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Abstract
In recent years, attention-based transformers
have achieved tremendous success across a
variety of disciplines including natural languages.
To better understand the sequential modeling
capabilities of transformers, there is a growing
interest in using Markov input processes to
study them. While previous research has
shown that transformers with two or more
layers develop an induction head mechanism
to estimate the bigram conditional distribution,
we find a surprising empirical phenomenon
that single-layer transformers can get stuck at
local minima, corresponding to unigrams. To
explain this, we introduce a new framework for a
principled theoretical and empirical analysis of
transformers via Markov chains. Leveraging our
framework, we theoretically characterize the loss
landscape of single-layer transformers and show
the existence of global minima (bigram) and
bad local minima (unigram) contingent upon the
specific data characteristics and the transformer
architecture. Further, we precisely characterize
the regimes under which these local optima occur.
Backed by experiments, we demonstrate that
our theoretical findings are in congruence with
the empirical results. Finally, we outline several
open problems in this arena. Code is available at
https://anonymous.4open.science/
r/Attention-with-Markov-A617/.

1. Introduction
Attention-based transformers have been at the forefront of
recent breakthroughs in a variety of disciplines, including
natural language processing (Vaswani et al., 2017; Radford
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and Narasimhan, 2018; Devlin et al., 2018). One of the key
workhorses behind this success is the attention mechanism,
which allows transformers to capture complex causal
structures in the data, thus rendering them with impressive
sequential modeling capabilities.

Given their success, there is tremendous interest and
active research in understanding the sequential modeling
abilities of transformers. Notably, there is a growing focus
on using Markov input processes to study transformers,
especially their in-context learning capabilities (Nichani
et al., 2024; Edelman et al., 2024; Bietti et al., 2023). These
studies reveal an interesting insight that, when the input is
a first-order Markov chain, transformers with two or more
layers develop an induction head mechanism to estimate
the in-context bigram conditional distribution. However, we
observe a surprising empirical phenomenon for single-layer
transformers, contrary to these findings: contingent on the
Markov state switching probabilities, the transformer can
get stuck at local minima, corresponding to the unigram
rather than the bigram (Fig. 1). This observation, in
view of our current limited understanding of transformer
models, thus prompts a fundamental question: Can we
systematically characterize the learning capabilities of
single-layer transformers with Markovian inputs?

To address this, in this paper we introduce a new framework
for a principled theoretical and empirical analysis of trans-
formers via Markov chains. Leveraging our framework, we
characterize the loss landscape of single-layer transformers
and prove the existence of bad local minima and global min-
ima corresponding to the unigram and bigram, respectively.
Further, we show that the presence of these local optima is
contingent upon the Markov state switching probabilities
and the weight-tying of the transformer, and precisely char-
acterize the regimes under which this occurs. Together, our
analysis reveals an interesting interplay between the data-
distributional properties, the transformer architecture, and
the final model performance for single-layer transformers
with Markov chains.

In summary, we make the following contributions:

• We provide a novel framework for a precise theoretical
and empirical study of transformers via Markov chains
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(Sec. 3).

• We characterize the loss landscape of single-layer
transformers with first-order Markov chains, highlight-
ing the effect of the data distribution and the model
architecture (Sec. 4).

• We show that the Markov switching probabilities and
weight-tying play a crucial role in the presence of local
optima on loss surface and precisely characterize the
said conditions (Thms. 2 and 3).
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Figure 1: Single-layer transformers (ℓ = 1) get stuck at
local minima, corresponding to the unigram, when the input
is a first-order Markov chain with switching probabilities
p = 0.5 and q = 0.8 (Fig. 2b). However, deeper models
escape to global minima corresponding to the bigram.

Our main findings and observations are:

• We prove that weight tying can introduce bad local
minima for single-layer transformers when Markovian
switching is greater than one (Thm. 2). Removing the
tying, however, solves the issue (Thm. 3).

• When the Markovian switching is less than one, we
empirically observe the model always converges to the
global minima irrespective of the weight tying (Fig. 3).

• Interestingly, transformers with depth two and beyond
always converge to the global minima irrespective of
the weight tying and switching (Fig. 1).

Notation. Scalars are denoted by italic lower case letters
like x, y and Euclidean vectors and matrices are denoted
by bold ones x,y,M , etc. We use ∥ · ∥ to denote the
ℓ2-norm for Euclidean vectors and Frobenius norm for ma-
trices. [k] ≜ {1, . . . , k}, and for a sequence (xn)n≥1, de-
fine xm

k ≜ (xk, . . . , xm) if k ≥ 1 and (x1, . . . , xm) oth-
erwise. For z ∈ R, the sigmoid σ(z) ≜ 1/(1 + e−z) and

ReLU(z) ≜ max(0, z). For events A and B, P (A) denotes
the probability of A whereas P (A | B) the conditional prob-
ability. Let (x, y) be a pair of discrete random variables on
[k]× [k] with the probability mass function (pmf) of x being
px = (p1, . . . , pk) ∈ [0, 1]k. Then its Shannon entropy
is defined as H(x) = H(px) ≜ −

∑
i∈[k] pi log pi, and

the conditional entropy H(y|x) ≜ H(x, y) − H(x). The
entropy rate of a stochastic process (xn)n≥1 is defined as
limn→∞ H(xn

1 )/n. Finally, for p ∈ (0, 1), the binary en-
tropy function h(·) is defined as h(p) ≜ H(p, 1 − p) =
−p log p− (1− p) log(1− p).

2. Background
We describe the transformer architecture and the Markovian
input process.

2.1. Transformers

For the ease of exposition, we detail a single-layer trans-
former with a single-head attention, ReLU non-linearity,
and input vocabulary X of size 2, i.e. X = {0, 1}. We omit
the layer norm since its influence is marginal in the settings
we consider (Sec. 4). Let {xn}Nn=1 ∈ {0, 1}N be an input
sequence of length N . Then for each n ∈ [N ], the trans-
former operations are mathematically given by (Fig. 2a):

xn = xn e1 + (1− xn) e0 + p̃n ∈ Rd, (Embedding)

yn = xn +WO

∑
i∈[n]

attn,i ·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (FF)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ̄(x
n
1 ) ≜ Pθ̄ (xn+1 = 1 | xn

1 ) = σ(logitn) ∈ (0, 1).
(Prediction)

Here θ̄ ≜ (e1, e0, {p̃n} . . . , b,a) denotes the full list of
the transformer parameters. d is the embedding dimension,
e1 and e0 in Rd are the token-embeddings corresponding to
xn = 1 and xn = 0 respectively, and p̃n is the (trainable)
positional encoding. We have matrices WO ∈ Rd×m and
W V ∈ Rm×d, and the attention weights attn,i ∈ (0, 1)
are computed using the query and key matrices (§ A).
W 2 ∈ Rd×r and W 1 ∈ Rr×d are the weight matrices in
the FF layer, whereas a ∈ Rd and b ∈ R are the weight and
bias parameters for the linear layers. For a multi-layer trans-
former, we apply the successive attention and feed-forward
layers multiple times before the final linear layer. Finally,
we compute the probability for the symbol 1 using the logits:
fθ̄(x

n
1 ) ≜ Pθ̄ (xn+1 = 1 | xn

1 ) = σ(logitn) ∈ [0, 1]. Note
that a single symbol probability suffices as the vocabulary
is binary.

Loss. The parameters θ̄ are trained using the next-token
prediction loss between the predicted probability fθ̄(x

n
1 )
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and the corresponding ground truth symbol xn+1 across all
the positions n ∈ [N ]:

L(θ̄) ≜ − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ̄(xn
1 )+

(1− xn+1) · log(1− fθ̄(x
n
1 ))],

(1)

where the expectation is over the data distribution of
the sequence {xn}Nn=1. In practice, it is replaced by the
empirical averages across the sequences {xn}Nn=1 sampled
from the corpus, with stochastic optimizers like SGD or
Adam (Kingma and Ba, 2015) used to update the model
parameters.

2.2. Markov chains

We model the input as a first-order Markov chain, i.e. a
Markov chain with (order) memory m = 1. For these
processes, the next state is influenced only by the current
state and none of the past:

P ij ≜ P (xn+1 = j | xn = i)

= P
(
xn+1 = j | xn = i, xn−1

1 = in−1
1

)
,

for any i1, . . . , in−1, i, j ∈ X , n ≥ 1. Here the Markov
kernel P = (P ij) governs the transition dynamics of the
process: if π(n) ∈ [0, 1]|X | denotes the probability law
of xn at time n, then π(n+1) = π(n) · P . Of particular
interest to us in this paper is the kernel P (p, q) ≜ [1 −
p, p ; q, 1− q] on the binary state space with the switching
probabilities P 01 = p and P 10 = q, for p, q ∈ (0, 1).
Fig. 2b illustrates the state transition diagram for this kernel.
Here we refer to the sum p + q as the switching factor.
We denote a first-order binary Markov chain (xn)n≥1 with
the transition kernel P (p, q) and starting with an initial
law π(1) as (xn)n≥1 ∼ (π(1),P (p, q)). When the initial
distribution is understood from context, we simply write
(xn+1 | xn)n≥1 ∼ P (p, q). For this process, the entropy
rate equals H(xn+1|xn) =

1
p+q (q h(p)+ p h(q)), which is

independent of n.

