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Abstract

Understanding decision-making in clinical environments is of paramount impor-1

tance if we are to bring the strengths of machine learning to ultimately improve2

patient outcomes. Several factors including the availability of public data, the3

intrinsically offline nature of the problem, and the complexity of human decision4

making, has meant that the mainstream development of algorithms is often geared5

towards optimal performance in tasks that do not necessarily translate well into6

the medical regime; often overlooking more niche issues commonly associated7

with the area. We therefore present a new benchmarking suite designed specifically8

for medical sequential decision making: the Medkit-Learn(ing) Environment, a9

publicly available Python package providing simple and easy access to high-fidelity10

synthetic medical data. While providing a standardised way to compare algorithms11

in a realistic medical setting we employ a generating process that disentangles the12

policy and environment dynamics to allow for a range of customisations, thus en-13

abling systematic evaluation of algorithms’ robustness against specific challenges14

prevalent in healthcare.15

1 Introduction16

Modelling human decision-making behaviour from observed data is a principal challenge in under-17

standing, explaining, and ultimately improving existing behaviour. This is the business of decision18

modelling, which includes such diverse subfields as reward learning [1, 55, 35, 29], preference19

elicitation [32], goal inference [54], interpretable policy learning [28], and policy explanation [10].20

Decision modelling is especially important in medical environments, where learning interpretable21

representations of existing behaviour is the first crucial step towards a more transparent account of22

clinical practice.23

For research and development in clinical decision modelling, it is important that such techniques be24

validated robustly—that is, operating in different medical domains, guided by different environment25

dynamics, and controlled by different behavioural policies. This is difficult due to three reasons. First,26

the very nature of healthcare data science is that any learning and testing must be carried out entirely27

offline, using batch medical datasets that are often limited in size, variety, and accessibility [25, 39].28

Second, directly using methods for time-series synthetic data generation is inadequate, as they29

simply learn sequential generative models to replicate existing data, making no distinction between30
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Figure 1: Overview of Medkit. The central object in Medkit is the scenario, made up of a domain,
environment, and policy which fully defines the synthetic setting. By disentangling the environment
and policy dynamics, Medkit enables us to simulate decision making behaviours with various degrees
of Markovianity, individual consistency, bounded rationality and variation in practice. An example
scenario is highlighted: ICU patient trajectories with environment dynamics modelled by a sequential
VAE and a customised clinical policy. The output from Medkit will be a batch dataset that can be
used for training and evaluating methods for modelling human decision-making.

environment and policy dynamics [20, 53, 14]. Because the environment and policy dynamics are31

entangled, such models do not allow for customisation of the decision making policy and thus cannot32

be used for evaluating methods for understanding human decision-making. Third, while various33

hand-crafted medical simulators have been proposed as stylised proofs-of-concept for research34

[43, 24, 16, 22], they often make unrealistic assumptions and simplifications that are unlikely to35

transfer well to any more complicated real-world setting. Moreover, these simulators do not directly36

allow obtaining offline data from different types of policy parameterisations.37

Desiderata: It is clear that what is desired, therefore, is a tool that supports: (1) a variety of realistic38

environment models—learned from actual data, to reflect real medical settings), thus allowing39

simulation of (2) a variety of expressive and customisable policy models that represent complex40

human decision-behaviours; as well as (3) ensuring that the environment and policy components are41

disentangled—hence independently controllable.42

Contributions: We present the Medkit-Learn(ing) Environment (“Medkit”), a toolbox and bench-43

marking suite designed precisely for machine learning research in decision modelling. Fulfilling44

all of the above key criteria, Medkit seeks to enable advances in decision modelling to be validated45

more easily and robustly—by enabling users to obtain batch datasets with known ground-truth policy46

parameterisations that simulate decision making behaviours with various degrees of Markovianity,47

bounded rationality, confounding, individual consistency and variation in practice. Moreover, to facil-48

itate efficient progress in this area of understanding human decision-making, we have built Medkit to49

be freely accessible and transparent in data simulation and processing to enable reproducibility and50

fair benchmarking.51

2 The Medkit-Learn(ing) Environment52

Figure 1 gives an overview of the structure of Medkit, demonstrating a modular design philosophy to53

enable an ever-growing offering of scenarios as new algorithms and data become available. Medkit54

is publicly available on GitHub: https://github.com/XanderJC/medkit-learn. Written in55

