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ABSTRACT

Denoising diffusion probabilistic models (DDPM) have shown impressive perfor-
mance in various domains as a class of deep generative models. In this paper, we
introduce the Gaussian Mixture noise-based DDPM (GM-DDPM), which consid-
ers the Markov diffusion posterior as a Gaussian mixture model. Specifically, GM-
DDPM randomly selects a Gaussian component and then add the chosen Gaussian
noise, which can be demonstrated as more efficient way to perturb the signals into
a simple known distribution. We further define the reverse probabilistic model
as a parameterized Gaussian mixture kernel. Due to the intractability in calculat-
ing the KL divergence between Gaussian mixture models, we derive a variational
bound to maximize the likelihood, offering a concise formulation for optimizing
the denoising model and valuable insights for designing the sampling strategies.
Our theoretical derivation highlights that GM-DDPM only requires the inclusion
of a random offset in both the diffusion and reverse processes, which can be effi-
ciently implemented with just several lines of code. Furthermore, we present three
streamlined sampling strategies that interface with diverse fast dedicated solvers
for diffusion ordinary differential equations, boosting the efficacy of image repre-
sentation in the sampling phase and alleviating the issue of slow generation speed,
thereby enhancing both efficiency and accuracy. Extensive experiments on bench-
mark datasets demonstrate the effectiveness of GM-DDPM and its superiority over
the original DDPM.

1 INTRODUCTION

As famously pronounced by Albert Einstein, “Imagination is more important than knowledge.” This
maxim resonates not only in artistic and scientific realms but also within the realm of generative
models. Denoising diffusion probabilistic models (DDPMs) Sohl-Dickstein et al. (2015); Ho et al.
(2020); Yang et al. (2022) embody the potency of imagination in the domain of deep generative
models. They have achieved tremendous success in various domains, such as image generation
Dhariwal & Nichol (2021); Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022); Rom-
bach et al. (2022), image restoration Kawar et al. (2022); Wang et al. (2022); Fei et al. (2023), audio
and video synthesis Kong et al. (2020); Ho et al. (2022b), etc. These achievements have demon-
strated the versatility and potential of diffusion models. Unlike Generative Adversarial Networks
(GAN) Goodfellow et al. (2014), which rely on adversarial training, diffusion models harness the
power of diffusion processes to model the data distribution. This approach circumvents issues such
as mode collapse and training instability that are commonly associated with adversarial training.
Furthermore, diffusion models have been shown to generate high-quality samples in a stable and ef-
fective manner. These wonderful properties make diffusion models garner extensive attention from
both academia and industry.

Although diffusion models demonstrate stability in training and ability in generating high-quality
images, they possess certain limitations that hinder their performance. One such limitation is their
slow generation speed, primarily due to the need to traverse the whole reverse diffusion process,
which involves passing through the same U-Net-based generator network hundreds or even thou-
sands of times. To surmount this, there has been a growing interest in improving the generation
speed of diffusion models, leading to the development of various fast dedicated solvers for diffu-
sion ordinary differential equations (ODEs), such as DDIM Song et al. (2020), DPM-Solver Lu
et al. (2022). These solvers achieve improved efficiency, facilitating rapid, high-quality sample
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Figure 1: The illustration of the proposed GM-DDPM. In the forward process, a random offset µk

is chosen from Gaussian means with some distribution weights pθ(k|xt) for k ∈ [K].

generation. Another limitation of original diffusion models lies in their use of a single Gaussian
distribution, which restricts their expressive ability to capture complex image distributions. The
simplicity of a single Gaussian distribution may not be sufficient to represent the intricate structures
and variations present in real-world image data. To address this limitation, we draw inspiration from
natural diffusion processes and reexamine the modeling process of the original DDPM.

In natural diffusion processes, particle movement is subject to a random local force that typically
conforms to a single Gaussian distribution. Accordingly, the original DDPM incorporates a single
Gaussian noise in each timestep to enhance its expressive ability. In this paper, we propose a novel
paradigm of DDPM called the Gaussian Mixture noise-based DDPM (GM-DDPM), which considers
the Markov diffusion posterior as a Gaussian mixture model. Unlike the original DDPM Ho et al.
(2020), GM-DDPM replaces the single Gaussian noise with Gaussian mixture noise, introducing
multiple Gaussian components. Specifically, GM-DDPM randomly selects a Gaussian component
and then add the chosen Gaussian noise, which can be demonstrated as more efficient way to per-
turb the signals into a simple known distribution. We further define the reverse probabilistic model
as a parameterized Gaussian mixture kernel. Due to the intractability in calculating the KL diver-
gence between Gaussian mixture models, we derive a variational bound to maximize the likelihood,
offering a concise formulation for optimizing the denoising model and valuable insight for design-
ing the sampling strategies. Our theoretical derivation highlights that GM-DDPM only requires the
inclusion of a random offset in both the diffusion and reverse processes, which can be efficiently im-
plemented with just several lines of code. The random offset is similar to adding a “random global
force” in real-world diffusion, which can accelerate image degradation in the forward process, while
endowing the reverse process with enhanced image reconstruction ability.

Moreover, when considering the entire diffusion process from a macroscopic perspective and apply-
ing the central limit theorem, it is suggested that this “random global force” would still approximate
an additional single Gaussian distribution after a sufficient number of time steps. Therefore, we
present three streamlined sampling strategies that interface with diverse fast dedicated solvers for
diffusion ordinary differential equations, such as those proposed in Zhang & Chen (2022); Lu et al.
(2022); Dockhorn et al. (2022). This adaptability not only allows our model to apply Gaussian
mixture noise to enhance image representation in the training phase, but also solves the problem of
slow generation speed, thus improving both the efficiency and precision of diffusion models. In this
paper, we validate the effectiveness of GM-DDPM on benchmark datasets, demonstrating its supe-
riority over original diffusion models under the same experimental settings. Our work contributes to
pushing the boundaries of generative models and provides a promising direction for further research
in diffusion modeling and its applications. Our contributions are summarized as follows:

• The paper proposes a novel framework called GM-DDPM that extends the original DDPMs
by using Gaussian mixture noise to capture complex image distributions and enable more
expressive image representations. We derive a variational bound to maximize the like-
lihood, offering a concise formulation for optimizing the denoising model and valuable
insight for designing the sampling strategies.

• The paper presents three different sampling strategies that interface with diverse fast ded-
icated solvers for diffusion ODEs, boosting the efficacy of image representation in the
training phase and alleviating the issue of slow generation speed, thereby enhancing both
efficiency and accuracy.

