SCALABLE CONTINUOUS-TIME HIDDEN MARKOV
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As a probabilistic tool for irregularly-sampled data, the Continuous-Time Hidden
Markov Model (CTHMM) inherently handles real phenomena with uncertainties
modelled by distributions. However, CTHMM is affected by (i) the costly matrix
exponentiation (cubic time complexity w.r.t. the number of hidden states) involved
in the estimation of transition probabilities, and (ii) the use of simplistic paramet-
ric observation models (e.g., Gaussian). Thus, we propose scalable algorithms
for CTHMM on traditional problems (learning, evaluation, decoding) to ensure
tractability. Firstly, we factorise states of CTHMM into multiple binary states (e.g.,
several 2 x 2 sub-problems) leading to a distributed closed-form exponentiation.
We also accelerate matrix-vector products, reducing the complexity from quadratic
to linearithmic. Secondly, the simplistic parametric distributions are replaced by
the normalising flows (that transform simple distributions into complex data-driven
distributions), accelerated by sharing few invertible neural networks among groups
of hidden states. Training our approach takes few hours on a GPU, while standard
CTHMMs with mere 10 hidden states take few weeks. On the largest dataset, our
method scales favourably (up to 1024 x larger hidden states than naive CTHMM
and outperforms it by 4.1 in log-likelihood). We also outperform competing HMMs
with advanced solvers on downstream tasks.

1 INTRODUCTION

The size of modern datasets is both a blessing and a curse. While more information than ever
before is available to build advanced statistical models, large-scale datasets expand computational
footprint rendering many standard algorithms intractable. Moreover, for phenomena that evolve over
time, it is common for observations to be collected at irregular time intervals which typically makes
discrete-time methods inapplicable. For instance, in tracking the movement of wildlife across large
geographical areas, locations from individual tagged animals are often observed over long periods
of time. Observations can be irregular/sparse due to the limited capacity of sensor batteries, limited
communication infrastructure across large geographical areas or complex environment. The data
distributions are also difficult to parameterise.

The above issues prevent employment of the traditional statistical methods such as Hidden Markov
Models (HMM:s) (Rabiner & Juang, [1986) and their discrete-time variants. Specifically, discrete-time
methods require data to be time-discretised which leads to the loss of information. Traditionally,
HMMs have also used simple parametric observation models which can limit their ability in modelling
more complex phenomena (Lorek et al.,[2022). In contrast, CTHMM can handle observations received
in irregular intervals, showing great potential in many fields such as health (Ge et al., 2024} Liu et al.|
2015;12013), finance (Nystrup et al.,[20135)), and information technology (Okamura et al., 2017; Wei
et al.} 2002). Compare to other continuous-time models (Chen et al.| 2023 [Fonseca et al., 2023}
Zhang et al., 2023} Qin et al.,2024; Tang et al.,|2022; |Moreno-Pino et al.,2024), CTHMM can handle
real phenomena with uncertainties modelled by distributions, and the hidden states provide insights
into the underlying physical system.

Nevertheless, there are two main obstacles that limit applications of CTHMM in practice. Firstly,
CTHMM suffer from a prohibitive time-complexity, which is cubic w.r.t. number of hidden states
during learning, evaluation and decoding. CTHMM also suffers from numerical instability (Moler &
Van Loan, [2003) when performing matrix exponential calculations. Secondly, existing CTHMMs

Under review as a conference paper at ICLR 2026

model the observations following standard parametric distributions, e.g., Gaussians, mixtures of
Gaussians or other families of simple parametric distributions (Jackson, 2011). Such a setting results
in a limited capability in modelling complex observations that do not follow the above-mentioned
distributions, thus limiting the applicability of CTHMMSs on large and complex datasets.

In this paper, we introduce a fast state factorisation and normalising flows into CTHMM, significantly
reducing their computational complexity and enhancing the modelling power. The proposed method
factorises a large state space into independent binary state spaces to accelerate and stabilise matrix
exponential calculations. Conditional normalising flows (Dinh et al.,|2017) parameterised through
neural networks help us map Gaussian priors to unknown complex data distributions. Using the
proposed method, inference problems with CTHMM are simplified to the linearithmic time complexity
w.r.t. the number of hidden states. The conditional normalising flows are made highly efficient through
binding the conditions (i.e., share some parameters among different conditions to reduce the number
of parameters and speed up calculations) and calculating in parallel the emission probabilities.

