
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

L-MSA: LAYER-WISE FINE-TUNING USING THE
METHOD OF SUCCESSIVE APPROXIMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the emergence of large-scale models, the machine learning community has wit-
nessed remarkable advancements. However, the substantial memory consumption
associated with these models has emerged as a significant obstacle to large-scale
training. To mitigate this challenge, an increasing emphasis has been placed on
parameter-efficient fine-tuning methodologies, which adapt pre-trained models
by fine-tuning only a subset of parameters. We observe that in various scenarios,
fine-tuning different layers could lead to varying performance outcomes, and selec-
tively fine-tuning certain layers has the potential to yield favorable performance
results. Drawing upon this insight, we propose L-MSA, a novel layer-wise fine-
tuning approach that integrates two key components: a metric for layer selection
and an algorithm for optimizing the fine-tuning of the selected layers. By lever-
aging the principles of the Method of Successive Approximations, our method
enhances model performance by targeting specific layers based on their unique
characteristics and fine-tuning them efficiently. We also provide a theoretical anal-
ysis within deep linear networks, establishing a strong foundation for our layer
selection criterion. Empirical evaluations across various datasets demonstrate that
L-MSA identifies layers that yield superior training outcomes and fine-tunes them
efficiently, consistently outperforming existing layer-wise fine-tuning methods.

1 INTRODUCTION

With the increasing application of large-scale models across diverse task domains(Devlin et al., 2019;
Dosovitskiy et al., 2021), domain-specific fine-tuning has emerged as a pivotal strategy to bolster their
effectiveness in downstream tasks(Käding et al., 2017; Raffel et al., 2020). However, these fine-tuning
methods are often resource-intensive, presenting significant challenges in the development of large-
scale models. Efforts to address these challenges have led to the development of Parameter-Efficient
Fine-Tuning (PEFT) techniques, which aim to mitigate computational costs. These techniques
encompass various approaches, such as prompt-based methods(Diao et al., 2022; Hambardzumyan
et al., 2021; Lester et al., 2021; Liu et al., 2023), adapter methods(Diao et al., 2023; Houlsby et al.,
2019; Hu et al., 2021), and selective methods(Li et al., 2024; Liu et al., 2021; Zaken et al., 2021).

Among the array of Parameter-Efficient Fine-Tuning (PEFT) techniques, layer-wise fine-tuning
algorithms have emerged as a promising solution(Lee et al., 2022; Pan et al., 2024). Instead of
updating all parameters simultaneously, layer-wise fine-tuning focuses on iteratively fine-tuning
individual layers of the model. This approach not only reduces computational costs but also allows
for more targeted adjustments, potentially leading to improved performance on downstream tasks.

However, the specific layer to fine-tune may vary based on the relationship between the source and
target datasets. To explore this, we conduct experiments with a Data-efficient Image Transformer
(DeiT)-Tiny (Touvron et al., 2021) in three scenarios:

1. Pre-training on ImageNet(Deng et al., 2009a) and fine-tuning on CIFAR-100(Krizhevsky,
2009).

2. Pre-training on CIFAR-100 and transforming the input data by element-wise multiplication
with a matrix, where each entry is ex and x follows a standard normal distribution. Fine-
tuning is then performed on the transformed data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

3. Generating two sets of random labels for the CIFAR-100 inputs, pre-training on one set of
the labels, and fine-tuning on the other.

ImageNet to CIFAR-100 CIFAR-100 to Transferred Dataset Random to Random

Figure 1: Layer-wise Fine-tuning in Different Scenarios

In each case, we visualize the outcomes of layer-wise fine-tuning compared to full fine-tuning after a
single epoch, with consistent observations even over extended training. In case 1, where the dataset
shares similar low-level features but different high-level features compared to the original data, fine-
tuning later layers outperforms earlier layers. Conversely, in case 2, with similar high-level features
but different low-level features, fine-tuning earlier layers yields better performance. Finally, in case 3
involving random tasks, all layers are equally significant, and fine-tuning individual layers alone may
not suffice. This variability raises the question of whether we can algorithmically determine which
layer(s) to fine-tune and how to perform effective layer-wise fine-tuning.

To address the aforementioned challenge, we propose L-MSA, a novel layer-wise fine-tuning approach
that consists of two core components: a metric for layer selection and an algorithm for optimizing
the fine-tuning of the selected layer. This targeted optimization seeks to enhance overall model
performance by leveraging the specific strengths of different layers.

We leverage the principles of the Method of Successive Approximations (MSA) (Chernousko &
Lyubushin, 1982; Li et al., 2018) within our L-MSA framework, addressing both layer selection
and layer fine-tuning. The first component of our approach introduces a novel metric, derived from
the state and co-state variables in MSA, which serves as the criterion for selecting layers. The
second component focuses on utilizing the MSA to optimize the fine-tuning of the selected layers.
This integrated approach ensures efficient optimization by systematically refining the layer-wise
fine-tuning process, ultimately leading to improved performance.

Figure 2: Overview of our proposed L-MSA method: We begin with a feed-forward pass to compute the state
xi at each layer, followed by a back-propagation step to determine the co-state pi. Utilizing both xi and pi,
we compute a metric Ĵn for every layer, as defined in equation 8, to guide layer selection. We then select the
layer with the smallest metric, denoting its index as m, and maximize Hm over the parameters θm. By fixing m
and repeating these steps iteratively, we refine the layer parameters, converging toward a desired solution that
enhances model performance.

Furthermore, we provide a comprehensive theoretical analysis of our L-MSA approach within the
context of deep linear networks(Arora et al., 2018b). This analysis clarifies the metric we utilize for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

optimal layer selection, framed within a greedy one-step optimization framework. By establishing a
solid theoretical foundation, we pave the way for understanding how our method effectively enhances
model training.