Stationary distribution. A stationary distribution of a
Markov chain is a distribution π on X that is invariant to
the transition dynamics, i.e. if π(n) = π, then we have
π(n+1) = πP = π and consequently, π(m) = π for all
m ≥ n. Also referred to as the steady-state distribution, its
existence and uniqueness can be guaranteed under fairly gen-
eral conditions (Norris, 1997), and in particular for P (p, q)
when p, q ̸= 0, 1. For P (p, q), the stationary distribution
is given by π(p, q) ≜ (π0, π1) = 1

p+q (q, p). The higher
the flipping probability q, the higher the likelihood for the
chain to be in the state 0 at the steady state. Similarly for
the state 1. We can verify that π indeed satisfies πP = π.
For brevity, we drop the dependence on (p, q) and simply
write π and P when the parameters are clear from context.

3. Framework: Transformers via Markov
chains

We present our mathematical framework for a principled
analysis of transformers via Markov chains. In this paper
we focus on first-order Markovian data and single-layer
transformers though our framework readily generalizes to
higher orders and deeper architectures (Sec. 4.3).

Data. We assume that the vocabulary X = {0, 1} and the
input data {xn}Nn=1 ∼ (π(p, q),P (p, q)), for some fixed
sequence length N ≥ 1 and (p, q) ∈ (0, 1)2. Recall that
p+q is the switching factor. The parameters p and q provide
a tractable mechanism to control the input data, which plays
a crucial role in transformer learning.

Model. We consider a single-layer transformer with a single-
head attention, without layer norm. As the input is binary,
the Embedding layer can be simplified to

xn = xn e+ pn, (Uni-embedding)

where e ≜ e1 − e0 is the embedding vector and pn ≜ e0 +
p̃n is the new positional encoding. Note that xn ∈ {0, 1}
and hence the embedding is either e + pn or just pn de-
pending on xn. The other layers are the same as in Sec. 2.1:

xn ∈ {0, 1} Uni-embedding−−−−−−−−−−→ xn
Attention−−−−−−→ yn,

yn
FF−−→ zn

Linear−−−−→ logitn
Prediction−−−−−−−→ fθ̄(x

n
1 ).

(2)

Let θ̄ ≜ (e, {pn}Nn=1, . . . , b,a) ∈ RD denote the joint list
of the parameters from all the layers, with D being the
total dimensionality. In training large language models, it
is a common practice to tie the embedding and linear layer
weights, i.e. a = e, referred to as weight tying (Press
and Wolf, 2017). In this case, the list of all parameters,
θ = (e = a, {pn}Nn=1, . . . , b) ∈ RD−d, since a is no
longer a free parameter. We analyze both weight-tied and
general cases.

Loss. We consider the cross-entropy loss L from Eq. (1).

Objective. Towards understanding the phenomenon in
Fig. 1, we utilize the aforementioned framework to study
single-layer transformers. In particular, our objective is to
address the following question:

Can we characterize the loss landscape of singe-
layer transformers when the input is Markovian?

To build intuition about the loss surface, we first examine its
global minima and then provide a detailed characterization
of the loss landscape, focusing on local optima, in Sec. 4.
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(a) The transformer model with binary input data: for each xn
1 , the

next-bit prediction probability is fθ̄(x
n
1 ) = Pθ̄ (xn+1 = 1|xn

1 ).
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(xn+1 | xn)n≥1 ∼ P (p, q) ≜

[
1− p p
q 1− q

]
,

P ij = P
(
xn+1 = j | xn = i

)
, i, j ∈ {0, 1}.

~w�

(b) State transition diagram and Markov kernel for a first-order
Markov chain P (p, q) with flipping probabilities P 01 = p and
P 10 = q.

Figure 2: Analysis of transformers via Markov chains.

3.1. Single-layer Transformers: Global minima

Since the loss L in Eq. (1) is the cross-entropy loss, it
achieves its minimum when the predictive probability
matches the Markov kernel (Lemma 1): fθ̄(x

n
1 ) =

P (xn+1 = 1 | xn). In other words, this occurs when the
transformer outputs the correct transition probabilities. This
raises a natural question: can a single-layer transformer
exactly represent a first-order Markov chain? Intuitively
speaking, this seems plausible since the transformer, even
with access to the full past information xn

1 at each n ∈ [N ],
can rely solely on the current symbol xn (Sec. 2). The
following result confirms this intuition, showing that such
a realization is indeed a global minimum for the loss L(·):

Theorem 1 (Global minimum). Let the input sequence
be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for some fixed (p, q) ∈
(0, 1)2 and θ ∈ RD−d be the transformer parameters for
weight-tied case. Then for all (p, q), there exists a θ⋆ ∈
RD−d with an explicit construction such that it is a global
minimum for the population loss L(·) in Eq. (1) and its
prediction matches the Markov kernel, i.e.

(i) L(θ) ≥ L(θ⋆) for all θ ∈ RD−d, and
(ii) Pθ⋆

(xn+1 = 1 | xn
1 ) = P (xn+1 = 1 | xn), the

Markov kernel or the bigram.

Further, θ⋆ satisfies:

(iii) L(θ⋆) = H(xn+1|xn), the entropy rate of the Markov
chain.

(iv) ∇L(θ⋆) = 0, i.e. θ⋆ is a stationary point.

In addition, the same result holds for the non-weight-tied
case when the parameters are in RD.

Remark 1. In fact, there exist many such global minima as
highlighted in the proof (§ B).

Proof sketch. The key idea here is to show that any
θ satisfying fθ(x

n
1 ) = P (xn+1 = 1 | xn) is a global

minimum and is a stationary point with the loss being the
entropy rate (Lemmas. 1 and 2). To construct such a θ, we
utilize the fact the Markov kernel is only a function of xn

and thus we can ignore the past information in the Attention
layer using only the skip. We defer the full proof to § B.

Empirical evidence for learning the Markov kernel. As
demonstrated in the proof above, a canonical way to realize
the Markov kernel by the single-layer transformer is to rely
only on the current symbol xn and ignore the past in the At-
tention layer. We now empirically confirm this fact. For our
experiments, we use the single-layer transformer (Table 1)
and report the results averaged across 5 runs and correspond-
ing to the best set of hyper-parameters after a grid search
(Table 2). In particular, for p = 0.2, q = 0.3, and d = 4,
we generate sequences {xn}Nn=1 ∼ (π(p, q),P (p, q)) of
length N = 1024 and train the transformer parameters θ
(weight-tied) to minimize the cross-entropy loss in Eq. (1).
At inference, we interpret the attention layer and observe
that the relative magnitude of the attention contribution to
the final attention output yn is negligible, i.e. the ratio
∥WO

∑
i∈[n] attn,i · W V xi∥/∥yn∥ ≈ 0.01. Hence, the

attention contribution can be neglected compared to the
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skip-connection, i.e. yn ≈ xn. Using this approximation,
in § D we derive a formula for the final predicted proba-
bility fθ(x

n
1 ) as it is learnt by the network. This formula

reveals interesting insights about the learnt parameters of
the transformer:

• Constant embeddings. The positional embedding
pn is constant across n, i.e. it is independent of the
sequence position, reflecting the fact that it has learnt
to capture the homogeneity of the Markovian chain
just from the data.

• Low-rank weights. The weight matrices are all ap-
proximately rank-one; while it is not fully clear why
the training algorithm converges to low rank solutions,
they do indeed provide a canonical and simple way to
realize the Markov kernel, as illustrated in § D.

Further, we show in § D that plugging in the numerical
values obtained from the average of five runs, the probability
given by our formula matches the theory, i.e. the model
learns to correctly output the Markov kernel probabilities.
Indeed, Fig. 3b shows that the test loss of the model
converges to the theoretical global minimum (Thm. 1), the
entropy rate of the source, corresponding to the bigram,
when p = 0.2 and q = 0.3 (p + q < 1). We likewise
observe a similar phenomenon without weight tying. For
the prediction probability, we focus on the zero positions
n = nk such that xnk

= 0. Fig. 3d shows that irrespective
of the index k and the past xnk−1

1 , if the current bit xnk
is

0, the model correctly predicts the probability for the next
bit xnk+1 being 1, which equals p theoretically (Fig. 2b).
More precisely, fθ(xnk−1

1 , xnk
= 0) = p for all xnk−1

1 and
k, in line with property (ii) of Thm. 1. A similar conclusion
holds with xnk

= 1 and prediction probability q. This
indicates that the model has learned to recognize the data as
first-order Markovian, relying solely on xn to predict xn+1.