In summary, our contributions are three-fold:

i. We propose scalable forward and decoding algorithms for CTHMMs by factorising the
latent Markov process into smaller, parallelised sub-problems, avoiding instability from
large matrix exponentiations.

ii. We enhance CTHMMs with conditional normalising flows to flexibly model complex obser-
vation distributions while reducing parameters through shared invertible neural networks.

iii. We demonstrate state-of-the-art scalability and interpretability on datasets with millions of
observations and up to 2'2 hidden states, showing clear advantages of continuous-time over
discrete-time modelling.

Notably, our method enables practical CTHMM inference within hours, supporting applications
at unprecedented scale and stability—processing up to 1024 x more hidden states than standard
CTHMMs under the same runtime budget.

Notations Uppercase letters indexed by time (e.g., H (t), O(t)) denote random variables/vectors
of a stochastic process; lowercase denote their realisations (e.g., 0¢,). Where realisations occur
at multiple times, we define 0 = [0/ ,...,0/ |7 with ¢; < --- < &, € [0,00). Probability
(conditional) densities/masses are p(-) (p(+]-)). Bold uppercase letters (e.g., P) denote matrices,
entries p; ;j; time-indexed matrices (e.g., P(t)) have entries vary with ¢. A transition rate matrix
Q € QM*™ satisfies 3, ¢ij = 0, ¢;; > 0, Vi # j. The function b(-) maps binary vectors to integers
(e.g.,b([1,1,0]) = 6), with inverse b=!(-). Symbols ® and ® denote element-wise and Kronecker
products, respectively.

2 METHODOLOGY

We factorise the state space into multiple binary state spaces, each of which has an independent
Markov process that evolves according to its own matrix of transition rates (e.g., 2 X 2 matrix). This
substantially reduces the computational burden of the matrix exponentiation, as for example only
2 x 2 matrices are involved in computations, and these can be explicitly and precisely calculated with
a mere O(m) time complexity. In contrast, the corresponding CTHMM with 2™ states that evolves
according to a single matrix, Q, suffers from a prohibitive 2°(™) time complexity (Moler & Van Loan,
2003) and numerical instability. However, the drawback of using many smaller transition matrices is
a more restricted latent space. We counter this issue by introducing conditional normalising flows to
enhance the expressive power of the model, while adding little computational complexity thanks to
the sparse structure of the normalising flows. A diagram providing an overview of our approach is
presented in Figure[I] We will introduce the fast learning/evaluation by the forward algorithm for our
specification of CTHMM. The fast decoding (Viterbi) algorithm is introduced in Appendix[A.2]

2.1 MODEL SPECIFICATION

We reformulate the ordinary Continuous-Time Markov Chain (CTMC) as multiple, parallel, in-
dependent, latent Markov processes denoted {Hy(t) : ¢t > 0},...,{H,(¢t) : t > 0}. Each

Under review as a conference paper at ICLR 2026

m probability matrix
Hy(te)
.z'm = [rge e] € (0,1},
a-qQeq¥e-.0Q™,
Q¥ eQ¥?,
P(At)=
PO(AL) @ ® P (AtLy)

he € {1,...,2"}
man H(ty) = [Hi(t), .., Hu(t0)]
Qeg Ay
S ER o)
@ g factorised transition g
probability matrix
o b= (b " € {0,137,
(STH(t) = [Hi(t),., Hn(0)], (0) « 02%2 ’
m Q¥ e @*?,
H(ty) P(Aty)=
f\/ PO(AL) ®--- @ P (At)
g factorised transition
L e O L nr @

modified
- emission
model

ErO-(0)
£
o

(b)