Finally, we evaluate our approach across various datasets and tasks, utilizing multiple model architec-
tures, and compare L-MSA with baseline layer-wise fine-tuning methods. Our results demonstrate
that the metric proposed in L-MSA effectively identifies the layers that will yield better training
outcomes. L-MSA consistently outperforms most baselines, achieving top performance in several
tasks and ranking as the most effective method overall, reinforcing the practical applicability of
our approach in real-world scenarios. We also conduct ablation tests, highlighting the metric’s
effectiveness in layer selection and the advantages of using MSA to optimize the chosen layers.

We summarize our key contributions as follows:

• We experimentally show that in various scenarios, fine-tuning different layers could lead to
varying performance outcomes, and selectively fine-tuning certain layers has the potential to
yield favorable performance results.

• We propose the L-MSA method, which introduces a new criterion for selecting layers
to fine-tune, and we also propose utilizing the method of successive approximations for
layer-wise fine-tuning within our L-MSA approach, ensuring efficient optimization and
improved learning outcomes.

• We provide a theoretical analysis of our approach in the context of deep linear networks,
clarifying the metric for optimal layer selection within a greedy one-step framework.

• We empirically validate the effectiveness of our methodology in accurately identifying and
efficiently fine-tuning the target layer across diverse datasets.

2 L-MSA: LAYER-WISE FINE-TUNING USING THE METHOD OF SUCCESSIVE
APPROXIMATION

Adopting the control viewpoint for layer-wise fine-tuning offers a structured optimization process
through Pontryagin’s Maximum Principle (PMP)(Pontryagin et al., 1962). This perspective treats
each layer as part of a controlled dynamical system, enabling precise adjustments to specific layers by
assessing their impact on the overall loss via the Hamiltonian. Consequently, this method facilitates
efficient fine-tuning by focusing on layers that offer the most significant performance improvement,
thereby making the optimization process more systematic and effective.

2.1 BACKGROUND: PONTRYAGIN’S MAXIMUM PRINCIPLE AND METHOD OF SUCCESSIVE
APPROXIMATION

In supervised learning, given a collection of K sample input-label pairs {xi, yi}Ki=1, our objective
is to infer and approximate a function F : X → Y that accurately maps input data instances
xi to their corresponding target outputs yi. To view supervised learning within the dynamical
systems framework, particularly relevant to deep and residual architectures, we consider the inputs
x = (x1, x2, · · · , xK) ∈ Rd×K as the initial condition of a system of ordinary equations

ẋi
t = f

(
t, xi

t, θt
)
, xi

0 = xi, 0 ≤ t ≤ T, i = 1, . . . ,K, (1)

where θ : [0, T] → Θ is the control parameters and xt = (x1
t , · · · , xK

t) ∈ Rd×K . In this context,
f(t, xi

t, θt) encapsulates the transformation process within the neural network, while θt represents
the parameters at time t that govern this transformation.

The supervised learning problem can be formulated as

min
θ∈U

K∑
i=1

Φi

(
xi
T

)
+

∫ ⊤

0

L (θt) dt,

ẋi
t = f

(
t, xi

t, θt
)
, xi

0 = xi, 0 ≤ t ≤ T, i = 1, . . . ,K,

(2)

where Φi(·) := ϕ(·, yi) is the loss function, and L : Θ → R is a running cost, or the regularization
term.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We define the Hamiltonian H: [0, T]× Rd × Rd ×Θ given by

H(t, x, p, θ) = p · f(t, x, θ)− L(θ) (3)

Pontryagin’s Maximum Principle(PMP)(Pontryagin et al., 1962) shows a set of necessary conditions
for optimal solutions to equation 2, which provides an alternative numerical algorithm to train
equation 2 and its discrete-time formulation.

Theorem 2.1 (Pontryagin’s Maximum Principle) Let θ∗ ∈ U be an essentially bounded optimal
control, i.e. a solution to equation 2 with ess supt∈[0,T] ∥θ∗t ∥∞ < ∞ (ess sup denotes the essential
supremum). Denote by x∗ the corresponding optimally controlled state process. Then, there exists an
absolutely continuous co-state process P ∗ : [0, T] → Rd such that the Hamilton’s equations

ẋ∗
t = ∇pH (t, x∗

t , P
∗
t , θ

∗
t) , x∗

0 = x,

Ṗ ∗
t = −∇xH (t, x∗

t , P
∗
t , θ

∗
t) , P ∗

T = −∇Φ (x∗
T) ,

(4)

are satisfied. Moreover, for each t ∈ [0, T], we have the Hamiltonian maximization condition

H (t, x∗
t , P

∗
t , θ

∗
t) ≥ H (t, x∗

t , P
∗
t , θ) for all θ ∈ Θ. (5)

Consider an N -layer deep neural network, which can be interpreted as a discrete-time formulation of
equation 2. Within this framework, the supervised learning problem can be expressed as follows:

min

K∑
i=1

Φi

(
xi
N

)
+

N−1∑
n=0

δtL (θn)

xi
n+1 = gn(x

i
n, θn), x

i
0 = xi, i = 0, 1, · · · ,K.

(6)

Here gn(xi
n, θn) = xi

n + δtfn(x
i
n, θn). Similar to equation 3, define the scaled discrete Hamiltonian

Hn(x, p, θ) = p · gn(x, θ)− δtL(θ) (7)

In the following algorithms, we employ an augmented variant of Hamiltonian(Li et al., 2018),
which additionally subtracts a regularization term of 1

2ρ∥xn+1 − gn(xn, θn)∥22 + 1
2ρ∥pn −

pn+1∇xgn(xn, θn)∥22 from the Hamiltonian discussed in equation 7. Here ρ serves as a hyper-
parameter, with its reciprocal 1/ρ exerting a similar effect as the learning rate.

A modification of the successive approximations method can be employed to address the Pontryagin
Maximum Principle (PMP), thereby yielding an alternative training algorithm for deep learning(Li
et al., 2018). We present the extended method of successive approximation in Figure 3.