Python and built using PyTorch [46] for a unified model framework, Medkit takes advantage of the56

OpenAI gym [9] interface for live interaction but has otherwise minimal dependencies.57

2.1 Simulating Medical Datasets for Modelling Sequential Decision-Making58

Our aim is to build generative models for the decision making process, that allow for full customisation59

of: (1) the environment dynamics, that model how the patient’s state changes; and (2) the policy60

dynamics through which users can specify complex decision making behaviours.61

Formally, we define a scenario as a tuple (Ω, E , π), which represents the central component of Medkit62

that fully defines a generative distribution over synthetic data. A scenario comprises a medical63
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domain, Ω (e.g. the ICU); an environment dynamics model for sequential observations, E (e.g. a64

linear state space model); and a policy mapping the observations to actions, π (e.g. a decision tree).65

Let ~xT = xs ∪ {xt}Tt=1 be the individual patient trajectories and let ~yT = {yt}Tt=1 be the clinical66

interventions (actions). Here xs ∈ Xs is a multi-dimensional vector of static features of the patient, e.g.67

height, various comorbidities, or blood type - while xt ∈ X a multi-dimensional vector representing68

temporal clinical information such as biomarkers, test results, and acute events. Additionally yt ∈ Y69

is a further possibly multi-dimensional vector representing the actions and interventions of medical70

professionals, for example indicators for ordering tests and prescribing treatments.71

We propose modelling the joint distribution of the patient features and clinical interventions p(~xT , ~yT )72

using the following factorisation:73

p(~xT , ~yT ) = PΩ
E (xs)P

Ω
E (x1|xs)

∏T
t=2 P

Ω
E (xt|fE(~xt−1, ~yt−1))︸ ︷︷ ︸

Environment

×QΩ
π (y1|xs, x1)

∏T
t=2Q

Ω
π (yt|gπ(~xt, ~yt−1))︸ ︷︷ ︸

Policy

,
(1)

where the distributions PΩ
E (·) specify the transition dynamics for domain Ω and environment E and74

QΩ
π represents the policy for making clinical interventions in domain Ω, thus defining the decision75

making behaviour. Note that the patient trajectories and interventions depend on the entire history76

of the patient. The functions f and g are modelled to be distinct such that the focus on the past77

represented in the conditional distributions may be different for both the policy and the environment.78

While this factorisation allows for enough flexibility, we will often make use of a representation79

given in the graphical model of Figure 2 which includes a hidden state of the environment zt to be80

the underlying driver of the data. Note this is even more general and we recover equation (1) if zt is81

simply set as xt.82

𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒

𝒙𝟏 𝒙𝟒𝒙𝟑𝒙𝟐

𝒚𝟏 𝒚𝟐 𝒚𝟒𝒚𝟑

𝒙𝒔

Figure 2: Graphical model of the generative
process we consider. Usually there will be
some hidden state of the environments that
drives the actions and observations seen.

With the factorisation proposed in Equation 1 we83

notice a clear separation between the environment84

and policy dynamics so that they can be modelled85

and learnt separately, with the domain defining the86

“meta-data” such as the spaces Xs,X , and Y . This87

disentanglement between the environment and policy88

components is not possible in current synthetic data89

generation methods (as we explore in section 3). A90

corollary to this makes for a useful feature of Medkit91

- that we can then mix and match elements of the92

tuple to create a variety of different scenarios that can93

be extended easily in the future when new models94

or data become available. This not only satisfies our95

desiderata, but also enables Medkit users to generate96

a variety of batch datasets with customisable policy97

parameterisations (e.g in terms of Markovianity, re-98

ward, variation in practice) and thus evaluate a range of methods for understanding decision-making.99

