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ABSTRACT

With the emergence of large-scale models, the machine learning community has wit-
nessed remarkable advancements. However, the substantial memory consumption
associated with these models has emerged as a significant obstacle to large-scale
training. To mitigate this challenge, an increasing emphasis has been placed on
parameter-efficient fine-tuning methodologies, which adapt pre-trained models
by fine-tuning only a subset of parameters. We observe that in various scenarios,
fine-tuning different layers could lead to varying performance outcomes, and selec-
tively fine-tuning certain layers has the potential to yield favorable performance
results. Drawing upon this insight, we propose L-MSA, a novel layer-wise fine-
tuning approach that integrates two key components: a metric for layer selection
and an algorithm for optimizing the fine-tuning of the selected layers. By lever-
aging the principles of the Method of Successive Approximations, our method
enhances model performance by targeting specific layers based on their unique
characteristics and fine-tuning them efficiently. We also provide a theoretical anal-
ysis within deep linear networks, establishing a strong foundation for our layer
selection criterion. Empirical evaluations across various datasets demonstrate that
L-MSA identifies layers that yield superior training outcomes and fine-tunes them
efficiently, consistently outperforming existing layer-wise fine-tuning methods.

1 INTRODUCTION

With the increasing application of large-scale models across diverse task domains(Devlin et al., 2019;
Dosovitskiy et al., 2021), domain-specific fine-tuning has emerged as a pivotal strategy to bolster their
effectiveness in downstream tasks(Käding et al., 2017; Raffel et al., 2020). However, these fine-tuning
methods are often resource-intensive, presenting significant challenges in the development of large-
scale models. Efforts to address these challenges have led to the development of Parameter-Efficient
Fine-Tuning (PEFT) techniques, which aim to mitigate computational costs. These techniques
encompass various approaches, such as prompt-based methods(Diao et al., 2022; Hambardzumyan
et al., 2021; Lester et al., 2021; Liu et al., 2023), adapter methods(Diao et al., 2023; Houlsby et al.,
2019; Hu et al., 2021), and selective methods(Li et al., 2024; Liu et al., 2021; Zaken et al., 2021).

Among the array of Parameter-Efficient Fine-Tuning (PEFT) techniques, layer-wise fine-tuning
algorithms have emerged as a promising solution(Lee et al., 2022; Pan et al., 2024). Instead of
updating all parameters simultaneously, layer-wise fine-tuning focuses on iteratively fine-tuning
individual layers of the model. This approach not only reduces computational costs but also allows
for more targeted adjustments, potentially leading to improved performance on downstream tasks.

However, the specific layer to fine-tune may vary based on the relationship between the source and
target datasets. To explore this, we conduct experiments with a Data-efficient Image Transformer
(DeiT)-Tiny (Touvron et al., 2021) in three scenarios:

1. Pre-training on ImageNet(Deng et al., 2009a) and fine-tuning on CIFAR-100(Krizhevsky,
2009).

2. Pre-training on CIFAR-100 and transforming the input data by element-wise multiplication
with a matrix, where each entry is ex and x follows a standard normal distribution. Fine-
tuning is then performed on the transformed data.
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3. Generating two sets of random labels for the CIFAR-100 inputs, pre-training on one set of
the labels, and fine-tuning on the other.

ImageNet to CIFAR-100 CIFAR-100 to Transferred Dataset Random to Random

Figure 1: Layer-wise Fine-tuning in Different Scenarios

In each case, we visualize the outcomes of layer-wise fine-tuning compared to full fine-tuning after a
single epoch, with consistent observations even over extended training. In case 1, where the dataset
shares similar low-level features but different high-level features compared to the original data, fine-
tuning later layers outperforms earlier layers. Conversely, in case 2, with similar high-level features
but different low-level features, fine-tuning earlier layers yields better performance. Finally, in case 3
involving random tasks, all layers are equally significant, and fine-tuning individual layers alone may
not suffice. This variability raises the question of whether we can algorithmically determine which
layer(s) to fine-tune and how to perform effective layer-wise fine-tuning.

To address the aforementioned challenge, we propose L-MSA, a novel layer-wise fine-tuning approach
that consists of two core components: a metric for layer selection and an algorithm for optimizing
the fine-tuning of the selected layer. This targeted optimization seeks to enhance overall model
performance by leveraging the specific strengths of different layers.

We leverage the principles of the Method of Successive Approximations (MSA) (Chernousko &
Lyubushin, 1982; Li et al., 2018) within our L-MSA framework, addressing both layer selection
and layer fine-tuning. The first component of our approach introduces a novel metric, derived from
the state and co-state variables in MSA, which serves as the criterion for selecting layers. The
second component focuses on utilizing the MSA to optimize the fine-tuning of the selected layers.
This integrated approach ensures efficient optimization by systematically refining the layer-wise
fine-tuning process, ultimately leading to improved performance.

Figure 2: Overview of our proposed L-MSA method: We begin with a feed-forward pass to compute the state
xi at each layer, followed by a back-propagation step to determine the co-state pi. Utilizing both xi and pi,
we compute a metric Ĵn for every layer, as defined in equation 8, to guide layer selection. We then select the
layer with the smallest metric, denoting its index as m, and maximize Hm over the parameters θm. By fixing m
and repeating these steps iteratively, we refine the layer parameters, converging toward a desired solution that
enhances model performance.

Furthermore, we provide a comprehensive theoretical analysis of our L-MSA approach within the
context of deep linear networks(Arora et al., 2018b). This analysis clarifies the metric we utilize for
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optimal layer selection, framed within a greedy one-step optimization framework. By establishing a
solid theoretical foundation, we pave the way for understanding how our method effectively enhances
model training.