While Thm. 1 and above empirical results highlight the
presence of global minima on the loss surface, they does not
address local optima, as empirically shown in Fig. 1. We
precisely address this in the next section and analyze the
loss landscape in terms of the local optima.

4. Single-layer Transformers: Local Optima
In this section we present our main results about the loss
landscape of single-layer transformers in terms of local
optima. In particular, we prove the existence of bad lo-
cal minima and saddle points on the loss surface (Thms. 2
and 3), in addition to the global minima discussed above
(Thm. 1). Interestingly, the presence of these local optima
is influenced by two key factors: switching factor of the
Markov chain and the weight tying of the transformer, high-
lighting the intricate interplay between the input data and

the model architecture. First, we present the results for the
weight tying scenario.

4.1. Weight tying: bad local minima

When the embedding and linear layers are tied, i.e. e = a,
our analysis reveals the following surprising fact: if the
switching factor p + q is greater than one, there exist
bad local minima θπ ∈ RD−d, where the prediction
probability fθπ (·) is the marginal stationary distribution π
(unigram), disregarding the past and the present information
(Thm. 2 and Fig. 3c). Now we state the result formally. Let
L⋆ ≜ L(θ⋆) denote the global minimal loss from Thm. 1.

Theorem 2 (Bad local minimum). Let the input sequence be
{xn}Nn=1 ∼ (π(p, q),P (p, q)) for a fixed (p, q) ∈ (0, 1)2

and the transformer parameters be weight-tied. If p+q > 1,
there exists an explicit θπ ∈ RD−d such that it is a bad
local minimum for the loss L(·), i.e.

(i) there exists a neighborhood B(θπ, r) with r > 0
such that L(θ) ≥ L(θπ) for all θ ∈ B(θπ, r), with
L(θπ) > L⋆.

Further, θπ satisfies:

(ii) Pθπ (xn+1 = 1 | xn
1 ) = P (xn+1 = 1) = π1, the

marginal distribution or the unigram.
(iii) L(θπ) = H(xn+1) = H(π), the entropy of the

marginal.
(iv) ∇L(θπ) = 0, i.e. θπ is a stationary point.

Remark 2. Since L(θπ) = H(xn+1) and
L⋆ = H(xn+1|xn), the optimality gap L(θπ) − L⋆ =
H(xn+1) − H(xn+1|xn) = I(xn;xn+1) ≥ 0, where
I(xn;xn+1) is the mutual information between xn and
xn+1 (Cover and Thomas, 2006). It equals zero if and
only if xn and xn+1 are independent, which happens for
p+ q = 1 (since P (xn+1 = 1 | xn) = xn(1− p− q) + p).

Proof sketch. The main idea behind constructing θπ is that
if we set e = a = 0 in the Linear layer, the model ignores
the inputs all together and outputs a constant probability,
and in particular π1 by choosing the bias b appropriately,
i.e. fθπ (x

n
1 ) = π1 for all xn

1 , n. For this θπ it’s easy to
show that L(θπ) = H(π) and that it’s a stationary point.
Further we show that the Hessian at θπ follows the structure[
Hα 0
0 0

]
where Hα ≻ 0 when p + q > 1, and that it

implies the local minimality of θπ . We defer the full proof
to § B.4.

Empirical evidence for bad local minima. The proof of
Thm. 2 above highlights that when the linear weight a is
zero in θ, it serves as a bad local minimum. While this might
seem as a theoretical anamoly, we empirically confirm that
it is not. Specifically, we use the same weight-tied setting
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Figure 3: Effect of weight tying on test loss and predicted probabilities fθ(xnk
1 ) for zero indices {nk}100k=1 such that xnk

= 0.
For (a),(c): p = 0.5, q = 0.8. With weight tying, the loss converges to a local minimum, and the predicted probability is
π1 = p/(p+ q). Without weight tying, we predict the correct probability p and converge to a global minimum. For (b),(d):
p = 0.2, q = 0.3. The test loss always converges to a global minimum, and the predicted probability is p.
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as before but with the flipping probabilities p = 0.5 and
q = 0.8 instead, we observe that the magnitude of the
vector a is approximately 0.01 whereas that of zn is 4.0
in the Linear layer. Thus, ⟨a, zn⟩ ≈ 0.04 , while the bias
term b ≈ −0.4 implying σ(⟨a, zn⟩+ b) ≈ σ(b). Hence the
final prediction returned by the network only depends on
the bias of the linear layer, totally independent of the input
sequence xN

1 . Fig. 3c illustrates this fact and shows that the
model always predicts the stationary probability π1 at all
positions in the sequence, independent of the input. Here
we plot for the indices k such that xnk

= 0 but we observe
the same phenomenon for xnk

= 1, i.e. fθ(xn
1 ) = π1 for

all xn
1 , n, thus verifying property (ii) of Thm. 2. Similarly,

Fig. 3a demonstrates that the model test loss converges to
the entropy of the stationary distribution H(π), the unigram
loss, instead of the global minimum L⋆ given by the entropy
rate of the source (Thm. 2 - (iii) ). Fig. 4 illustrates for a
wider range of (p, q) ∈ (0, 1)2.

Interpreting global and local minima. Thm. 2 should be
interpreted in the light that it guarantees the existence of
bad local minima only for p + q > 1 (in sync with the
experiments, Fig. 4 ). While there could exist such minima
even when p + q < 1, we empirically observe that the
model always converges to the global minimum in this
scenario (Fig. 3b). Likewise, while Thm. 1 guarantees the
existence of global minima for all (p, q) and in particular
for p+ q > 1, empirically the model often converges to bad
local minima as highlighted above (Fig. 3a).

4.2. Without weight tying: saddle points

Now we let the token-embedding e ∈ Rd and the linear
weight a ∈ Rd be independent parameters. Interestingly,
here, the earlier local minimum θπ becomes a saddle point.

Theorem 3 (Saddle point). Consider the same setting as in
Thm. 2 and for p+ q > 1, let θπ = (eπ = aπ, . . . , bπ) ∈
RD−d be the corresponding bad local minimum for the
loss L(·) in the weight-tied scenario. Then its extension
θ̄π ≜ (θπ,aπ) ∈ RD is a saddle point for L(·) in RD in
the non-weight-tied case. Further, θ̄π satisfies the same
properties (ii)–(iv) as in Thm. 2.

Empirical evidence and interpretation. In view of the the-
oretical results above, removing weight tying is possibly
beneficial: the bad local minimum in the weight-tied case for
p+q > 1 suddenly becomes a saddle point when the weight
tying is removed. We observe a similar phenomenon empiri-
cally (Fig. 4): as shown in Fig. 3a, when not weight-tied, the
model’s test loss converges to the entropy rate of the source
when p+ q > 1, in contrast to the weight-tied case, possibly
escaping the saddle point (Thm. 3). The fact that the model
eventually learns the correct Markovian kernel is further
demonstrated by the red curve in Fig. 3c. Figs. 3b and 3a
together highlight that the model always (empirically) con-

verges to the global minimum in the non-weight-tied case
irrespective of the switching factor p+ q.

Key insights. Together, our theoretical and empirical results
highlight that when the switching p+q > 1, the weight-tied
model can get stuck at bad local minima corresponding to
the unigram. In contrast, the non-weight-tied model can
potentially escape saddle points to converge to the global
minima, corresponding to the bigram (Markov kernel). This
explains the phenomenon in Fig. 1 for the single-layer trans-
former, where p = 0.5 and q = 0.8. When p + q < 1, we
empirically observe that the model always converges to a
global minimum irrespective of weight-tying.

4.3. Does depth help escape local minima?

For single-layer transformers, the aforementioned results
highlight the significance of the switching factor and
the weight tying on the loss landscape. In stark contrast,
we empirically observe that for transformers of depth 2
and beyond, the loss curve eventually reaches the global
minimum regardless of these factors, as highlighted in
Fig. 1. Interestingly, we observe during training that it first
reaches a plateau at a loss value corresponding to H(π)
and after a few additional iterations, it further drops down
until it reaches the global minimum (the entropy rate).
This suggests that, while there could still be local minima,
increasing the number of layers positively affects the loss
curvature at the bad local minima in a manner making it
easier to escape and reach the global minimum. In the
context of feed-forward neural networks, depth of the archi-
tecture has been shown to play a major role it terms of the
representation power and learning capabilities (Telgarsky,
2016). Given our empirical observations, a similar analysis
for transformers that demonstrates the benefits of depth is
an intriguing direction for future research.