2



Under review as a conference paper at ICLR 2024

• The paper validates the effectiveness of GM-DDPM on benchmark datasets and demon-
strates its superiority over the original DDPM.

2 RELATED WORK

The original DDPM was first introduced by Sohl-Dickstein et al. (2015) and subsequently simpli-
fied by Ho et al. (2020). In contrast to Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014; Nguyen et al., 2017; Creswell et al., 2018; Lee et al., 2021; Liang et al., 2022; Wang et al.,
2023), which rely on adversarial training, the original DDPM employs a diffusion process for data
distribution modeling. This method involves the incorporation of two Markov chains: a forward
diffusion chain and a reverse denoising chain. By introducing random perturbations at each time
step, the noise is gradually diminished, culminating in the creation of high-quality samples. Since
its inception, the diffusion model has been applied to various downstream tasks, leading to signif-
icant advancements in the field. Ho et al. (2022a) and Vahdat et al. (2021) proposed hierarchical
architectures to stabilize the training process of diffusion models and address memory cost issues.
Ramesh et al. (2022) introduced the diffusion model to text-to-image generation, achieving remark-
able success with the DALL-E2 model. Rombach et al. (2022) proposed latent diffusion models that
turn diffusion models into powerful and flexible generators by introducing cross-attention layers.
Saharia et al. (2022) demonstrated that increasing the parameter size of the language model has a
more significant impact on sample fidelity and image-text alignment than increasing the size of the
image model.

Furthermore, several methods have emerged to accelerate sampling, focusing on using faster nu-
merical ordinary differential equation (ODE) solvers (Song et al., 2020; Zhang & Chen, 2022; Lu
et al., 2022; Dockhorn et al., 2022). While previous research has addressed various aspects of dif-
fusion models, such as their application to different tasks and speed improvement techniques, the
standard Gaussian distribution has poor representation ability, necessitating the use of a more uni-
form distribution in the latent variable space. Our work builds upon these advancements, proposing
GM-DDPM to enhance the representation power of diffusion models and seamlessly adapt to fast
dedicated solvers for ODEs, while also contributing novel insights and methodologies to the field.

3 METHOD

In this section, we introduce the proposed Gaussian-mixture noise-based diffusion denoising prob-
abilistic models, which adds Gaussian-mixture noise to achieve more efficient diffusion process.
We then identify the detail of the forward diffusion process and the reverse denoising process. We
further discuss the efficiency of noise diffusion and denoising. Finally, we simplify the sampling
algorithm and utilize fast ODE solvers to accelerate the sampling phase.

Notation. Compared to the original diffusion model, the proposed GM-DDPM is more general to
add Gaussian mixture noise rather than Gaussian noise, i.e.,

ϵt ∼
K∑

k=1

ωkN (zt;µk, σ
2
kI), (1)

where ϵt denotes the superposition of K Gaussian densities, and ωk represents the weight of the
kth Gaussian distribution. These weights satisfy 0 ≤ ωk ≤ 1 and

∑K
k=1 ωk = 1. The concept

of Gaussian mixture noise can be likened to a process where we initially select a Gaussian density
based on the distribution weights {ω1, ..., ωK}, and subsequently, we introduce noise according to
the chosen Gaussian density.

3.1 THE FORWARD DIFFUSION PROCESS

In the forward diffusion process, the data x0 undergoes a step-by-step corruption with Gaussian
mixture noise in Eq. 1. More specifically, we define the Gaussian-mixture diffusion process as a
Markov chain that gradually adds Gaussian mixture noise to the data, resulting in xt =

√
αtxt−1 +√

βtϵt. At each timestep, this diffusion process adds noise drawn from a Gaussian distribution that
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is randomly chosen in {N (µ1, σ
2
1I), ...,N (µK , σ2

KI)} with corresponding probabilities ω1, ..., ωK .
The Bayesian inference for the posterior q is given by:

q(x1:T |x0) = q(xT )

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) =

K∑
k=1

ωkN (xt;
√
αtxt−1 +

√
βtµk, βtσ

2
kI).

(2)

The Gaussian-mixture diffusion process allows for closed-form sampling of xt at any timestep t.
Let αt =

∏t
i=1 αi, γt,i = βi

∏t
j=i+1 αj for i ∈ [1, t− 1], and γt,t = βt. Considering the iterates of

xt, we have:

xt =
√
αtx0 +

√√√√ t∑
j=1

γt,jσ2
ij
zt +

t∑
j=1

√
γt,jµij , (3)

where zt ∼ N (0, I), and ij ∈ [K] denotes that the noise added at the j-th timestep is drawn from
the ij-th Gaussian distribution N (µij , σ

2
ij
I).

In this paper, we consider a simplified form of the Gaussian mixture noise, in which each component
of the noise has equal standard deviation, i.e., σ1 = · · ·σK = 1. Then, we obtain

q(xt|x0) =
∑

i1,...,it∈[K]

ωi1 . . . ωitN (xt;
√
αtx0 +

t∑
j=1

√
γt,jµij ,

t∑
j=1

γt,jI). (4)

This shows that the Gaussian distributions at any arbitrary timestep t have the same standard
deviation. Moreover, if we define αt = 1 − βt, then αt =

∏t
i=1 αi =

∏t
i=1(1 − βi),

γt,j = βj

∏t
k=j+1 αk = βj

∏t
k=j+1(1 − βk). This yields γt =

∑t
j=1 γt,j = βt + αtγt−1 and

γt+1,j = αt+1γt,j .

Remark. In contrast to the original diffusion model, the proposed GM-DDPM introduces an ad-
ditional mean term µ, into the forward diffusion process. When K = 1 and µ = 0, GM-DDPM is
equivalent to the original DDPM. As such, our model represents a more general paradigm compared
to the original DDPM. This extended framework incorporates multiple parameterized Gaussian mix-
ture kernels, enhancing the expressiveness of diffusion models at each timestep.

3.2 THE REVERSE DENOISING PROCESS

The reverse denoising process is defined as a Markov chain with learned Gaussian mixture transi-
tions starting at p(xT ), as shown in Figure 1:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) =

K∑
k=1

pθ(k|xt)pθ(xt−1|xt, k),

pθ(xt−1|xt, k) = N (xt−1;µθ(xt, t, k),Σθ(xt, t, k)).