2.2 User workflow100

Medkit was build to facilitate the development of machine learning methods for clinical decision101

modelling. Medkit offers users the flexibility to obtain batch datasets Dωsyn,E for any desired type102

of parameterisation θ (e.g. temperature, Markovianity, reward) of the decision making policy QEπθ103

and thus evaluate a wide range of methods for modelling sequential decision making. This includes104

methods for recovering expert’s reward function [11, 7], subjective dynamics [28] or interpretable105

policies in the form of decision trees [6]. For instance, to evaluate inverse reinforcement learning106

(IRL) methods, users can chose among various domains Ω and environment dynamics E and define107

different ground-truth reward functions Rθ with parameters θ. Then, users can run Q-learning [42]108

to obtain the optimal policy Qωπθ for reward Rθ, and add it to Medkit, which can then be used to109

simulate a batch dataset with demonstrations Dωsyn,E for training their IRL algorithm. The recovered110

policy parameteriaation θ̂ can then be evaluated against the ground truth θ.111
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Table 1: Summary of related benchmarks key features. Are they focused on the Medical setting? Are
they designed for Offline algorithms? Do they allow Custom policies? Do they test how Robust
algorithms are? Do they incorporate Non-Markovian environment dynamics?

Benchmark Medical Offline Robust Non-Markovian Simulates Simulated policy
R

L
en

vs OpenAI gym [9] 7 7 3 7 Environment Only N/A
ALE [5] 7 7 3 7 Environment Only N/A

R
L

an
d

IL
be

nc
hm

ar
ks RL Unplugged [26] 7 3 7 3 Env. & Policy (Entangled) Fixed

RL Bench [30] 7 3 7 7 Env. & Policy (Entangled) Fixed
Simitate [41] 7 7 7 7 Env. & Policy (Entangled) Fixed
MAGICAL [50] 7 7 3 7 Env. & Policy (Entangled) Fixed

Sy
nt

h.
ge

n. TimeGAN [53] 3 3 7 3 Env. & Policy (Entangled) Fixed
Fourier Flows [2] 3 3 7 3 Env. & Policy (Entangled) Fixed

Medkit (Ours) 3 3 3 3 Env. & Policy (Disentangled) Customizable

While, as above, users can specify their own policy to roll-out in the environments, we also provide112

as part of Medkit different types of parameterised policies learnt from the clinicians’ policies in113

the real dataset DΩ
real. These built-in policies allow users to easily obtain batch datasets for simu-114

lating decision making behaviour with various (customisable) degrees of Markovianity, rationality,115

counfounding, individual consistency and variation in practice. Details can be found in Section 4.2.116

3 Alternative Benchmarks and Simulation117

Medkit generates synthetic batch medical datasets for benchmarking algorithms for modelling118

decision making. There is currently a relative lack of standardised benchmarks for medical sequential119

decision making and most of the few medical simulators used for evaluation are mathematically120

formulated as dynamical systems defined by a small set of differential equations (e.g cancer simulator121

in Gottesman et al. [24], HIV simulator in Du et al. [16]) or are hand-designed MDPs (e.g sepsis122

simulator in Oberst and Sontag [43], Futoma et al. [22]). Medkit, on the other hand, provides an123

entire benchmarking suite and enables users to generate data from various medical domains, with124

realistic environment dynamics and with customisable policy parameterisations. Below, we discuss125

key differences then with related work, which are summarised in Table 1.126

Most benchmarking work has been done outside of the medical domain, in the perhaps most similar127

work to us [50] present a suite specifically designed to test robustness of imitation learning (IL)128

algorithms to distributional shifts. Nevertheless, the properties they consider are specifically designed129

for general robotics tasks than for modelling clinical decision making in healthcare.130

Recently offline RL has come more into view and along with it a few benchmarking datasets [26, 30].131

These collect state, action, reward tuples of agents deployed in various environments, and despite132

the focus on RL with the aim to make use of the reward information for some off-policy method133

like Q-learning, these datasets can be easily used for simple imitation as well. However, at their134

core they are large collections of recorded trajectories obtained by running trained agents through135

the live environment. Thus, unlike in Medkit, the end user is not able to specify properties of the136

policy that are unique to describing human decision-making behaviours such as bounded rationality137

individual consistency and variation in practice. Indeed this is an issue with any imitation learning138

benchmark with its origins in RL: due to the reward there’s usually only one policy considered the139

