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Abstract
The ability of humans to efficiently understand
and learn to solve complex tasks with relatively
limited data is attributed to our hierarchically or-
ganized decision-making process. Meanwhile,
sample efficiency is a long-standing challenge for
reinforcement learning (RL) agents, especially in
long-horizon, sequential decision-making tasks
with sparse and delayed rewards. Hierarchical re-
inforcement learning (HRL) augments RL agents
with temporal abstraction to improve their ef-
ficiency in such complex tasks. However, the
decision-making process of most HRL methods
is often based directly on dense low-level infor-
mation, while also using fixed temporal abstrac-
tion. We propose the hierarchical world model
(HWM), which is geared toward capturing more
flexible high-level, temporally abstract dynamics,
as well as low-level dynamics of the task. Pre-
liminary experiments on using the HWM with
model-based RL resulted in improved sample ef-
ficiency and final performance. An investigation
of the state representations learned by the HWM
also shows their alignment with human intuition
and understanding. Finally, we provide a theoreti-
cal foundation for integrating the proposed HWM
with the HRL framework, thus building toward
RL agents with hierarchically structured decision-
making which aligns with the theorized principles
of human cognition and decision process.

1. Introduction
Deep reinforcement learning (DRL) has proven to be a pow-
erful set of automation methods, able to solve a gamut of
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tasks varying in complexity (Mnih et al., 2013; Schulman
et al., 2017; Haarnoja et al., 2018b; Dabney et al., 2018;
Hafner et al., 2020a). Still, conventional DRL methods can
be very sample inefficient when applied to long-horizon, se-
quential decision-making tasks, which usually overlap with
sparse and delayed rewards problems, further increasing
their complexity.

A growing body of studies in human behavior, cognitive
science, neuroscience, and computational biology suggests
that human behavior is hierarchically organized (Botvinick
et al., 2011). This is theorized to be a critical part that
allows us to efficiently understand and learn to solve various
challenging tasks with relatively limited amounts of data
compared to RL methods (Tomov et al., 2020; Xia & Collins,
2020).

Inspired by this, the hierarchical reinforcement learning
(HRL) framework aims to improve the efficiency of con-
ventional (flat) RL by introducing temporal abstraction in
the decision-making process of an agent (Dayan & Hin-
ton, 1992; Sutton et al., 1999; Barto & Mahadevan, 2003;
Botvinick et al., 2011). While existing HRL methods
have empirically demonstrated a considerable improvement
in efficiency over conventional DRL methods (Kulkarni
et al., 2016; Vezhnevets et al., 2017; Florensa et al., 2017;
Haarnoja et al., 2018a; Li et al., 2019), most HRL methods
rely on fixed length temporal abstraction. Moreover, the
decision-making occurring at higher levels in the agent’s hi-
erarchy is still often based on the observations at the lowest
level.

In this work, we proposed the hierarchical world model
(HWM), a world modeling method that aims to better fit
the theorized hierarchical structure of the human decision-
making process. Owing to its hierarchical structure, the
proposed model inherently provides (1) a temporally ab-
stract state representation summarizing an arbitrary number
of lower-level states, and (2) an adaptive temporal abstrac-
tion mechanism to divide long-horizon, sequential decision
tasks into smaller tasks of variable lengths.

Preliminary experiments in using the HWM as a representa-
tion learning mechanism for a Dreamer-based agent (Hafner
et al., 2020a;b) demonstrated improvements in sample effi-
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ciency and final performance of the agent. Further analysis
of the representations learned by the proposed HWM also
suggests that the HWM can learn a hierarchically struc-
tured internal state representation that aligns with human
understanding and intuition (Botvinick & Weinstein, 2014;
Tomov et al., 2020) on a given task.

Finally, we show the potential compatibility of the HWM
with the HRL framework by expanding the underlying the-
ory of the proposed HWM to incorporate more rigorous
hierarchical decision-making. This would bring the practi-
cal HRL framework closer to the human decision-making it
is originally inspired from, and serve as a tool for analyzing
RL agents’ decision-making. In practice, this could help
broaden the gamut of tasks to which deep RL methods can
be successfully applied for automation.

2. Preliminaries
2.1. Reinforcement learning and hierarchical

reinforcement learning

We base ourselves on the formalism of a finite time horizon
partially observable Markov decision processes (POMDP),
which we denote by the tuple (S,A, Ps,a, R,O, Po, H),
where S is the state set, A is the action set, Ps,a : S× A×
S → [0, 1] is the state transition probability, R : S×A → R
the reward function, O the set of partial observations,
Po : S → O the emission probability distribution, and
H the horizon (maximum episode length). The decision
process of an RL agent can be represented by a stochastic
policy π : S × A, which defines the probability of action
a being selected given a state s. From a probabilistic per-
spective (Levine, 2018; Sun & Bischl, 2019), the POMDP
modeling the dynamics of the system and the decision mak-
ing of the agent can be formally expressed as the following
generative process:

p(O,S,A) =

H∏
t=1

p(ot|st) p(st|st−1, at−1)π(at|ot) (1)

