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Abstract
Contrastive Analysis VAE (CA-VAEs) is a family
of Variational auto-encoders (VAEs) that aims
at separating the common factors of variation
between a background dataset (BG) (i.e., healthy
subjects) and a target dataset (TG) (i.e., patients)
from the ones that only exist in the target dataset.
To do so, these methods separate the latent space
into a set of salient features (i.e., proper to the
target dataset) and a set of common features (i.e.,
exist in both datasets). Currently, all models fail
to prevent the sharing of information between
latent spaces effectively and to capture all salient
factors of variation. To this end, we introduce two
crucial regularization losses: a disentangling term
between common and salient representations and
a classification term between background and
target samples in the salient space. We show
a better performance than previous CA-VAEs
methods on three medical applications and a
natural images dataset (CelebA). Code and
datasets are available on GitHub https:
//github.com/neurospin-projects/
2023_rlouiset_sepvae.

1. Introduction
One of the goals of unsupervised learning is to learn a
compact, latent representation of a dataset, capturing the
underlying factors of variation. Furthermore, the estimated
latent dimensions should describe distinct, noticeable, and
semantically meaningful variations. One way to achieve that
is to use a generative model, like Variational Auto-Encoders
(VAEs) (Kingma & Welling, 2013), (Higgins et al., 2017)
and disentangling methods (Higgins et al., 2017), (Burgess
et al., 2018), (Shu et al., 2018),(Zheng & Sun, 2019), (Chen
et al., 2019), (Ainsworth et al., 2018), (Li et al., 2018). Dif-
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ferently from these methods, which use a single dataset, in
Contrastive Analysis (CA), researchers attempt to distin-
guish the latent factors that generate a target (TG) and a
background (BG) dataset. Usually, it is assumed that tar-
get samples comprise additional (or modified) patterns with
respect to background data. The goal is thus to estimate
the common generative factors and the ones that are target-
specific (or salient). This means that background data are
fully encoded by some generative factors that are also com-
mon with the target data. On the other hand, target samples
are assumed to be partly generated from strictly proper fac-
tors of variability, which we entitle target-specific or salient
factors of variability. This formulation is particularly useful
in medical applications where clinicians are interested in
separating common (i.e., healthy) patterns from the salient
(i.e., pathological) ones in an intepretable way.

For instance, consider two sets of data: 1) healthy
neuro-anatomical MRIs (BG=background dataset) and 2)
Alzheimer-affected patients’ MRIs (TG=target dataset). As
in (Jack et al., 2018), (Antelmi et al., 2019), given these two
datasets, neuroscientists would be interested in distinguish-
ing common factors of variations (e.g.: effects of aging, ed-
ucation or gender) from Alzheimer’s specific markers (e.g.:
temporal lobe atrophy, an increase of beta-amyloid plaques).
Until recently, separating the various latent mechanisms that
drive neuro-anatomical variability in neuro-degenerative dis-
orders was considered hardly feasible. This can be attributed
to the intertwining between the variability due to natural
aging and the variability due to neurodegenerative disease
development. The combined effects of both processes make
hardly interpretable the potential discovery of novel bio-
markers.
The objective of developing such a Contrastive Analysis
method would be to help separate these processes. And thus
identifying correlations between neuro-biological markers
and pathological symptoms. In the common features space,
aging patterns should correlate with normal cognitive de-
cline, while salient features (i.e.: Alzheimer-specific pat-
terns) should correlate with pathological cognitive decline.

Besides medical imaging, Contrastive Analysis (CA) meth-
ods cover various kinds of applications, like in pharmacol-
ogy (placebo versus medicated populations), biology (pre-
intervention vs. post-intervention cohorts) (Zheng et al.,
2017), and genetics (healthy vs. disease population (Jones
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Figure 1. SepVAE reconstructions on Brats2021 dataset (Menze
et al., 2015). (Middle) full reconstructions using the estimated
common and salient latent vectors. (Right) common-only recon-
structions using the estimated common latent vectors and fixing
the salient factors to s′. The common latent variables encode the
healthy factors of variability (e.g. : brain shape and aspect), while
the salient factors encode the pathological patterns (e.g. : tumors),
which are not visible in the right columns (common-only).

et al., 2021), (Haber et al., 2017)).

2. Related works
Variational Auto-Encoders (VAEs) (Kingma & Welling,
2013) have advanced the field of unsupervised learning
by generating new samples and capturing the underlying
structure of the data onto a lower-dimensional data mani-
fold. Compared to linear methods (e.g., PCA, ICA), VAEs
make use of deep non-linear encoders to capture non-linear
relationships in the data, leading to better performance on a
variety of tasks.

Disentangling methods (Higgins et al., 2017; Burgess et al.,
2018; Shu et al., 2018) enable learning the underlying fac-
tors of variation in the data. While disentangling (Zheng
& Sun, 2019; Chen et al., 2019) is a desirable property for
improving the control of the image generation process and
the interpretation of the latent space (Ainsworth et al., 2018;
Li et al., 2018), these methods are usually based on a single
dataset, and they do not explicitly use labels or multiple
datasets to effectively estimate and separate the common
and salient factors of variation.

Semi and weakly-supervised VAEs (Mathieu et al., 2019;
Kingma et al.; Maaløe et al., 2016; Joy et al., 2021) have
proposed to integrate class labels in their training. However,
these methods solely allow conditional generalization and
better semantic expressivity rather than addressing the sepa-
ration of the factors of variation between distinct datasets.