(5)

Training is performed by minimizing a variational lower bound (VLB) of the negative log-likelihood,
which is given by:

Lvlb = − log pθ(x0|x1) +
∑
t>1

Ei1:t−1|xt,x0

[
DKL(q(it|xt,x0, i1:t−1)||pθ(it|xt))

]
+
∑
t>1

Ei1:t|xt,x0

[
DKL(q(xt−1|xt,x0, i1:t)||pθ(xt−1|xt, it))

]
+DKL(q(xT |x0)||p(xT )).

(6)
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Note that, except for the first term, each term of Eq. (6) is a KL divergence between two distributions.
Also, DKL(q(xT |x0)||p(xT )) does not depend on θ, but it will be close to zero if the forward noising
process adequately destroys the data distribution. Thus, we need to focus on the second and third
terms in Eq. (6), which split the loss function of t timesteps into two parts so that they can be trained
independently.

To train a classifier that can determine which Gaussian distribution is selected from the entire Gaus-
sian mixture distribution given xt, we aim to minimize the second term. The goal of the third term is
similar to that of the original diffusion models (see Appendix A.3 for details), which is to train a de-
noiser. The posterior q(xt−1|xt,x0, i1:t) and prior pθ(xt−1|xt, it) can be expressed as Gaussians,
allowing the KL divergences to be calculated with closed-form expressions instead of high-variance
Monte Carlo estimates. Specifically, we have:

Ei1:t|xt,x0
DKL(q(xt−1|xt,x0, i1:t)||pθ(xt−1|xt, it))

=Eit|xt,x0

[
∥Ei1:t−1|xt,x0,it(µ(xt,x0, it|i1:t−1))

2σ2
t (it)

− µθ(xt, t, it)∥22 +
σ2
t

2σ2
t (it)

+ log
σt(it)

σt

]
+ C.

(7)

To represent the mean µθ(xt, t), we propose a specific parameterization motivated by the follow-
ing analysis. We can expand the above equation further by reparameterizing xt(x0, ϵ, i1, ..., it) =√
αtx0 +

√
γtϵ +

∑t
j=1

√
γt,jµij , i.e., x0 = 1√

αt

(
xt −

√
γtϵ−

∑t
j=1

√
γt,jµij

)
. We can then

obtain the expression of µ(xt,x0, it|i1:t−1) as:

µ(xt,x0, it|i1:t−1) =
1

√
αt

(
xt −

√
βtµit −

βt
√
γt

βt + αtγt−1
ϵ

)
. (8)

The above equations reveal that in order to predict Eq. (8) given xt, it is necessary for µθ to
satisfy certain conditions. As xt serves as an input to the model, we can opt for the following
parameterization of µθ(xt, t, it):

µθ(xt, t, it) =
1

√
αt

(
xt −

√
βtµit −

βt
√
γt

βt + αtγt−1
ϵθ(xt, t)

)
, (9)

where ϵθ is a function approximation intended to predict ϵ from xt. This enables us to train the
mean function approximator µθ either to predict µ or, by adjusting its parameterization, to predict
ϵ. At the same time, by using Langevin dynamics Welling & Teh (2011), we can gradually sample
the image from Gaussian mixture noise. In Appendix A.4, we present the comprehensive training
process (as outlined in Algorithm 1) and the sampling procedure (as described in Algorithm 2),
which can be efficiently implemented with just several extra lines of code.

3.3 THE EFFICIENCY OF DIFFUSION AND DENOISING
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Figure 2: PSNR in the diffusion process.

After presenting the framework of GM-DDPM,
we further conduct a comparative analysis with
the original diffusion model, highlighting the
superior efficiency of the noise diffusion and
denoising processes.

Specifically, we firstly perform a detailed anal-
ysis and comparison of the subjective quality
and objective PSNR metric of the images from
a low-level perspective in Fig. 2 and Fig. 3-(b).
Our GM-DDPM exhibits a faster degradation
of the images and a more significant decrease
in PSNR compared to the original DDPM. In
addition, in Fig. 3-(a), we showcase an ex-
periment conducted on the CIFAR-10 dataset
Krizhevsky et al. (2009) from a high-level perspective, where noise is added to the images at differ-
ent timesteps of the diffusion process. The resulting images are then fed into a pre-trained classifier,
and the classification accuracy is compared. Our method demonstrates a faster decline in accuracy
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(a) (b)

Figure 3: (a) Classification accuracy in the diffu-
sion process on CIFAR-10 dataset; (b) PSNR in
the diffusion process on AFHQ-cat dataset.

compared to the original DDPM, clearly indi-
cating the enhanced efficiency of our noise in-
troduction strategy. The ability of our method
to introduce noise more efficiently at each
timestep of the forward process allows us to
train a more powerful denoiser during the train-
ing phase. Consequently, during the sampling
process, we can leverage the corresponding re-
verse process to more rapidly remove the noise,
resulting in the generation of higher-quality im-
ages. This efficient noise removal capability
further enhances the overall performance and fidelity of our GM-DDPM in generating realistic and
high-quality images.

3.4 SIMPLIFY THE SAMPLING PROCESS

In the training phase(Algorithm 1 as shown in Appendix A.4), ϵθ represents the diffusion process in
our framework, while pθ(it|xt) serves as a classifier to distinguish the mean value of noise added
at each timestep. However, we encounter difficulties in directly training this classifier through ex-
periments. As T becomes larger, and noises with varying mean values are randomly added in each
round, it becomes challenging to distinguish the mean and order of noise addition in rounds 1 to
t − 1 solely based on xt. If the classifier is too simple, the accuracy of classification tends to be
directly sampled according to the probability of noise. On the other hand, if it is too complex, it
may considerably increase the network’s complexity and training difficulty, surpassing that of the
diffusion model training, rendering the problem meaningless. Therefore, finding an optimal balance
between classifier complexity and accuracy is crucial.

To overcome these challenges, we propose three different sampling strategies to simplify the sam-
pling process. Among them, the first strategy utilizes the original DDPM sampler Ho et al. (2020)
as a foundation. In Eq. 3, in addition to the terms involving x0 and the noise zt, which are similar
to the original DDPM, we introduce an additional term representing the mean value µij . From a
global perspective, we can know from the central limit theorem that it is equivalent to introducing a
Gaussian noise globally, augmenting the original DDPM in the training phase. This augmentation
enhances the model’s expressiveness by incorporating additional noise sources, and theoretically, it
can achieve better results by using the original DDPM sampler directly in the sampling phase. The
second strategy involves directly sampling the image removing the mean value µ. We have made
adjustments to the initialization sampling step based on the first strategy, enhancing its effectiveness
and adaptability. The third strategy involves randomly sampling the mean value µ according to its
probability distribution and then using standard sampling to generate the image (See Appendix A.4
for detailed algorithm).