In the hierarchical RL (HRL) framework, the policy of the
agent decomposed into hierarchically structured component
policies. The lowest level in the hierarchy operates at the
finest time scale, the same as a flat RL policy. On the other
hand, the higher levels in the hierarchy operate at a coarser
time scale, thus resulting in temporal abstraction. This
would allow HRL agents to explore the state space more
efficiently by leveraging sequential combinations of low-
level policies (also referred to as options or skills), allowing
for a more efficient sequential decision making (Sutton et al.,
1999; Barto & Mahadevan, 2003; Botvinick et al., 2011)
in long-horizon tasks. Concurrently, temporal abstraction
allows for a better credit assignment through time, which
is especially helpful in long-horizon, sparse and delayed

reward tasks (Sutton et al., 1999; Vezhnevets et al., 2017).

Consider the simplest case of a two-level hierarchical agent
composed of πH and πL respectively representing the high
and low-level policies. πH selects a skill on which πL will
be conditioned. In practice, πH is usually conditioned on
the low-level observations, and its time scale is often set to
a fixed length we denote as k hereafter (Vezhnevets et al.,
2017; Kulkarni et al., 2016; Florensa et al., 2017; Haarnoja
et al., 2018a). Denoting the skill space by E, and augmenting
the generative process of the POMDP in Eq. 1, we obtain:

p(O,S,A,E) =

H/k∏
τ=0

πH(eτ |okτ )
k(τ+1)∏
t=kτ

p(ot|st)

p(st|st−1, at−1)π
L(st|ot, eτ ).

(2)

The graphical models for Eq. 1 and Eq. 2 are illustrated in
Fig. 1 (a) and (b), respectively.

2.2. Hierarchically organized behavior

A growing body of studies (Botvinick et al., 2011; Botvinick
& Weinstein, 2014; Tomov et al., 2020; Xia & Collins, 2020)
at the intersection of neuroscience, cognitive science, psy-
chology, and computational biology suggests that the human
decision-making process is hierarchically organized. For ex-
ample, when faced with a task such as making a trip abroad,
we divide it into a sequence of sub-tasks such as booking the
flight, packing the luggage, driving to the airport, boarding
the plane, and so on. Each sub-task can be further divided
into sub-sub-tasks, down to the finest granularity of actions
such as bodily movements. This concept is referred to as
temporal abstraction and allows us to efficiently learn, plan,
and act in a wide gamut of activities. It is a fundamental
principle underlying the HRL framework introduced in 2.1,
where each of the aforementioned sub-tasks would be real-
ized by learning and executing the appropriate skill.

While existing HRL methods (Sutton et al., 1999; Vezh-
nevets et al., 2017; Kulkarni et al., 2016; Florensa et al.,
2017; Haarnoja et al., 2018a; Li et al., 2019) do structure
the decision-making process of the agent hierarchically, the
skill selection at higher levels in the hierarchy is more often
than not based on the observations at the finest level of the
hierarchy. In the case of example task making a trip abroad,
this is akin to having the high-level policy decide to drive to
the airport while using a very exhaustive representation of
the current state of the agent, instead of the more abstract
state luggage packed and ready to go to the airport.

Following this line of thought, (Tomov et al., 2020; Xia
& Collins, 2020) suggest that our hierarchical decision-
making process is intertwined with a corresponding tem-
porally abstract state representation. Intuitively, such ab-
stracted state representation would align with intermediate
sub-goals, milestones, or bottleneck states that contribute to
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solving the overall task, thereby greatly simplifying plan-
ning, exploration, and execution.

The ability to create long-term plans and strategies without
necessarily interacting with the world happens to also be tied
to such abstract state representation. This is made possible
by leveraging our internal model of the world, which is
theorized to also be hierarchical. For example, we can both
imagine the detailed process of folding shirt (low-level), as
well as the more abstract process of putting folded shirts
into the suitcase (high-level). Botvinick et al. empirically
demonstrated the benefit of having a temporally abstract
model (Botvinick & Weinstein, 2014). They proposed a
model-based HRL variant of the options framework (Sutton
et al., 1999), where the standard HRL agent is augmented
with a temporally abstract model that allows the agent to
directly plan at a coarser time scale. This resulted in a great
improvement in performance, but also sample efficiency.
However, the skills, and the temporally abstract model were
manually engineered, thus limiting the generality of the
proposed approach.

As suggested by (Barto & Mahadevan, 2003), it would be
desirable to endow HRL agents with an additional mech-
anism that allows autonomous extraction of temporally
abstract state, and the corresponding temporal dynamics
model. Moving toward a human cognition-inspired decision-
making process, we turn ourselves to recent methods for
dynamics learning that fall under the umbrella of world
modeling, to complement standard HRL agents with a gen-
eral, end-to-end mechanism for discovery and learning of
temporally abstract state representations and dynamics.

2.3. World models

The broad range of methods that have marked the recent
resurgence of model-based RL (MbRL) are referred to as
world models (Ha & Schmidhuber, 2018; Hafner et al., 2018;
2020a;b). Such methods have not only demonstrated either
competitive or superior performance to the leading model-
free RL methods but also improved the sample efficiency of
the agents.