Contrastive Analysis (CA) works are explicitly designed to
identify patterns that are unique to a target dataset compared
to a background dataset. First attempts (Zou et al., 2013;
Abid et al., 2018; Ge & Zou, 2016) employed linear methods
in order to identify a projection that captures the variance
of the target dataset while minimizing the background infor-
mation expressivity. However, due to their linearity, these
methods had reduced learning expressivity and were also
unable to produce satisfactory generation.

Contrastive VAE (Abid & Zou, 2019; Weinberger et al.,
2022; Severson et al., 2019; Ruiz et al., 2019; Zou et al.,
2022; Choudhuri et al., 2019) have employed deep encoders
in order to capture higher-level semantics. They usually
rely on a latent space split into two parts, a common and
a salient, produced by two different encoders. First meth-
ods, such as (Severson et al., 2019), employed two decoders
(common and salient) and directly sum the common and
salient reconstructions in the input space. This seems to be a
very strong assumption, probably wrong when working with
high-dimensional and complex images. For this reason, sub-
sequent works used a single decoder, which takes as input
the concatenation of both latent spaces. Importantly, when
seeking to reconstruct background inputs, the decoder is fed
with the concatenation of the common part and an informa-
tionless reference vector s’. This is usually chosen to be a
null vector in order to reconstruct a null (i.e., empty) image
by setting the decoder’s biases to 0. Furthermore, to fully
enforce the constraints and assumptions of the underlying
CA generative model, previous methods have proposed dif-
ferent regularizations. Here, we analyze the most important
ones with their advantages and shortcomings:

Minimizing background’s variance in the salient space
Pioneer works (Severson et al., 2019; Abid & Zou, 2019)
have shown inconsistency between the encoding and the
decoding task. While background samples are reconstructed
from s’, the salient encoder does not encourage the back-
ground salient latents to be equal to s’. To fix this inconsis-
tency, posterior works (Weinberger et al., 2022; Zou et al.,
2022; Choudhuri et al., 2019) have shown that explicitly
nullifying the background variance in the salient space was
beneficial. This regularization is necessary to avoid salient
features explaining the background variability but not suffi-
cient to prevent information leakage between common and
salient spaces, as shown in (Weinberger et al., 2022).

Independence between common and salient spaces Only
one work (Abid & Zou, 2019) proposed to prevent infor-
mation leakage between the common and salient space by
minimizing the total correlation (TC) between qϕc,ϕs

(c, s|x)
and qϕc

(c|x) × qϕs
(s|x), in the same fashion as in Factor-

VAE (Kim & Mnih, 2019). This requires to independently
train a discriminator Dλ(.) that aims at approximating the ra-
tio between the joint distribution q(x) = qϕc,ϕs(c, s|x) and
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Figure 2. Illustration of SepVAE training. Target and background images are encoded with the same encoders eϕs and eϕc . The first
encoder eϕs estimates the salient factors of variation s of the target samples (y = 1). Background samples (y = 0) salient space is set
to an informationless value s′ = 0. The second encoder eϕc estimates the common factors c. Images are reconstructed using a single
decoder dθ fed with the concatenation of c and s.

the marginal of the posteriors q̄(x) = qϕc(c|x)× qϕs(s|x)
via the density-ratio trick (Nguyen et al., 2010; Sugiyama
et al., 2012). In practice, (Abid & Zou, 2019)’s code does
not use an independent optimizer for λ, which undermines
the original contribution. Moreover, when incorrectly esti-
mated, the TC can become negative, and its minimization
can be harmful to the model’s training.

Matching background and target common patterns An-
other work (Weinberger et al., 2022), has proposed to en-
courage the distribution in the common space to be the
same across target samples and background samples. Math-
ematically, it is equivalent to minimizing the KL between
qϕc

(c|y = 0) and qϕc
(c|y = 1) (or between qϕc

(c) and
qϕc

(c|y)). In practice, we argue that it may encourage unde-
sirable biases to be captured by salient factors rather than
common factors. For example, let’s suppose that we have
healthy subjects (background dataset) and patients (target
dataset) and that patients are composed of both young and
old individuals, whereas healthy subjects are only old. We
would expect the CA method to capture the normal aging
patterns (i.e.: the bias) in the common space. However,
forcing both qϕc(c|x, y = 0) and qϕc(c|x, y = 1) to follow
the same distribution in the common space would probably
bring to a biased distribution and thus to leakage of informa-
tion between salient and common factors (i.e., aging could
be considered as a salient factor of the patient dataset).This
behavior is not desirable, and we believe that the statistical
independence between common and salient space is a more
robust property.

Contributions Our contributions are three-fold:
• We develop a new Contrastive Analysis method: SepVAE,
which is supported by a sound and versatile Evidence Lower
BOund maximization framework.
• We identify and implement two properties: the salient

space discriminability and the salient/common indepen-
dence, that have not been successfully addressed by pre-
vious Contrastive VAE methods.
• We provide a fair comparison with other SOTA CA-VAE
methods on 3 medical applications and a natural image
experiment.