5. Related work
There is tremendous interest and active research in under-
standing transformer models from various perspectives ((Gi-
annou et al., 2023; Oymak et al., 2023; Li et al., 2023a; Fu
et al., 2023; Noci et al., 2023; Tian et al., 2023) and refer-
ences therein). Yun et al. (2020); Pérez et al. (2021); Wei
et al. (2022); Malach (2023); Jiang and Li (2023) demon-
strate the representation capabilities of transformers and
show properties such as universal approximation and Turing-
completeness. Another line of inquiry (Elhage et al., 2021;
Snell et al., 2021; Wang et al., 2023) is mechanistic in-
terpretability, i.e. reverse-engineering transformer opera-
tions on specific synthetic tasks (e.g., matrix inversion and
eigenvalue decomposition in Charton (2022), modular addi-
tion in Nanda et al. (2023)) to understand the transformer
components but they usually lack theoretical guarantees,
as opposed to ours. Li et al. (2023c) studies how trans-
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Figure 4: Average of predicted probabilities across 5 runs for different values of p and q, with and without weight-tying. In
the former case, there is a clear demarcation beteen the cases where p+ q < 1 and those where p+ q > 1. For p+ q < 1, all
runs accurately predict the correct conditional probability. For p+ q > 1, some of the runs predict the stationary probability
instead, causing the average to diverge from the correct p. In the latter case, the model always predicts the correct probability
for all p and q.

formers learn semantic structures across words while we
are interested in how they learn sequentiality in input data.
(Tarzanagh et al., 2023a;b) take an optimization-theoretic
perspective to study training dynamics and characterize im-
plicit biases in transformer models trained with gradient
descent. In contrast, we characterize the local and global
minima of the loss landscape of these models under sequen-
tial input data.

(Chen et al., 2024; Dong et al., 2023; Akyürek et al., 2023;
Von Oswald et al., 2023; Xie et al., 2021; Bai et al., 2023;
Li et al., 2023b; Garg et al., 2022) study in-context learning,
i.e. the ability of the transformer to extract the desired task
from just a few representative examples. While we consider
the transformer architecture in fully generality including
ReLU nonlinearity, (Bietti et al., 2023) assumes frozen
position encodings, query matrices, and linear activations,
whereas (Edelman et al., 2024) assumes a minimal model
for two-layer transformer with only trainable attention
component and linear activation to analyze a single
gradient-descent step. (Grau-Moya et al., 2024) use data
generated from Markov chains, among other data sources,
to study if meta-learning can approximate Solomonoff
Induction. (Chung et al., 2021) provide empirical evidence
to suggest that weight tying has drawbacks in encoder-only
models, which is in line with our observations that removing
weight tying is beneficial in decoder-only models with
Markovian input data. More recently, (Rajaraman et al.,
2024) study the effect of tokenization on learning Markov

chains. (Ildiz et al., 2024) show an equivalence between
the attention mechanism and Markov models, whereas
we characterize the loss landscape of attention-based
transformers when the input is Markovian.

6. Conclusion and Open questions
In this work, we provide a novel framework for a systematic
theoretical and empirical study of the sequential modeling
capabilities of transformers through Markov chains. Lever-
aging this framework, we theoretically characterize the loss
landscape of single-layer transformers and show the exis-
tence of global minima and bad local minima contingent
upon the specific data characteristics and the transformer
architecture, and independently verify them by experiments.
We further reveal interesting insights for deeper architec-
tures. We believe our framework provides a new avenue
for a principled study of transformers. In particular, some
interesting open questions in this direction include:

• Characterizing the learning dynamics of gradient-based
algorithms in our setup.

• Understanding the interplay between the depth of the
transformer and the order of the Markov process.
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Organization. The appendix is organized as follows:

• App. A details the transformer architecture, especially that of the attention mechanism.

• App. B provides the proofs for our theoretical results on first-order Markov chains.

• App. C contains additional experimental details and results for first-order Markov chains.

A. The Transformer architecture
We describe the Transformer architecture from Sec. 2.1 in detail, using the embedding layer simplication from Sec. 3:

xn = xn e+ pn ∈ Rd, (Uni-embedding)

yn = xn +WO

∑
i∈[n]

attn,i ·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (FF)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ̄(x
n
1 ) ≜ Pθ̄ (xn+1 = 1 | xn

1 ) = σ(logitn)︸ ︷︷ ︸
∈[0,1]

. (Prediction)

(i) Embedding: The discrete tokens xn = 1 and xn = 0 are mapped to the token-embeddings e and 0 in Rd respectively,
where d is the embedding dimension. The positional embedding pn ∈ Rd encodes the positional information (varies with
n). The sum of these two embeddings constitutes the final input embedding xn ∈ Rd.

(ii) Attention: The attention layer can be viewed as mappping a query and a set of key-value pairs to an output, which
are all vectors (Vaswani et al., 2017). That is, on top of the skip-connection xn, the output yn ∈ Rd is computed as a
weighted sum of the values vi ≜ W V xi. The weight assigned to each value, attn,i, is computed by a compatibility
function of the query vector qn ≜ WQ xn and the corresponding key vectors ki ≜ WK xi for all i ∈ [n]. More precisely,
attn,i ≜ softmax((⟨qn,k1⟩, . . . , ⟨qn,kn⟩)/

√
d)i. WK,Q,V ∈ Rm×d are the respective key, query, and value matrices,

and WO ∈ Rd×m is the projection matrix. For multi-headed attention, the same operation is performed on multiple parallel
heads, whose outputs are additively combined.

(iii) Feed-forward (FF): The FF transformation consists of a skip-connection and a single-hidden layer with ReLU
activation and weight matrices W 2 ∈ Rd×r, and W 1 ∈ Rr×d. The FF layer is applied token-wise on each yn ∈ Rd to
output zn ∈ Rd with the same dimensionality.

(iv) Linear: The linear layer transforms the final output embedding zn to a scalar logitn ∈ R, with the weight parameter
a ∈ Rd and the bias b ∈ R.

(v) Prediction: The sigmoid activation finally converts the scalar logits to probabilities for the next-token predic-
tion. Since the vocabulary has only two symbols, it suffices to compute the probability for the symbol 1: fθ̄(x

n
1 ) ≜

Pθ̄ (xn+1 = 1 | xn
1 ) = σ(logitn) ∈ [0, 1]. More generally, the logits are of the same dimensionality as the vocabulary and

are converted to the prediction probabilities using a softmax layer, which simplifies to the sigmoid for the binary case.
Likewise, there are as many token-embeddings as the words in the vocabulary and several layers of multi-headed attention
and FF operations are applied alternatively on the input embeddings to compute the final logits.

Finally, The Transformer parameters θ̄ ≜ (e, {pn}Nn=1, . . . , b,a) ∈ RD are trained via the cross-entropy loss on the
next-token prediction:

L(θ̄) ≜ − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ̄(xn
1 ) + (1− xn+1) · log(1− fθ̄(x

n
1 ))], (3)
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B. Proofs of Sec. 4
We now present our proofs for the technical results in Sec. 4. Towards this, we first establish two useful lemmas on the loss
function L(·) and the corresponding gradient computation. Let θ̄ = (e, {pn}Nn=1, . . . , b,a) ∈ RD be the list of parameters
in the non-weight-tied case and θ = (e = a, {pn}Nn=1, . . . , b) ∈ RD−d in the weight-tied case. With a slight abuse of
notation, by w ∈ θ̄ we mean a specific parameter w among the set {e,p1, . . . ,pN , . . . , b,a}. Since the weight-tied scenario
is a special case of the non-weight-tied one with e = a, we directly present the results for the general non-weight-tied case,
but both lemmas hold for θ ∈ RD−d as well. First we start with the loss function.

Lemma 1 (Loss as KL divergence). Let the input sequence be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for some fixed (p, q) ∈ (0, 1)2,
θ̄ = (e, {pn}Nn=1, . . . , b,a) ∈ RD be the full list of the transformer parameters, and L(θ̄) be the corresponding cross-
entropy loss in Eq. (1). Then the loss function L(·) is equivalent to the KL divergence between the Markov kernel and the
predicted distribution, i.e.

L(θ̄) =
1

N

∑
n∈[N ]

Exn
1
[DKL(P (xn+1 = · | xn) ∥ Pθ̄ (xn+1 = · | xn

1 ))] +H(xn+1|xn), (4)

where DKL(P ∥ Q) is the KL divergence between two distributions P and Q, and H(xn+1|xn) is the entropy rate of the
Markov chain.

Remark 3. Consequently, Eq. (4) highlights that any parameter θ̄ with the predicted probability fθ̄(x
n
1 ) =

P (xn+1 = 1 | xn) is a global minimum for the loss L as DKL(· ∥ ·) ≥ 0 (Cover and Thomas, 2006). We utilize
this fact in the proof of Thm. 1 below.

Proof. We defer the proof to § B.6.