Figure 3: Extended Method of Successive Approximation(E-MSA)

In each iteration, we commence with a feed-forward pass to compute the state xi for i = 0, 1, · · · , N ,
followed by a back-propagation step to compute the co-state pi for i = N,N−1, · · · , 0. Subsequently,
we calculate the Hamiltonian for each layer using both the state and co-state, seeking to maximize
Hn over θn. We iteratively perform these steps to converge towards the desired solution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.2 L-MSA: LAYER-WISE FINE-TUNING VIA MSA

As indicated in Section 1, it is often the case that fine-tuning the entire network is unnecessary. Rather,
the focus lies in fine-tuning only a single layer or a small subset of layers. In response, we introduce
L-MSA, a novel approach for layer-wise fine-tuning that consists of two key components: a metric
for layer selection and an optimization algorithm for fine-tuning the selected layer.

We leverage the principles of the Method of Successive Approximations (MSA) (Chernousko &
Lyubushin, 1982; Li et al., 2018) as the foundational principle for both layer selection and layer
fine-tuning. Our method aims to improve model performance by focusing on the specific strengths of
individual layers, targeting the most impactful layers for fine-tuning.

Denote Φ(xN) =
∑K

i=1 Φi

(
xi
N

)
and Gn(·) = Φ◦gN−1(·, θN−1)◦ · · · ◦gn+1(·, θn+1), which maps

the state of the (n + 1)-th layer to the terminal loss using the latter part of the model. Denote the
terminal loss J =

∑K
i=1 Φi

(
xi
T

)
as a function of the (n+ 1)-th layer Jn(θn).

Layer Selection: A natural approach to layer selection is to choose the layer for fine-tuning that
minimizes the loss and thus maximizes performance. In our proposed method, for the layer selection
process, we approximate the optimal updated loss resulting from fine-tuning individual layers and
use this approximated loss as the criterion for selecting layers.

To approximate the updated loss, we employ the principle of MSA. We begin with a feed-forward
pass to compute the state xi for i = 0, 1, · · · , N , followed by a back-propagation step to compute
the co-state pi for i = N,N − 1, · · · , 0. By leveraging both xn and pn, we approximate the optimal
updated loss incurred by fine-tuning individual layers. This process effectively computes the greedy
one-step loss for each layer, guiding the fine-tuning to the layer that promises the most immediate
improvement in performance. The updated loss after fine-tuning θn can be approximated by

Ĵn(θn) = G(n+1)

(
xn+1 +

1

ρ̂n
pn+1x

⊤
n xn

)
(8)

We’ll justify this approximation in Section 3. Here 1
ρ̂n

acts similarly to the learning rate, and we
aim to provide a well-estimated value of the optimal learning rate at an appropriate scale. Notably,
the optimal learning rates can vary significantly across different scenarios, even within the same
network, where different layers may require distinct values. The accuracy of ρ̂n plays a crucial role
in estimating the updated loss.

Thus, we aim to provide a reasonably accurate estimate of ρ̂n at the order-of-magnitude level to
achieve a precise approximation of the optimal updated loss. We set ρ̂n as defined in equation 9,
computed using the state xn and co-state pn, with rn = pn+1x

⊤
n and d′ being the output dimension.

In practice, the terminal loss J may vary in scale. Thus, we sometimes modify ρ̂n by multiplying it
by a constant for all layers.

ρ̂n =
d′

2J
·
∥p⊤n+1rnxn∥2F

∥rn∥2F
(9)

We’ll demonstrate in Section 3 that it approximates the optimal ρ∗n in equation 12 to achieve the
minimal updated loss within the deep linear network setting. To guide our layer selection process, we
utilize Ĵn(θn) in equation 8 as our metric for layer selection, opting to select the layer characterized
by the minimal approximated loss. In other words, we select the layer of gm(·, θm) such that

m = argmin
n=0,1,··· ,N−1

Ĵn(θn)

Layer Fine-tuning: Following the layer selection process, we utilize the Method of Successive
Approximations (MSA) for fine-tuning the selected layer, with the primary objective of maximizing
Hm with respect to θm. The MSA process is structured to enhance the optimization of the chosen
parameters systematically.

In each iteration, we start with a feed-forward pass through the network to compute the state xi for
each layer, where i ranges from 0 to N , capturing the current output based on the input data. Once
the state is computed, we proceed to a back-propagation step to derive the co-state pi for each layer,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

starting from the last layer N and moving backward to layer 0. The co-state represents the sensitivity
of the Hamiltonian with respect to the states, providing valuable information for optimization. Next,
we compute the Hamiltonian specifically for the layer with gm(·, θm) using both the state and co-state
variables, aiming to maximize Hm over the parameters θm of the selected layer. By repeating these
steps iteratively, we progressively refine the layer parameters, converging toward a desired solution
that enhances model performance.

Additionally, we have the flexibility to employ alternative optimization algorithms, such as Adam,
during this process, which allows us to explore various strategies.

The methodology outlined is visually depicted in Figure 2, offering a comprehensive illustration of
the layer-wise fine-tuning process. In Section 3, we will provide a detailed rationale and justification
for our chosen metric utilized in the selection of layers.

3 THEORETICAL ANALYSIS

In this section, we undertake a theoretical examination of our methodology within the idealized
framework of the deep linear network. Given that deep neural networks are composed of linear and
activation layers, an analysis of the deep linear network serves as a valuable avenue for gaining
insight into our approach. Previous analyses(Arora et al., 2018a;b; Cohen et al., 2023) have provided
significant insights into the behavior and properties of deep linear networks, underscoring the
importance of this simplified model in understanding more complex architectures.

For simplicity, we employ a simplified variant of the augmented Hamiltonian and consider the
maximization step of the (n+ 1)-th layer as follows:

max
θ∗
n

pn+1 · gn(xn, θ
∗
n)−

1

2
ρn∥θ∗n − θn∥22 (10)

Given a collection of K sample input-label pairs {xi, yi}Ki=1, with the inputs x = (x1, x2, · · · , xK) ∈
Rd×K and the labels y = (y1, y2, · · · , yK) ∈ Rd′×K . Consider an N -layer deep linear network

xn+1 = gn(xn, θn) = θnxn, n = 0, 1, · · · , N − 1.

with the input x0 = x and the loss function J =
∑K

i=1 Φi(x
i
N) = 1

2

∑K
i=1∥yi − xi

N∥22.