These strategies circumvent the need to estimate the mean value µ, thereby enhancing the efficiency
of training and sampling, and improving the efficiency of the framework, which can be used for
various tasks in computer vision and machine learning. Furthermore, since the original DDPM
sampler can be used directly, our GM-DDPM seamlessly adapts to various fast dedicated solvers
Song et al. (2020); Lu et al. (2022), designed for solving diffusion ODEs. This adaptability not only
enhances the overall efficiency of our approach but also allows for smooth integration with existing
diffusion modeling techniques.

4 EXPERIMENTS

This section provides a detailed overview of the implementation details of our GM-DDPM and
evaluates its performance against existing methods. Firstly, we conduct a comprehensive comparison
with SOTA methods. And Next, we demonstrate the plug-and-play capability of our GM-DDPM
by utilizing fast dedicated solvers for diffusion ordinary differential equations (ODEs). Finally, we
perform an ablation analysis to explore the impact of different Gaussian means (µ) on the results of
our method.
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Table 1: CIFAR-10 and CIFAR-100 results.

Methods CIFAR-10 CIFAR-100

IS ↑ FID↓ IS ↑ FID↓
PixelCNN Van den Oord et al. (2016) 4.60 65.93 - -
SNGAN Miyato et al. (2018) 8.22 21.70 4.66 90.04
EBM Du & Mordatch (2019) 6.78 38.20 - -
NCSN Song & Ermon (2019) 8.87 25.32 5.63 110.99
NCSNv2 Song & Ermon (2020) 8.40 10.87 - -
ViTGAN Lee et al. (2021) 9.30 6.66 - -
Glow Kingma & Dhariwal (2018) 3.92 48.9 - -
DDPM Ho et al. (2020) 9.51 3.35 10.23 8.79

Ours(original) 9.51 2.97 10.55 7.89
Ours(removal µ) 9.56 3.00 9.56 7.80
Ours(random µ) 9.58 2.97 10.65 10.89

4.1 COMPARISON WITH SOTA METHODS

CIFAR-100

ImageNet-64

CIFAR-10

CelebA-64

Figure 4: Several images generated on CIFAR-10
(32 × 32), CIFAR-100 (32 × 32), ImageNet-64
(64× 64) and CelebA-64 (64× 64) datasets.

We compare the performance of the proposed
GM-DDPM with the original DDPM on sev-
eral benchmark datasets, including CIFAR-
10, CIFAR-100 Krizhevsky et al. (2009),
ImageNet-64 Deng et al. (2009); Van den Oord
et al. (2016), CelebA Liu et al. (2015), and
AFHQ-v2 Choi et al. (2020). For all datasets,
we set T = 1000. For the Gaussian mixture
noise, we set µ = λµbase, where µbase =
{0,+1,−1,+

√
2,−

√
2,+

√
3,−

√
3}, and λ is

a parameter that corresponds to different levels
of noise corruption introduced during the dif-
fusion process. Then, we set the probability ω
of different means of mixture Gaussian noise
as {0.4, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05}. For all
experiments in this section, we used a UNet
model architecture similar to that used by Ho
et al. (2020). We evaluated the models based
on several metrics: Inception Score (IS) Sali-
mans et al. (2016), Fréchet Inception Distance
(FID) Heusel et al. (2017), and Precision-Recall (P/R) Kynkäänniemi et al. (2019). Our experiment
is implemented on PyTorch with 8 Tesla v100 GPUs.

We conduct extensive experiments to compare the performance of GM-DDPM with six existing
generative models Van den Oord et al. (2016); Miyato et al. (2018); Du & Mordatch (2019); Song
& Ermon (2019); Ho et al. (2020), including the original DDPM Ho et al. (2020), on the CIFAR-10
and CIFAR-100 datasets Krizhevsky et al. (2009). Table 1 presents the results of this comparison,
where we evaluated the models using IS and FID metrics on both datasets. The last three rows
show the results of the three sampling strategies proposed in this work. Specifically, the third-to-last
row corresponds to the sampling strategy directly using the DDPM sampler (the first strategy), the
second-to-last row corresponds to the sampling strategy removing the mean value µ (the second
strategy), and the last row corresponds to the sampling strategy with random µ (the third strategy).
GM-DDPM consistently outperforms the existing generative models across both datasets, achiev-
ing higher IS and lower FID scores. This demonstrates the superior capability of GM-DDPM in
generating high-quality and diverse samples.

In addition to quantitative evaluations using IS and FID metrics, we also showcase the subjective
visual quality of the generated images produced by our GM-DDPM. We present a set of sample im-
ages from several benchmark datasets, as shown in Fig. 5 and Fig. 4. To be precise, in Figure 5, we
employ the sampling strategy involving random µ (the third strategy) to produce multiple 256×256
images using the AFHQ-v2 Choi et al. (2020) and CelebA Liu et al. (2015) datasets. Additionally,
Fig. 4 illustrates the generated image results utilizing distinct sampling strategies. The strategy
removing the mean value µ (the second strategy) is applied to the CelebA-64 Liu et al. (2015) and

7



Under review as a conference paper at ICLR 2024

AF
H
Q
-c
at

AF
H
Q
-d
og

AF
H
Q
-w

ild
C
el
eb

A

Figure 5: Several images generated on CelebA (256× 256) and AFHQ-v2 (256× 256) datasets.

ImageNet-64 Deng et al. (2009); Van den Oord et al. (2016) datasets, both of which have 64 × 64
resolutions. Meanwhile, the strategy that directly employs the DDPM sampler (the first strategy) is
employed with the CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009) datasets, which consist of
32 × 32 images. More results are presented in the Appendix A.5. The visual comparisons provide
compelling evidence of GM-DDPM’s ability to capture complex image distributions and generate
visually pleasing and diverse samples, emphasizing its potential for various image generation appli-
cations and distribution modeling tasks.

Overall, the experimental results provide strong evidence of the superiority of GM-DDPM over
existing generative models, highlighting its potential for various applications in image generation.

4.2 COMPARISON ON SOLVERS FOR DIFFUSION ODES

We conduct comprehensive analyses to assess the superiority of our GM-DDPM over the original
DDPM in experiments utilizing fast dedicated solvers for diffusion ODEs. Specifically, we compare
the results between DDPM and GM-DDPM using two popular solvers, DDIM Song et al. (2020)
and DPM-Solver Lu et al. (2022).