One of the key factors behind the success of world mod-
eling methods is the introduction of self-supervised learn-
ing objectives (Kingma & Welling, 2014) to learn more
compact and meaningful representations of the internal
state belief st in Fig. 1 (a). This allowed separating the
decision-making component (policy) from the raw and usu-
ally noisy pixel-based observations, greatly simplifying
the learning of the decision-making process. Additionally,
world modelling techniques leverage Recurrent Neural Net-
works (RNN) (Hochreiter & Schmidhuber, 1997; Cho et al.,
2014; Goodfellow et al., 2016), to approximate the state tran-
sition dynamics p(st|st−1, at−1) from Eq. 1. Such approxi-
mation can then be used to collect samples in an imaginary

environment in the place of the real environment, leading to
a drastic improvement in sample efficiency.

Through the series of Dreamer agents (Hafner et al.,
2020a;b), Hafner et al. take this concept one step further
by seamlessly incorporating the prediction of the reward
and episode termination with an actor-critic (Schulman
et al., 2017; Haarnoja et al., 2018b) policy into the model.
Leveraging the differentiable dynamics of the latter allows
Dreamer agents to directly improve their policy in an end-
to-end manner over simulated trajectories.

To further emphasize the gap between the desideratum of
this study and the existing world modeling methods, let
us consider how a world model enables RL agents to also
create plans (sequences of actions) without rolling out the
physical or simulated environment. This feature of models
is indeed a close, albeit a drastically simplified version of
our ability as humans to mentally simulate various scenarios
and their development for a given task. Namely, we main-
tain a set of intricately organized internal beliefs about the
surrounding environments and even the actors that populate
them. A practical example would be a game of chess, where
a professional player is planning multiple moves, antici-
pating various strategies of his opponent, and developing
counter moves. For an example more grounded in daily life
activities, let us again consider the task of planning a trip.
For us, such planning is a process that ranges over low-level
details such as “what documents to prepare”, “which clothes
to take ?”, “what time to wake up at ?”, to more and more
abstract level such as “taking the train from city A to city
B both in country C” then “taking the plane from city B to
city D in country E”, and so on (Tomov et al., 2020).

As humans, our decision-making process is indeed not lim-
ited to low-level and densely detailed state beliefs (represen-
tations) of the world. Most, if not all world model methods,
however, only estimate the internal state belief and tran-
sition dynamics at the finest time scale. Inspired by the
theorized hierarchically structured model of animals and
humans presented in 2.2, we seek to augment conventional
modeling methods with a hierarchical structured dynamics
model.

2.4. Variational temporal abstraction

The variational temporal abstraction (VTA) (Kim et al.,
2019) framework was introduced as a discovery method
for temporally hierarchical structure and representation in
sequential data. Formally, VTA assumes the existence of
a sequence of observations O = {o1, o2, ...oH} of length
H that can be decomposed into N non-overlapping sub-
sequences O = (O1, O2, ..., ON ), such that each sub-
sequence Oi = {oi1:li} has length li, and

∑N
i=1 li = H .

Each observation ot is generated from the corresponding
low-level state wt, such that each observation sub-sequence
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Oi is associated with a low-level state sub-sequence Wi.
Finally, each low-level state sub-sequence Wi is assumed to
have been generated from a temporally abstract state zi.

To efficiently separate sub-sequences Wi corresponding to
different zi, the VTA framework leverages a binary random
variable M referred to as binary boundary indicator instead
of modeling both the number of sub-sequences N and their
lengths L. At an arbitrary time-step t, the binary indicator
mt specifies whether or not a new sub-sequence starts at
time step t + 1. The generative process for an observed
sequence O is formally defined as follows:

p(O,W,Z,M) =

H∏
t=1

p(ot|wt) p(wt|zt, wt−1,mt−1)

p(zt|zt−1,mt−1) p(mt|wt).

(3)

The temporally abstract state z and the low-level state ab-
straction w are approximated using the proposed hierar-
chical recurrent state-space model, which is trained using
sequential variational inference (Kingma & Welling, 2014).

While it does provide an adaptable mechanism to learn tem-
porally abstracted dynamics and the corresponding abstract
states, it cannot be directly incorporated into a hierarchi-
cally structured decision-making process. Namely, it does
not model the influence of the actions of neither low nor
high-level actions originating as causal components of the
observed sequences.

3. Proposed method
3.1. Theoretical model

In this work, we propose the hierarchical world model
(HWM), which combines conventional world modeling tech-
niques and VTA to capture flexible, temporally abstract
dynamics, and the corresponding state representations struc-
tured hierarchically.

First, we adopt the world model structure of the Dreamer
agents (Hafner et al., 2020a;b) introduced in Section 2.3. For
a given task formalized as a POMDP, such a world model
approximates the internal belief state st as a single random
variable using sequential variation inference. Following
the VTA (Kim et al., 2019) framework, we assume that the
internal belief state st itself can be decomposed into the
hierarchically structured components wt, and zt, with the
boundary indicator mt determining when the temporally
abstract transition takes place.