Proposition 3.1 With given ρn, the updated loss after fine-tuning θn for one iteration is exactly
Ĵn(θn) in Equation 8, i.e.,

Jupdate = G(n+1)

(
xn+1 +

1

ρn
pn+1x

⊤
n xn

)
(11)

Due to space constraints, the proof details are provided in Appendix A.1.

For simplicity of expression, denote βn = θN−1 · · · θn+1, and rn = pn+1x
⊤
n = θ⊤n · · · θ⊤N−1(y −

xN)x⊤
n for n = 0, 1, · · · , N − 1. Below we show the relationship between the optimal ρ∗n and our

approximated ρ̂n.

Proposition 3.2 The optimal ρ∗n to achieve the minimal updated loss is

ρ∗n =
∥βnrnxn∥2F

∥rn∥2F
(12)

and it satisfies ρ∗n ≥ 1
d′ ρ̂n for the ρ̂n determined in equation 9.

In addition, denote α̂n = 1
ρ̂n

and α∗
n = 1

ρ∗
n

. Let θ be the 1-dimensional vectorization of all parameters.
If θ ∼ Uniform(B(0, r)), ∀r, i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθα

∗
n = Eθα̂n, i.e., we provide an unbiased estimation for α∗

n,
which functions similarly to a learning rate.

Due to space constraints, the proof details are provided in Appendix A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed L-MSA method across various datasets.
We compare L-MSA against established baseline methods to highlight its effectiveness in selecting
optimal layers and improving fine-tuning results. Further details about the datasets and the models
are provided in Appendix A.2.

4.1 BASELINE METHODS

To compare with other baselines, we follow the setups from prior work(Lee et al., 2022). We employ
full fine-tuning as a baseline and focus on the comparison with layer-wise methods such as LIFT(Zhu
et al., 2023), LISA(Pan et al., 2024), and surgical fine-tuning(Lee et al., 2022). Among these methods,
surgical fine-tuning provides a metric, RGN, for selecting layers. We include a comparison between
our proposed metric and theirs to evaluate performance.

Full Fine-tuning is a widely used approach for adaptation. The model is initialized with pre-
trained weights and biases, and all parameters undergo gradient updates during fine-tuning. In our
experiments, we use the Adam optimizer to update all layers of the model.

LIFT(Zhu et al., 2023) is a layer-wise method where only one layer(or transform block) is updated in
each iteration. The selection policy for updating the layers can follow one of three strategies: (i) front
to end, (ii) end to front, or (iii) random. In our experiments, we test all three strategies and report the
average performance.

LISA(Pan et al., 2024) applies the idea of importance sampling to different layers in LLMs and
randomly freezes most middle layers during optimization. LISA consistently fine-tunes the first and
last layers, while updating each middle layer with a fixed probability.

Surgical Fine-tuning(Lee et al., 2022) shows that selectively fine-tuning a subset of layers matches
or outperforms commonly used fine-tuning approaches. The authors propose two criteria for au-
tomatically selecting which layers to freeze, with the Relative Gradient Norm (RGN), defined as
RGN = ∥g∥2

∥θ∥2
, showing better performance according to their findings. We compare our metric with

RGN and also evaluate the performance of our L-MSA method against Auto-RGN, which fine-tunes
the layer selected based on the highest RGN value.

4.2 EFFECTIVENESS OF OUR METRIC

We first conducted experiments to compute our proposed metric, the approximated optimal updated
loss Ĵn, and compared it with the true loss after training. In the case of pre-training on ImageNet and
fine-tuning on CIFAR-100, represented on the left side of Figure 4, the later layers exhibit smaller
approximated updated losses Ĵn.

Conversely, when pre-training is done on CIFAR-100 and fine-tuning is applied to a transformed
version of the dataset, shown on the right side of Figure 4, the earlier layers show smaller approximated
updated losses Ĵn. This transformed dataset is created by applying element-wise multiplication to
the input data of CIFAR-100 with a matrix, where each entry is ex, and x follows a standard normal
distribution. These findings align with the actual training results shown in 1.

Figure 4: Comparison of our L-MSA metric and RGN with the true training loss. Due to differences in scale,
where smaller values are preferred for both our metric and loss while larger values are preferred for RGN, all
values are normalized. A darker color indicates a better metric, suggesting that the corresponding layer will be
selected for fine-tuning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We present the comparison of our L-MSA metric and RGN with the true training loss in 4. The results
illustrate that our L-MSA metric consistently identifies layers associated with improved training loss,
effectively pinpointing those that contribute to better training outcomes. However, in these two cases,
RGN assigned the highest metric to the fifth layer, yet it was unable to assist in selecting the more
effective layers for fine-tuning.

We also evaluated our metric on four real-data tasks: CIFAR-C, CIFAR-Flip, Living-17, and
ImageNet-C. Due to space constraints, the results are provided in Appendix A.3, while the results of
fine-tuning the selected layers using our L-MSA method are presented in Section 4.3.

4.3 FINE-TUNING RESULTS

We present the results of our L-MSA method in Figure 5, comparing it with Auto-RGN and full
fine-tuning for DeiT models fine-tuning from ImageNet to CIFAR-100 and from CIFAR-100 to a
transformed dataset. In the case of Auto-RGN, the layer selected by the RGN metric is updated using
the Adam optimizer.

ImageNet to CIFAR-100 CIFAR-100 to Transformed Dataset

Figure 5: The Performance of L-MSA on DeiT-Tiny

In both scenarios, our findings show that the L-MSA method outperforms Auto-RGN and achieves
performance comparable to full fine-tuning. Notably, using L-MSA for layer-wise fine-tuning results
in performance improvements of up to 20% compared to full fine-tuning and up to 30% compared to
Auto-RGN in the initial stages of training. Specifically, we observed a rapid decrease in training loss
within the first few batches, underscoring the method’s effectiveness, especially in cases where the
amount of data is limited.