We first perform quantitative analysis using well-established evaluation metrics, including IS Sali-
mans et al. (2016), FID Heusel et al. (2017), and Precision-Recall (P/R) Kynkäänniemi et al. (2019),
to measure the quality and diversity of the generated images. The results, as shown in Table 2, con-
sistently demonstrate that our GM-DDPM outperforms the original DDPM across multiple datasets.
Our approach achieved higher IS scores and lower FID scores, indicating that GM-DDPM gener-
ates more diverse and higher-quality images. We also present more qualitative generated results in
the Appendix A.5; our GM-DDPM seamlessly utilizes these solvers and consistently demonstrates
higher visual fidelity, sharper details, and more diverse variations compared to the samples gen-
erated by the original DDPM. The images generated by GM-DDPM exhibit better preservation of
image content and structures, indicating that our approach more effectively models complex image
distributions.

These experimental findings highlight the effectiveness of our method in seamlessly utilizing solver
plug-and-play, significantly accelerating the sampling process. Moreover, our GM-DDPM consis-
tently generates more realistic and diverse images, all trained under the same experimental settings
as the original DDPM. Overall, these results confirm the superiority of our GM-DDPM over the
original DDPM and demonstrate its potential for a wide range of applications in image generation
and distribution modeling.

4.3 ABLATION STUDY

In addition to the main experiments, we conduct a series of ablation studies to further investigate
the performance of our GM-DDPM under different noise levels. In these ablation experiments, we
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Table 2: CIFAR-10 and CIFAR-100 results using the fast dedicated solvers for diffusion ODEs.

Methods CIFAR-10 CIFAR-100 AFHQ-cat AFHQ-dog

IS ↑ FID ↓ IS ↑ FID ↓ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑

DDIM DDPM 9.44 6.50 9.88 10.24 26.30 0.82 0.03 44.57 0.71 0.11
Ours 9.52 5.24 9.98 9.90 25.06 0.82 0.04 44.17 0.73 0.12

DPM-Solver DDPM 9.46 5.25 9.91 8.31 25.50 0.83 0.04 44.68 0.72 0.12
Ours 9.56 5.10 10.12 8.42 23.79 0.82 0.04 41.20 0.73 0.13

Table 3: Results of ablation study.

Methods CIFAR-10(lr=2e-4) CIFAR-10(lr=1e-4) CIFAR-100

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓
λ = 0 original DDPM 9.29 3.42 9.51 3.35 10.23 8.79

λ = 0.1
Ours(original) 9.20 3.60 9.49 3.31 10.16 8.78
Ours(removal µ) 9.25 3.68 9.50 3.29 10.08 8.93
Ours(random µ) 9.24 3.60 9.39 3.33 10.21 8.67

λ = 0.2
Ours(original) 9.34 3.47 9.51 2.97 10.12 8.30
Ours(removal µ) 9.39 3.33 9.56 3.00 10.23 8.36
Ours(random µ) 9.28 3.42 9.58 2.97 10.19 8.29

λ = 1.0
Ours(original) 9.31 4.39 9.57 4.32 10.55 7.89
Ours(removal µ) 9.33 4.37 9.55 4.55 10.84 7.80
Ours(random µ) 9.31 4.27 9.47 7.79 10.65 10.89

varify the noise levels added during the diffusion process and compared the results in terms of IS
Salimans et al. (2016) and FID Heusel et al. (2017) metrics.

As shown in Table 3, we analyze the IS and FID of our GM-DDPM on the CIFAR-10 and CIFAR-
100 datasets Krizhevsky et al. (2009) under different noise levels (λ ∈ {0, 0.1, 0.2, 1.0}), corre-
sponding to varying degrees of noise corruption during the diffusion process. When λ = 0, it is a
special case of GM-DDPM where the means µ of all Gaussian distributions are 0, which is equiva-
lent to the original DDPM. For each noise level, we train GM-DDPM and conduct sampling using
all of the sampling algorithms.

The results of the ablation study reveal several key insights. Firstly, for more complex datasets,
higher expressive power is often required, resulting in better results at higher λ values, such as
λ = 0.2 on the CIFAR-10 dataset and λ = 1.0 on the CIFAR-100 dataset. At each timestep in
the model, we are able to model the image more effectively, resulting in improved performance with
higher noise levels. However, it is important to note that there is a limit to how much we can increase
the noise level. Excessive noise levels can make the intermediate distribution network difficult to
train, leading to suboptimal results. Therefore, the appropriate Gaussian mixture noise can improve
the expressive ability of the model.

In summary, the ablation analysis on different noise levels reaffirms the effectiveness and robust-
ness of our proposed GM-DDPM. It showcases the model’s capability to adapt and perform well
under various noise conditions, further validating its potential for various image generation tasks
and distribution modeling.

5 CONCLUSION

In this paper, we presented GM-DDPM, a novel paradigm that extends original diffusion models
by incorporating Gaussian mixture noise, thereby enhancing their ability to capture complex image
distributions. By introducing multiple Gaussian components, GM-DDPM facilitates faster and more
effective degradation of image structure during the diffusion process. This augmentation, combined
with our proposed sampling strategies and the utilization of fast dedicated solvers, improves the
efficiency and accuracy of distribution estimation. Through extensive experiments on benchmark
datasets, we have demonstrated the effectiveness and superiority of our GM-DDPM. Our approach
enables more expressive image representations and achieves outstanding performance in terms of
image generation.
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A APPENDIX

A.1 THE ORIGINAL DDPM

We briefly review the background on the vanilla diffusion models Sohl-Dickstein et al. (2015); Ho
et al. (2020) which is proposed by Sohl-Dickstein et al. Sohl-Dickstein et al. (2015) and later
simplified by Ho et al. Ho et al. (2020).

A diffusion model encompasses two essential components: a forward diffusion process and a reverse
denoising process, both of which are defined as Markov chains. Firstly, given a data distribution
x0 ∼ q(x0), we define the diffusion process q which gradually destroys the data by adding Gaussian
noise with variance βt ∈ (0, 1) and produces latent codes x1 through xT over T timesteps Nichol &
Dhariwal (2021); Ho et al. (2022a); Yang et al. (2022); Croitoru et al. (2022). The diffusion process
q is shown as follows:

q(x1:T |x0) = q(xT )

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
αtxt−1, βtI).