Finally, we evaluate our approach across various datasets and tasks, utilizing multiple model architec-
tures, and compare L-MSA with baseline layer-wise fine-tuning methods. Our results demonstrate
that the metric proposed in L-MSA effectively identifies the layers that will yield better training
outcomes. L-MSA consistently outperforms most baselines, achieving top performance in several
tasks and ranking as the most effective method overall, reinforcing the practical applicability of
our approach in real-world scenarios. We also conduct ablation tests, highlighting the metric’s
effectiveness in layer selection and the advantages of using MSA to optimize the chosen layers.

We summarize our key contributions as follows:

• We experimentally show that in various scenarios, fine-tuning different layers could lead to
varying performance outcomes, and selectively fine-tuning certain layers has the potential to
yield favorable performance results.

• We propose the L-MSA method, which introduces a new criterion for selecting layers
to fine-tune, and we also propose utilizing the method of successive approximations for
layer-wise fine-tuning within our L-MSA approach, ensuring efficient optimization and
improved learning outcomes.

• We provide a theoretical analysis of our approach in the context of deep linear networks,
clarifying the metric for optimal layer selection within a greedy one-step framework.

• We empirically validate the effectiveness of our methodology in accurately identifying and
efficiently fine-tuning the target layer across diverse datasets.

2 L-MSA: LAYER-WISE FINE-TUNING USING THE METHOD OF SUCCESSIVE
APPROXIMATION

Adopting the control viewpoint for layer-wise fine-tuning offers a structured optimization process
through Pontryagin’s Maximum Principle (PMP)(Pontryagin et al., 1962). This perspective treats
each layer as part of a controlled dynamical system, enabling precise adjustments to specific layers by
assessing their impact on the overall loss via the Hamiltonian. Consequently, this method facilitates
efficient fine-tuning by focusing on layers that offer the most significant performance improvement,
thereby making the optimization process more systematic and effective.

2.1 BACKGROUND: PONTRYAGIN’S MAXIMUM PRINCIPLE AND METHOD OF SUCCESSIVE
APPROXIMATION

In supervised learning, given a collection of K sample input-label pairs {xi, yi}Ki=1, our objective
is to infer and approximate a function F : X → Y that accurately maps input data instances
xi to their corresponding target outputs yi. To view supervised learning within the dynamical
systems framework, particularly relevant to deep and residual architectures, we consider the inputs
x = (x1, x2, · · · , xK) ∈ Rd×K as the initial condition of a system of ordinary equations

ẋi
t = f

(
t, xi

t, θt
)
, xi

0 = xi, 0 ≤ t ≤ T, i = 1, . . . ,K, (1)

where θ : [0, T ] → Θ is the control parameters and xt = (x1
t , · · · , xK

t ) ∈ Rd×K . In this context,
f(t, xi

t, θt) encapsulates the transformation process within the neural network, while θt represents
the parameters at time t that govern this transformation.

The supervised learning problem can be formulated as

min
θ∈U

K∑
i=1

Φi

(
xi
T

)
+

∫ ⊤

0

L (θt) dt,

ẋi
t = f

(
t, xi

t, θt
)
, xi

0 = xi, 0 ≤ t ≤ T, i = 1, . . . ,K,

(2)

where Φi(·) := ϕ(·, yi) is the loss function, and L : Θ → R is a running cost, or the regularization
term.
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We define the Hamiltonian H: [0, T ]× Rd × Rd ×Θ given by

H(t, x, p, θ) = p · f(t, x, θ)− L(θ) (3)

Pontryagin’s Maximum Principle(PMP)(Pontryagin et al., 1962) shows a set of necessary conditions
for optimal solutions to equation 2, which provides an alternative numerical algorithm to train
equation 2 and its discrete-time formulation.

Theorem 2.1 (Pontryagin’s Maximum Principle) Let θ∗ ∈ U be an essentially bounded optimal
control, i.e. a solution to equation 2 with ess supt∈[0,T ] ∥θ∗t ∥∞ < ∞ (ess sup denotes the essential
supremum). Denote by x∗ the corresponding optimally controlled state process. Then, there exists an
absolutely continuous co-state process P ∗ : [0, T ] → Rd such that the Hamilton’s equations

ẋ∗
t = ∇pH (t, x∗

t , P
∗
t , θ

∗
t ) , x∗

0 = x,

Ṗ ∗
t = −∇xH (t, x∗

t , P
∗
t , θ

∗
t ) , P ∗

T = −∇Φ (x∗
T ) ,

(4)

are satisfied. Moreover, for each t ∈ [0, T ], we have the Hamiltonian maximization condition

H (t, x∗
t , P

∗
t , θ

∗
t ) ≥ H (t, x∗

t , P
∗
t , θ) for all θ ∈ Θ. (5)

Consider an N -layer deep neural network, which can be interpreted as a discrete-time formulation of
equation 2. Within this framework, the supervised learning problem can be expressed as follows:

min

K∑
i=1

Φi

(
xi
N

)
+

N−1∑
n=0

δtL (θn)

xi
n+1 = gn(x

i
n, θn), x

i
0 = xi, i = 0, 1, · · · ,K.

(6)

Here gn(xi
n, θn) = xi

n + δtfn(x
i
n, θn). Similar to equation 3, define the scaled discrete Hamiltonian

Hn(x, p, θ) = p · gn(x, θ)− δtL(θ) (7)

In the following algorithms, we employ an augmented variant of Hamiltonian(Li et al., 2018),
which additionally subtracts a regularization term of 1

2ρ∥xn+1 − gn(xn, θn)∥22 + 1
2ρ∥pn −

pn+1∇xgn(xn, θn)∥22 from the Hamiltonian discussed in equation 7. Here ρ serves as a hyper-
parameter, with its reciprocal 1/ρ exerting a similar effect as the learning rate.