Lemma 2 (Gradient computation). Consider the same data and parameter setting as in Lemma 1 and L(θ̄) be the
cross-entropy loss in Eq. (1). Then for any parameter w ∈ θ̄,

∇wL(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθ̄(x

n
1 )) · ∇w

(
a⊤zn + b

)]
= − 1

N

∑
n∈[N ]

Exn
1

[
(P (xn+1 = 1 | xn)− fθ̄(x

n
1 )) · ∇w

(
a⊤zn + b

)]
.

(5)

Remark 4. Eq. (5) highlights that any parameter θ̄ with the predicted probability fθ̄(x
n
1 ) = P (xn+1 = 1 | xn) is also a

stationary point for the loss L. We utilize this fact in the proof of Thm. 1 below.

Proof. We defer the proof to § B.7.

We now detail the proofs of theorems in Sec. 4. We prove the global minimum result in Thm. 1 in two parts, separately for
the cases when p+ q ≤ 1 and p+ q > 1. For both these cases, first we consider weight-tying and in App. B.3, the non-tied
case.

B.1. Proof of Thm. 1 for p+ q ≤ 1, weight-tying

Proof. We assume that p+ q ≤ 1 and that we use weight tying, i.e. the list of parameters θ = (e = a, {pn}Nn=1, . . . , b) ∈
RD−d. Thus in view of Lemma 1 and Lemma 2, it follows that any θ satisfying fθ(x

n
1 ) = P (xn+1 = 1 | xn) is a global

minimum with loss equalling the entropy rate, and is a stationary point. Hence it suffices to construct such a θ.

To build our intuition towards designing θ⋆, recall that the Markov kernel P (xn+1 = 1 | xn) can be succintly written as
P (xn+1 = 1 | xn) = xn(1 − p − q) + p. To ensure that fθ(xn

1 ) = xn(1 − p − q) + p, it suffices for the transformer to
utilize only the information from the current symbol xn and ignore the past xn−1

1 . In view of the transformer architecture
in § A, a natural way to realize this is to let WO = 0 and W 2 = 0 in Attention and FF respectively. This implies that
zn = yn = xn = xn e + pn. Hence the logits are given by logitn = ⟨e, zn⟩ + b = xn∥e∥2 + ⟨e,pn⟩ + b. Since
fθ(x

n
1 ) = σ(logitn) and it equals the Markov kernel, we have that

σ(logitn) = σ(xn∥e∥2 + ⟨e,pn⟩+ b) = xn(1− p− q) + p.
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Rewriting,

xn∥e∥2 + ⟨e,pn⟩+ b = log

(
xn(1− p− q) + p

(1− p)(1− xn) + qxn

)
, xn ∈ {0, 1}.

Substituting xn = 0 and xn = 1, we further simiplify to

⟨e,pn⟩+ b = log

(
p

1− p

)
,

∥e∥2 + ⟨e,pn⟩+ b = log

(
1− q

q

)
.

Subtracting both the equations we obtain that a global minimum θ should satisfy

∥e∥2 = log

(
(1− p)(1− q)

pq

)
,

⟨e,pn⟩+ b = log

(
p

1− p

)
.

(6)

Note the above choice of e is well-defined since (1−p)(1−q)
pq > 1 when p+ q < 1 and hence log (1−p)(1−q)

pq > 0. While there
exist infinitely many solutions for (e,pn, b) satisfying Eq. (6), a canonical such solution for the global minimum θ = θ⋆ is

θ⋆ =

(
e = a = 1

√
1

d
log

(1− p)(1− q)

pq
, {pn = 0}Nn=1,WO = 0,WK,Q,V ,W 2 = 0,W 1, b = log

p

1− p

)
, (7)

where 1 ∈ RD−d denotes the all-one vector, the position embeddings pn are set to zero, WK,Q,V ∈ Rm×d, and
W 1 ∈ Rr×d can be set to any arbitrary value. This concludes the explicit construction of θ⋆ and the proof.

B.2. Proof of Thm. 1 for p+ q > 1, weight-tying

Proof. We use a similar idea as in the proof for the p + q ≤ 1 case by constructing a θ ∈ RD−d satisfying fθ(x
n
1 ) =

P (xn+1 = 1 | xn) = xn(1− p− q) + p. However, in this case we need to use the ReLU component of the FF mechanism
unlike the earlier case where we set W 2 = 0. Now we start with constructing θ⋆.

Let the embedding e = a = 1 and the positional encoding pn = − 1
21 for all n ≥ 1, where 1 ∈ Rd denotes the all-one

vector. Thus xn = αn1 with αn = + 1
2 when xn = 1 and αn = − 1

2 when xn = 0. Now let WO = 0 in the Attention layer.
Hence yn = xn = αn1. For the FF layer, let W 1 and W 2 be such that (to be determined later)

W 2 ReLU(W 1 yn) = βn1,

and hence

zn = xn +W 2 ReLU(W 1 yn) = αn1+ βn1 = (αn + βn)1.

Thus the logits are given by logitn = σ(⟨a, zn⟩+b) = σ(d(αn+βn)+b). Since fθ(xn
1 ) = σ(logitn) = P (xn+1 = 1 | xn),

we have that

σ(logitn) = σ(d(αn + βn) + b) = xn(1− p− q) + p, xn ∈ {0, 1}.

Rewriting,

d(αn + βn) + b = log

(
xn(1− p− q) + p

(1− p)(1− xn) + qxn

)
, xn ∈ {0, 1}.

Substituting xn = 0 and xn = 1, and denoting corresponding β’s by β1 and β0 (with a slight abuse of notation), we further
simiplify to

d

(
−1

2
+ β0

)
+ b = log

(
p

1− p

)
, (8)

13
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d

(
1

2
+ β1

)
+ b = log

(
1− q

q

)
.

Subtracting both the above equations we obtain

d(1 + β1 − β0) = log

(
(1− p)(1− q)

pq

)
︸ ︷︷ ︸

<0 when p+q>1

.
(9)

Now it suffices to find β1 and β0 satisfying Eq. (9). Recall that βn obeys W 2 ReLU(W 1 yn) = βn1. Let W 1 = w 11⊤

and W 2 = −W⊤
1 for some w ∈ R. Since yn = αn1, we have

−w 11⊤ ReLU(w 11⊤αn1) = βn1.

Simplifying,

βn = −w2d · 1⊤ReLU(αn1), αn = ±1

2
.

Thus β0 = 0 (corresponding to xn = 0 and αn = − 1
2 ) and β1 = −w2d2

2 (otherwise). Substituting them in Eq. (9), we have

1− w2d2

2
=

1

d
· log

(
(1− p)(1− q)

pq

)
.

Let w = w⋆ be a solution to the above equation, i.e.

w⋆ =

√
2

d2

(
1− 1

d
· log

(
(1− p)(1− q)

pq

))
.

By substituting β0 = 0 in Eq. (8) we obtain the bias b⋆ = log
(

p
1−p

)
+ d

2 . Piecing everything together, let

θ⋆ =
(
e = a = 1, {pn = (−1/2)1}Nn=1,WO = 0,WK,Q,V ,W 1 = w⋆ 11

⊤,W 2 = −W⊤
1 , b = b⋆

)
, (10)

and we are done.

B.3. Proof of Thm. 1 for non-weight-tied

Proof. By extending θ⋆ ∈ RD−d to θ̄⋆ ≜ (θ⋆,a⋆) ∈ RD, it follows from the Transformer architecture in § A that
Pθ̄⋆

(xn+1 = 1 | xn
1 ) = Pθ⋆

(xn+1 = 1 | xn
1 ) = P (xn+1 = 1 | xn), the Markov kernel. As the proof of Thm. 1 in § B.2

and § B.1 establish, prediction probability equalling the kernel is a sufficient condition for global-optimality. Hence θ̄⋆ is a
global minimum for L(·) in RD.

B.4. Proof of Thm. 2

Proof. First we construct an explicit θπ ∈ RD−d such that it satifies properties (ii)–(iv) of Thm. 2 i.e. it is a stationary point
with loss value being the entropy of the marginal H(π) and that it captures the marginal distribution P (xn+1 = 1) = π1.
Then we compute its Hessian and show that it is a local minimum for p+ q > 1 thus proving property (i). On the other
hand, the same θπ could either be a local minimum or saddle point for p+ q < 1. We start with the construction.

Recall that the full set of the Transformer parameters in the weight-tied case is given by θ = (e =
a, {pn}Nn=1,WO,WK,Q,V ,W 2,W 1, b) ∈ RD−d. Define θπ ∈ RD−d to be

θπ =

(
e = a = 0, {pn}Nn=1,WO = 0,WK,Q,V ,W 2 = 0,W 1, b = log

(
p

q

))
, (11)

14



Attention with Markov: A Curious Case of Single-layer Transformers

where {pn}Nn=1 ⊂ Rd,WK,Q,V ∈ Rm×d, and W 1 ∈ Rr×d can be set to any arbitrary value. Now we start with property
(ii).