(10)

where N (.) is a Gaussian distribution, and βt is noise variance which can be held constant as hy-
perparameters or learned by reparameterization Kingma & Welling (2013); Ho et al. (2020). Given
a large enough T and an apposite schedule of βt, the distribution of the final latent code xT is
close to a standard Gaussian distribution. Trough the recursive formulation (Eq. 10), the diffusion
process allows sampling xt at an arbitrary timestep t directly with the notation αt := 1 − βt and
ᾱt :=

∏t
i=0 αi,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (11)

And by sampling a Gaussian vector ϵ ∼ N (0, I), we can directly get a sample xt conditioned on
the input x0,

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ (12)

Similarly, the denoising reverse process is fixed to a Markov chain that gradually removes the noise
therein. We can utilize a neural network to approximate the reverse distribution q(xt−1|xt) which
depends on the data distribution as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (13)

And in this way, we can directly sample xT ∼ N (0, I) and utilize the estimated inverse distribution
pθ(xt−1|xt) to get image samples.
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The diffusion model can be trained by minimizing a variational lower bound (VLB) of the negative
log-likelihood, which is shown as follows,

Lvlb = Eq[− log pθ(x0|x1) +
∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) +DKL(q(xT |x0)||p(xT ))

(14)
where DKL is the Kullback-Leibler divergence between two probability distributions. In Eq. 14, we
can calculate the posterior q(xt−1|xt,x0) by using Bayes theorem,

q(xt−1|xt,x0) = N (xt−1; µ̄(xt,x0), β̄tI) (15)

where β̄t =
1−ᾱt−1

1−ᾱt
βt, and µ̄(xt,x0) is shown as follows,

µ̄(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (16)

To estimate Lvlb, we can utilize the posterior q (Eq. 15) and the prior pθ (Eq. 13) and parameterize
µθ(xt, t) in the prior. Since the distribution of noise is simple, we can firstly predict the added noise
ϵ and use Eq. 12 and Eq. 16 to derive,

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (17)

And the loss function of the network can be written as,

Lsimple = Et,x0,ϵ[||ϵ− ϵθ(xt, t)||2] (18)

At the same time, if we have trained a neural network to estimate the added noise, the recursive
formulation of the reverse denoising process can be derived in closed form using Langevin dynamics
Welling & Teh (2011),

xt−1 =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz (19)

where z ∼ N (0, I).

A.2 METRICS IN THIS PAPER

We evaluated the models based on several metrics: Inception Score (IS) Salimans et al. (2016),
Fréchet Inception Distance (FID) Heusel et al. (2017) and Precision-Recall(P/R) Kynkäänniemi
et al. (2019). IS measures the quality and diversity of generated images, while FID measures the
similarity between the generated images and real ones. To provide a thorough assessment of the gen-
erated samples’ quality and mode-coverage in comparison to the training datasets, we incorporated
precision-recall as an additional performance metric.

A.3 FORMULA DERIVATION IN THE METHODS SECTION

A.3.1 THE DERIVATION OF EQ. 4

Below is a derivation of Eq. 4, the gaussian distributions at an arbitrary timestep t in the forward
diffusion process. For z1, z2 ∼

∑K
k=1 ωkN (z;µk, σ

2
kI), we have

az1 + bz2 ∼
K∑
i=1

K∑
j=1

ωiωjN (z; aµi + bµj , (a
2σ2

i + b2σ2
j )I), (20)

which indicates that the addition of two Gaussian mixture noises will produce a more complex one.

For the GMN-based diffusion process, it also admits sampling xt at an arbitrary timestep t in closed
form. Let αt =

∏t
i=1 αi, γt,i = βi

∏t
j=i+1 αj for i ∈ [1, t − 1], and γt,t = βt, considering the
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iterates of xt, we have

xt =
√
αtxt−1 +

√
βtzt

=
√
αtαt−1xt−2 +

√
αtβt−1zt−1 +

√
βtzt

= ...

=
√
αtx0 +

t∑
i=1

√
γt,izi

=
√
αtx0 +

√√√√ t∑
j=1

γt,jσ2
ij
zt +

t∑
j=1

√
γt,jµij ,

(21)

where zt ∼ N (0, I), and ij ∈ [K] denotes the noise added at the j-the step is drawn from the ij-th
Gaussian distribution N (µij , σ

2
ij
I). Therefore, we have

q(xt|x0) =
∑

i1,...,it∈[K]

ωi1 . . . ωitN (xt;αtx0 +

t∑
j=1

√
γt,jµij ,

t∑
j=1

γt,jσ
2
ijI) (22)

In order to minimize the complexity of the Gaussian mixture distribution, we set the same standard
deviation for each Gaussian distribution, i.e., σ1 = · · ·σK = 1, then

q(xt|x0) =
∑

i1,...,it∈[K]

ωi1 . . . ωitN (xt;
√
αtx0 +

t∑
j=1

√
γt,jµij ,

t∑
j=1

γt,jI) (23)

This shows a same standard deviation between Gaussian distributions at an arbitrary timestep t.

A.3.2 DEFINITION OF HYPERPARAMETERS IN THE FORWARD DIFFUSION PROCESS

In Eq. 4, if we define αt = 1 − βt, then αt =
∏t

i=1 αi =
∏t

i=1(1 − βi), γt,j = βj

∏t
k=j+1 αk =

βj

∏t
k=j+1(1− βk). Therefore, we have

γt =

t∑
j=1

γt,j = βt +

t−1∑
j=1

βj

t∏
k=j+1

(1− βk) = 1− αt = βt + αtγt−1, γt+1,j = αt+1γt,j . (24)

A.3.3 THE DERIVATION OF EQ. 6

Below is a derivation of Eq. 6, the reduced variance variational bound for diffusion models.

Eq(x0) [− log pθ(x0)]

=Eq(x0)

[
− log

(∫
pθ(x0:T )dx1:T

)]
≤Eq(x0:T )

[
− log

pθ(x0:T )

q(x1:T |x0)

]

=Eq(x0:T )

− log pθ(xT )−
∑
t≥1

log pθ(xt−1|xt)

+ C1

=Eq(x0:T )

[
−
∑
t>1

Ei1:t−1|xt,x0
log

pθ(xt−1|xt)

q(xt−1|xt,x0, i1:t−1)
− log pθ(xT )− log pθ(x0|x1)

]
+ C2

(25)
where

pθ(xt−1|xt)

q(xt−1|xt,x0, i1:t−1)
= log

∑
it∈[K] pθ(it|xt)pθ(xt−1|xt, it)∑

it∈[K] q(it|xt,x0, i1:t−1)q(xt−1|xt,x0, i1:t)
(26)
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Therefore,

Eq(x0) [− log pθ(x0)]

≤Eq(x0:T )

[
− log pθ(x0|x1) +

∑
t>1

Ei1:t−1|xt,x0

[
DKL(q(xt−1|xt,x0, i1:t−1)||pθ(xt−1|xt))

