CRYSPY (Yamashita et al., 2021) and energy-based optimization with
CHGNet (Deng et al., 2023). For RS, we generated 20 structures per sample with a
symmetry-based search. EA began with 5 initial RS runs and performed up to 20 gen-
erations with a population size of 20, 10 crossovers, 4 permutations, 2 strains, and 2 elites.
A tournament selection function with a size of 4 was employed.

Computational resources. Table 9 summarizes the computational resources required to train
learning-based models. Notably, the TimestepBatch implementation of MOFFLOW requires
longer training times in terms of GPU hours. To address this inefficiency, we also release a refactored
Batch version of MOFFLOW with details in Appendix D.

Codebase. Our implementation is built on https://github.com/gcorso/DiffDock,
https://github.com/vgsatorras/egnn, https://github.com/microsoft/
MOFDiff, and https://github.com/microsoft/protein-frame-flow. We appre-
ciate the authors (Yim et al., 2023a;b; 2024; Fu et al., 2023; Corso et al., 2023; Satorras et al., 2021)
for their contributions.

Table 7: Model hyperparameters of MOFFLOW

Hyperparameter Value
Atom-level node dimension 64
Atom-level edge dimension 64

Atom-level cutoff radius 5
Atom-level maximum atoms 100

Atom-level update layers 4
Block-level node dimension 256
Block-level edge dimension 128
Block-level time dimension 128

Block-level update layers 6
MOFAttention number of heads 24
MOFAttention rotating channels 256

MOFAttention non-rotating channels (8, 12)
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Table 8: Training hyperparameters of MOFFLOW

Hyperparameter Value
loss coefficient λ1 (q) 1.0
loss coefficient λ2 (τ ) 2.0
loss coefficient λ3 (ℓ) 0.1

batch size 160
maximum N2 1,600,000

optimizer AdamW
initial learning rate 0.0001

betas (0.9, 0.98)
learning rate scheduler ReduceLROnPlateau

learning rate patience 30 epochs
learning rate factor 0.6

Table 9: Computational resources. Comparison of batch size, GPU type (× number), GPU mem-
ory utilization (GB), and training time (d: days, h: hours) for training learning-based models.

Batch size GPU Type GPU memory (GB) Training time

DiffCSP 8 24GB 3090 (×1) 5d 2h
FlowMM 16 80GB A100 (×1) 40.67 - 67.43 8d 12h
EquiCSP
MOFFLOW (TimestepBatch) 160 24GB 3090 (×8) 6.67 - 23.95 5d 15h
MOFFLOW (Batch) 160 24GB 3090 (×8) 21.62 - 23.80 1d 17h

D BATCH IMPLEMENTATION OF MOFFLOW

While the TimestepBatch algorithm (Yim et al., 2023b) simplifies implementation, it slows con-
vergence due to its effective batch size of 1 (i.e., each batch contains noise-perturbed variants of
a single instance). To address this limitation, we introduce the Batch implementation, which pro-
cesses multiple data instances per batch, aligning with standard practice. As shown in Table 10,
Batch achieves comparable performance to TimestepBatch while significantly reducing training
time from 1087.25 to 332.74 GPU hours. It also reduces inference time from 1.94 to 0.1932 seconds.

Table 10: Comparison of TimestepBatch and Batch implementations of MOFFLOW. The
Batch implementation achieves comparable performance while significantly reducing training time
(GPU hours) and inference time (seconds). Inference time is reported as the average per test instance,
calculated by dividing the total elapsed time by the size of the test set.

Training time (h) Inference time (s) Match rate (%) RMSE

TimestepBatch 1087.25 1.94 31.69 0.2820
Batch 332.74 0.19 32.73 0.2743
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E DEFINING LOCAL COORDINATES OF BUILDING BLOCKS

Following, Gao & Günnemann (2022), we use principle component analysis (PCA) as our backbone
since it is SO(3)-equivariant up to a sign. Specifically, if we denote PCA(X) = [e1, e2, e3], in the
order of decreasing eigenvalues, ∀Q ∈ SO(3),

PCA(XQ⊤) = c⊙QPCA(X), c ∈ {−1,+1}3

that is, the sign is not preserved upon rotation. To define a consistent direction, Gao & Günnemann
(2022) suggests the use of an equivariant vector function v(a,X) as

ẽi =

{
ei, if v(a,X)⊤ei ≥ 0

−ei, otherwise.
(15)

Then, the final equivariant axes is defined asR = [ẽ1, ẽ2, ẽ3] where ẽ3 = ẽ1 × ẽ2.