A modification of the successive approximations method can be employed to address the Pontryagin
Maximum Principle (PMP), thereby yielding an alternative training algorithm for deep learning(Li
et al., 2018). We present the extended method of successive approximation in Figure 3.

Figure 3: Extended Method of Successive Approximation(E-MSA)

In each iteration, we commence with a feed-forward pass to compute the state xi for i = 0, 1, · · · , N ,
followed by a back-propagation step to compute the co-state pi for i = N,N−1, · · · , 0. Subsequently,
we calculate the Hamiltonian for each layer using both the state and co-state, seeking to maximize
Hn over θn. We iteratively perform these steps to converge towards the desired solution.
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2.2 L-MSA: LAYER-WISE FINE-TUNING VIA MSA

As indicated in Section 1, it is often the case that fine-tuning the entire network is unnecessary. Rather,
the focus lies in fine-tuning only a single layer or a small subset of layers. In response, we introduce
L-MSA, a novel approach for layer-wise fine-tuning that consists of two key components: a metric
for layer selection and an optimization algorithm for fine-tuning the selected layer.

We leverage the principles of the Method of Successive Approximations (MSA) (Chernousko &
Lyubushin, 1982; Li et al., 2018) as the foundational principle for both layer selection and layer
fine-tuning. Our method aims to improve model performance by focusing on the specific strengths of
individual layers, targeting the most impactful layers for fine-tuning.

Denote Φ(xN ) =
∑K

i=1 Φi

(
xi
N

)
and Gn(·) = Φ◦gN−1(·, θN−1)◦ · · · ◦gn+1(·, θn+1), which maps

the state of the (n + 1)-th layer to the terminal loss using the latter part of the model. Denote the
terminal loss J =

∑K
i=1 Φi

(
xi
T

)
as a function of the (n+ 1)-th layer Jn(θn).

Layer Selection: A natural approach to layer selection is to choose the layer for fine-tuning that
minimizes the loss and thus maximizes performance. In our proposed method, for the layer selection
process, we approximate the optimal updated loss resulting from fine-tuning individual layers and
use this approximated loss as the criterion for selecting layers.

To approximate the updated loss, we employ the principle of MSA. We begin with a feed-forward
pass to compute the state xi for i = 0, 1, · · · , N , followed by a back-propagation step to compute
the co-state pi for i = N,N − 1, · · · , 0. By leveraging both xn and pn, we approximate the optimal
updated loss incurred by fine-tuning individual layers. This process effectively computes the greedy
one-step loss for each layer, guiding the fine-tuning to the layer that promises the most immediate
improvement in performance. The updated loss after fine-tuning θn can be approximated by

Ĵn(θn) = G(n+1)

(
xn+1 +

1

ρ̂n
pn+1x

⊤
n xn

)
(8)

We’ll justify this approximation in Section 3. Here 1
ρ̂n

acts similarly to the learning rate, and we
aim to provide a well-estimated value of the optimal learning rate at an appropriate scale. Notably,
the optimal learning rates can vary significantly across different scenarios, even within the same
network, where different layers may require distinct values. The accuracy of ρ̂n plays a crucial role
in estimating the updated loss.

Thus, we aim to provide a reasonably accurate estimate of ρ̂n at the order-of-magnitude level to
achieve a precise approximation of the optimal updated loss. We set ρ̂n as defined in equation 9,
computed using the state xn and co-state pn, with rn = pn+1x

⊤
n and d′ being the output dimension.

In practice, the terminal loss J may vary in scale. Thus, we sometimes modify ρ̂n by multiplying it
by a constant for all layers.

ρ̂n =
d′

2J
·
∥p⊤n+1rnxn∥2F

∥rn∥2F
(9)

We’ll demonstrate in Section 3 that it approximates the optimal ρ∗n in equation 12 to achieve the
minimal updated loss within the deep linear network setting. To guide our layer selection process, we
utilize Ĵn(θn) in equation 8 as our metric for layer selection, opting to select the layer characterized
by the minimal approximated loss. In other words, we select the layer of gm(·, θm) such that

m = argmin
n=0,1,··· ,N−1

Ĵn(θn)

Layer Fine-tuning: Following the layer selection process, we utilize the Method of Successive
Approximations (MSA) for fine-tuning the selected layer, with the primary objective of maximizing
Hm with respect to θm. The MSA process is structured to enhance the optimization of the chosen
parameters systematically.

In each iteration, we start with a feed-forward pass through the network to compute the state xi for
each layer, where i ranges from 0 to N , capturing the current output based on the input data. Once
the state is computed, we proceed to a back-propagation step to derive the co-state pi for each layer,

5
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starting from the last layer N and moving backward to layer 0. The co-state represents the sensitivity
of the Hamiltonian with respect to the states, providing valuable information for optimization. Next,
we compute the Hamiltonian specifically for the layer with gm(·, θm) using both the state and co-state
variables, aiming to maximize Hm over the parameters θm of the selected layer. By repeating these
steps iteratively, we progressively refine the layer parameters, converging toward a desired solution
that enhances model performance.

Additionally, we have the flexibility to employ alternative optimization algorithms, such as Adam,
during this process, which allows us to explore various strategies.

The methodology outlined is visually depicted in Figure 2, offering a comprehensive illustration of
the layer-wise fine-tuning process. In Section 3, we will provide a detailed rationale and justification
for our chosen metric utilized in the selection of layers.