]
− log pθ(xT )

]
+ C2

≤Eq(x0:T )

[
− log pθ(x0|x1) +

∑
t>1

Ei1:t−1|xt,x0

[
DKL(q(it|xt,x0, i1:t−1)||pθ(it|xt))

]
+
∑
t>1

Ei1:t|xt,x0

[
DKL(q(xt−1|xt,x0, i1:t)||pθ(xt−1|xt, it))

]
+DKL(q(xT |x0)||p(xT ))

]
+ C2

(27)
The last inequality is based on the fact that

DKL(q(x)||p(x)) ≤ DKL(q(x, y)||p(x, y)) = DKL(q(y)||p(y)) +DKL(q(x|y)||p(x|y)) (28)

A.3.4 THE DERIVATION OF EQ. 9

Below is a derivation of Eq. 9, the parameterization µθ(xt, t, it). Moreover, let γt−1 =∑t−1
j=1 γt−1,j , we have

q(xt−1|xt,x0, i1:t)

=
q(xt|xt−1,x0, i1:t)q(xt−1|x0, i1:t)

q(xt|x0, i1:t)

=
q(xt|xt−1, it)q(xt−1|x0, i1:t−1)

q(xt|x0, i1:t)

∝ exp

[
−
∥xt −

√
αtxt−1 −

√
βtµit∥22

2βt

]
· exp

[
−
∥xt−1 −

√
αt−1x0 −

∑t−1
j=1

√
γt−1,jµij∥22

2γt−1

]

=exp

[
−
∥xt−1 − (xt −

√
βtµit)/

√
αt∥22

2βt/αt

]
· exp

[
−
∥xt−1 −

√
αt−1x0 −

∑t−1
j=1

√
γt−1,jµij∥22

2γt−1

]

∝ exp

[
−∥xt−1 − µ(xt,x0, it|i1:t−1)∥22

2σ2
t

]
,

(29)
where

µ(xt,x0, it|i1:t−1)

=
1

βt/αt + γt−1

[
γt−1(xt −

√
βtµit)/

√
αt + βt/αt(

√
αt−1x0 +

t−1∑
j=1

√
γt−1,jµij )

]

=
1

βt + αtγt−1

[
γt−1

√
αt(xt −

√
βtµit) + βt(

√
αt−1x0 +

t−1∑
j=1

√
γt−1,jµij )

]

=
1

βt + αtγt−1

[
γt−1

√
αtxt + βt

√
αt−1x0 − γt−1

√
αtβtµit + βt

t−1∑
j=1

√
γt−1,jµij

]

σ2
t =

βt/αtγt−1

βt/αt + γt−1
=

βtγt−1

βt + αtγt−1
=

βtγt−1

γt
(if αt = 1− βt)

(30)
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Let µ = Eijµij =
∑K

i=1 ωkµk, and Σθ(xt, t, k) = σ2
t (k)I, thus we have

Ei1:t|xt,x0
DKL(q(xt−1|xt,x0, i1:t)||pθ(xt−1|xt, it))

=Ei1:t|xt,x0

[
log

σt(it)

σt
+

σ2
t + ∥µ(xt,x0, it|i1:t−1)− µθ(xt, t, it)∥22

2σ2
t (it)

]
=Eit|xt,x0

[
log

σt(it)

σt
+

σ2
t + Ei1:t−1|xt,x0,it∥µ(xt,x0, it|i1:t−1)− µθ(xt, t, it)∥22

2σ2
t (it)

]
=Eit|xt,x0

[
log

σt(it)

σt
+

σ2
t + ∥Ei1:t−1|xt,x0,itµ(xt,x0, it|i1:t−1)− µθ(xt, t, it)∥22

2σ2
t (it)

]
+ C

(31)

For brevity, let
µ̃(xt,x0, it) = Ei1:t−1|xt,x0,itµ(xt,x0, i1:t−1), (32)

then we can derive that
µ̃(xt,x0, it)

=Ei1:t−1|xt,x0,itµ(xt,x0, it|i1:t−1)

=

∫
q(i1:t−1|xt,x0, it)µ(xt,x0, it|i1:t−1)di1:t−1

=

∫
q(xt|x0, i1:t)q(i1:t−1)

q(xt|x0, it)
µ(xt,x0, it|i1:t−1)di1:t−1

=
γt−1

√
αtxt + βt

√
αt−1x0 − γt−1

√
αtβtµit

βt + αtγt−1
+

βt

∑t−1
j=1

√
γt−1,j

∫
q(xt|x0, it, ij)q(ij)µijdij

q(xt|x0, it)(βt + αtγt−1)

=
γt−1

√
αtxt + βt

√
αt−1x0 − γt−1

√
αtβtµit

βt + αtγt−1
+

βt

βt + αtγt−1

t−1∑
j=1

√
γt−1,j

∫
q(ij)q(xt|x0, it, ij)

q(xt|x0, it)
µijdij ,

(33)
and

σ̃2
t (it) = σ2

t + Ei1:t−1|xt,x0,it∥µ(xt,x0, it|i1:t−1)− µ̃(xt,x0, it)∥22

= σ2
t +

β2
t

(βt + αtγt−1)2

[
Ei1:t−1|xt,x0,it

∥∥∥∥∑t−1

j=1

√
γt−1,jµij

∥∥∥∥2
2

−∥∥∥∥Ei1:t−1|xt,x0,it

∑t−1

j=1

√
γt−1,jµij

∥∥∥∥2
2

]
≈ σ2

t +
β2
t

(βt + αtγt−1)2

[
γt−1Ek∥µk∥22 + [(

∑t−1

j=1

√
γt−1,j)

2 − γt−1]∥Ekµk∥22
]

(34)

To represent the mean µθ(xt, t), we propose a specific parameterization motivated by the follow-
ing analysis. We can expand the above equation further by reparameterizing xt(x0, ϵ, i1, ..., it) =√
αtx0 +

√
γtϵ+

∑t
j=1

√
γt,jµij , i.e., x0 = 1√

αt

(
xt −

√
γtϵ−

∑t
j=1

√
γt,jµij

)
, then we have

µ(xt,x0, it|i1:t−1)