(ii): fθπ (x
n
1 ) = Pθπ (xn+1 = 1 | xn

1 ) = P (xn+1 = 1) = π1.

Since a = 0, it follows from (Linear) and (Prediction) layers that fθπ (x
n
1 ) = σ(b) = σ(log(p/q)) = p

p+q = π1. In other
words, the model ignores all the inputs and outputs a constant probability π1.

(iii): L(θπ) = H(xn+1) = H(π).

Since fθπ (·) = π1 = E[xn+1], it follows from Eq. (3) that

L(θπ) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθπ (x
n
1 ) + (1− xn+1) · log(1− fθπ (x

n
1 ))]

= − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log π1 + (1− xn+1) · log π0]

=
1

N

∑
n∈[N ]

[−π1 log π1 − π0 log π0]

= H(π) = H(xn+1).

(iv): ∇L(θπ) = 0.

At θ = θπ , the individual layer outputs of the Transformer (§ A) are given by

xn ∈ {0, 1} Uni-embedding−−−−−−−−−−→ xn = pn
Attention−−−−−−→ yn = pn

FF−−→ zn = pn
Linear−−−−→ logitn = b

Prediction−−−−−−−→ fθπ (x
n
1 ) = π1.

In other words, none of the layer outputs depend on the input sequence {xn}Nn=1. In view of this fact and E[xn+1] = π1,
using Lemma 2 the gradient with respect to a of L at θ = θπ is given by

∇aL = − 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθπ (x

n
1 )) · ∇a

(
a⊤zn + b

)]
= − 1

N

∑
n∈[N ]

Exn+1
1

[(xn+1 − π1) (zn +∇azn · a)]

(a=0)
= − 1

N

∑
n∈[N ]

Exn+1
[(xn+1 − π1) · pn]

= 0.

Similarly, for b:

∇bL = − 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθπ (x

n
1 )) · ∇b

(
a⊤zn + b

)]
= − 1

N

∑
n∈[N ]

Exn+1
[xn+1 − π1] = 0.

For any other parameter w ∈ θ apart from a, b, we see from Eq. (5) that the gradient ∇wL has the term ∇w(a⊤zn) =
(∇wzn) · a inside the expectation Exn+1

1
[. . .]. Since a = 0, this equals zero and hence ∇wL = 0.

Together ∇L(θπ) = 0.

(i): θπ is a bad local minimum for L when p+ q > 1.

Towards establishing this, we first let α = (b,a) and β = ({pn}Nn=1,WO,WK,Q,V ,W 2,W 1) be two different sets
of parameters comprising θ, i.e. θ = (α,β) and compute the Hessian Hπ ≜ ∇(2)L(θ)|θ=θπ and show that it has the
following block-diagonal structure:

Hπ =

[
Hα 0
0 0

]
,
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where Hα corresponds to the Hessian with respect to the parameters a and b in α. Further we show that if p + q > 1,
Hα ≻ 0 i.e. it is positive-definite. This helps us in establishing that θπ a local minimum. Now we start with the Hessian
computation.

Hessian computation. We first compute the Hessian with respect to α.

From Lemma 2, we have that second derivative with respect to b at θ = θπ is given by

∇(2)
b L = ∇b (∇bL) = ∇b

− 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 − fθ(x
n
1 )]


(a)
=

1

N

∑
n∈[N ]

E
[
fθ(x

n
1 )(1− fθ(x

n
1 )) · ∇b

(
a⊤zn + b

)]
(θ=θπ)
=

1

N

∑
n∈[N ]

E[π1π0]

= π0π1 > 0,

where (a) follows from the fact that ∇b fθ(x
n
1 ) = ∇b σ(a

⊤zn + b) = fθ(x
n
1 )(1 − fθ(x

n
1 )) · ∇b

(
a⊤zn + b

)
. Now we

compute the second derivative with respect to a. From Lemma 2, we obtain

∇(2)
a L = ∇a (∇aL) = ∇a

− 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθ(x

n
1 )) · ∇a(a

⊤zn)
]

= ∇a

− 1

N

∑
n∈[N ]

E [(xn+1 − fθ(x
n
1 ))(zn + (∇azn) · a)]


(a)
=

1

N

∑
n∈[N ]

E
[
fθ(1− fθ)(zn + (∇azn) · a)(zn + (∇azn) · a)⊤

]
− 1

N

∑
n∈[N ]

E [(xn+1 − fθ(x
n
1 ))(2∇azn)] ,

where (a) follows from the gradient of the product rule and the fact that ∇afθ(x
n
1 ) = fθ(x

n
1 )(1−fθ(x

n
1 ))(zn+(∇azn)·a).

At θ = θπ , this further simplifies to

∇(2)
a L

(b)
=

1

N

∑
n∈[N ]

(
E[π1π0 · pnp

⊤
n ]− 2E[(xn+1 − π1)xnI]

)
(c)
=

1

N

∑
n∈[N ]

(
(π0π1) · pnp

⊤
n )− 2E[(xn(1− p− q) + p− π1)xnI]

)
=

1

N

∑
n∈[N ]

(
(π0π1) · pnp

⊤
n )− 2E[xn(π0 − q)I]

)
=

1

N

∑
n∈[N ]

(
(π0π1) · pnp

⊤
n )− 2π1(π0 − q)I]

)

= π0π1

 ∑
n∈[N ]

pnp
⊤
n

N
− 2

(
1− q

π0

)
I


(d)
= π0π1

 ∑
n∈[N ]

pnp
⊤
n

N
+ 2(p+ q − 1)I

 ,
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where (b) follows from the fact that ∇azn = xnI at θ = θπ where I is the identity matrix is Rd×d , (c) from the observation
that E[xn+1|xn] = xn(1− p− 1)+ p, and (d) from the fact that π0 = q

p+q . Now we compute the cross-derivative of second
order ∇a,bL. Again, invoking Lemma 2,

∇ab L = ∇a(∇bL) = ∇a

− 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 − fθ(x
n
1 )]


=

1

N

∑
n∈[N ]

E [fθ(1− fθ)(zn + (∇azn) · a)]

(θ=θπ)
=

1

N

∑
n∈[N ]

E [π1π0 · pn]

= π0π1

 ∑
n∈[N ]

pn

N

 .

Piecing all the results together we obtain that for α = (b,a), its corresponding Hessian is given by

Hα ≜ ∇(2)
α L(απ,βπ) = π0π1

[
1 u⊤

u V

]
, u ≜

∑
n∈[N ]

pn

N
,V ≜

∑
n∈[N ]

pnp
⊤
n

N
+ 2(p+ q − 1)I. (12)

We now show that the Hessian Hβ ≜ ∇(2)
β L(απ,βπ) = 0. Recall that β = ({pn}Nn=1,WO,WK,Q,V ,W 2,W 1). For

any w1,w2 ∈ β, Lemma 2 implies that

∇w1w2
L = ∇w1

(∇w2
L) = ∇w1

− 1

N

∑
n∈[N ]

E [(xn+1 − fθ(x
n
1 )(∇w2

zn · a))]


(a)
=

1

N

∑
n∈[N ]

E
[
fθ(1− fθ)(∇w2zn · a)(∇w1zn · a)⊤

]
(θ=θπ)
= 0,

where (a) follows from the fact that ∇w1 fθ(x
n
1 ) = ∇w1 σ(a

⊤zn+ b) = fθ(x
n
1 )(1−fθ(x

n
1 ))(∇w1zn ·a). Thus Hβ = 0.

Similarly, we can show that Hαβ = ∇αβL = 0 and hence Hβα = H⊤
αβ = 0. Thus,

Hπ = ∇(2)L(θπ) =

[
Hα 0
0 0

]

Now it remains to show that Hα is positive-definite when p+ q > 1 and it implies that θπ is a local minimum.

Positive-definitenss of Hα. Recall from Eq. (12) that Hα =

[
1 u⊤

u V

]
, where u =

∑
n∈[N ] pn/N,V =∑

n∈[N ] pnp
⊤
n /N + 2(p + q − 1)I . From the characterization of positive-definiteness by Schur’s complement (Horn

and Johnson, 2012), we have that Hα ≻ 0 ⇔ 1 > 0 and V − uu⊤ ≻ 0. We have that

V − uu⊤ = 2(p+ q − 1)I +
∑

n∈[N ]

pnp
⊤
n

N
−

 ∑
n∈[N ]

pn

N

 ∑
n∈[N ]

pn

N

⊤

= 2(p+ q − 1)I +
∑

n∈[N ]

1

N

pn −
∑

n∈[N ]

pn

N

pn −
∑

n∈[N ]

pn

N

⊤

= 2(p+ q − 1)I +Cov({pn}Nn=1),
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where Cov({pn}Nn=1) =
∑

n∈[N ]
1
N

(
pn −

∑
n∈[N ]

pn

N

)(
pn −

∑
n∈[N ]

pn

N

)⊤
is the covariance matrix of the set

{pn}Nn=1 and hence positive semi-definite. Thus if p + q > 1, we have that 2(p + q − 1)I ≻ 0 and together, we
obtain that V − uu⊤ ≻ 0. Hence Hα ≻ 0. Now it remains to show that θπ is a local minimum.