3. Contrastive Variational Autoencoders
Let (X,Y ) = {(xi, yi)}Ni=1 be a data-set of images xi as-
sociated with labels yi ∈ {0, 1}, 0 for background and
1 for target. Both background and target samples are as-
sumed to be i.i.d. from two different and unknown distri-
butions that depend on two latent variables: ci ∈ RDc and
si ∈ RDs . Our objective is to have a generative model
xi ∼ pθ(x|yi, ci, si) so that: 1- the common latent vectors
C = {ci}Ni=1 should capture the common generative factors
of variation between the background and target distributions
and fully encode the background samples and 2- the salient
latent vectors S = {si}Ni=1 should capture the distinct gen-
erative factors of variation of the target set (i.e., patterns
that are only present in the target dataset and not in the
background dataset).

Similar to previous works(Abid & Zou, 2019; Weinberger
et al., 2022; Zou et al., 2022), we assume the generative pro-
cess: pθ(x, y, c, s) = pθ(x|c, s, y)pθ(c)pθ(s|y)p(y). Since
pθ(c, s|x, y) is hard to compute in practice, we approximate
it using an auxiliary parametric distribution qϕ(c, s|x, y) and
directly derive the Evidence Lower Bound of log p(x, y).

Based on this generative latent variable model, one can
derive the ELBO of the marginal log-likelihood log p(x, y),

− log pθ(x, y) ≤ Ec,s∼qϕc,ϕs (c,s|x,y) log
qϕc,ϕs(c, s|x, y)
pθ(x, y, c, s)

(1)
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where we have introduced an auxiliary parametric distribu-
tion qϕ(c, s|x, y) to approximate pθ(c, s|x, y).
From there, we can develop the lower bound into three
terms, a conditional reconstruction term, a common space
prior regularization, and a salient space prior regularization:

− log pθ(x, y) ≤ −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|y, c, s)︸ ︷︷ ︸
Conditional Reconstruction

+KL(qϕc
(c|x)||pθ(c))︸ ︷︷ ︸

b) Common prior

+KL(qϕs
(s|x, y)||pθ(s|y))︸ ︷︷ ︸

c) Salient prior
(2)

Here, we assume the independence of the auxiliary
distributions (i.e.: qϕc,ϕs(c, s|x, y) = qϕc(c|x)qϕs(s|x, y))
and prior distributions (i.e.: pθ(c, s) = pθ(c)pθ(s)).
Both pθ(x|yi, ci, si) (i.e., single decoder) and
qϕc

(c|x)qϕs
(s|x, y) (i.e., two encoders) are assumed

to follow a Gaussian distribution parametrized by a neural
network. To reinforce the independence assumption
between c and s, we introduce a Mutual Information
regularization term KL(q(c, s)||q(c)q(s)). Theoretically,
this term is similar to the one in (Abid & Zou, 2019). This
property is desirable in order to ensure that the information
is well separated between the latent spaces. However, in
(Abid & Zou, 2019), the Mutual Information estimation and
minimization are done simultaneously 1. In this paper, we
argue that the estimation of the Mutual Information requires
the introduction of an independent optimizer, see Sec. 3.5.
To further reduce the overlap of target and common
distributions on the salient space, we also introduce a salient
classification loss defined as Es∼qϕs (s|x,y) log p(y|s).
By combining all these losses together, we obtain the final
loss L:

L = −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y)︸ ︷︷ ︸
a) Conditional Reconstruction

+KL(q(c, s)||q(c)q(s))︸ ︷︷ ︸
e) Mutual Information

−Es∼qϕs (s|x,y) log pθ(y|s)︸ ︷︷ ︸
d) Salient Classification

+KL(qϕc(c|x)||pθ(c))︸ ︷︷ ︸
b) Common Prior

+KL(qϕs(s|x, y)||pθ(s|y))︸ ︷︷ ︸
c) Salient Prior

(3)

3.1. Conditional reconstruction

The reconstruction loss term is given by
−Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y). Given an im-
age x (and a label y), a common and a salient latent

1In (Abid & Zou, 2019), Algorithm 1 suggests that the Mutual
Information estimation and minimization depend on two distinct
parameters update. However, in practice, in their code, a single
optimizer is used. This is also confirmed in Sec. 3, where authors
write: ”discriminator is trained simultaneously with the encoder
and decoder neural networks”.

vector can be drawn from qϕc,ϕs
with the help of the

reparameterization trick.
We assume that p(x|c, s, y) ∼ N (dθ([c, ys+(1− y)s′], I),
i.e: pθ(x|c, s, y) follows a Gaussian distribution parameter-
ized by θ, centered on µx̂ = dθ([c, ys + (1 − y)s′]) with
identity covariance matrix, and dθ is the decoder and [., .]
denotes a concatenation.
Therefore, by developing the reconstruction loss term, we
obtain the mean squared error between the input and the
reconstruction: Lrec =

∑N
i=1 ||x−dθ([c, ys+(1−y)s′])||22.

Importantly, for background samples, we set the salient
latent vectors to s’ = 0. This choice enables isolating the
background factors of variability in the common space only.

3.2. Common prior

By assuming p(c) ∼ N (0, I) and qϕc
(c|x) ∼

N (µϕ(x), σϕ(x, y)), the KL loss has a closed form solu-
tion, as in standard VAEs. Here, both µϕ(x) and σϕ(x, y)
are the outputs of the encoder eϕc

.