Since we are mainly interested in learning the dynamics of
the environment, we consider the sequence of observations
as generated by a fixed policy π, which influence is hereafter
represented by the random variable A. Based on Eq. 1,
and Eq. 3 we obtain the following generative process the

(a) (b)

COPY UPDATE

(d) 

HRL

Four
Rooms

(c) 

HW
M

Figure 1. (a) Graphical model of a POMDP task dynamics and
decision-making process of a flat RL agent. (b) Graphical model of
the temporal abstraction introduced to the task following the HRL
framework. (c) Dynamic Bayesian network of the POMDP task
with a hierarchically structured state representation following the
proposed HWM. (d) Dynamic Bayesian network of the proposed
HWM applied to the Four Rooms task. The stochastic variable g
denotes the goal of the agent, and rA denotes the room of the agent.
The variables g and rA would correspond to the z variable in the
proposed HWM formulation. Finally, w denotes more detailed
information about the agent relatively to the room it is located in.

proposed model is based upon:

p(O,W,Z,M |A) =
H∏
t=1

p(ot|wt, zt) p(mt|wt, zt, at)

p(zt|zt−1,mt−1, wt−1, at−1) p(wt|zt, wt−1, at−1).
(4)

The corresponding graphical model is documented as Fig. 1
(c).

3.2. Learning and inference of task dynamics

The generative process proposed in Eq. 4 is modeled us-
ing a hierarchical recurrent state-space model (Kim et al.,
2019; Saxena et al., 2021). More specifically, pθ(ot|wt, zt)
is parameterized as the decoder component of a vari-
ational auto-encoder (Kingma & Welling, 2014). The
prior over the temporally abstract transition is modeled
by pθ(zt|zt−1,mt−1, wt−1, at−1) approximated using deep
neural networks.

To improve the modeling of long-term dynamics, zt is
decomposed into a deterministic component ct and and



Toward Human Cognition-inspired High-Level Decision Making For Hierarchical Reinforcement Learning Agents

stochastic component vt (Hafner et al., 2018; 2020a;b; Kim
et al., 2019). The deterministic transitions for ct are mod-
eled using the following rule:

ct =

{
ct−1 if mt−1 = 0 (COPY)
fz-rnn(zt−1, ht−1, ct−1) otherwise (UPDATE)

where fz-rnn is a GRU neural network (Cho et al., 2014; Kim
et al., 2019), and ht−1 is represents the preceding sequence
of (w, a) pairs. The stochastic component vt is implemented
as a Normal distribution: vt ∼ N (µv(ct), σv(ct)), where
µv and σv are parameterized by their respective densely
connected feed-forward neural networks. The temporally
abstract state zt is thus obtained by concatenating ct and vt.

Similarly, the low-level state wt is also decomposed into
deterministic and a stochastic components, respectively de-
noted by ht and yt. Unlike in VTA (Kim et al., 2019), ht is
seamlessly updated like in Clockwork VAEs (Saxena et al.,
2021) using the rule:

ht = fw-rnn
(
wt−1, at−1, ht−1

)
,

where fw-rnn is the GRU neural network associated with
the low-level state transitions. The stochastic compo-
nent yt is implemented using a normal distribution yt ∼
N (µy(ht), σy(ht)), where µy and σy are parameterized
by their respective densely connected feed-forward neural
networks. The concatenation of ht and yt is then used to
represent the low-level state.

Finally, the prior boundary detector pθ(mt|wt, zt, at) is pa-
rameterized using a densely connected neural network with
a final sigmoid activation function.

The hierarchy of state representation components and the
corresponding dynamics is inferred (Kingma & Welling,
2014) using the parameterized variational distribution
qϕ(Z,W,M |O,A). The latter is decomposed as follows:

qϕ(Z,W,M |O) = qϕ(M |O)

H∏
t=1

qϕ(wt|zt,M,O) qϕ(zt|M,O),

with qϕ(M |O) =
∏
t Bernoulli(mt|σ(φ(O))), where σ is

the sigmoid function, and φ is a temporal convolution opera-
tion over a sequence of observations. Both qϕ(wt|zt,M,O)
and qϕ(zt|M,O) are approximated using the mean field
approximation-based method (Kim et al., 2019; Saxena
et al., 2021).

The parameter vectors θ and ϕ are learned by maximizing
the variational lower bound (VLB) derived from Eq. 4 as

follows:

log p(O|A) ≥ E
qϕ

[
log pθ(O|Z,W )

]
−

KL
[
qϕ(Z,W,M |O,A) || pθ(Z,W,M |A)

]
.

(5)

For a given sequence of observation-action pairs
{(ot, at)}Ht=1, the VLB derived in Eq. 5 is approximated
as:

JHWM(θ, ϕ) =

T∑
t=1

log pθ(ot|wt, zt)− KL
[
qϕ(zt) || pθ(zt)

]
−

KL
[
qϕ(wt) || pθ(wt)

]
− KL

[
qϕ(mt) || pθ(mt)

]
.