3 THEORETICAL ANALYSIS

In this section, we undertake a theoretical examination of our methodology within the idealized
framework of the deep linear network. Given that deep neural networks are composed of linear and
activation layers, an analysis of the deep linear network serves as a valuable avenue for gaining
insight into our approach. Previous analyses(Arora et al., 2018a;b; Cohen et al., 2023) have provided
significant insights into the behavior and properties of deep linear networks, underscoring the
importance of this simplified model in understanding more complex architectures.

For simplicity, we employ a simplified variant of the augmented Hamiltonian and consider the
maximization step of the (n+ 1)-th layer as follows:

max
θ∗
n

pn+1 · gn(xn, θ
∗
n)−

1

2
ρn∥θ∗n − θn∥22 (10)

Given a collection of K sample input-label pairs {xi, yi}Ki=1, with the inputs x = (x1, x2, · · · , xK) ∈
Rd×K and the labels y = (y1, y2, · · · , yK) ∈ Rd′×K . Consider an N -layer deep linear network

xn+1 = gn(xn, θn) = θnxn, n = 0, 1, · · · , N − 1.

with the input x0 = x and the loss function J =
∑K

i=1 Φi(x
i
N ) = 1

2

∑K
i=1∥yi − xi

N∥22.

Proposition 3.1 With given ρn, the updated loss after fine-tuning θn for one iteration is exactly
Ĵn(θn) in Equation 8, i.e.,

Jupdate = G(n+1)

(
xn+1 +

1

ρn
pn+1x

⊤
n xn

)
(11)

Due to space constraints, the proof details are provided in Appendix A.1.

For simplicity of expression, denote βn = θN−1 · · · θn+1, and rn = pn+1x
⊤
n = θ⊤n · · · θ⊤N−1(y −

xN )x⊤
n for n = 0, 1, · · · , N − 1. Below we show the relationship between the optimal ρ∗n and our

approximated ρ̂n.

Proposition 3.2 The optimal ρ∗n to achieve the minimal updated loss is

ρ∗n =
∥βnrnxn∥2F

∥rn∥2F
(12)

and it satisfies ρ∗n ≥ 1
d′ ρ̂n for the ρ̂n determined in equation 9.

In addition, denote α̂n = 1
ρ̂n

and α∗
n = 1

ρ∗
n

. Let θ be the 1-dimensional vectorization of all parameters.
If θ ∼ Uniform(B(0, r)), ∀r, i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθα

∗
n = Eθα̂n, i.e., we provide an unbiased estimation for α∗

n,
which functions similarly to a learning rate.

Due to space constraints, the proof details are provided in Appendix A.1.
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4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed L-MSA method across various datasets.
We compare L-MSA against established baseline methods to highlight its effectiveness in selecting
optimal layers and improving fine-tuning results. Further details about the datasets and the models
are provided in Appendix A.2.

4.1 BASELINE METHODS

To compare with other baselines, we follow the setups from prior work(Lee et al., 2022). We employ
full fine-tuning as a baseline and focus on the comparison with layer-wise methods such as LIFT(Zhu
et al., 2023), LISA(Pan et al., 2024), and surgical fine-tuning(Lee et al., 2022). Among these methods,
surgical fine-tuning provides a metric, RGN, for selecting layers. We include a comparison between
our proposed metric and theirs to evaluate performance.

Full Fine-tuning is a widely used approach for adaptation. The model is initialized with pre-
trained weights and biases, and all parameters undergo gradient updates during fine-tuning. In our
experiments, we use the Adam optimizer to update all layers of the model.

LIFT(Zhu et al., 2023) is a layer-wise method where only one layer(or transform block) is updated in
each iteration. The selection policy for updating the layers can follow one of three strategies: (i) front
to end, (ii) end to front, or (iii) random. In our experiments, we test all three strategies and report the
average performance.

LISA(Pan et al., 2024) applies the idea of importance sampling to different layers in LLMs and
randomly freezes most middle layers during optimization. LISA consistently fine-tunes the first and
last layers, while updating each middle layer with a fixed probability.

Surgical Fine-tuning(Lee et al., 2022) shows that selectively fine-tuning a subset of layers matches
or outperforms commonly used fine-tuning approaches. The authors propose two criteria for au-
tomatically selecting which layers to freeze, with the Relative Gradient Norm (RGN), defined as
RGN = ∥g∥2

∥θ∥2
, showing better performance according to their findings. We compare our metric with

RGN and also evaluate the performance of our L-MSA method against Auto-RGN, which fine-tunes
the layer selected based on the highest RGN value.

4.2 EFFECTIVENESS OF OUR METRIC

We first conducted experiments to compute our proposed metric, the approximated optimal updated
loss Ĵn, and compared it with the true loss after training. In the case of pre-training on ImageNet and
fine-tuning on CIFAR-100, represented on the left side of Figure 4, the later layers exhibit smaller
approximated updated losses Ĵn.

Conversely, when pre-training is done on CIFAR-100 and fine-tuning is applied to a transformed
version of the dataset, shown on the right side of Figure 4, the earlier layers show smaller approximated
updated losses Ĵn. This transformed dataset is created by applying element-wise multiplication to
the input data of CIFAR-100 with a matrix, where each entry is ex, and x follows a standard normal
distribution. These findings align with the actual training results shown in 1.

Figure 4: Comparison of our L-MSA metric and RGN with the true training loss. Due to differences in scale,
where smaller values are preferred for both our metric and loss while larger values are preferred for RGN, all
values are normalized. A darker color indicates a better metric, suggesting that the corresponding layer will be
selected for fine-tuning.
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We present the comparison of our L-MSA metric and RGN with the true training loss in 4. The results
illustrate that our L-MSA metric consistently identifies layers associated with improved training loss,
effectively pinpointing those that contribute to better training outcomes. However, in these two cases,
RGN assigned the highest metric to the fifth layer, yet it was unable to assist in selecting the more
effective layers for fine-tuning.