3.3. Salient prior

To compute this regularization, we first need to develop
pθ(s) =

∑
y p(y)pθ(s|y), where we assume that p(y) fol-

lows a Bernoulli distribution with probability equal to 0.5.
Thus, the salient prior reduces to a formula that only de-
pends on pθ(s|y), which is conditioned by the knowledge
of the label (0: background, 1: target). This allows us to dis-
tinguish between the salient priors of background samples
(p(s|y = 0)) and target samples (p(s|y = 1)).
Similar to other CA-VAE methods, we assume that p(s|y =
1) ∼ N (0, I) and , as in (Zou et al., 2022), that p(s|x, y =
0) ∼ N (s′,

√
σpI), with s′ = 0 and √

σp < 1, namely a
Gaussian distribution centered on an informationless ref-
erence s′ with a small constant variance σp. We preferred
it to a Delta function δ(s = s′) (as in (Weinberger et al.,
2022)) because it eases the computation of the KL diver-
gence (i.e., closed form) and it also means that we tolerate a
small salient variation in the background (healthy) samples.
In real applications, in particular medical ones, diagnosis
labels can be noisy, and mild pathological patterns may exist
in some healthy control subjects. Using such a prior, we
tolerate these possible (erroneous) sources of variation.
Furthermore, one could also extend the proposed method
to a continuous y, for instance, between 0 and 1, describ-
ing the severity of the disease. Indeed, practitioners could
define a function σp(y) that would map the severity score
y to a salient prior standard deviation (e.g., σp(y) = y). In
this way, we could extend our framework to the case where
pathological variations would follow a continuum from no
(or mild) to severe patterns.
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3.4. Salient classification

In the salient prior regularization, as in previous works, we
encourage background and target salient factors to match
two different Gaussian distributions, both centered in 0 (we
assume s′ = 0) but with different covariance. However, we
argue that target salient factors should be further encouraged
to differ from the background ones in order to reduce the
overlap of target and common distributions on the salient
space and enhance the expressivity of the salient space.

To encourage target and background salient factors to be
generated from different distributions, we propose to mini-
mize a Binary Cross Entropy loss to distinguish the target
from background samples in the salient space. Assuming
that p(y|s) follows a Bernoulli distribution parameterized
by fξ(s), a 2-layers classification Neural Network, we ob-
tain a Binary Cross Entropy (BCE) loss between true labels
y and predicted labels ŷ = fξ(s).

3.5. Mutual Information

To promote independence between c and s, we minimize
their mutual information, defined as the KL divergence be-
tween the joint distribution q(c, s) and the product of their
marginals q(c)q(s).
However, computing this quantity is not trivial, and it re-
quires a few tricks in order to correctly estimate and min-
imize it. As in (Abid & Zou, 2019), it is possible to take
inspiration from FactorVAE (Kim & Mnih, 2019), which
proposes to estimate the density-ratio between a joint dis-
tribution and the product of the marginals. In our case, we
seek to enforce the independence between two sets of latent
variables rather than between each latent variable of a set.
The density-ratio trick (Nguyen et al., 2010; Sugiyama et al.,
2012) allows us to estimate the quantity inside the log in
Eq.4. First, we sample from q(c, s) by randomly choosing
a batch of images (xi, yi) and drawing their latent factors
[ci, si] from the encoders eϕc

and eϕs
. Then, we sample

from q(c)q(s) by using the same batch of images where we
shuffle the latent codes among images (e.g., [c1, s2], [c2, s3],
etc.). Once we obtained samples from both distributions, we
trained an independent classifier Dλ([c, s]) to discriminate
the samples drawn from the two distributions by minimizing
a BCE loss. The classifier is then used to approximate the
ratio in the KL divergence, and we can train the encoders
eϕc

and eϕs
to minimize the resulting loss:

LMI = Eq(c,s) log

(
q(c, s)

q(c)q(s)

)
≈

∑
i

ReLU
(
log

(
Dλ([ci, si])

1−Dλ([ci, si])

)) (4)

where the ReLU function forces the estimate of the KL di-
vergence to be positive, thus avoiding to back-propagate

wrong estimates of the density ratio due to the simultaneous
training of Dλ([c, s]). In (Abid & Zou, 2019), while Alg.1
of the original paper describes two distinct gradient updates,
it is written that ”This discriminator is trained simultane-
ously with the encoder and decoder neural networks”. In
practice, a single optimizer is used in their training code.
In our work, we use an independent optimizer for Dλ, in
order to ensure that the density ratio is well estimated. Fur-
thermore, we freeze Dλ’s parameters when minimizing the
Mutual Information estimate. The pseudo-code is available
in Alg. 1, and a visual explanation is shown in Fig.3.

Figure 3. Illustration of Mutual Information loss between the com-
mon and the salient space. Given two images xa and xb, 4 sets of
latents are computed: ca and sa latents of the image a, cb and sb
latents of the image b. A non-linear MLP is independently trained
with a binary cross-entropy loss to classify shuffled concatenations
(i.e., from different images) with the label 0 and concatenations
of latents coming from the same image with label 1. Then, dur-
ing training, encoders should not to be able to identify whether
a concatenation of latents belong to class 0 (shuffled common
and salient spaces) or class 1 (common and salient spaces com-
ing from the same image). We encourage that by minimizing
DKL(pϕs,ϕc(c, s)||pϕc(c)× pϕs(s)).

Algorithm 1 Minimizing the Mutual Information between
common and salient spaces, given a batch of size B.