“optimal” one and methods for these benchmarks are mainly evaluated on their ability to achieve a140

high cumulative reward. This neglects the area of decision modelling [10, 32, 28], where we might141

be more interested in inference over potentially sub-optimal policies to gain understanding of the142

human decision-making behaviour. To address this, Medkit enables users to obtain batch medical143

datasets for various different parameterisation θ (temperature, markovianity, consistency, bounded144

rationality, reward) of the policy and the aim is to evaluate algorithms based on how well they can145

recover θ. Moreover, RL benchmarks focus mainly on Markovian environment dynamics, while146

Medkit considers the whole history of a patient.147

Generative models for decision making. Generative models are a long established pillar of modern148

machine learning [34, 23], though notably they tend to focus on image and text based applications149

with less focus given to the static tabular data p(xs) and even less for time-series tabular data150

p({xt}Tt=1). Medkit presents as a generative model for the whole process p(xs, {xt}Tt=1, {yt}Tt=1),151
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based on the factorisation of equation 1. Importantly this allows for control over the policy, which is152

very important for the purposes we have in mind, and which traditional methods for synthetic data153

generation cannot handle normally. Typically to apply generative models designed for static data,154

for example through normalising flows [15], to this setting it would involve merging all the static155

features, series features, and actions into one large feature vector. This works especially badly for156

variable length time series requiring padding and that any relationships between variables cannot be157

customised. Methods that are specifically designed to work on time series data have been proposed158

based on convolutions [44], deep Markov models [38] and GANs [53] among others. Generally they159

model an auto-regressive process - a notable exception being [2] who use a Fourier transform to160

model time series within the frequency domain, making it inapplicable for sequential generation.161

Once again though all of these models do not take into account actions (and rarely static features)162

meaning they have to be absorbed into the series features and cannot be customised.163

4 Medkit Customisable Scenarios164

We describe here the the various domains, policies and environment dynamics we provide in the165

Medkit package. These can be combined arbitrarily to obtain a large number of different scenarios for166

batch data generation. Medkit can also live simulate the environment but without reward information167

is inappropriate for reinforcement learning.168

4.1 Domains169

While Medkit generates synthetic data, the machine learning methods used in the generation process170

are trained on real data. This is needed to capture the complexity of real medical datasets and171

maximise the realism of the scenarios and generated synthetic data. Thus, unlike in the toy medical172

simulators seen in the literature [43, 16, 24], the batch datasets that can be simulated from Medkit are173

high dimensional and governed by complex non-linear dynamics, providing a much more realistic174

environment to test policies in while still maintaining ground-truth information that can be used to175

evaluate any learnt policy.176

Out-of-the-box Medkit contains two medical domains Ω for which data can be generated, capturing177

different medical settings: (1) Wards: general hospital ward management at the Ronald Reagan178

UCLA Medical Center [4] and (2) ICU: treatment of critically ill patients in various intensive care179

units [33, 19]. While for each domain, the data has undergone pre-processing to de-identify and180

prevent re-identification of individual patients, we add an extra layer of protection in the form of181

differential privacy [17] guarantees by employing differentially private optimisation techniques when182

training models, which is readily supported by PyTorch’s Opacus library [21]. By ensuring that183

the generated data is synthetic, Medkit enables wider public access without the risk of sensitive184

information being inappropriately distributed. Specific details on the state and action spaces for each185

domain can be found in the Appendix along with details of the real data upon which they are based.186

4.2 Policies187

The key advantage of Medkit is that we separate the environment dynamics from the policy dynamics.188

This enables us to roll-out customised policies within the environment, and obtain batch datasets189

where the ground-truth policy parameterisation is know. While users can define their own policy190

parametrisations, we provide several built-in policies modelling the distribution:191

p(~yT |~xT ) =

T∏
t=1

QΩ
π (yt|~xt, ~yt−1) (2)

By default we might be interested in a policy that seemingly mimics the seen policy in the data as192

well as possible and so we include powerful neural-network based learnt policies. Of course, as we193

hope to have conveyed already, the interesting part comes in how the policy seen in the data can be194

customised in specific ways that are interesting for imitation learning algorithms to try and uncover.195