However, we find that this definition is insufficient for our application where some building blocks
are 2-dimensional exhibit symmetry with respect to the origin and thus have v(a,X) = 0. For such
cases, we define

vsym(X) = argmin
x∈X

{∥x∥2|x ̸= 0}

– i.e., the vector from the centroid to the closest atom. Since the building blocks are symmetric, f
still fulfills Equation (5) up to permutation, which is handled by GNN and Transformers.
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F MODEL ARCHITECTURE

Here, we provide the details of the NodeUpdate, EdgeUpdate, and BackboneUpdate modules.
Our implementation follows Yim et al. (2023b); Jumper et al. (2021), with the exception of the
MOFAttention module and the Transformers, where we use a pre-layer normalized version (Xiong
et al., 2020). Each module is introduced with our notation. The function R(a, b, c, d) in Algorithm 4
is defined as

R(a, b, c, d) =

(
(an)2+(bn)2−(cn)2−(dn)2 2bncn−2andn 2bndn+2ancn

2bncn+2andn (an)2−(bn)2+(cn)2−(dn)2 2cndn−2anbn

2bndn−2ancn 2cndn−2anbn (an)2−(bn)2−(cn)2+(dn)2

)
.

(16)

Algorithm 2 NodeUpdate Module
Input: (q, τ ,H,Z, ℓ)
Output: H ′

1: H̃ ← LayerNorm(MOFAttention(q, τ ,H,Z, ℓ) +H)

2: H̃ ← Concat(H̃,Linear(H(0)))

3: H̃ ← Linear(Transformers(H̃)) +H(ℓ)

4: H ′ ← MLP(H̃)

Algorithm 3 EdgeUpdate Module
Input: (Z,H ′)
Output: Z ′

1: for m = 1, . . . ,M do
2: h̃m ← Linear(H(ℓ+1))
3: for m′ = 1, . . .M do
4: z̃mm′ ← Concat(h̃m, h̃m′ , zmm′)
5: end for
6: Z̃ ← [z̃mm′ ]Mm,m′=1

7: Z ′ ← LayerNorm(MLP(Z̃))
8: end for

Algorithm 4 BackboneUpdate Module
Input: (q, τ ,H ′)
Output: q′, τ ′

1: for m = 1, . . . ,M do
2: (b, c, d, τ̃m)← Linear(hm)
3: (a, b, c, d)← (1, b, c, d)/

√
1 + b+ c+ d

4: q̃m ← R(a, b, c, d)
5: (q′m, τ ′m)← (qm, τm) · (q̃, τ̃)
6: end for
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G EFFECT OF INTEGRATION STEPS

Here, we investigate how the number of sampling integration steps affects MOFFLOW’s perfor-
mance. We randomly select 1,000 structures from the test set used in Section 5.1 and evaluate the
match rate, RMSE, and average sampling time for varying integration steps: (5, 10, 50, 100, 200).
For each structure, We generate a single sample and set the thresholds for stol, ltol, and angle tol
to (0.5, 0.3, 10.0).

Results. Figure 7 presents our results. Notably, the performance peaks around 10 and 50 integration
steps, with a slight decline observed for higher step counts. This aligns with the trends reported by
Miller et al. (2024). Based on these results, we use 50 integration steps in our main experiments,
which yield the highest match rate of 31.1%, a low RMSE of 0.2821, and a fast sampling time of
1.267 seconds.
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Figure 7: Effect of integration steps on match rate, RMSE, and average sampling time. Per-
formance is highest at 10 and 50 integration steps. We select 50 integration steps for the main
experiments due to its optimal balance of the highest match rate, low RMSE, and efficient sampling
time.
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H COMPARISON WITH SELF-ASSEMBLY ALGORITHM

We compare the scalability and sampling efficiency of the self-assembly algorithm (Fu et al., 2023)
with MOFFLOW, highlighting their respective strengths and limitations.

Scalability. Since both methods operate at the building block level, we compare their match rates as
a function of the number of building blocks. The experimental settings follow Section 5.4. Figure 8a
shows that while MOFFLOW achieves a higher overall match rate (31.69% vs. 27.14%), the self-
assembly algorithm scales better for structures with more building blocks.

Sampling efficiency. Figure 8b compares the assembly times of the two methods. MOFFLOW (left)
demonstrates significantly faster inference, assembling structures consistently in under 8 seconds.
In contrast, the self-assembly algorithm (right) often requires over 2000 seconds per sample. Ad-
ditionally, the self-assembly algorithm’s performance varies widely with initialization, with average
assembly times ranging from 4.75 to 14.62 seconds per trial, reflecting the sensitivity of its L-BFGS
optimization to initial conditions.

MOFFLOW, as a learning-based approach, offers significantly faster inference and generally higher
performance. However, the self-assembly algorithm demonstrates better scalability for highly com-
plex structures, highlighting an area where MOFFLOW could be improved in future work.
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Figure 8: Comparison of scalability and efficiency between MOFFLOW and the self-assembly
algorithm. (a) Match rate performance across varying building block counts. MOFFLOW achieves
higher match rates overall, but the self-assembly algorithm performs better for structures with a
large number of building blocks. (b) Assembly time distributions for (left) MOFFLOW and (right)
the self-assembly algorithm, highlighting the significantly faster inference speed of MOFFLOW.
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