1: Input: X ∈ RB×(C×W×H)

2: for t in epochs : do
3: Discriminator training :
4: Sample z = [c, s] from qϕc,ϕs

.
5: Sample z̄ = [c, s̄] from qϕc

×qϕs
by shuffling s along

the batch dimension.
6: Compute LBCE = − log(D(z))− log(1−D(z̄))
7: Freeze ϕc and ϕs. Update D parameters only.
8: Encoders training :
9: Sample z = [eϕc

(x), eϕs
(x)] from qϕc,ϕs

.

10: Compute LMI =
∑B

i=1 ReLU
(
log D(zi)

1−D(zi)

)
11: Freeze D parameters. Update ϕc and ϕs.
12: end for
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4. Experiments
4.1. Evaluation details

Here, we evaluate the ability of SepVAE to separate com-
mon from target-specific patterns on three medical and one
natural (CelebA) imaging datasets. We compare it with
the only SOTA CA-VAE methods whose code is available:
MM-cVAE (Weinberger et al., 2022) and ConVAE 2 (Abid
& Zou, 2019).

For quantitative evaluation, we use the fact that the infor-
mation about attributes, clinical variables, or subtypes (e.g.
glasses/hats in CelebA) should be present either in the com-
mon or in the salient space. Once the encoders/decoder are
trained, we evaluate the quality of the representations in two
steps. First, we train a Logistic (resp. Linear) Regression on
the estimated salient and common factors of the training set
to predict the attribute presence (resp. attribute value). Then,
we evaluate the classification/regression model on the salient
and common factors estimated from a test set. By evaluating
the performance of the model, we can understand whether
the information about the attributes/variables/subtype has
been put in the common or salient latent space by the
method. Furthermore, we report the background (BG) vs tar-
get (TG) classification accuracy. To do so, a 2 layers MLPs
is independently trained, except for SepVAE, where salient
space predictions are directly estimated by the classifier.

In all Tables, for categorical variables, we compute (Bal-
anced) Accuracy scores (=(B-)ACC), or Area-under Curve
scores (=AUC) if the target is binary. For continuous vari-
ables, we use Mean Average Error (=MAE). Best results are
highlighted in bold, second best results are underlined. For
CelebA and Pneumonia experiments, mean, and standard
deviations are computed on the results of 5 different runs
in order to account for model initializations. For neuro-
psychiatric experiments, mean and standard deviations are
computed using a 5-fold cross-validation evaluation scheme.

Qualitatively, the model can be evaluated by looking at the
full image reconstruction (common+salient factors) and by
fixing the salient factors to s′ for target images. Comparing
full reconstructions with common-only reconstructions al-
lows the user to interpret the patterns encoded in the salient
factors s (see Fig.1 and Fig.5).

4.2. CelebA - glasses vs hat identification

To compare with (Weinberger et al., 2022), we evaluated
our performances on the CelebA with attributes dataset. It
contains two sets, target and background, from a subset of
CelebA (Liu et al., 2015), one with images of celebrities
wearing glasses or hats (target) and the other with images

2ConVAE implemented with correct Mutual Information mini-
mization, i.e.: with independently trained discriminator.

Figure 4. CelebA accessories dataset. We used a train set of 20000
images (10000 no accessories, 5000 glasses, 5000 hats) and an
independent test set of 4000 images (2000 no accessories, 1000
glasses, 1000 hats) and ran the experiment 5 times to account for
initialization uncertainty. Images were centered on the face and
then resized to 64× 64, pixels were normalized between 0 and 1.

Figure 5. SepVAE qualitative example on the CelebA with acces-
sories dataset (BG = no accessories, TG = hats and glasses). (Mid-
dle, common+salient): Full reconstructions using the estimated
common and salient factors. (Right, common only): Reconstruc-
tion using only the estimated common factors fixing the salient to
s′. The salient latent variables capture the accessories (hats and
glasses), which are target-specific patterns. The common latents
capture the common attributes (e.g., identity, skin color).
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Table 1. CA-VAE methods performance on CelebA with acces-
sories dataset. Accessories (glasses/hat) information should only
be present in the salient space, not in the common.

GLSS/HATS ACC GLSS/HATS ACC BG VS TG AUC BG VS TG AUC
SALIENT ↑ COMMON ↓ SALIENT ↑ COMMON ↓

CONVAE 82.32±1.17 75.01±2.526 82.46±0.586 78.39±0.41
MM-CVAE 85.17±0.60 73.938±1.66 88.536±0.39 78.036±0.35
SEPVAE 87.62±0.75 72.16±2.02 93.15±1.65 77.604±0.20

Figure 6. PCA projections of MM-c-VAE (left) and SepVAE (right)
salient space on CelebA TEST set. Yellow: no accessories. Dark
Blue: glasses. Purple: hats. We can clearly observe that our
method maximizes the target variance while reducing the back-
ground variance. We attribute this different behaviour to our salient
classification loss, which reduces the overlap between background
and target salient distributions.

of celebrities not wearing these accessories (background).
The discriminative information allowing the classification
of glasses vs. hats should only be present in the salient
latent space. We demonstrate that we successfully encode
these attributes in the salient space with quantitative results
in Tab. 1, and with reconstruction results in Fig. 5. Further-
more, in Fig. 6, we show that we effectively minimize the
background dataset variance in the salient space compared
to MM-cVAE3.