As such all policies are constructed in a specific way:196

QΩ
π (yt|~xt, ~yt−1) =

∑
i

wi
eβiqi(yt|gi(~xt〈X

′〉i,~yt−1))∑
y∈Y e

βiqi(y|gi(~xt〈X ′〉i,~yt−1))
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that introduces a number of components and properties that Medkit allows us to model and can be197

controlled simply through the API, the details of which are highlighted below:198

1. Ground-truth Structure - the policy of a clinician will likely be difficult if not impossible to199

describe. Even if they could articulate the policy, the information will not be available in the data.200

Alternatively, we might expect there to be some structure, since for example medical guidelines201

are often given in the forms of decision trees [12, 49]. An algorithm that uncovers such structure202

on regular medical data cannot be validated, since we do not know if that inherent structure is in203

the data or just something the algorithm has picked out - Medkit allows us to provide this ground204

truth with which we can compare against.205

2. Markovianity - the common assumption in sequential decision making is usually that the problem206

can be modelled as a Markov decision process such that for a policy that can be expressed207

q(yt|g(~xt, ~yt−1)) this is constrained so that g(xt) = g(~xt, ~yt−1), assuming that the previous208

observations contains all of the relevant information. With Medkit we can simply model more209

complicated policies that take into account information much further into the past. We define the210

Markoviantity of the policy as the minimum time lag into the past such that the policy is equivalent211

to when considering the whole history: inf{i ∈ N : g(~xt−i:t, ~yt−1−i:t−1) = g(~xt, ~yt−1)}.212

3. Bounded Rationality - clinicians may not always act optimally based on all the information213

available to them. In particular they may overlook some specific variables as though they214

are not important [36]. We can model this in Medkit by masking variables going into the215

policy model so that q(yt|g(~xt, ~yt−1)) = q(yt|g(~xt〈X ′〉, ~yt−1)), where X ′ is a subspace of X216

and ~xT 〈X ′〉 = xs ∪ {projX ′ xt}Tt=1. Here, the dimensionality of X ′ relative to X given as217

dimX ′/ dimX can be used as a measure of the agent’s rationality.218

4. Individual Consistency - some clinicians are very consistent, they will always take the same219

action given a specific patient history. Others are more stochastic, they’ll tend to favour the same220

actions but might occasionally choose a different strategy given a “gut feeling” [18]. Medkit can221

model this with the temperature of the Boltzmann distribution given in the output of all of the poli-222

cies. Formally, for policies of the form p(yt|~xt, ~yt−1) = expβq(yt|g(·))/
∑
y∈Y expβq(y|g(·)),223

the inverse temperature β ∈ R+ measures the individualised variability of an agent, where β = 0224

means that the agent acts completely at random while β →∞ means that the agent is perfectly225

consistent (i.e. their actions are deterministic).226

5. Variation in Practice - often (essentially always) medical datasets are not the recordings of a227

single clinician’s actions but of a mixture or team that consult on an individual patient [51]. With228

Medkit we can model this effectively using the Mixture policy, which takes any number of229

policies and a mixing proportion to generate a new mixture policy. Formally, a mixture policy is230

given by p(yt|~xt, ~yt−1) =
∑
i wiqi(yt|g(~xt, ~yt−1)) where {wi} are the mixing proportions such231

that ∀i, wi > 0 and
∑
i wi = 1, and {qi(·)} are arbitrary base policies.232

These different policy parameterizations that are in-built into Medkit are specific to scenarios that233

commonly arise in medicine [18, 51, 36], which is the domain application we consider in this234

paper. However, note that the main contribution of Medkit is to provide a framework for obtaining235

customizable policies. Thus, users could also incorporate different types of policies if needed.236