We also evaluated our metric on four real-data tasks: CIFAR-C, CIFAR-Flip, Living-17, and
ImageNet-C. Due to space constraints, the results are provided in Appendix A.3, while the results of
fine-tuning the selected layers using our L-MSA method are presented in Section 4.3.

4.3 FINE-TUNING RESULTS

We present the results of our L-MSA method in Figure 5, comparing it with Auto-RGN and full
fine-tuning for DeiT models fine-tuning from ImageNet to CIFAR-100 and from CIFAR-100 to a
transformed dataset. In the case of Auto-RGN, the layer selected by the RGN metric is updated using
the Adam optimizer.

ImageNet to CIFAR-100 CIFAR-100 to Transformed Dataset

Figure 5: The Performance of L-MSA on DeiT-Tiny

In both scenarios, our findings show that the L-MSA method outperforms Auto-RGN and achieves
performance comparable to full fine-tuning. Notably, using L-MSA for layer-wise fine-tuning results
in performance improvements of up to 20% compared to full fine-tuning and up to 30% compared to
Auto-RGN in the initial stages of training. Specifically, we observed a rapid decrease in training loss
within the first few batches, underscoring the method’s effectiveness, especially in cases where the
amount of data is limited.

To further assess the performance of our L-MSA method, we evaluated the performance of our
L-MSA method on four real-data tasks with a limited amount of data. For CIFAR-C(Hendrycks
& Dietterich, 2019) and CIFAR-Flip(Lee et al., 2022), the models were pre-trained on CIFAR-
10(Krizhevsky, 2009) using Wide ResNet-28-10(He et al., 2016). For Living-17(Santurkar et al.,
2020) and ImageNet-C(Kar et al., 2022), the models were pre-trained on ImageNet(Deng et al.,
2009a) using ResNet-50(He et al., 2016).

CIFAR-C CIFAR-Flip Living-17 ImageNet-C Average Rank

No Adaptation 60.3 0.0 73.2 18.1 -

Full Fine-tuning 81.1 86.2 78.2 49.0 2.5
LIFT 80.5 86.44 76.2 43.6 4.25
LISA 80.2 81.6 77.4 48.2 4.0

Auto-RGN 82.5 88.7 77.1 48.6 2.25
L-MSA 81.3 92.7 79.1 47.4 2.0

Table 1: We report the test accuracy on the target distribution across four real-data tasks. Our results show that
L-MSA outperforms all other layer-wise fine-tuning methods, including Full Fine-tuning, LISA, LIFT, and
Auto-RGN. The best-performing method for each distribution shift is highlighted in bold.

The results, presented in Table 1, compare L-MSA against other fine-tuning approaches, including
Full Fine-tuning, LIFT, LISA, and Auto-RGN. Further details on the experimental setup can be found
in the Appendix A.2.
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The "No Adaptation" baseline provides a reference point for model performance without fine-tuning.
L-MSA consistently outperforms other methods, achieving the highest test accuracy on CIFAR-Flip
and Living-17, along with the best overall ranking across tasks. Notably, we also observe that L-MSA
achieves these results using fewer epochs. Auto-RGN proposed in surgical fine-tuning(Lee et al.,
2022) also achieves a competitive average rank.

Overall, L-MSA’s strong performance highlights its effectiveness in selecting layers for fine-tuning
and utilizing the MSA method to optimize the chosen layer during subsequent fine-tuning. The results
emphasize L-MSA’s robustness and adaptability, demonstrating its ability to maintain high accuracy
across various types of distribution shifts.

4.4 EMPIRICAL ANALYSIS

To assess the effectiveness of our proposed
L-MSA method, we conducted an ablation
study comparing it against other fine-tuning ap-
proaches, specifically (i) Full Fine-tuning, (ii)
Full fine-tuning using MSA, and (iii) L-MSA
Metric + Adam. This comprehensive compari-
son aimed to evaluate not only the performance
of the L-MSA method but also to understand
how each approach influences model perfor-
mance. The average test accuracies across four
datasets are plotted in Figure 6. Figure 6: Ablation Study

The results indicate that L-MSA significantly enhances performance compared to other fine-tuning
approaches. Notably, the Full Fine-tuning + MSA method underperforms because it optimizes each
layer’s Hamiltonian individually for multiple steps, which is less effective in the context of full
fine-tuning. However, using only the L-MSA metric for layer-wise fine-tuning with Adam achieves
performance comparable to that of Full Fine-tuning, demonstrating the metric’s effectiveness in layer
selection and the advantages of layer-wise fine-tuning. Furthermore, L-MSA outperforms the L-MSA
Metric + Adam approach, emphasizing the benefits of utilizing MSA to optimize the selected layers.

5 LIMITATIONS AND FUTURE DIRECTIONS

While our layer-wise fine-tuning algorithm shows promising results, it is important to acknowledge
its limitations. Firstly, we select layers based on the approximated updated loss, which provides a
good estimation of the training loss. However, this does not always guarantee strong generalization to
the test data. Additionally, while layer-wise fine-tuning reduces the computational burden compared
to full fine-tuning, it may still demand substantial computational resources due to performing both
forward and backward propagation, especially in large-scale models.

Future work could explore periodically reselecting layers and adjusting the training configuration
after a certain training period, allowing for continuous optimization and more efficient resource use,
potentially enhancing performance over time.