4.3. Identify pneumonia subgroups

We gathered 1342 healthy X-Ray radiographies (background
dataset), 2684 radiographies of pneumonia radiographies
(target dataset) from (Kermany et al., 2018). Two different
sub-types of pneumonia constitute this set, viral (1342 sam-
ples) and bacterial (1342 samples), see Fig.7. Radiographies
were selected from a cohort of pediatric patients aged be-
tween one and five years old from Guangzhou Women and
Children’s Medical Center, Guangzhou. TRAIN set images
were graded by 2 radiologists experts and the independent
TEST set was graded by a third expert to account for label
uncertainty. In Tab. 2, we demonstrate that our method is
able to produce a salient space that captures the pathological
variability as it allows distinguishing the two subtypes: viral
and bacterial pneumonia.

3Our evaluation process is different from (Weinberger et al.,
2022) as their TEST set has been used during the model training.
Indeed, the TRAIN / TEST split used for training Logistic Regres-
sion is performed after the model fitting on the set TRAIN+TEST
set. Besides, we were not able to reproduce their results.

Figure 7. Illustration of the pneumonia dataset. Target images
are pneumonia images composed of viral and bacterial pneumo-
nia. Background images are healthy X-Ray images. Original
dataset image description from (Kermany et al., 2018). The dataset
is available at https://www.kaggle.com/datasets/
paultimothymooney/chest-xray-pneumonia.

Table 2. CA-VAE methods performance on the Healthy vs Pneu-
monia X-Ray dataset. Accuracy scores are obtained with linear
probes fitted on common c or salient s latent vectors of the images
of the target dataset. Pneumonia subtypes information should only
be present in the salient space. The lower part shows an ablation
study of regularization losses.

SUBGRP ACC SUBGRP ACC BG VS TG ACC BG VS TG ACC
SALIENT ↑ COMMON ↓ SALIENT ↑ COMMON ↓

CONVAE 82.30±1.53 73.58±1.84 67.80±5.93 58.05±7.17
MM-CVAE 82.86±1.87 74.35±3.19 70.44±2.69 59.94±5.88
SEPVAE 84.78±0.42 70.92±1.39 78.13±3.03 57.52±4.14

SEPVAE NO MI 84.10±0.48 71.792±2.94 75.186±5.69 60.35±4.73
SEPVAE NO CLSF 84.71±1.19 73.58±2.19 71.91±4.65 55.79±5.41
SEPVAE NO REG 83.98±0.85 72.61±2.05 73.03±2.97 61.43±2.25

Ablation study In the lower part of Tab. 2, we propose
to disable different components of the model to show that
the full model SepVAE is always better on average. no MI
means that we disabled the Mutual Information minimiza-
tion loss (no Mutual Information Minimization). no CLSF
means that we disabled the classification loss on the salient
space (no Salient Classification). no REG means that we
disabled the regularization loss that forces the background
samples to align with an informationless vector s’ = 0 (no
Salient Prior).

Table 3. CA-VAE methods performance on the prediction of
schizophrenia-specific variables (SANS, SAPS, Diag) and com-
mon variables (Age, Sex, Site) using only salient factors recon-
structed by test images of the target (MD) dataset.

AGE MAE ↑ SEX B-ACC ↓ SITE B-ACC ↓ SANS MAE ↓ SAPS MAE ↓ DIAG AUC ↑
CONVAE 7.46±0.18 72.72±1.32 54.46±2.46 3.95±0.28 2.76±0.18 58.53±4.87
MM-CVAE 7.10±0.34 72.15±2.47 56.69±9.84 4.52±0.33 3.16±0.05 70.94±4.08
SEPVAE 7.98±0.25 72.61±2.19 44.10±5.78 4.14±0.39 2.60±0.27 79.15±3.39

Table 4. CA-VAE methods performance on the prediction of
autism-specific variables (ADOS (Akshoomoff et al., 2006),
ADI-s, Diag) and common variables (Age, Sex, Site) using only
salient factors reconstructed by test images of the target (MD)
dataset.

AGE MAE ↑ SEX B-ACC ↓ SITE B-ACC ↓ ADOS MAE ↓ ADI-S MAE ↓ DIAG AUC ↑
CONVAE 3.97±0.19 66.67±1.12 40.97±2.06 10.1±1.27 5.14±0.17 54.93±2.04
MM-CVAE 3.74±0.12 64.07±2.58 40.93±2.66 10.5±2.47 5.09±0.16 54.88±2.76
SEPVAE 4.38±0.09 59.61±1.78 33.58±1.86 8.55±1.68 4.91±0.17 59.73±1.78
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4.4. Parsing neuro-anatomical variability in psychiatric
diseases

The task of identifying consistent correlations between
neuro-anatomical biomarkers and observed symptoms in
psychiatric diseases is important for developing more pre-
cise treatment options. Separating the different latent mech-
anisms that drive neuro-anatomical variability in psychiatric
disorders is a challenging task. Contrastive Analysis (CA)
methods such as ours have the potential to identify and sep-
arate healthy from pathological neuro-anatomical patterns
in structural MRIs. This ability could be a key component
to push forward the understanding of the mechanisms that
underlie the development of psychiatric diseases.