To further assess the performance of our L-MSA method, we evaluated the performance of our
L-MSA method on four real-data tasks with a limited amount of data. For CIFAR-C(Hendrycks
& Dietterich, 2019) and CIFAR-Flip(Lee et al., 2022), the models were pre-trained on CIFAR-
10(Krizhevsky, 2009) using Wide ResNet-28-10(He et al., 2016). For Living-17(Santurkar et al.,
2020) and ImageNet-C(Kar et al., 2022), the models were pre-trained on ImageNet(Deng et al.,
2009a) using ResNet-50(He et al., 2016).

CIFAR-C CIFAR-Flip Living-17 ImageNet-C Average Rank

No Adaptation 60.3 0.0 73.2 18.1 -

Full Fine-tuning 81.1 86.2 78.2 49.0 2.5
LIFT 80.5 86.44 76.2 43.6 4.25
LISA 80.2 81.6 77.4 48.2 4.0

Auto-RGN 82.5 88.7 77.1 48.6 2.25
L-MSA 81.3 92.7 79.1 47.4 2.0

Table 1: We report the test accuracy on the target distribution across four real-data tasks. Our results show that
L-MSA outperforms all other layer-wise fine-tuning methods, including Full Fine-tuning, LISA, LIFT, and
Auto-RGN. The best-performing method for each distribution shift is highlighted in bold.

The results, presented in Table 1, compare L-MSA against other fine-tuning approaches, including
Full Fine-tuning, LIFT, LISA, and Auto-RGN. Further details on the experimental setup can be found
in the Appendix A.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The "No Adaptation" baseline provides a reference point for model performance without fine-tuning.
L-MSA consistently outperforms other methods, achieving the highest test accuracy on CIFAR-Flip
and Living-17, along with the best overall ranking across tasks. Notably, we also observe that L-MSA
achieves these results using fewer epochs. Auto-RGN proposed in surgical fine-tuning(Lee et al.,
2022) also achieves a competitive average rank.

Overall, L-MSA’s strong performance highlights its effectiveness in selecting layers for fine-tuning
and utilizing the MSA method to optimize the chosen layer during subsequent fine-tuning. The results
emphasize L-MSA’s robustness and adaptability, demonstrating its ability to maintain high accuracy
across various types of distribution shifts.

4.4 EMPIRICAL ANALYSIS

To assess the effectiveness of our proposed
L-MSA method, we conducted an ablation
study comparing it against other fine-tuning ap-
proaches, specifically (i) Full Fine-tuning, (ii)
Full fine-tuning using MSA, and (iii) L-MSA
Metric + Adam. This comprehensive compari-
son aimed to evaluate not only the performance
of the L-MSA method but also to understand
how each approach influences model perfor-
mance. The average test accuracies across four
datasets are plotted in Figure 6. Figure 6: Ablation Study

The results indicate that L-MSA significantly enhances performance compared to other fine-tuning
approaches. Notably, the Full Fine-tuning + MSA method underperforms because it optimizes each
layer’s Hamiltonian individually for multiple steps, which is less effective in the context of full
fine-tuning. However, using only the L-MSA metric for layer-wise fine-tuning with Adam achieves
performance comparable to that of Full Fine-tuning, demonstrating the metric’s effectiveness in layer
selection and the advantages of layer-wise fine-tuning. Furthermore, L-MSA outperforms the L-MSA
Metric + Adam approach, emphasizing the benefits of utilizing MSA to optimize the selected layers.

5 LIMITATIONS AND FUTURE DIRECTIONS

While our layer-wise fine-tuning algorithm shows promising results, it is important to acknowledge
its limitations. Firstly, we select layers based on the approximated updated loss, which provides a
good estimation of the training loss. However, this does not always guarantee strong generalization to
the test data. Additionally, while layer-wise fine-tuning reduces the computational burden compared
to full fine-tuning, it may still demand substantial computational resources due to performing both
forward and backward propagation, especially in large-scale models.

Future work could explore periodically reselecting layers and adjusting the training configuration
after a certain training period, allowing for continuous optimization and more efficient resource use,
potentially enhancing performance over time.

6 RELATED WORK

6.1 LARGE-SCALE MODELS

The emergence of large-scale models has revolutionized various domains, ranging from natural lan-
guage processing to computer vision. These models, characterized by their extensive parameterization
and sophisticated architectures, have demonstrated remarkable capabilities in capturing complex
patterns and representations from vast amounts of data.

In natural language processing, models like BERT(Devlin et al., 2018) and GPT(Radford et al.,
2018) have set new benchmarks in a variety of tasks, such as language understanding and generation.
By leveraging vast text corpora, these models learn rich semantic representations, excelling in
various downstream tasks. Similarly, in computer vision, models like ResNet(He et al., 2016) and
EfficientNet(Tan & Le, 2019) have demonstrated unprecedented performance in image classification,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

object detection, and semantic segmentation tasks. By leveraging large datasets like ImageNet(Deng
et al., 2009b), these models learn hierarchical features essential for understanding visual content.

Despite their impressive performance, these models pose significant computational challenges,
particularly due to high training costs. Addressing these issues is a key research focus, with ongoing
efforts aimed at developing more efficient techniques for both training and inference.

6.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning (PEFT) techniques are designed to adapt pre-trained models by
selectively fine-tuning only a subset of parameters. In general, PEFT methods can be categorized into
three classes:

Prompt-based methods prioritize the optimization of input tokens or input embeddings while
keeping the model parameters frozen(Diao et al., 2022; Hambardzumyan et al., 2021; Lester et al.,
2021; Liu et al., 2023). Continuous and differentiable forms of prompt engineering (soft prompt) are
designed to ease optimization. These approaches typically incur the lowest training cost among the
various types mentioned. However, they do not effectively reduce back-propagation costs.

Adapter methods typically introduce an auxiliary module with much fewer parameters than the
original model. During training, updates are exclusively applied to the adapter module, allowing for
more efficient parameter fine-tuning(Diao et al., 2023; Houlsby et al., 2019; Hu et al., 2021). These
approaches require manual design and many of them also do not effectively reduce back-propagation
costs.