6 RELATED WORK

6.1 LARGE-SCALE MODELS

The emergence of large-scale models has revolutionized various domains, ranging from natural lan-
guage processing to computer vision. These models, characterized by their extensive parameterization
and sophisticated architectures, have demonstrated remarkable capabilities in capturing complex
patterns and representations from vast amounts of data.

In natural language processing, models like BERT(Devlin et al., 2018) and GPT(Radford et al.,
2018) have set new benchmarks in a variety of tasks, such as language understanding and generation.
By leveraging vast text corpora, these models learn rich semantic representations, excelling in
various downstream tasks. Similarly, in computer vision, models like ResNet(He et al., 2016) and
EfficientNet(Tan & Le, 2019) have demonstrated unprecedented performance in image classification,

9
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object detection, and semantic segmentation tasks. By leveraging large datasets like ImageNet(Deng
et al., 2009b), these models learn hierarchical features essential for understanding visual content.

Despite their impressive performance, these models pose significant computational challenges,
particularly due to high training costs. Addressing these issues is a key research focus, with ongoing
efforts aimed at developing more efficient techniques for both training and inference.

6.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning (PEFT) techniques are designed to adapt pre-trained models by
selectively fine-tuning only a subset of parameters. In general, PEFT methods can be categorized into
three classes:

Prompt-based methods prioritize the optimization of input tokens or input embeddings while
keeping the model parameters frozen(Diao et al., 2022; Hambardzumyan et al., 2021; Lester et al.,
2021; Liu et al., 2023). Continuous and differentiable forms of prompt engineering (soft prompt) are
designed to ease optimization. These approaches typically incur the lowest training cost among the
various types mentioned. However, they do not effectively reduce back-propagation costs.

Adapter methods typically introduce an auxiliary module with much fewer parameters than the
original model. During training, updates are exclusively applied to the adapter module, allowing for
more efficient parameter fine-tuning(Diao et al., 2023; Houlsby et al., 2019; Hu et al., 2021). These
approaches require manual design and many of them also do not effectively reduce back-propagation
costs.

Selective methods focus on the optimization of a subset of the model’s parameters without the
addition of extra modules. For instance, Exclusively fine-tuning bias terms can yield competitive
performance comparable to fine-tuning the entire model(Zaken et al., 2021). Recently several
noteworthy techniques have been developed in this area, particularly through the concept of layer
freezing(Li et al., 2024; Liu et al., 2021). Compared with previous ones, Selective methods are more
closely related to our approach.

6.3 TRANSFER LEARNING

Previous research in transfer learning has extensively explored the efficacy of fine-tuning to adapt
pre-trained features to a target distribution(Oquab et al., 2014; Sharif Razavian et al., 2014; Yosinski
et al., 2014). To maintain the valuable information obtained during pre-training, numerous studies
have proposed various methods to regularize the fine-tuning process(Li et al., 2020; Shen et al.,
2021; Zhang et al., 2020). These methods aim to strike a balance between retaining the learned
features from the pre-trained model and adapting to the new target domain, thus ensuring effective
knowledge transfer. Notably, several works have demonstrated that freezing certain parameters within
the pre-trained model can significantly reduce overfitting during fine-tuning(Kirkpatrick et al., 2017;
Lee et al., 2019).

Contrary to most of the prevailing approaches, our work presents a counterintuitive finding: perform-
ing fine-tuning on the early layers can yield superior performance in specific scenarios. This intriguing
finding resonates with recent investigations in the field(Lee et al., 2022), further undermining the
prevailing notion that fine-tuning endeavors should predominantly concentrate on later layers, which
are assumed to be more intricately tied to task-specific features.

7 CONCLUSION

In conclusion, we have presented L-MSA, a novel layer-wise fine-tuning approach that integrates
a metric for layer selection with an optimization algorithm based on the Method of Successive
Approximations (MSA). This framework allows for efficient and targeted fine-tuning of individual
layers, significantly enhancing model performance while reducing computational costs. Our experi-
ments across various datasets and tasks validate the effectiveness of L-MSA, demonstrating that our
method consistently outperforms baseline techniques. By algorithmically determining which layers
to fine-tune, we provide a practical solution to the challenges posed by large-scale models. Overall,
our work advances the field of layer-wise fine-tuning, offering new insights into optimizing model
training and setting the stage for future research in this area.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

In this section, we provide detailed proofs for propositions in Section 3. For simplicity, we consider
the case where the batch size is 1. similar results can be derived for a larger batch size.

Proposition A.1 With given ρn, the updated loss after fine-tuning θn for one iteration is exactly
Ĵn(θn) in equation 8.

Proof: Given an input-label pair {x0, y}, with the inputs x0 ∈ Rd and the labels y ∈ Rd′
. Consider

an N -layer deep linear network

xn+1 = gn(xn, θn) = θnxn, n = 0, 1, · · · , N − 1.

with the input x0 = x and the loss function J = 1
2∥y − xN∥22.

Then we could compute the co-state

pn = θ⊤n · · · θ⊤N−1(y − xN ), n = 0, 1, · · · , N.

In every iteration, our objective is to maximize the augmented Hamiltonian for a single layer, as
shown in equation 10. By taking the derivative of the Hamiltonian with respect to θ∗n and setting it to
zero, we can derive the updated parameters θ∗n as follows.

θ∗n = θn +
1

ρn
pn+1x

⊤
n = θn +

1

ρn
θ⊤n+1 · · · θ⊤N−1(y − xN )x⊤

n (13)

which demonstrates that the E-MSA method using the simplified augmented Hamiltonian is equivalent
to the gradient descent method with a learning rate of αn = 1

ρn
.

Then we can derive the updated loss as follows.