Hα is positive-definite implies θπ is a local minimum. Since Hα ≻ 0, let Hα ≽ λI for some λ > 0 (in fact
λ = 2(p+ q − 1) works). Since θ = (α,β) ∈ RD−d, interpret L(θ) = L(α,β) as a function of two variables α and β
with appropriate dimensions. We know the following facts about L(·, ·):

• Fact 1. α 7→ L(α,βπ) has a local minimum (as a function of one variable) at α = απ (since Hα ≻ 0).

• Fact 2. β 7→ L(απ,β) is constant in β (since aπ = 0, the probability fθ(x
n
1 ) is constant w.r.t. zn and hence w.r.t. β

(Linear)).

• Fact 3. ∇L(απ,βπ) = 0 and Hπ = ∇(2)L(απ,βπ) =

[
Hα 0
0 0

]
with Hα ≽ λI .

Using these facts now we show that (απ,βπ) = θπ is also a local minimum in two-variables. We prove this by contradiction.
Suppose that (απ,βπ) is not a local minimum for L(·, ·). Without loss of generality, by a shift of cordinates treat θπ as the
origin, i.e. (απ = 0,βπ = 0) is not a local minimum for L(·, ·). Then there exists an unit direction d = (u,v) ∈ RD−d

with ∥d∥2 = ∥u∥2 + ∥v∥2 = 1 and an 0 < ε0 < 1 such that

L(εd) < L(0), ∀ 0 < ε ≤ ε0 < 1. (13)

Clearly ∥u∥ > 0, otherwise it will contradict Fact 2. Using the definition of directional-derivative, we have that

d⊤∇(2)L(0, 0)d = lim
ε→0

⟨∇L(εd),d⟩ − ⟨∇L(0),d⟩
ε

= lim
ε→0

⟨∇L(εd),d⟩
ε

.

On the other hand, using the Hessian structure the LHS equals d⊤∇(2)L(0, 0)d ≥ λ∥u∥2 ≜ K1 > 0. Thus

lim
ε→0

⟨∇L(εd),d⟩
ε

= K1 > 0.

Thus there exists an ε1 > 0 and K > 0 such that

⟨∇L(εd),d⟩
ε

≥ K, ∀ 0 < ε ≤ ε1,

which implies

⟨∇L(εd),d⟩ ≥ Kε, ∀ 0 ≤ ε ≤ ε1.

Defining the function g : R+ → R as g(ε) = L(εd), we obtain that g′(ε) = ⟨∇L(εd),d⟩ ≥ Kε for 0 ≤ ε ≤ ε1. Using the
fundamental theorem of Calculus, we have that for any 0 ≤ ε ≤ ε1,

g(ε)− g(0) =

∫ ε

0

g′(t)dt

≥
∫ ε

0

Ktdt

=
Kε2

2
.

Thus g(ε) = L(εd) ≥ L(0) + Kε2

2 for all 0 ≤ ε ≤ ε1 whereas L(εd) < L(0) for all 0 < ε < ε0 from Eq. (13). Choosing
ε⋆ = min(ε0, ε1), we have a contradiction for 0 < ε < ε⋆. Thus 0 ≡ θπ = (απ,βπ) is a local minimum.
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B.5. Proof of Thm. 3

Proof. Since θ̄π ≜ (θπ,aπ) ∈ RD is a canonical extension of θπ = (eπ = aπ, . . . , bπ) ∈ RD−d, which is a local-
minimum for L(·) in RD−d, following the same-steps for the gradient computation and probability evaluation as in proof
of Thm. 2 in § B.4, it immediately follows that θ̄π also satisfies properties (ii)-(iv), i.e. it’s a stationary point, it captures
the marginal, since Pθ̄π

(xn+1 = 1 | xn
1 ) = Pθπ (xn+1 = 1 | xn

1 ) = P (xn+1 = 1) = π, and hence its loss equals entropy
of stationary distribution H(π). In a similar fashion, the Hessian computation is essentially the same except for a slight
difference in the Hessian structure, i.e.

H(θ̄π) ≜ ∇(2)L(θ̄π) =

[
Hα 0
0 0

]
, Hα = π0π1

1 u⊤ 0
u V (p+ q − 1)I
0 (p+ q − 1)I 0

 ,

where u ≜
∑

n∈[N ]
pn

N ,V ≜
∑

n∈[N ]
pnp

⊤
n

N . In the weight-tied case, we observe that the matrix V also contains the
(p+ q − 1)I terms which in the non-weight-tied case gets de-coupled (due to separate e and a parameters). In fact, Hα

corresponds to the Hessian w.r.t the parameters α = (b,a, e), i.e. Hα = ∇(2)
α L|α=απ . Now it remains to show that Hα is

indefinite and hence θ̄π a saddle point.

Clearly, Hα cannot be negative definite since with d = (1, 0, . . . , 0), we have d⊤Hαd = π0π1 > 0 for (p, q) ∈ (0, 1).
Now we show that it cannot be positive definite either. Denoting

Hα = π0π1

[
1 b⊤

b C

]
, b ≜

[∑
n∈[N ]

pn

N

0

]
, C ≜

[∑
n∈[N ]

pnp
⊤
n

N (p+ q − 1)I

(p+ q − 1)I 0

]
.

Using the characterization of positive-definiteness by Schur’s complement (Horn and Johnson, 2012), we have that
Hα ≻ 0 ⇔ 1 > 0 and C − bb⊤ ≻ 0. This can be further simplified to

M ≜ C − bb⊤ =

[∑
n∈[N ]

pnp
⊤
n

N (p+ q − 1)I

(p+ q − 1)I 0

]
−
[∑

n∈[N ]
pn

N

0

] [∑
n∈[N ]

p⊤
n

N 0
]

=

[
Cov({pn}Nn=1) (p+ q − 1)I
(p+ q − 1)I 0

]
,

where Cov({pn}Nn=1) =
∑

n∈[N ]
1
N

(
pn −

∑
n∈[N ]

pn

N

)(
pn −

∑
n∈[N ]

pn

N

)⊤
is the covariance matrix of the set

{pn}Nn=1. Now we show that M cannot be positive definite. Suppose not. Then there exists a λ > 0 such that
v⊤Mv ≥ λ∥v∥2 for all v = (v1,v2) ∈ R2d. This further implies that

v⊤
1 Cov({pn}Nn=1)v1 + 2(p+ q − 1)⟨v1,v2⟩ ≥ λ∥v∥2, ∀v1,v2 ∈ Rd.

Taking v1 = 0 the above inequality imples that λ∥v2∥2 ≤ 0 for all v2 ∈ Rd, which is a contradiction. Hence M cannot be
positive definite and consequently neither can Hα.

B.6. Proof of Lemma 1

Proof. Consider the loss function L(·) given in Eq. (1). We can rewrite it as follows:

L(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ̄(xn
1 ) + (1− xn+1) · log(1− fθ̄(x

n
1 ))]

= − 1

N

∑
n∈[N ]

Exn
1

[
Exn+1|xn

1
[xn+1] · log fθ̄(xn

1 ) + Exn+1|xn
1
[1− xn+1] · log(1− fθ̄(x

n
1 ))
]

= − 1

N

∑
n∈[N ]

Exn
1

[
P (xn+1 = 1 | xn) log

fθ̄(x
n
1 )

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1− fθ̄(x
n
1 )

P (xn+1 = 0 | xn)

− P (xn+1 = 1 | xn) log
1

P (xn+1 = 1 | xn)
− P (xn+1 = 0 | xn) log

1

P (xn+1 = 0 | xn)

]
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= − 1

N

∑
n∈[N ]

Exn
1

[
P (xn+1 = 1 | xn) log

fθ̄(x
n
1 )

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1− fθ̄(x
n
1 )

P (xn+1 = 0 | xn)

]
− Exn

[
Exn−1

1 |xn

[
P (xn+1 = 1 | xn) log

1

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1

P (xn+1 = 0 | xn)

]]
= − 1

N

∑
n∈[N ]

Exn
1

[
P (xn+1 = 1 | xn) log

fθ̄(x
n
1 )

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1− fθ̄(x
n
1 )

P (xn+1 = 0 | xn)

]
− Exn

[
P (xn+1 = 1 | xn) log

1

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1

P (xn+1 = 0 | xn)

]
.