Selective methods focus on the optimization of a subset of the model’s parameters without the
addition of extra modules. For instance, Exclusively fine-tuning bias terms can yield competitive
performance comparable to fine-tuning the entire model(Zaken et al., 2021). Recently several
noteworthy techniques have been developed in this area, particularly through the concept of layer
freezing(Li et al., 2024; Liu et al., 2021). Compared with previous ones, Selective methods are more
closely related to our approach.

6.3 TRANSFER LEARNING

Previous research in transfer learning has extensively explored the efficacy of fine-tuning to adapt
pre-trained features to a target distribution(Oquab et al., 2014; Sharif Razavian et al., 2014; Yosinski
et al., 2014). To maintain the valuable information obtained during pre-training, numerous studies
have proposed various methods to regularize the fine-tuning process(Li et al., 2020; Shen et al.,
2021; Zhang et al., 2020). These methods aim to strike a balance between retaining the learned
features from the pre-trained model and adapting to the new target domain, thus ensuring effective
knowledge transfer. Notably, several works have demonstrated that freezing certain parameters within
the pre-trained model can significantly reduce overfitting during fine-tuning(Kirkpatrick et al., 2017;
Lee et al., 2019).

Contrary to most of the prevailing approaches, our work presents a counterintuitive finding: perform-
ing fine-tuning on the early layers can yield superior performance in specific scenarios. This intriguing
finding resonates with recent investigations in the field(Lee et al., 2022), further undermining the
prevailing notion that fine-tuning endeavors should predominantly concentrate on later layers, which
are assumed to be more intricately tied to task-specific features.

7 CONCLUSION

In conclusion, we have presented L-MSA, a novel layer-wise fine-tuning approach that integrates
a metric for layer selection with an optimization algorithm based on the Method of Successive
Approximations (MSA). This framework allows for efficient and targeted fine-tuning of individual
layers, significantly enhancing model performance while reducing computational costs. Our experi-
ments across various datasets and tasks validate the effectiveness of L-MSA, demonstrating that our
method consistently outperforms baseline techniques. By algorithmically determining which layers
to fine-tune, we provide a practical solution to the challenges posed by large-scale models. Overall,
our work advances the field of layer-wise fine-tuning, offering new insights into optimizing model
training and setting the stage for future research in this area.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement: Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section 4 and the Appendix A.2. All datasets that we used in the paper are published, and
they are easy to find in the Internet.

Ethics Statement: Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

REFERENCES

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018a.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. Optimization of deep linear neural
networks: Theory and algorithms. In International Conference on Learning Representations,
2018b.

Felix L Chernousko and AA Lyubushin. Method of successive approximations for solution of optimal
control problems. Optimal Control Applications and Methods, 3(2):101–114, 1982.

Nadav Cohen, Govind Menon, and Zsolt Veraszto. Deep linear networks for matrix completion—an
infinite depth limit. SIAM Journal on Applied Dynamical Systems, 22(4):3208–3232, 2023.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009a.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition,
2009b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, Yong Lin, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. arXiv preprint arXiv:2201.08531,
2022.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-domain-adapters:
Decoupling and injecting domain knowledge to pre-trained language models memories. arXiv
preprint arXiv:2306.05406, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Fine-tuning deep neural
networks in continuous learning scenarios. In Computer Vision–ACCV 2016 Workshops: ACCV
2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers,
Part III 13, pp. 588–605. Springer, 2017.

Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and data
augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18963–18974, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009-
08, University of Toronto, April 2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090, 2019.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. arXiv preprint arXiv:2002.11770,
2020.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1–29, 2018.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. Smartfrz: An
efficient training framework using attention-based layer freezing. arXiv preprint arXiv:2401.16720,
2024.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv preprint arXiv:2102.01386, 2021.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical
Theory of Optimal Processes. Wiley, New York, 1962.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI Blog, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. arXiv preprint arXiv:2008.04859, 2020.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better than
all: Revisiting fine-tuning strategy for few-shot learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 9594–9602, 2021.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. International Conference on Machine Learning, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: a
baseline for network adaptation via additive side networks. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp. 698–714.
Springer, 2020.

Ligeng Zhu, Lanxiang Hu, Ji Lin, and Song Han. Lift: Efficient layer-wise fine-tuning for large
models. 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Supplement to “L-MSA: Layer-wise Fine-tuning using the
Method of Successive Approximations”

Table of Contents

A Appendix 14

A.1 Theoretical Analysis . 14

A.2 Experimental Setup . 16

A.2.1 Datasets . 16

A.2.2 Models . 16

A.2.3 Pretraining . 17

A.2.4 Training Details . 17

A.2.5 Environment . 17

A.3 Additional Experimental Results . 17

A APPENDIX

A.1 THEORETICAL ANALYSIS

In this section, we provide detailed proofs for propositions in Section 3. For simplicity, we consider
the case where the batch size is 1. similar results can be derived for a larger batch size.

Proposition A.1 With given ρn, the updated loss after fine-tuning θn for one iteration is exactly
Ĵn(θn) in equation 8.

Proof: Given an input-label pair {x0, y}, with the inputs x0 ∈ Rd and the labels y ∈ Rd′
. Consider

an N -layer deep linear network

xn+1 = gn(xn, θn) = θnxn, n = 0, 1, · · · , N − 1.

with the input x0 = x and the loss function J = 1
2∥y − xN∥22.

Then we could compute the co-state

pn = θ⊤n · · · θ⊤N−1(y − xN), n = 0, 1, · · · , N.

In every iteration, our objective is to maximize the augmented Hamiltonian for a single layer, as
shown in equation 10. By taking the derivative of the Hamiltonian with respect to θ∗n and setting it to
zero, we can derive the updated parameters θ∗n as follows.

θ∗n = θn +
1

ρn
pn+1x

⊤
n = θn +

1

ρn
θ⊤n+1 · · · θ⊤N−1(y − xN)x⊤

n (13)

which demonstrates that the E-MSA method using the simplified augmented Hamiltonian is equivalent
to the gradient descent method with a learning rate of αn = 1

ρn
.

Then we can derive the updated loss as follows.