Jupdate =
1

2
∥βnθ

∗
nxn − y∥22 = G(n+1) (θ

∗
nxn)

= G(n+1)

(
xn+1 +

1

ρn
pn+1x

⊤
n xn

) (14)

which is exactly Ĵn(θn) in equation 8. □

Proposition A.2 The optimal ρ∗n to achieve the minimal updated loss is

ρ∗n =
∥βnrnxn∥2F

∥rn∥2F
(15)
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and it satisfies ρ∗n ≥ 1
d′ ρ̂n for the ρ̂n in equation 9.

In addition, denote α̂n = 1
ρ̂n

and α∗
n = 1

ρ∗
n

. Let θ be the 1-dimensional vectorization of all parameters.
If θ ∼ Uniform(B(0, r)), ∀r, i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθα

∗
n = Eθα̂n.

Proof: To get the minimum loss that can be achieved after one iteration, we need to compute
the optimal ρn. Let βn = θN−1 · · · θn+1, and rn = pn+1x

⊤
n = θ⊤n+1 · · · θ⊤N−1(y − xN )x⊤

n for
n = 0, 1, · · · , N − 1. Thus, we have pn+1 = β⊤

n (y − xN ) and θ∗n = θn + αrn.

Jupdate = Jn(θ
∗
n) =

1

2
∥βnθ

∗
nxn − y∥22

=
1

2
∥βnθnxn − y + αnβnrnxn∥22

(16)

By taking the derivative with respect to α and setting it to zero, we get that the optimal learning rate
α∗
n satisfies

0 = x⊤
n r

⊤
n β

⊤
n (βnθnxn − y + α∗

nβnrnxn) (17)
Therefore, to achieve the minimum loss, we should set

α∗
n =

tr(r⊤n rn)

tr(x⊤
n r

⊤
n β

⊤
n βnrnxn)

=
∥rn∥2F

∥βnrnxn∥22
(18)

where ∥·∥F is the Frobenius norm. Thus, we can derive that the optimal ρ∗n

ρ∗n =
1

α∗
n

=
∥βnrnxn∥22

∥rn∥2F
≥ ∥(y − xN )⊤βnrnxn∥22

∥(y − xN )∥22 · ∥rn∥2F
=

1

2J
·
∥p⊤n+1rnxn∥2F

∥rn∥2F
=

1

d′
ρ̂n (19)

Consider

γ =
∥(y − xN )⊤βnrnxn∥22
∥y − xN∥22∥βnrnxn∥22

=
∥(y − xN )⊤βnβ

⊤
n (y − xN )x⊤

n xn∥22
∥y − xN∥22∥βnβ⊤

n (y − xN )x⊤
n xn∥22

=
∥(y − xN )⊤βnβ

⊤
n (y − xN )∥22

∥y − xN∥22∥βnβ⊤
n (y − xN )∥22

(20)

To evaluate γ, without loss of generality, we can set ∥y − xN∥2 = 1. There exists an orthogonal
matrix Q ∈ Rd′×d′

such that y − xN = Q · e1, where e1 = (1, 0, · · · , 0)⊤ ∈ Rd′
. We denote

Q⊤βnβ
⊤
n Q = (bij)1≤i,j≤d′ . Then

γ =
∥e⊤1 Q⊤βnβ

⊤
n Qe1∥22

∥βnβ⊤
n Qe1∥22

=
∥e⊤1 Q⊤βnβ

⊤
n Qe1∥22

∥Q⊤βnβ⊤
n Qe1∥22

=
b211

b211 + b221 + · · ·+ b2d′1

(21)

∀r, if θ ∼ Uniform(B(0, r)), i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθγ = 1

d′ . As for the expectation of α∗, we have

α∗
n =

∥rn∥2F
∥βnrnxn∥22

= γ · ∥(y − xN )∥22 · ∥rn∥2F
∥(y − xN )⊤βnrnxn∥22

= γ · 2J · ∥rn∥2F
∥p⊤n+1rnxn∥2F

(22)

According to our definition

α̂n =
1

ρ̂n
=

2J

d′
· ∥rn∥2F
∥pTn+1rnxn∥2F

(23)

Therefore, we can get the result that
Eθα

∗
n = Eθα̂n

□
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A.2 EXPERIMENTAL SETUP

In this section, we elaborate on the experimental setup used in our study, covering various aspects
such as datasets, models, pretraining, training details, and environment.

A.2.1 DATASETS

CIFAR-100(Krizhevsky, 2009): A widely used benchmark dataset consisting of 100 classes, with
600 images per class. The dataset is split into 50,000 training images and 10,000 test images, with
each image being a 32x32 RGB image.

CIFAR-10-C(Hendrycks & Dietterich, 2019): A corrupted version of CIFAR-10, containing 10
classes with various common corruptions applied to the original test set, making it ideal for evaluating
model robustness under real-world noisy conditions. The dataset has 5 levels of severity, and we
evaluate with the most severe level. We tune on 1000 images from CIFAR-10-C.

CIFAR-Flip(Lee et al., 2022): A synthetic task where the inputs are from the original CIFAR-10
dataset, but the target labels are flipped such that each label y is transformed to 9 − y (e.g., label
0 becomes label 9, label 1 becomes label 8, etc.). This task provides a controlled setting to assess
model performance when faced with adversarially shifted labels.

Living-17(Santurkar et al., 2020): A specialized dataset for classifying living organisms, including
animals and plants, with 17 distinct classes. It presents a challenging test case due to its domain-
specific nature, requiring the model to differentiate between fine-grained categories of organisms. For
Living-17, we tune on 850 images from the target distribution, evenly split between the 17 classes,
giving 50 images per class.