4.3 Environments237

The environment dynamics capture how the patient’s covariates evolve over time given their history,238

interventions and the patient’s static features. From the proposed factorisation in Equation (1), to239

estimate the environment dynamics, we model the following conditional distribution in two parts:240

p(~xT |~yT−1) = PΩ
E (xs, x1)︸ ︷︷ ︸

Initialisation

T∏
t=2

PΩ
E (xt|fE(~xt−1, ~yt−1))︸ ︷︷ ︸

Auto-regression

, (3)

allowing for sequential generation of patient trajectories. For all environments, we model PΩ
E (xs, x1)241

using a Variational Autoencoder [34],as a powerful generative model that can handle a mixture of242

continuous and discrete variables. For the auto-regressive part, to capture a diverse set of the realistic243

dynamics of medical datasets, Medkit contains environments that are (1) directly modelling the244

patient history (T-Force and CRN) and (2) building latent variable models (CSS and SVAE). We245

describe the models in this section but full details (e.g. on learning) are given in the Appendix.246

6



Directly modelling the patient history. This relates to attempting to model:247

p(xt|~xt−1, ~yt−1) = PΩ
E (xt|fE(~xt−1, ~yt−1)) (4)

directly, or more specifically that p(xt|~xt−1, ~yt−1) is some Θ parameterised distribution where248

Θ = f(~xt−1, ~yt−1) is a function of the history only. For the simplest environment model, we use249

a recurrent neural network trained with teacher forcing [52] (T-Force) to directly approximate this250

function. The network is made up of LSTM units [27] followed by fully connected layers with ELU251

activations [13] and is trained to maximise the likelihood of the next observation given previous252

observations and interventions. This defines a factorised Gaussian and Bernoulli distribution over the253

continuous and binary covariates respectively with the parameters predicted by the network.254

Additionally we extend this method by replacing the LSTM network with the Counterfactual Re-255

current Network (CRN) of Bica et al. [7]. CRN is a causal inference method that learns balancing256

representation of the patients’ histories to remove the time-dependent confounding bias present in257

observational datasets. This allows the network to more principally be used for making counterfactual258

predictions which is what our model for the environment dynamics needs to do when estimating the259

next state of a patient under different possible interventions specified by the policy QΩ
π .260

Building latent variable models. We also build environment dynamics where the observations are261

driven by a hidden true state of the patient. Formally, we assume the features ~xT are driven by some262

evolving latent state ~zT = {zt}Tt=1, zt ∈ Z that is not seen in the data by modelling a factorisation263

given by:264

PΩ
E (xt, zt|fE(~xt−1, ~yt−1, ~zt−1)) = PΩ

E (xt|zt, xs)︸ ︷︷ ︸
Emission

×PΩ
E (zt|fE(~xt−1, ~yt−1, ~zt−1))︸ ︷︷ ︸

Transition

. (5)

We include as part of Medkit two additional environment dynamics models for the separate cases265

when |Z| is finite or uncountable, as both can usefully represent patients in the medical context.266

For |Z| finite the latent zt variables then might represent distinct progression “stages” or various267

classifications of a disease. Discrete separation like this is well established in both clinical guidelines268

and models for a range of cases including transplantation in patients with CF [8], the diagnosis269

of Alzheimer’s disease [45], and cancer screening [47]. Accordingly we use the Attentive State-270

Space model of [3] to build an attention-based, customised state-space (CSS) representation of271

disease progression. This environment model accounts for static features and allows Medkit users to272

customise the attention mechanism. Given a discrete latent space, the transitions are parameterised273

with baseline transition matrices for each action averaged over attention weights on previous timesteps.274

The emission distribution allows for a flexible representation: let pψ(xt) be any distribution with275

support over X and parameter(s) ψ (for example some Gaussian mixture) then we let:276

p(xt|zt, xs) = pψ∗(xt), with ψ∗ = fγ(zt, xs). (6)

We take fγ to be a γ-parameterised function approximator to output the parameters of the emission277

distribution given the current state and static features of the patient - a standard choice being an MLP278

that takes in the concatenation of zt and xs. This alleviates a common problem with state-space279

models where the observations are ultimately drawn from some finite mixture of distributions of order280

|Z|, as now the dependence on the static features allows for a very flexible output. The CSS dynamics281

model allows Medkit users to post-hoc customise the number of states and the Markovianity of the282

environment through the attention mechanism (e.g users can pass a vector that specifies exact weights283

or an integer representing the number of states back to look.)284

While a discrete representation of hidden states is convenient for interpretation, it does simplify285

the problem. It is unlikely that all of the relevant features of a disease can be adequately captured286

by a discrete characterisation - it would seem that in reality diseases evolve gradually and without287

step-change. Therefore, to further improve the realism of the generated trajectories, we also include as288

part of Medkit’s environments a deep continuous state space model that extends VAEs in a sequential289

manner (SVAE). Principally now we consider a continuous latent state withZ = Rd. This then allows290

for more flexibility in the transition dynamics, in particular by making use of neural architectures.291