2

Figure 1: Markov processes evolving continuously in time (observations do not occur at regular time intervals).
Fig. The standard CTHMM uses a 2™ x 2" transition rate matrix Q. Fig. We factorise Q into
Q(l), R Q(m) matrices of 2 x 2 size. This model suffers form an insufficient expressive power. Fig.
Our Scalable CTHMM includes the efficient factorisation of matrix Q and a modified emission model with
Normalising Flows (NF). The process emits a Gaussian random vector Z(t), conditioned on the state of each
of the m latent processes. Z(t) is transformed into a random vector, O(t), by the conditional normalising
flows that provide the probability distribution of our observation at time ¢. The conditional normalising
flows, conditioned on the state of H1(t), H2(t),. .., Hm(t), transform the random variables that follow simple
Gaussian distributions into more complex data distributions.

of these Markov processes is a CTMC with a binary state space indexed as Si,...,S,,. Let
H(t) = [Hi(t),..., Hn(t)]" and its realisation hy = [h1,...,hm] € {0,1}™. The hidden
state variables, A1 ¢, ..., ., ¢, at one timestep are mutually independent, but become conditionally
dependent given the observation sequence. The likelihood of observations can be written as:

m

p(O) = Z s Z H Hp(h37tk-,|h31tk—1)p(0tk|htk)7 (D

htleslx--»xsm ht, €51 X XSm k=1s=1

where we define p(hs ¢, |hs,t,) = P(hs,t,)-

This is equivalent to assuming p(hy, |he,) = [[oe; p(hst, |hs) in ordinary CTMC. The main
advantage of the parallel independent structure is faster calculation of [.", p(hg. ¢, |hs,t,), where
the matrix exponentiation can be numerically stabilised and simplified.

Theorem 2.1 The m parallel and independent CTMC, denoted {Hy(t) : t > 0}, ..., {Hp(t) : t >
0}, can be ensembled into a single CTMC {H (t) : t > 0} whose state space is a combinatorial of

component CTMCs with the corresponding transition rate matrix Q given as:

Q=QMaqQPa...eoQ",)

where Q) ... QU™ are the transition rate matrices for CTMCs {Hy(t) : t > 0},..., {H(t) :
t > 0}. Operator @ denotes the Kronecker sum defined as A © B 2AQL, +B®I, wherel, and
I, are the identity matrices of the same size as A and B.

The proof of Theoremcan be easily derived by the property of Kronecker sum: e ® ¢B = ¢APB,
It indicates that the ensemble of smaller CTMCs, say size 2 x 2 (matrices of other size can also be
used, e.g., 3x3,4x4,...), generates a CTMC with a larger but constrained state space. Conversely,
not all CTMCs with a large state space can be decomposed into an ensemble of smaller CTMCs. This
means that the ensembled CTMC generally will not be as expressive as an unconstrained CTMC with
the same size state space.

To alleviate such a constrain, our emission distributions incorporates the normalising flows (Papa-
makarios et al., [2021) in contrast to the existing CTHMMs which are restricted to Gaussian/other
simplistic parametric emission distributions. The observation O(t) is transformed to another latent
random vector Z(t) through a composition of [bijections f; = fi j o fo ;o ---o f; ;, conditioned on
the hidden states. Thus, CTHMMs can model more complicated distributions of observations, and

Under review as a conference paper at ICLR 2026

also counter the limitation on transition rate matrix Q. The log-emission probability is calculated

det —7=2
81‘?71)

by a change of variables: log p(o;[b(H(t)) = j) =log ¢(z;|p;, =) +Z§:1 log , where

r§°) =0y, fi; (rgi_l)) = rgi), and rgl) =z,. Moreover, ¢(z;|p;, %) is a Gaussian probability density
function with mean g ; and covariance matrix 33;.