(6)
The first term in Eq. 6 corresponds to the reconstruction
objective across the observed sequence. The last three terms
correspond to the Kullback-Leibler divergence between the
generative and variational distributions used to approximate
temporally abstract state zt dynamics, the low-level state
wt’s dynamics, and the sequence segmentation based on the
boundary indicator mt, respectively.

3.3. Incorporation with an actor-critic

To enable decision-making based on the proposed HWM,
the model is further extended with a reward predictor
pθ(r̂t|wt, zt). This predictor is approximated as a Nor-
mal distribution r̂t ∼ N (µr̂(wt, zt), 1) where the mean
µr̂(wt, zt) is parameterized using a feed-forward neural net-
work. The reward predictor is then trained to maximize the
likelihood of the reward rt collected during trajectory sam-
pling. Formally, this corresponds to minimizing the objec-
tive function JR(θ, ϕ) =

∑H
t=1 −log pθ(rt|wt, zt) jointly

with JHWM(θ, ϕ) defined in Eq. 6.

Following (Hafner et al., 2020a;b), the actor-critic is com-
posed of an action and a value model. In the scope of
this paper, we defined the action model as the policy
πψ(ah|wh, zh) to be a distribution over discrete actions.
The value model is defined as a state value function that esti-
mates the average reward-to-go from a given state (wh, zh),
formally expressed as follows:

V tψ = Vψ(wt, zt) ≈ Eqϕ(·|wt,zt)

[ t+H∑
h=t

γh−tr̂h
]
.

Here, ψ denotes the vector of parameters that form the layers
of the deep neural networks expressing both πψ and Vψ .

The training objective of the value function is to regress
the V tψ estimate to the state value target denoted as V tλ .
The latter is estimated using the λ-return estimation (Hafner
et al., 2020a;b). The objective function for the value learning
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components is thus formally expressed as:

JV(ψ) = Epθ(wt,zt)

[ t+H∑
h=t

1

2

∣∣∣∣Vψ(wh, zh)− V hλ
∣∣∣∣2] (7)

The role of the actor component is to select action that
maximize leads to states with maximal value estimation.
Exploration is implicitly incorporated by regularizing the
policy entropy following (Haarnoja et al., 2018b; Hafner
et al., 2020b). This is formally expressed as follows:

Jπ(ψ) = Epθ(wt,zt)

[ t+H∑
h=t

−logπψ(at|wh, zh) sg(V hψ )

− ηH
[
ah|wh, zh

]]
(8)

with sg denoting the gradient stopping operation, H the
entropy of the policy πψ, and η the entropy regularization
coefficient.

Finally, the actor-critic component objective function
JAC(ψ) is then constructed as follows:

JAC(ψ) = Jπ(ϕ) + JV(ψ). (9)

The overall cost function of the proposed HWM as a repre-
sentation learning component, and the actor-critic compo-
nent to be minimized is thus expressed as follows:

J(θ, ϕ, ψ) = JHWM(θ, ϕ) + JR(θ, ϕ) + JAC(ψ). (10)

While in practice the actor-critic component is jointly
trained with the proposed HWM, let us emphasize that
JAC(ψ) is minimized over simulated trajectories of length
H , instead of directing relying on data sampled during roll-
outs of the agent (Schulman et al., 2017; Haarnoja et al.,
2018a; Dabney et al., 2018). Those simulated trajectories
are produced by the approximated dynamics transitions
pθ(wt), pθ(zt), and pθ(mt) of the proposed HWM that
were described in Section 3.1 and 3.2.

4. Experimental setting
The experiments are grounded in one of the representative
task of the HRL setting referred to as Four Rooms (Sut-
ton et al., 1999), illustrated in Fig. 4 (a). We built on
top of the publicly available implementation referred to
as the MiniGrid-FourRooms-v0 environment, provided by
(Chevalier-Boisvert et al., 2018). For the purpose of our
experiments, the environment is modified to provide RGB
images of a bird’s eye perspective of the maze as observa-
tions to the RL agent.

In Four Rooms, the agent (red triangle) illustrated in Fig. 4)
(a) has to reach the exit (green tile) within a maximal episode

length of H = 100 steps. The layout of the maze, which de-
termines the position of the doors is fixed across all episodes.
Both the starting position of the agent and the goal are set
randomly at the beginning of each episode. The action space
is simplified to three actions: turn left, turn right, and move
forward.

For our purpose, we consider a decomposed state represen-
tation of st, illustrated in Fig. 1 (d). Namely, we can effi-
ciently describe the state of the whole maze using 3 random
variables. First, let G encode the room of the goal, as well
as the relative x and y coordinates of the goal in said room.
Next, the agent position in the maze can be decomposed into
the room of the agent, denoted as the random variable RA,
and the variable W that encodes the relative x and y coordi-
nates of the agent in RA, as well as the direction it is facing.
This is derived from the observation that the information
encoded by G is fixed across an episode, while the room of
the agent RA changes less frequently when compared to the
x and y coordinates, or the direction of the agent encoded in
W . Notice that this compact representation can be matched
with the two-level hierarchy of the proposed HWM as illus-
trated in Fig. 1 (c), by collapsing both G and RA into the
variable Z, because they both change at a slower pace than
W . This is motivated by the experimental results of (Saxena
et al., 2021), stipulating that in a hierarchically structured
recurrent state-space model, slowly changing information in
the observations is encoded into higher levels of the latent
variable hierarchy. Meanwhile, fast-changing components
are encoded at the lower levels.