ImageNet-C(Kar et al., 2022): A corrupted version of the ImageNet dataset, where common
corruptions such as Gaussian noise, blur, and weather distortions have been applied to the validation
set. Similar to CIFAR-10-C, the dataset has 5 levels of severity, and we evaluate with the most severe
level. We tune on 5000 images from ImageNet-C, evenly split between classes, giving 5 corrupted
images per class.

A.2.2 MODELS

Here presents the models utilized in our experiments, highlighting their architectural characteristics
and parameter counts. We examine the Tiny version of DeiT(Touvron et al., 2021), Wide ResNet-28-
10, and ResNet-50(He et al., 2016), each selected for its unique strengths in handling various image
classification tasks. The number of parameters for each model is given in Table 2.

Model Number of Parameters
DeiT (Tiny) 5.7 million
Wide ResNet-28-10 36 million
ResNet-50 25.6 million

Table 2: Number of Parameters for Various Models

DeiT (Data-efficient Image Transformers - Tiny)(Touvron et al., 2021): The Tiny version of DeiT
is a transformer-based model designed for image classification. It utilizes attention mechanisms to
capture long-range dependencies in images and achieves high performance with less data through
efficient training strategies. In our experiments, it is used on the CIFAR-100 dataset for its ability to
generalize well across diverse visual features.

Wide ResNet-28-10(He et al., 2016): Wide ResNet-28-10 is a convolutional neural network (CNN)
characterized by its wider architecture, which incorporates residual connections to alleviate the
vanishing gradient problem. With 28 layers and a width factor of 10, it balances capacity and
efficiency, making it suitable for various image classification tasks. We apply Wide ResNet-28-10 to
the CIFAR-10-C and CIFAR-Flip datasets to assess its performance under corrupted and adversarially
shifted labels.
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ResNet-50(He et al., 2016): ResNet-50 is a deeper CNN with 50 layers, providing greater capacity
for learning complex patterns. It is well-regarded for its robustness in both general and domain-
specific challenges. In our study, ResNet-50 is employed on the Living-17 and ImageNet-C datasets,
leveraging its strong feature extraction capabilities against corrupted data.

A.2.3 PRETRAINING

For the CIFAR-100 dataset, we utilize a DeiT-Tiny model pre-trained on ImageNet. For the CIFAR-
10-C and CIFAR-Flip datasets, we employ Wide ResNet-28-10 models that have been pre-trained on
CIFAR-10. For the ImageNet-C dataset, we use a ResNet-50 model pre-trained on ImageNet.

For the Living-17 dataset, we load a ResNet model pre-trained on ImageNet and train it on the source
data for 5 epochs. Initially, we tune only the head for 3 epochs, followed by fine-tuning all layers for
an additional 2 epochs, following the Linear Probing then Fine-tuning(LP-FT) strategy(Kumar et al.,
2022), while utilizing the Adam optimizer.

A.2.4 TRAINING DETAILS

Layer Configuration: For the DeiT model, each transformer block is treated as a layer, resulting in
a total of 12 layers. In the case of Wide ResNet-28-10 and ResNet-50, each block is considered a
layer, with the input convolutional layer (conv1) combined into the first layer and the output fully
connected layer treated as a separate layer. Consequently, Wide ResNet-28-10 consists of 3 blocks
plus the output layer, totaling 4 layers, while ResNet-50 comprises 4 blocks and the output layer,
resulting in 5 layers.

Fine-Tuning with Adam Optimizer: For all baseline methods, we fine-tune the model on the labeled
target data for a total of 10 epochs, with a batch size of 64. We explore 3 different learning rates:
1×10−3, 1×10−4, and 1×10−5 for all methods, except that for CIFAR-Flip, we adjust the learning
rates to 1× 10−1, 1× 10−2, and 1× 10−3 for last-layer fine-tuning.

Fine-Tuning with L-MSA: We fine-tune the model on the labeled target data for 10 epochs for
CIFAR-100 and 5 epochs for other datasets, using a batch size of 64 and setting the hyper-parameter
ρ to 1. To optimize the maximization Hamiltonian, we utilize the Adam optimizer with a learning
rate of 1× 10−4. The optimization process runs for a total of 5 iterations.

Validation Stategy: For all datasets and experiments, we implement early stopping based on the
accuracy observed on a held-out validation subset of the labeled target data. We report the test
accuracy corresponding to the epoch with the highest validation accuracy.

A.2.5 ENVIRONMENT

The experiments were conducted on a machine equipped with an NVIDIA GeForce RTX 3090 GPU,
which has 24GB of memory.

By providing comprehensive details of our experimental setup, we aim to facilitate transparency
and reproducibility in our study, enabling other researchers to validate and build upon our findings
accurately.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

We present the comparison of our L-MSA metric and RGN with the true training loss on four real-
world tasks: CIFAR-C, CIFAR-Flip, Living-17, and ImageNet-C. This comparison, omitted from
Section 4.2 due to space limitations, is now provided here. As noted previously, due to differences in
scale, where smaller values are preferred for both our metric and loss while larger values are preferred
for RGN, all values are normalized. A darker color indicates a better metric, suggesting that the
corresponding layer will be selected for fine-tuning.

Figure 7 illustrates that our L-MSA metric consistently identifies layers associated with improved
training loss, successfully highlighting those that enhance training outcomes. In contrast, RGN often
selects layers that do not match the optimal ones, making it less effective in comparison.

However, it is important to emphasize that our layer selection is primarily based on the approximated
updated loss, which provides a solid estimate of the training loss. While this metric offers valuable
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Figure 7: Comparison of L-MSA metric and RGN with the true training loss

insights for identifying effective layers, it is important to recognize that such an approach does not
always guarantee robust generalization to the test data.
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