Given a background population of Healthy Controls (HC)
and a target population suffering from a Mental Disorder
(MD), the objective is to capture the pathological factors of
variability in the salient space, such as psychiatric and cog-
nitive clinical scores, while isolating the patterns related to
demographic variables, such as age and sex, or acquisition
sites to the common space. For each experiment, we gather
T1w anatomical VBM (Ashburner & Friston, 2000) pre-
processed images resized to 128x128x128 of HC and MD
subjects. We divide them into 5 TRAIN, VAL splits (0.75,
0.25) and evaluate in a cross-validation scheme the perfor-
mance of SepVAE and the other SOTA CA-VAE methods.
Please note that this is a challenging problem, especially due
to the high dimensionality of the input and the scarcity of
the data. Notably, the measures of psychiatric and cognitive
clinical scores are only available for some patients, making
it scarce and precious information.

4.4.1. SCHIZOPHRENIA:

We merged images of schizophrenic patients (TG) and
healthy controls (BG) from the datasets SCHIZCONNECT-
VIP (Wang et al., 2016) and BSNIP (Tamminga et al., 2014).
Results in Tab. 3 show that the salient factors estimated
using our method better predict schizophrenia-specific
variables of interest: SAPS (Scale of Positive Symptoms),
SANS (Scale of Negative Symptoms), and diagnosis.
On the other hand, salient features are shown to be
poorly predictive of demographic variables: age, sex,
and acquisition site. It paves the way toward a better
understanding of schizophrenia disorder by capturing
neuro-anatomical patterns that are predictive of the psy-
chiatric scales while not being biased by confound variables.

4.4.2. AUTISM:

Second, we combine patients with autism from ABIDE1
and ABIDE2 (Heinsfeld et al., 2017) (TG) with healthy
controls (BG). In Tab. 4, SepVAE’s salient latents better
predict the diagnosis and the clinical variables, such as

ADOS (Autism Diagnosis Observation Schedule) and ADI
Social (Autism Diagnosis Interview Social) which quantifies
the social interaction abilities. On the other hand, salient
latents poorly infer irrelevant demographic variables (age,
sex, and acquisition site), which is a desirable feature for
the development of unbiased diagnosis tools.

5. Conclusions and Perspectives
In this paper, we developed a novel CA-VAE method en-
titled SepVAE. Building onto Contrastive Analysis meth-
ods, we first criticize previously proposed regularizations
about (1) the matching of target and background distribu-
tions in the common space and (2) the overlapping of target
and background priors in the salient space. These regular-
izations may fail to prevent information leakage between
common and salient spaces, especially when datasets are
biased. We thus propose two alternative solutions: salient
discrimination between target and background samples, and
mutual information minimization between common and
salient spaces. We integrate these losses along with the
maximization of the ELBO of the joint log-likelihood. We
demonstrate superior performances on radiological and two
neuro-psychiatric applications, where we successfully sep-
arate the pathological information of interest (diagnosis,
pathological scores) from the “nuisance” common varia-
tions (e.g., age, site). The development of methods like
ours seems very promising and offers a large spectrum of
perspectives. For example, it could be further extended to
multiple target datasets (e.g., healthy population Vs sev-
eral pathologies, to obtain a continuum healthy - mild -
severe pathology) and to other models, such as GANs, for
improved generation quality. Eventually, to be entirely trust-
worthy, the model must be identifiable, namely, we need to
know the conditions that allow us to learn the correct joint
distribution over observed and latent variables. We plan to
follow (Khemakhem et al., 2020; von Kügelgen et al., 2021)
to obtain theoretic guarantees of identifiability of our model.
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Supplementary

A. Context on Variational Auto-Encoders
Variational Autoencoders (VAEs) are a type of generative model that can be used to learn a compact, continuous latent
representation of a dataset. They are based on the idea of using an encoder network to map input data points x (e.g: an
image) to a latent space z, and a decoder network to map points in the latent space back to the original data space.

Mathematically, given a dataset X = xi
N
i=1 and a VAE model with encoder qϕ(z|x) and decoder pθ(x|z), the VAE seeks

ϕ, θ to maximize a lower bound of the input distribution likelihood:

log pθ(x) ≤ Ez∼qϕ(z|x) log pθ(x|z)−KL(qϕ(z|x)||pθ(z))

where pθ(x|z) is the likelihood of the input space, and KL(qϕ(z|x)||p(z)) is the Kullback-Leibler divergence between
qϕ(z|x), the approximation of the posterior distribution, and p(z) the prior over the latent space (often chosen to be a
standard normal distribution).

The first term in the objective function, Ez∼qϕ(z|x) log pθ(x|z), is the negative reconstruction error, which measures how well
the decoder can reconstruct the input data from the latent representation. The second term, KL(qϕ(z|x)||p(z)), encourages
the encoder distribution to be similar to the prior distribution, which helps to prevent overfitting and encourage the learned
latent representation to be continuous and smooth.

B. Salient posterior sampling for background samples
In Sec. 3.3, we motivated the choice of a peaked Gaussian prior for salient background distribution with a user-defined σp.
This way, the derivation of the Kullback-Leiber divergence is directly analytically tractable as in standard VAEs.
To simplify the optimization scheme, we could also set and freeze the standard deviations σy=0

q of the salient space of the
background samples. This way, it reduces the Kullback-Leiber divergence between qϕ(s|x, y = 0) and pθ(s|x, y = 0) to

a 1
σp

-weighted Mean Squared Error between µs(x|y = 0) and s′ : ||µxi|y=0
s −s′||22

σp
. In our code, we make this choice as it

simplifies the training scheme (σy=0
q does not need to be estimated). In the case where there exists a continuum between

healthy and diseased populations, σy=0
q should be estimated.