We design the first experimental phase to demonstrate how
the proposed HWM captures an adaptable temporally ab-
stracted state dynamics. To this end, we train an RL agent
instantiated as Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017) using the reference imple-
mentation provided in the Stable Baselines 3 RL algorithm
library (Raffin et al., 2021). The pre-trained PPO agent
is used to generate a dataset of 25, 000 observation-action
pairs (ot, at), corresponding to 1, 736 distinct episode tra-
jectories. This dataset is then used to train an instance of the
proposed HWM without an actor-critic component, to max-
imize the objective function JHWM(θ, ϕ) derived in Eq. 6.
The objective of this experimental phase is solely to ana-
lyze the learned hierarchical state representation. It is thus
separate from the decision-making aspect, which is focused
upon in the next experimental phase.

The second experimental phase aims to investigate whether
or not the proposed HWM is a valid world modeling
method, and if it provides any performance or sample effi-
ciency improvement over classical world modeling meth-
ods. To this end, we jointly train the proposed HWM
and the actor-critic component to minimize the overall ob-
jective function J(θ, ϕ, ψ) described Eq. 10 on the same
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MiniGrid-FourRooms-v0 used in the first experimental
phase. The same procedure is also conducted on the Pong
task of the Atari game suite (Bellemare et al., 2013) to
verify against the baseline Dreamer agent (Hafner et al.,
2020a;b). Due to computational limitations, the agents are
trained for 2, 000, 000 environment steps, corresponding to
400, 000 model and actor-critic update steps for MiniGrid-
FourRooms-v0. For Atari’s Pong, the agents are trained for
20, 000, 000, corresponding to 1, 250, 000 world model and
actor-critic update steps.

5. Results
5.1. Hierarchically structured state representation

Recall that the purpose of the HWM is to provide (1) a
temporally abstract state representation summarizing an
arbitrary number of lower-level states while at the same time
filling the role of a world model (Ha & Schmidhuber, 2018;
Hafner et al., 2020a;b). Additionally, the model should also
provide (2) an adaptive temporal abstraction mechanism to
divide trajectories into coherent sub-sequences (Kim et al.,
2019).

To evaluate the proposed method, a trained instance of the
proposed HWM following the setting described in Section 4
is fed trajectories of observation-action pairs (ot, at). For
each trajectory, the first temporally abstract state z0 is in-
ferred using the learned posterior qϕ(zt). For t > 0, the
temporal transition is modeled using the learned pθ(zt). The
lower-level state wt at each step is inferred using the pos-
terior qϕ(wt), similarly to Dreamer agents (Hafner et al.,
2020a;b). The boundary indicator mt is estimated using the
learned prior distribution pθ(mt). Finally, each observation
ot is reconstructed using the learned decoder pθ(ot|wt, zt).

From lines (a) and (e) in Fig. 2, we observe that the HWM
manages to accurately reconstructs the provided observa-
tions, while modeling the high and low-level state transi-
tions, thus satisfying the requirement (1). Requirement (2)
is also satisfied, as the prior boundary indicator pθ(mt) can
accurately predict the change in the room of the agent. This
is indicated in Fig. 2 by a change of color at the next step ev-
ery time the prior boundary indicator detects a new segment.
In this specific case, the proposed trajectory segmentation
also coincides with the intuited abstracted dynamics we
derived for the Four Rooms task, as illustrated in Fig. 1 (d).

Through the lines (b), (c), and (d) in Fig. 2, we aim to
illustrate what part of the reconstructed observation each of
the latent variables zt and wt is responsible for. From (b),
we observe that only the layout of the maze is reconstructed
when we pass zeros as input to the decoder pθ(ot|wt, zt).
Moreover, there are smeared traces of red color over the
mazes, reminiscent of the agent depiction.
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Figure 2. Illustrative example of the reconstruction and segmenta-
tion of an arbitrary trajectory performed by the proposed HWM.
Each color represents a segment that corresponds to a temporally
abstract state st. The segmentation is performed using the learned
prior boundary distribution mt ∼ pθ(mt). Intermediate steps of
long segments are omitted. Row (a) shows the ground truth ob-
servation of the trajectory. From row (b) to (e), the hierarchically
structured components zt and wt of the HWM’s state belief are
progressively turned on just before reconstructing the observed
frame.