Jupdate =
1

2
∥βnθ

∗
nxn − y∥22 = G(n+1) (θ

∗
nxn)

= G(n+1)

(
xn+1 +

1

ρn
pn+1x

⊤
n xn

) (14)

which is exactly Ĵn(θn) in equation 8. □

Proposition A.2 The optimal ρ∗n to achieve the minimal updated loss is

ρ∗n =
∥βnrnxn∥2F

∥rn∥2F
(15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

and it satisfies ρ∗n ≥ 1
d′ ρ̂n for the ρ̂n in equation 9.

In addition, denote α̂n = 1
ρ̂n

and α∗
n = 1

ρ∗
n

. Let θ be the 1-dimensional vectorization of all parameters.
If θ ∼ Uniform(B(0, r)), ∀r, i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθα

∗
n = Eθα̂n.

Proof: To get the minimum loss that can be achieved after one iteration, we need to compute
the optimal ρn. Let βn = θN−1 · · · θn+1, and rn = pn+1x

⊤
n = θ⊤n+1 · · · θ⊤N−1(y − xN)x⊤

n for
n = 0, 1, · · · , N − 1. Thus, we have pn+1 = β⊤

n (y − xN) and θ∗n = θn + αrn.

Jupdate = Jn(θ
∗
n) =

1

2
∥βnθ

∗
nxn − y∥22

=
1

2
∥βnθnxn − y + αnβnrnxn∥22

(16)

By taking the derivative with respect to α and setting it to zero, we get that the optimal learning rate
α∗
n satisfies

0 = x⊤
n r

⊤
n β

⊤
n (βnθnxn − y + α∗

nβnrnxn) (17)
Therefore, to achieve the minimum loss, we should set

α∗
n =

tr(r⊤n rn)

tr(x⊤
n r

⊤
n β

⊤
n βnrnxn)

=
∥rn∥2F

∥βnrnxn∥22
(18)

where ∥·∥F is the Frobenius norm. Thus, we can derive that the optimal ρ∗n

ρ∗n =
1

α∗
n

=
∥βnrnxn∥22

∥rn∥2F
≥ ∥(y − xN)⊤βnrnxn∥22

∥(y − xN)∥22 · ∥rn∥2F
=

1

2J
·
∥p⊤n+1rnxn∥2F

∥rn∥2F
=

1

d′
ρ̂n (19)

Consider

γ =
∥(y − xN)⊤βnrnxn∥22
∥y − xN∥22∥βnrnxn∥22

=
∥(y − xN)⊤βnβ

⊤
n (y − xN)x⊤

n xn∥22
∥y − xN∥22∥βnβ⊤

n (y − xN)x⊤
n xn∥22

=
∥(y − xN)⊤βnβ

⊤
n (y − xN)∥22

∥y − xN∥22∥βnβ⊤
n (y − xN)∥22

(20)

To evaluate γ, without loss of generality, we can set ∥y − xN∥2 = 1. There exists an orthogonal
matrix Q ∈ Rd′×d′

such that y − xN = Q · e1, where e1 = (1, 0, · · · , 0)⊤ ∈ Rd′
. We denote

Q⊤βnβ
⊤
n Q = (bij)1≤i,j≤d′ . Then

γ =
∥e⊤1 Q⊤βnβ

⊤
n Qe1∥22

∥βnβ⊤
n Qe1∥22

=
∥e⊤1 Q⊤βnβ

⊤
n Qe1∥22

∥Q⊤βnβ⊤
n Qe1∥22

=
b211

b211 + b221 + · · ·+ b2d′1

(21)

∀r, if θ ∼ Uniform(B(0, r)), i.e., θ follows a uniform distribution in the neighborhood centered at
the origin with radius r, we have Eθγ = 1

d′ . As for the expectation of α∗, we have

α∗
n =

∥rn∥2F
∥βnrnxn∥22

= γ · ∥(y − xN)∥22 · ∥rn∥2F
∥(y − xN)⊤βnrnxn∥22

= γ · 2J · ∥rn∥2F
∥p⊤n+1rnxn∥2F

(22)

According to our definition

α̂n =
1

ρ̂n
=

2J

d′
· ∥rn∥2F
∥pTn+1rnxn∥2F

(23)

Therefore, we can get the result that
Eθα

∗
n = Eθα̂n

□

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 EXPERIMENTAL SETUP

In this section, we elaborate on the experimental setup used in our study, covering various aspects
such as datasets, models, pretraining, training details, and environment.

A.2.1 DATASETS

CIFAR-100(Krizhevsky, 2009): A widely used benchmark dataset consisting of 100 classes, with
600 images per class. The dataset is split into 50,000 training images and 10,000 test images, with
each image being a 32x32 RGB image.

CIFAR-10-C(Hendrycks & Dietterich, 2019): A corrupted version of CIFAR-10, containing 10
classes with various common corruptions applied to the original test set, making it ideal for evaluating
model robustness under real-world noisy conditions. The dataset has 5 levels of severity, and we
evaluate with the most severe level. We tune on 1000 images from CIFAR-10-C.

CIFAR-Flip(Lee et al., 2022): A synthetic task where the inputs are from the original CIFAR-10
dataset, but the target labels are flipped such that each label y is transformed to 9 − y (e.g., label
0 becomes label 9, label 1 becomes label 8, etc.). This task provides a controlled setting to assess
model performance when faced with adversarially shifted labels.

Living-17(Santurkar et al., 2020): A specialized dataset for classifying living organisms, including
animals and plants, with 17 distinct classes. It presents a challenging test case due to its domain-
specific nature, requiring the model to differentiate between fine-grained categories of organisms. For
Living-17, we tune on 850 images from the target distribution, evenly split between the 17 classes,
giving 50 images per class.

ImageNet-C(Kar et al., 2022): A corrupted version of the ImageNet dataset, where common
corruptions such as Gaussian noise, blur, and weather distortions have been applied to the validation
set. Similar to CIFAR-10-C, the dataset has 5 levels of severity, and we evaluate with the most severe
level. We tune on 5000 images from ImageNet-C, evenly split between classes, giving 5 corrupted
images per class.