An encoder network predicts the approximate posterior over the latent variables and we employ292

essentially the same method as for teacher forcing in order to model dynamics in the latent space.293

With a joint optimisation scheme, we learn a representation that generates the observations well but294

also captures the features relevant for the transitions. This expressiveness allows for a higher fidelity295

model than the custom state-space but however comes at the cost of interpretable structure which we296

have established may be useful should algorithms be designed to uncover such things.297
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Figure 3: Exploring Medkit Practically. Example benefits of Medkit for exploring and benchmark-
ing imitation learning algorithms.

Modelling hidden confounding. A common assumption, that is likely not true in practice, is that298

there are no hidden confounding variables in the environment. Medkit allows us to introduce and299

control these by using a full set of variables to generate both the actions and the observations but300

restrict the visibility of some such that they become hidden. While the overall generative process301

p(~xT , ~yT ) is left unchanged, only a partially-hidden dataset D = {~xT 〈X̄ ′〉, ~yT } is provided to the302

user, where X ′ is a subspace of X and ~xT 〈X ′〉 = xs ∪ {projX ′ xt}Tt=1. Here, the dimensionality of303

X ′ relative to X given as dimX ′/ dimX can be used as a measure of the overall confoundedness.304

5 Practical Demonstrations305

In this section we explore some examples of the benefits of using Medkit compared to existing306

benchmarks as well as highlight some potential use cases, in particular how Medkit allows for307

consistent and systematic evaluation along with useful ground truth information.308

Different reactions to shifting policies. The current literature on imitation learning focuses on very309

different environments to those found in the medical setting and consequently algorithms may not310

be evaluated against, or designed to be appropriate for, the quirks of medical data. For example in311

Figure 3a we plot the performance of algorithms as the consistency of the policy varies, in particular312

we use: Behavioural Cloning (BC) with a deep Q-network; Reward-regularized Classification for313

Apprenticeship Learning (RCAL) [48], where the network is regularised such that the implicit314

rewards are sparse; ValueDICE (VDICE) [37], an offline adaptation of the adversarial imitation315

learning framework; and Energy-based Distribution Matching (EDM) [31] that uses the implicit316

energy-based model to partially correct for the off-policy nature of BC. What is interesting is not that317

performance degrades - this is of course to be expected, but rather that the comparative ranking of318

algorithms changes as a function of the consistency. In particular BC performs the worst (although319

there is little between them) in the ends up outperform the rest on average when the variation is320

highest, suggesting some of the more complicated algorithms are not robust to these kinds of policies.321

Enabling consistent evaluation. Common RL benchmarks like Atari experience very large variances322

in the accumulated reward an agent obtains when deployed in the environment, especially when323

the reward is sparse. This can make evaluation and ranking of agents tricky or at least require a324

large number of runs in the environment before the variance of the estimator suggests the results are325

significant. In Figure 3b we demonstrate this problem in an even simpler context comparing BC326

to the AVRIL algorithm of [11], a method for approximate Bayesian IRL, in the simple Acrobot327

environment where the aim is to swing up a pendulum to a correct height. On the right y-axis we328

plot the accumulated regret over training of the two agents, and large inconsistencies in return can be329

seen so that it is not clear which of the agents is better. Comparatively on the left y-axis we plot the330

AUROC on a held out test set as we train on Medkit data, here evaluation is much more consistent331

and statistically significant, demonstrating clearly which algorithm is performing better.332

Ground-truth knowledge comparison. While in the end it only really matters how an algorithm333

performs when deployed in the real world, it is challenging to only use real data to validate them. This334

is since you run into the key problem that you will not have any knowledge of the ground truth behind335

decisions and so methods that claim to gain insight into such areas cannot possibly be evaluated336

appropriately. On the other hand simulating data in Medkit allows us to do exactly this, and we can337

compare inferences from an algorithm to underlying truth in the generating process. A toy example338

is shown in Figure 3c where we compare the weights of a linear classifier trained on Medkit data to339

those of the true underlying policy, representing the relative feature importances for the policies.340
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Figure 4: t-SNE plots For each policy in the Ward environment we generate simulated data. We
then apply t-SNE and project the real and simulated data into two components, which is plotted.