When conditioning the decoder on the high-level state zt
only, the goal tile, as well as a blurry depiction of the agent,
appear in the reconstructions, illustrated by the line (c). On
the other hand, when conditioning the decoder solely on wt,
not only is the goal absent from the frame but the position
of the agent in the maze becomes ambiguous, as illustrated
in line (d). These results suggest that the information about
the goal and the room of the agent tend to be encoded at
the higher level by zt, while other, more refined information
is encoded at the lower level by wt. Notice also how the
traces of red are present in rows (b) and (d) become absent
once zt has been incorporated in row (c). We attribute the
red traces to the ambiguity regarding the information about
the agent’s position in the state representation used for the
reconstruction. This further strengthens the observation that
zt also encodes information that contributes to precisely
situating the agent in the maze, which is also corroborated
by (Saxena et al., 2021).

One caveat would be that the role of encoding information
about the agent seems to be shared by the combination of
wt and zt. Namely, on line (c) at time step t = 8, the blurry
agent is depicted in the room corresponding to the previous
segment of t ∈ {1, ..., 7}. Concurrently, on line (d) at time
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(a) Episodic return on MiniGrid-FourRooms-v0 task

(b) Episodic return on Atari Pong task

Figure 3. Averaged episodic return of each agent across 4 seeds.
The vertical axis holds the episodic return values, while the horizon-
tal one shows the number of time steps (environment interactions).

steps t ∈ {7, 8, 9}, the agent is localized in the correct room,
albeit with a less defined depiction. This could be solved
by further refining the HWM’s structure and using methods
such as (Higgins et al., 2017; Zhao et al., 2017) to better
disentangle the information captured toward different levels
of the hierarchy.

5.2. Sample efficiency and performance improvement

Fig. 3a and Fig. 3b documents the averaged episodic return
across four seeds for MiniGrid-FourRooms-v0 and Atari’s
Pong task respectively.

In both cases, the HWM Dreamer (green line) that
uses the proposed HWM instead of the reference world
model (Hafner et al., 2020a;b) demonstrates a non-
negligible gain in sample efficiency, when compared to
the baseline Dreamer agent (blue line). Moreover, it also
achieves the highest final performance with less variance
across runs.

This would suggest that owing to its hierarchically struc-
tured internal state representation, the proposed HWM is
further incentivized to learn a state representation that accel-
erates and stabilizes the learning of the actor-critic compo-
nent.

6. Future work
In this section, we motivate how the proposed HWM can
be further leveraged in the context of the HRL framework.
This ties into bringing the decision-making process of HRL
agents toward one that is more aligned with the hierarchi-
cally organized behavior observed in animals and humans,
as described in Section 2.2.

To this end, let us first extend the proposed generative pro-
cess in Eq. 1 to account for the decision-making of an HRL
agent. The resulting generative process is illustrated in
Fig. 5 of Appendix A, while being formally expressed as:

p(O,W,Z,M,A,E) =

H∏
t=1

p(ot|wt, zt) p(mt|wt, zt, at)

p(zt|zt−1,mt−1, wt−1, at−1)

p(wt|zt, wt−1, at−1)

πL(at|wt, zt, et)πH(et|zt).
(11)

Marginalizing out the observation O, low-level state rep-
resentation component W , boundary indicator M , and the
low-level action A variables from Eq. 11 allows us to re-
cover a temporally abstract MDP.

p(Z,E) =
∏
τ

p(zτ |zτ−1, eτ−1)π
H(eτ |zτ ). (12)

Such temporally abstract MDP can be considered as a sim-
plified version of the task to solve. The motivation that lead
to such abstraction mechanism is illustrated and intuited in
Fig. 4.

Given the example of the Four Rooms task introduced in
Section 4, this abstract MDP would correspond to a sim-
pler problem of navigating between the eight rooms, as
illustrated at the layer (c) in Fig. 4. Namely, the high-level
policy πH would thus be set to solve the task of making the
overall agent reach a given room by guiding the low-level
policy. At the low-level, the corresponding sub-policy ex-
pressed by πL executes the necessary sequence of actions
that concretizes the high-level instruction, as proposed in
the HRL framework (Dayan & Hinton, 1992; Sutton et al.,
1999; Barto & Mahadevan, 2003; Florensa et al., 2017; Li
et al., 2019).

By doing so, we expect the resulting HWM HRL Dreamer
agent to expedite the exploration process in virtue of said
exploration being conducted over a temporally abstracted
and principled state space. We believe this also happens to
align with how a human would decompose such a task, and
learn how to solve it efficiently, as described in Section 2.2.

Appendix A supplements the theory presented in this section
with the complete derivation of the objective functions for
each components of the HWM HRL Dreamer.
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Figure 4. Conceptual diagram based on the Four Rooms task, illus-
trating the different levels of abstractions that the proposed HWM
is designed to model. At the level of raw pixel-based observations
(a), the optimal trajectory of the agent from its starting room to the
goal tile is depicted using white arrows. From that layer (a), we
can conceptualize a simpler state abstraction (b) that focuses on
each cell of the maze that the agent can traverse. This abstraction
layer would be equivalent to the low-dimensional latent space that
a world model such as the one in Dreamer learns. Finally, layer
(c) represents the temporally abstract state space that the proposed
HWM is specifically designed to model. At this layer, all the cells
that form a room of the maze are considered as an aggregate state.
This simplifies the original task to the problem of navigating from
the starting room to the room that contains the goal (exit).