Since fθ̄(x
n
1 ) = Pθ̄ (xn+1 = 1 | xn), we have that the first term above is

P (xn+1 = 1 | xn) log
fθ̄(x

n
1 )

P (xn+1 = 1 | xn)
+ P (xn+1 = 0 | xn) log

1− fθ̄(x
n
1 )

P (xn+1 = 0 | xn)

= −DKL(P (xn+1 = · | xn) ∥ Pθ̄ (xn+1 = · | xn
1 )).

Further, observe that the second term is exactly the entropy rate H(xn+1|xn). Hence, the above expression for the loss
reduces to

L(θ̄) =
1

N

∑
n∈[N ]

Exn
1
[DKL(P (xn+1 = · | xn) ∥ Pθ̄ (xn+1 = · | xn

1 ))] +H(xn+1|xn),

and we are done.

B.7. Proof of Lemma 2

Proof. It suffices to show that for any component θ̄j of θ̄ ∈ RD,

∂

∂θ̄j
L(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθ̄(x

n
1 )) ·

∂

∂θ̄j

(
a⊤zn + b

)]

= − 1

N

∑
n∈[N ]

Exn
1

[
(P (xn+1 = 1 | xn)− fθ̄(x

n
1 )) ·

∂

∂θ̄j

(
a⊤zn + b

)]
.

Recall from Eq. (3) that L(·) is given by

L(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ̄(xn
1 ) + (1− xn+1) · log(1− fθ̄(x

n
1 ))] ,

which implies that

∂

∂θ̄j
L(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[
xn+1 ·

∂

∂θ̄j
log fθ̄(x

n
1 ) + (1− xn+1) ·

∂

∂θ̄j
log(1− fθ̄(x

n
1 ))

]

= − 1

N

∑
n∈[N ]

Exn+1
1

[
xn+1 ·

1

fθ̄(x
n
1 )

∂

∂θ̄j
fθ̄(x

n
1 ) + (1− xn+1) ·

1

1− fθ̄(x
n
1 )

∂

∂θ̄j
(1− fθ̄(x

n
1 ))

]
.

Since fθ̄(x
n
1 ) = σ(a⊤zn+ b), we first note that the derivative of σ is given by σ′(z) = e−z

(1+e−z)2 = σ(z)(1−σ(z)). Hence,
the derivative ∂

∂θ̄j
fθ̄(x

n
1 ) can be written as

∂

∂θ̄j
fθ̄(x

n
1 ) =

∂

∂θ̄j
σ(a⊤zn + b) = σ(a⊤zn + b)

[
1− σ(a⊤zn + b)]

∂

∂θ̄j
(a⊤zn + b)

= fθ̄(x
n
1 )
[
1− fθ̄(x

n
1 )
] ∂

∂θ̄j
(a⊤zn + b).
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Plugging this into the above expression, we have

∂

∂θ̄j
L(θ̄) = − 1

N

∑
n∈[N ]

Exn+1
1

[
xn+1 ·

[
1− fθ̄(x

n
1 )
] ∂

∂θ̄j
(a⊤zn + b)− (1− xn+1) · fθ̄(xn

1 )
∂

∂θ̄j
(a⊤zn + b)

]

= − 1

N

∑
n∈[N ]

Exn+1
1

[
xn+1 ·

[
1− fθ̄(x

n
1 )
] ∂

∂θ̄j
(a⊤zn + b)− (1− xn+1) · fθ̄(xn

1 )
∂

∂θ̄j
(a⊤zn + b)

]

= − 1

N

∑
n∈[N ]

Exn+1
1

[
(xn+1 − fθ̄(x

n
1 )) ·

∂

∂θ̄j

(
a⊤zn + b

)]

= − 1

N

∑
n∈[N ]

Exn
1

[
(Exn+1|xn

1
[xn+1]− fθ̄(x

n
1 )) ·

∂

∂θ̄j

(
a⊤zn + b

)]

= − 1

N

∑
n∈[N ]

Exn
1

[
(P (xn+1 = 1 | xn)− fθ̄(x

n
1 )) ·

∂

∂θ̄j

(
a⊤zn + b

)]
,

and we are done.
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C. Additional results for first-order Markov chains
C.1. Model architecture and hyper-parameters

Table 1: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2× d
transformer.wpe N × d
transformer.h.ln_1 (×ℓ) d× 1
transformer.h.attn.c_attn (×ℓ) 3d× d
transformer.h.attn.c_proj (×ℓ) d× d
transformer.h.ln_2 (×ℓ) d× 1
transformer.h.mlp.c_fc (×ℓ) 4d× d
transformer.h.mlp.c_proj (×ℓ) d× 4d
transformer.ln_f d× 1

Table 2: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in (Pagliardini, 2023)

Batch size Grid-searched in {16, 50}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 8000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {512, 1024, 2048}
Embedding dimension Grid-searched in {4, 8, 16, 32, 64}
Transformer layers Between 1 and 6 depending on the experiment
Attention heads Grid-searched in {1, 2, 4, 8}
Mask window Between 2 and full causal masking depending on the experiment

Repetitions 3 or 5

D. Empirical formula fo p+ q < 1 based on low-rank solutions
In this section we compute the function fθ(x

n
1 ) that gives the next-symbol probability predicted by the network, using the

values of the weight matrices obtained five independent experiment runs. By substituting the empirical weights into the
transformer architecture from § A, i.e.

xn = xn e+ pn ∈ Rd, (Uni-embedding)

yn = xn +WO

∑
i∈[n]

attn,i ·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (FF)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ(x
n
1 ) ≜ Pθ (xn+1 = 1 | xn

1 ) = σ(logitn). (Prediction)

We can obtain an explicit expression for fθ(xn
1 ) as it is actually learned by the model. We now analyze each section of the

model architecture separately.

22



Attention with Markov: A Curious Case of Single-layer Transformers

Embedding. All the five independent runs show that the word embedding vector e has the structure

e = e · v (14)

where v = (v1, . . . , vd) is such that vi ∈ {−1,+1} for all i, i.e., v ∈ {−1, 1}d, and e is some constant. Moreover, the
positional embeddings are approximately constant across positions n, and they share a similar structure to e. In particular,
we always have that

pn = p = p · v ∀n (15)

for some constant p ∈ R. Furthermore, the constants are always such that p < 0 and e+ p > 0.

Attention. Across all the runs, we observe that the contribution of the attention mechanism is negligible compared to the
skip-connection. In particular, we observe that

∥WO

∑
i∈[n] attn,i ·W V xi∥

∥yn∥
≈ 0.01 (16)

uniformly for all n. Therefore, we can use the approximation

yn ≈ xn ∀n. (17)

FF. For the MLP layer, we observe that W 1 and W 2 have a clear joint structure. In fact, we empirically see that

W 1 = w1 ·w · vT (18)

where v is again the same vector as in Eq. (14), w ∈ {−1, 1}r and w1 ∈ R. Hence, W 1 is a rank-one matrix. As customary
in the GPT-2 model, for our experiments we used r = 4d = 16. Furthermore, we see that

W 2 = W T
1 . (19)

Due to this structure and the formula for yn described above, we have

W 1 yn = W 1xn = w1d(exn + p)w (20)

Let now r = ReLU(W 1 yn). Due to the fact that p < 0 and e+ p > 0, we have that, if xn = 1,

ri =

{
e+ p, if wi = 1,

0, if wi = −1.
(21)

While if xn = 0,

ri =

{
0, if wi = 1,

−p, if wi = −1.
(22)

Let β =
∑r

i=1 1{wi=1}. Since W 2 = W T
1 = w1v ·wT , we have that, for r̃ = W 2r,

r̃ =

{
w2

1d(e+ p)β · v, if xn = 1,

w2
1dp(r − β) · v, if xn = 0.

(23)

Or more compactly,
r̃ = w2

1d(exn + p)((2β − r)xn + r − β) · v, (24)

and
zn = yn + r̃ = (exn + p)(1 + w2

1d((2β − r)xn + r − β)) · v (25)

Linear. Since a = e due to weight-tying, we have

logitn = ed(exn + p)(1 + w2
1d((2β − r)xn + r − β)) + b (26)
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Prediction. We can now plug in the empirical values obtained by averaging five independent runs. The numerical results
that we get are

e = 0.3618

p = −0.1539

w1 = 0.3264

b = −0.1229

β = 5

(27)

Plugging these numbers into Eq. (26), we get

logitn =

{
0.8191, if xn = 1,

−1.3897, if xn = 0.
(28)

Hence, by applying the sigmoid function to the logit values, we obtain the predicted probabilities

fθ(x
n
1 ) = Pθ (xn+1 = 1 | xn) =

{
σ(0.8191) = 0.694, if xn = 1,

σ(−1.3897) = 0.199, if xn = 0.
(29)

The numerical results correspond almost exactly to the expected theoretical values of 1− q = 0.7 and p = 0.2.
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