Also, the choice of a frozen σy=0
q allows controlling the radius of the classification boundary between background and

target samples in the salient space. Indeed, the classifier is fed with samples from the target distributions (qϕs(s|x,y=1) ∼
N(µs(x), σs(x))), and background distributions (qϕs(s|x,y=0) ∼ N(µs(x|y = 0), σq). This implicitly avoids the overlap of
both distributions with a margin proportional to σq . See Fig. 8 for a visual explanation.

C. Implementation Details
C.1. CelebA glasses and hat versus no accessories

We used a train set of 20000 images, (10000 no accessories, 5000 glasses, 5000 hats) and an independent test set of
4000 images (2000 no accessories, 1000 glasses, 1000 hats), and ran the experiment 5 times to account for initialization
uncertainty. Images are of size 64× 64, pixel were normalized between 0 and 1. For this experiment, we use a standard
encoder architecture composed of 5 convolutions (channels 3, 32, 32, 64, 128, 256), kernel size 4, stride 2, and padding (1, 1,
1, 1, 1). Then, for each mean and standard deviations predicted (common and salient) we used two linear layers going from
256 to hidden size 32 to (common and salient) latent space size 16. The decoder was set in a symmetrical manner. We used
the same architecture across all the concurrent works we evaluated. We used a common and latent space dimension of 16
each. The learning rate was set to 0.001 with an Adam optimizer. Oddly we found that re-instantiating it at each epoch led to
better results (for concurrent works also), we think that it is because it forgets momentum internal states between the epochs.
The models were trained during 250 epochs. To note, MM-cVAE used latent spaces of 16 (salient space) and 6 common
space and a different architecture but we noticed that it led to artifacts in the reconstruction (see original contribution). Also,
we did not succeed to reproduce their performances with their code, their model, and their latent spaces, even with the same
experimental setup. We, therefore, used our model setting which led to better performances across each method with batch
size equal to 512. We used βc = 0.5 and βs = 0.5, κ = 2, γ = 1e − 10, σp = 0.025. For MM-cVAE we used the same
learning rate, βc = 0.5 and βs = 0.5, the background salient regularization weight 100, common regularization weight of
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Figure 8. Illustration of the regularization loss within the salient space. As in MM-cVAE, the prior qϕs(s|x,y=0) ∼ s’ on the background
samples (blue) forces their variance to be as small as possible. However, as the prior on target samples (green) follow a normal distribution,
they may overlap with the background distribution. To avoid this case, our method trains a non-linear classifier to avoid the overlap of
both distributions with a margin proportional to σq .

1000.

C.2. Pneumonia

Train set images were graded by 2 radiologists experts and the independent test set was graded by a third expert, the
experiment was run 5 times to account for initialization uncertainty. Images are of size 64 × 64, pixel were normalized
between 0 and 1. For this experiment, we use a standard encoder architecture composed of 4 convolutions (channels 3, 32,
32, 32, 256), kernel size 4, and padding (1, 1, 1, 0). Then, for each mean and standard deviations predicted (common and
salient) we used two linear layers going from 256 to hidden size 256 to (common and salient) latent space size 128. The
decoder was set in a symmetrical manner. We used the same architecture across all the concurrent works we evaluated. We
used a common and latent space dimension of 128 each. The learning rate was set to 0.001 with an Adam optimizer. Oddly
we found that re-instantiating it at each epoch led to better results (for concurrent works also), we think that it is because it
forgets momentum internal states between the epochs. The models were trained during 100 epochs with batch size equal to
512. We used βc = 0.5 and βs = 0.1, κ = 2, γ = 5e − 10, σp = 0.05. For MM-cVAE, we used the same learning rate,
βc = 0.5 and βs = 0.1, the background salient regularization weight 100, common regularization weight of 1000.

C.3. Neuro-psychiatric experiments

Images are of size 128× 128× 128 with voxels normalized on a Gaussian distribution per image. Experiments were run 3
times with a different train/val/test split to account for initialization and data uncertainty. For this experiment, we use a
standard encoder architecture composed of 3 3D-convolutions (channels 1, 32, 64, 128), kernel size 3, stride 2, and padding
1 followed by batch normalization layers. Then, for each mean and standard deviations predicted (common and salient), we
used two linear layers going from 65536 to hidden size 256 to (common and salient) latent space size 128. The decoder
was set symmetrically, except that it has four transposed convolutions (channels 128, 64, 32, 16, 1), kernel size 3, stride
2, and padding 1 followed by batch normalization layers. We used the same architecture across all the concurrent works
we evaluated. We used a common and latent space dimension of 128 each. The models were trained during 51 epochs
with a batch size equal to 32 with an Adam optimizer. For the Schizophrenia experiment, for Sep VAE, we used a learning
rate of 0.00005, βc = 1 and βs = 0.1, κ = 10, γ = 1e − 8, α = 1

0.01 . For MM-cVAE we used the same learning rate,
βc = 1 and βs = 0.1, the background salient regularization weight 100, common regularization weight of 1000. For the
Autism disorder experiment, we used a learning rate of 0.00002, βc = 1 and βs = 0.1, κ = 10, γ = 1e − 8, σp = 0.01.
For MM-cVAE we used the same learning rate, βc = 1 and βs = 0.1, the background salient regularization weight 100,
common regularization weight of 1000.
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