7. Conclusion
In this work, we leveraged the recent progress in world
modeling methods and the framework of variation temporal
abstraction to propose the hierarchical world model (HWM).
The proposed model captures both temporally abstract and
granular dynamics, as well as the corresponding hierarchi-
cally structured state representations.

Owing to its design, the HWM maintains the ability of world
model methods (Ha & Schmidhuber, 2018; Hafner et al.,
2018; 2020a;b) to provide a compact state representation
that is also hierarchically structured for standard MbRL
agents. This was verified in our preliminary experiments,
which demonstrated an increase in sample efficiency and fi-
nal performance for a Dreamer agent that used the proposed
HWM instead of its original world model component. A
complementary set of experiments also show that the pro-
posed HWM can learn semantically meaningful, temporally

abstract state representations that happen align with human
understanding of the task to solve.

Additionally, we posit that the adaptive temporal abstraction
mechanism provided by the HWM can be extended onto an
HRL agent, thus building toward a human cognition-based,
hierarchically structured decision-making process. We also
provide the theoretical arguments underlying the extension
of the proposed HWM with the HRL framework

Ongoing and future endeavors will consist of further refin-
ing the theoretical components of such a framework, and
empirically verifying its properties. We expect the resulting
HWM HRL Dreamer agent to yield higher sample efficiency
and final performance compared to traditional HRL and
MbRL methods, thus broadening the range of tasks that can
be reliably solved and automated by RL-based agents.
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high-level, temporally abstract state z’s transition modeled by the
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A. Appendix A: Training objective of an HWM
HRL Dreamer agent

In this appendix section, we supplement Section 6 with the
derivation of the complete training objective for the desribed
HWM HRL Dreamer agent. From the theoretical perspec-
tive, the temporally abstract MDP derived in Eq. 12 happens
to exactly match the standard MDP formulation upon which
RL algorithms are based upon (Sutton & Barto, 2018). Con-
sequently, any RL method that is proven to work with a
task that follows the standard MDP formulation can also
be applied at the temporally abstract layer. The proposed
HWM Dreamer agent described in Section 3.3 thus appears
a natural fit for such extension. First, the state value estima-
tor corresponding to the low-level policy is overloaded with
the high-level action (Schaul et al., 2015). By doing so, the
state value estimator at the low level approximates the value
of being in a given state when following an arbitrary instruc-
tion from the high-level policy. Formally, this is equivalent
to replacing all occurrences of Vψ(wh, zh) in Eq. 7 with
V L
ψ (wh, zh, eh). We refer to this overloaded state value ob-

jective function as JL
V(ψ) to indicate that it corresponds to

the low-level policy πL
ψ . Namely,

JL
V(ψ) = Epθ(wt,zt)

[ t+H∑
h=t

1

2

∣∣∣∣V L
ψ (wh, zh, eh)− V L,h

λ

∣∣∣∣2]
(13)

Similarly, the actor’s objective function Jπ(ψ) defined in
Eq. 8 is also overloaded to account for the guidance of the
low-level policy πL

ψ by the high-level policy πH
ψ as follows:

JL
π(ψ) = Epθ(wt,zt)

[ t+H∑
h=t

−logπL
ψ(at|wh, zh, eh) sg(V L,h

ψ )

− ηH
[
ah|wh, zh, eh

]]
.

(14)
At the high-level, the policy πH

ψ outputs a high-level action
based on the high-level component Z of the proposed hier-
archical state representation described in Section 3.2. The
learning objective for the high-level state value estimator
V H
ψ is thus derived following the same principles as the for

the traditional state value case described in Section 3.3. This
is formally expressed as follows:

JH
V (ψ) = Epθ(zt)

[ (t+H)/k∑
τ=t

1

2

∣∣∣∣V H
ψ (zτ )− V H,τ

λ

∣∣∣∣2] (15)

where τ designate a time step at the coarser, temporally
abstract level. To simplify the notation, it is assumed to
temporally abstract transition occur at a fixed interval k,
hence the values of τ ranging from the arbitrary time step
t to (t + H)/k, with H being the maximal length of a
trajectory simulated using the learned dynamics. In practice,
such transitions are of variable length and dictated by the
prior distribution over the boundary indicator described in
Section 3.2.

Subsequently, the learning objective for πH
ψ is similarly de-

duced from Eq. 8 as follows:

JH
π (ψ) = Epθ(zt)

[ (t+H)/k∑
τ=t

−logπH
ψ(eτ |zτ ) sg(V H,τ

ψ )

− ηH
[
eτ |zτ

]]
.

(16)

Aggregating the actor-critic losses for the high and low-level
policies as

JL
AC(ψ) = JL

π(ψ) + JL
V(ψ)

and
JH

AC(ψ) = JH
π (ψ) + JH

V (ψ)

respectively, the final training objective for an HWM HRL
Dreamer agent can be expressed as:

JHWM-HRL(θ,ϕ,ψ) = JHWM(θ, ϕ) + JR(θ, ϕ)+

JL
AC(ψ) + JH

AC(ψ)
(17)