A.2.2 MODELS

Here presents the models utilized in our experiments, highlighting their architectural characteristics
and parameter counts. We examine the Tiny version of DeiT(Touvron et al., 2021), Wide ResNet-28-
10, and ResNet-50(He et al., 2016), each selected for its unique strengths in handling various image
classification tasks. The number of parameters for each model is given in Table 2.

Model Number of Parameters
DeiT (Tiny) 5.7 million
Wide ResNet-28-10 36 million
ResNet-50 25.6 million

Table 2: Number of Parameters for Various Models

DeiT (Data-efficient Image Transformers - Tiny)(Touvron et al., 2021): The Tiny version of DeiT
is a transformer-based model designed for image classification. It utilizes attention mechanisms to
capture long-range dependencies in images and achieves high performance with less data through
efficient training strategies. In our experiments, it is used on the CIFAR-100 dataset for its ability to
generalize well across diverse visual features.

Wide ResNet-28-10(He et al., 2016): Wide ResNet-28-10 is a convolutional neural network (CNN)
characterized by its wider architecture, which incorporates residual connections to alleviate the
vanishing gradient problem. With 28 layers and a width factor of 10, it balances capacity and
efficiency, making it suitable for various image classification tasks. We apply Wide ResNet-28-10 to
the CIFAR-10-C and CIFAR-Flip datasets to assess its performance under corrupted and adversarially
shifted labels.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ResNet-50(He et al., 2016): ResNet-50 is a deeper CNN with 50 layers, providing greater capacity
for learning complex patterns. It is well-regarded for its robustness in both general and domain-
specific challenges. In our study, ResNet-50 is employed on the Living-17 and ImageNet-C datasets,
leveraging its strong feature extraction capabilities against corrupted data.

A.2.3 PRETRAINING

For the CIFAR-100 dataset, we utilize a DeiT-Tiny model pre-trained on ImageNet. For the CIFAR-
10-C and CIFAR-Flip datasets, we employ Wide ResNet-28-10 models that have been pre-trained on
CIFAR-10. For the ImageNet-C dataset, we use a ResNet-50 model pre-trained on ImageNet.

For the Living-17 dataset, we load a ResNet model pre-trained on ImageNet and train it on the source
data for 5 epochs. Initially, we tune only the head for 3 epochs, followed by fine-tuning all layers for
an additional 2 epochs, following the Linear Probing then Fine-tuning(LP-FT) strategy(Kumar et al.,
2022), while utilizing the Adam optimizer.

A.2.4 TRAINING DETAILS

Layer Configuration: For the DeiT model, each transformer block is treated as a layer, resulting in
a total of 12 layers. In the case of Wide ResNet-28-10 and ResNet-50, each block is considered a
layer, with the input convolutional layer (conv1) combined into the first layer and the output fully
connected layer treated as a separate layer. Consequently, Wide ResNet-28-10 consists of 3 blocks
plus the output layer, totaling 4 layers, while ResNet-50 comprises 4 blocks and the output layer,
resulting in 5 layers.

Fine-Tuning with Adam Optimizer: For all baseline methods, we fine-tune the model on the labeled
target data for a total of 10 epochs, with a batch size of 64. We explore 3 different learning rates:
1×10−3, 1×10−4, and 1×10−5 for all methods, except that for CIFAR-Flip, we adjust the learning
rates to 1× 10−1, 1× 10−2, and 1× 10−3 for last-layer fine-tuning.

Fine-Tuning with L-MSA: We fine-tune the model on the labeled target data for 10 epochs for
CIFAR-100 and 5 epochs for other datasets, using a batch size of 64 and setting the hyper-parameter
ρ to 1. To optimize the maximization Hamiltonian, we utilize the Adam optimizer with a learning
rate of 1× 10−4. The optimization process runs for a total of 5 iterations.

Validation Stategy: For all datasets and experiments, we implement early stopping based on the
accuracy observed on a held-out validation subset of the labeled target data. We report the test
accuracy corresponding to the epoch with the highest validation accuracy.

A.2.5 ENVIRONMENT

The experiments were conducted on a machine equipped with an NVIDIA GeForce RTX 3090 GPU,
which has 24GB of memory.

By providing comprehensive details of our experimental setup, we aim to facilitate transparency
and reproducibility in our study, enabling other researchers to validate and build upon our findings
accurately.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

We present the comparison of our L-MSA metric and RGN with the true training loss on four real-
world tasks: CIFAR-C, CIFAR-Flip, Living-17, and ImageNet-C. This comparison, omitted from
Section 4.2 due to space limitations, is now provided here. As noted previously, due to differences in
scale, where smaller values are preferred for both our metric and loss while larger values are preferred
for RGN, all values are normalized. A darker color indicates a better metric, suggesting that the
corresponding layer will be selected for fine-tuning.

Figure 7 illustrates that our L-MSA metric consistently identifies layers associated with improved
training loss, successfully highlighting those that enhance training outcomes. In contrast, RGN often
selects layers that do not match the optimal ones, making it less effective in comparison.

However, it is important to emphasize that our layer selection is primarily based on the approximated
updated loss, which provides a solid estimate of the training loss. While this metric offers valuable

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of L-MSA metric and RGN with the true training loss

insights for identifying effective layers, it is important to recognize that such an approach does not
always guarantee robust generalization to the test data.

18

	Introduction
	L-MSA: Layer-wise Fine-tuning using the Method of Successive Approximation
	Background: Pontryagin’s Maximum Principle and Method of Successive Approximation
	L-MSA: Layer-wise Fine-tuning via MSA

	Theoretical Analysis
	Experimental Results
	Baseline Methods
	Effectiveness of our metric
	Fine-tuning Results
	Empirical Analysis

	Limitations and Future Directions
	Related Work
	Large-Scale Models
	Parameter-Efficient Fine-Tuning
	Transfer Learning

	Conclusion
	Appendix
	Theoretical Analysis
	Experimental Setup
	Datasets
	Models
	Pretraining
	Training Details
	Environment

	Additional Experimental Results