=
γt−1

√
αtxt + βt

√
αt−1x0 − γt−1

√
αtβtµit + βt

∑t−1
j=1

√
γt−1,jµij

βt + αtγt−1

=
γt−1

√
αtxt +

βt√
αt

(
xt −

√
γtϵ−

∑t
j=1

√
γt,jµij

)
− γt−1

√
αtβtµit + βt

∑t−1
j=1

√
γt−1,jµij

βt + αtγt−1

=
1

√
αt

(βt + αtγt−1)xt − βt
√
γtϵ−

√
βt(βt + αtγt−1)µit + βt

∑t−1
j=1(

√
αtγt−1,j −

√
γt,j)µij

βt + αtγt−1

=
1

√
αt

(
xt −

√
βtµit −

βt
√
γt

βt + αtγt−1
ϵ

)
(35)
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Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0), t ∼ Uniform({1, ..., T})
3: ϵ ∼ N (0, I), i1, ..., it ∼ Uniform({1, ...,K})
4: xt =

√
αtx0 +

√
γtϵ+

∑t
j=1

√
γt,jµij

5: gradient descent step on

∇θ

(
γtβ

2
t

2σ̃2
tαt(βt+αtγt−1)2

∥ϵ− ϵθ(xt)∥2 − log pθ(it|xt)

)
6: until converged

Algorithm 2 Standard Sampling

1: xT ∼ N
(
0, I+ γTE[µkµ

⊤
k ]
)

, T
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else x = 0
4: it = argmaxk pθ(k|xt)

5: xt−1 = 1√
αt

(
xt −

√
βtµit −

βt
√
γt

βt+αtγt−1
ϵθ(xt, t)

)
+σ̃t(it)z

6: end for
7: Return x0

The above equation reveals that µθ must predict 1√
αt

(
xt −

√
βtµit −

βt
√
γt

βt+αtγt−1
ϵ
)

given xt. Since
xt is available as input to the model, we may choose the parameterization µθ(xt, t, it)

1
√
αt

(
xt −

√
βtµit −

βt
√
γt

βt + αtγt−1
ϵθ(xt, t)

)
, (36)

where ϵθ is a function approximation intended to predict ϵ from xt.

A.4 DETAILED ALGORITHM

We show the details of the algorithm in the paper. Algorithm 1 shows the complete training pro-
cedure. At the same time, by using Langevin dynamics Welling & Teh (2011), we can gradually
sample the image from Gaussian mixture noise in Algorithm 2. We alse propose three different sam-
pling strategies to simplify the sampling process. Among them, the first strategy, directly utilizes
the original DDPM sampler Ho et al. (2020) as a foundation (shown in Algorithm 3). In Eq. 3, in
addition to the terms involving x0 and the noise zt, which are similar to the original DDPM, we
introduce an additional term representing the mean value µij . From a global perspective, we can
know from the central limit theorem that it is equivalent to introducing a Gaussian noise globally,
augmenting the original DDPM in the training phase. This augmentation enhances the model’s ex-
pressiveness by incorporating additional noise sources, and theoretically, it can achieve better results
by using the original DDPM sampler directly in the sampling phase. The second strategy involves
directly sampling the image removing the mean value µ, which is shown in Algorithm 4. As we
can see, we have made adjustments to the initialization sampling step based on the first strategy,
enhancing its effectiveness and adaptability. And the third strategy involves randomly sampling the
mean value µ according to its probability distribution and then using standard sampling to generate
the image. The algorithm of the third strategy is shown in Algorithm 5.

A.5 MORE RESULTS

In this section, we show more subjective results generated by our GMN-DDPM.
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Algorithm 3 Sampling using original DDPM sampling method
1: xT ∼ N (0, I), T
2: for t=T,...,1 do
3: z ∼ N (0, I) if t > 1, else x = 0

4: xt−1 = 1√
αt

(
xt −

βt
√
γt

βt+αtγt−1
ϵθ(xt, t)

)
+ σ̃t(it)z

5: end for
6: Return x0

Algorithm 4 Sampling without the removal of µ

1: xT ∼ N
(
0, I+ γTE[µkµ

⊤
k ]
)
, T

2: for t=T,...,1 do
3: z ∼ N (0, I) if t > 1, else x = 0

4: xt−1 = 1√
αt

(
xt −

βt
√
γt

βt+αtγt−1
ϵθ(xt, t)

)
+ σ̃t(it)z

5: end for
6: Return x0

Algorithm 5 Sampling using random µ

1: xT ∼ N
(
0, I+ γTE[µkµ

⊤
k ]
)
, T

2: for t=T,...,1 do
3: z ∼ N (0, I) if t > 1, else x = 0
4: it is randomly sampled by probability
5: xt−1 = 1√

αt

(
xt −

√
βtµit −

βt
√
γt

βt+αtγt−1
ϵθ(xt, t)

)
+σ̃t(it)z

6: end for
7: Return x0

DDPM [2]

(FID =3.35)↓

Ours (original)

(FID =2.97)↓

Ours (removal )

(FID =3.00)

μ
↓

Ours (random )

(FID =2.97)

μ
↓

Figure 6: Several images generated on CIFAR-10 Krizhevsky et al. (2009) dataset (32×32) by using
the original DDPM and our GMN-DDPM.
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Ours (random )

(FID =10.89)

μ
↓

Ours (removal )

(FID =7.80)

μ
↓

Ours (original)

(FID =7.89)↓

DDPM [2]

(FID =8.79)↓

Figure 7: Several images generated on CIFAR-100 Krizhevsky et al. (2009) dataset (32 × 32) by
using the original DDPM and our GMN-DDPM.

(a) (b) (c) (d)

Figure 8: Several images generated on AFHQ-v2 Choi et al. (2020) dataset (256 × 256) by using
the original DDPM and our GMN-DDPM.

(b)(a)

(c) (d)

Figure 9: Several images generated on CelebA Liu et al. (2015) dataset (256 × 256) by using the
original DDPM and our GMN-DDPM.
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(a) (b) (c) (d)

Figure 10: Several images generated on AFHQ-v2 Choi et al. (2020) dataset (256 × 256) by using
the fast dedicated solvers for diffusion ODEs including DDIM Song et al. (2020) and dpm-solver
Lu et al. (2022).

DDIM (uniform)  /  50 timesteps DDIM (quad)  /  50 timesteps dpm-solver  /  20 timesteps

DDPM [2]

(FID =6.50)↓

Ours

(FID =5.24)↓

DDPM [2]

(FID =7.24)↓

Ours

(FID =4.73)↓

DDPM [2]

(FID =5.25)↓

Ours

(FID =5.10)↓

Figure 11: Several images generated on CIFAR-10 Krizhevsky et al. (2009) dataset (32 × 32) by
using the fast dedicated solvers for diffusion ODEs including DDIM Song et al. (2020) and dpm-
solver Lu et al. (2022).
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