Validating realism. It is also of interest to quickly check that we are not generating completely341

unrealistic trajectories, rather ones that capture appropriate properties that will be useful for users.342

We thus provide comparisons of the available environment models in Medkit. In particular for each343

combination we show in Table 2: the Predictive Score, a classical “train on synthetic - test on real”344

evaluation where a network is trained on the synthetic dataset and applied to a held out test set of345

the real data, where the performance is reported; and the Discriminitive Score, where a classifier is346

trained to distinguish between the real and synthetic data, and the AUROC of this task on a held347

out test set is reported. In aid of visualisation we also provide in Figure 4 a set of t-SNE plots [40]348

overlaying the real and synthetic data. These metrics are standard in the synthetic data literature [53]349

and reflect the usefulness of the synthetic data as a replacement for real data.350

Table 2: Predictive and Discriminative Scores. Scores
reported on the different environments for the Wards domain.

|Y| T-Force CRN CSS S-VAE

Pr
ed

.↑ 2 0.67± 0.05 0.94± 0.01 0.94± 0.01 0.93± 0.01
4 0.62± 0.02 0.85± 0.01 0.86± 0.01 0.86± 0.02
8 0.61± 0.05 0.85± 0.03 0.89± 0.02 0.87± 0.04

D
is

c.
↓ 2 0.41± 0.03 0.23± 0.02 0.19± 0.03 0.22± 0.04

4 0.41± 0.05 0.24± 0.04 0.19± 0.04 0.23± 0.04
8 0.37± 0.07 0.22± 0.03 0.20± 0.03 0.20± 0.02

Please note though that the highest351

possible fidelity is not the point of352

Medkit: unlike traditional synthetic353

data, the datasets we produce are not354

meant to be used as a substitute for355

real data in training machine learn-356

ing algorithms. Rather we would357

like to produce realistic data that re-358

flects the difficulties of the medical359

setting and can be used for develop-360

ment and benchmarking of algorithms.361

Additionally, by introducing customi-362

sations into the generative process, we will naturally see departures from real data, but given our363

goals this is not a problem. Nevertheless, the high predictive scores show that Medkit is successfully364

capturing important trends in the real data that are useful for prediction, while the discriminative365

scores and t-SNE plots confirm that we are not producing trajectories that are unrepresentative.366

6 Discussion367

Limitations and Societal Impact. As a synthetic data generator, Medkit is inherently limited by the368

power of the individual models used and their ability to accurately model outcomes given specified369

policies. This is not such a problem when the focus is on inference over the policy though, as370

is the focus in decision modelling. Additionally, Medkit is easily extendable when new, more371

powerful, models become available. With Medkit our aim is to provide a platform allowing for better372

development of decision modelling algorithms, the societal impact thus very much depends on the373

potential use of such algorithms, for example, they could be used to misrepresent an individual’s374

position or identify biases that could be exploited. By focusing on clinical decision support, we hope375

to promote a much more beneficial approach.376

Conclusions. We have presented the Medkit-Learn(ing) Environment, a benchmarking suite for377

medical sequential decision making. As with many software libraries, the work is never done and378

there are always new features that can be added. Indeed we can, and intend to, always continue to add379

more tools and algorithms to be beneficial for the community. One important future area that Medkit380

could make an impact in is causality - an area where more than ever synthetic data is important such381

that we can actually evaluate the counterfactuals that are inherently missing from real data, and much382

can be done to simulate data for individualised treatment estimation for example. Overall though our383

aim with Medkit is to advance the development of algorithms for understanding, not just imitating,384

decision making so that we can better support those high-stakes decisions such as in the clinical385

setting without replacing the crucial human aspect needed when the problem is so important.386
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