2.2 FAST LEARNING/EVALUATION BY THE FORWARD ALGORITHM

The forward algorithm, essential to learning and

Algorithm 1 Fast Forward Algorithm for CTHMM. evaluation of CTHMM, is intractable for ordi-

Input: Observation o= [otT1 ey O;Z]T; nary CTHMM on large datasets even for a very
parameters m, {Q®W}r, {f;}7,, {M,gj}ﬁl small state space (e.g., size 10). With the fac-
Output: The log-likelihood p(o). torial structure of CTHMM, we implement a
1: for k = 1 to n do stable and scalable forward algorithm by 1) us-
2 forj=1to2™ do ing the closed-form expression for matrix ex-
3 Bi(01,) = o(F;(00,) s, =) ponentiation; 2) using an efficient method for
4 end for computing the matrix-vector product involving
5. end for Kronecker products; 3) reducing the number
6 a(l) = o Bloy,); of normalising flows by grouping hidden states.
7. for k = 2 to n do The forward algorithm helps efficiently calculate
8 Calculate PO (Aty).... P (aty) with () the likelihood p(o), i.g., Fhe @aluatioq task. Onf?
9 use Algorithm 2] to calculate é(k) = Ccan use modern optimisation toolklits‘ (Abadi
et al.} 2016; [Paszke et al.,|2019) providing auto-
X, PG) (Aty) | a(k—1); matic differentiation/GPU acceleration for fast

learning of model parameters.

10: a(k) =a(k) © B(oy,);

11: end for To perform the fast forward algo-
12: p(o) = 1T (n). rithm, we parameterise the CTHMM as

{Tra{Q(&)};nzla{fj}_;hzlv{ujﬂzj}3:1} De-
fine = [Pr(b(H(tl)) =1),...,Pr(b(H(t1)) :2’”)] T and QL) = [— qés), q(()s); q@, —q%s)} , where
q(()s), qf) >0. The set {Q(*)}7, contains the transition rate matrices for each of the independent

Markov processes. Sets {f;}72; and {p;,3; }3:1 contain parameters for the emission model
(i.e., m invertible neural networks and 2" means and covariances for Gaussian distributions of the
normalising flows), where 0 < m < 2™ is the number of normalising flows.

For a sequence of n observations o =

T .
Algorithm 2 Fast Calculate & = (®;”=1 P(S)) a. [o),...,0/]T, werecursively compute the fol-

lowing quantities:

O‘j(k) = p(Otl o3 Oty b(H(tk)) = .7)7
a(k) = [ar(b), ..,z (K)],

Input: P®, .. P cR2X2, ¢ RZ"
T
Output: & = (@;ﬂzl P(s)> o

I: for s =1tomdo B;(0r,) = ploe, |b(H(t)) = 5),
2: « = reshape(a,2,2m71); .
3 a=ao'PG); B(oy,) = [Bi(04),- .., Bam (04,)]
4: end for Aty =t — ti—1, (k > 1),

5: & = flatten(c). PO (ALy) = L2 an

where we use 3;(-) as a concise representation
of the conditional probability distribution of O(t) given b(H(t)) = j.

The forward Algorithm [I] calculates the above quantities recursively until one obtains the vector
a(n) at last observation, summing over which gives p(0). A bottleneck for the forward algorithm
is calculating transition probability matrices P(Aty) = QA% (where Aty =t — tp_1) by the
matrix exponentiation, followed by the product with ae(k — 1) and (3(o4,) to obtain a(k). Thanks
to our model specification, we only need to perform matrix exponentiation for a collection of m
small matrices, QY ..., Q™) each of size 2 x 2. The matrix-vector product also benefits from
this specific factorising structure. These steps correspond to lines 8-10 in Algorithm|I] In contrast, a
non-factorised naive approach requires performing exponentiation of matrix of size M x M (where
M =2™) which requires an Eigenvalue Decomposition (EigD) or Singular Value Decomposition

Under review as a conference paper at ICLR 2026

(SVD), which generally have complexity O (M 3). Evaluating exponentiation n—1 times for such
a large matrix is intractable. Moreover, EigD and SVD suffer from instability (Moler & Van Loan,
2003)), also during backpropagation which is undefined if the non-simple eigenvalues/singular values

occur (i.e., \; =\, : 17 7) (Koniusz & Zhang|, 2022).

9

(2t p1, 2
¥

el f1 }

net is shared by
a group of hidden

invertible neural

% 2@l

A
| fiae”) |
12l)

normalising
flow fa

Figure 2: The m = 2 conditional normal-
ising flows for 4 hidden states. The branch
in the blue colour (solid lines) shows that
an observation o; is processed by the bi-
jective function f>. The transformed vari-
able z; is evaluated with the Gaussian prob-
ability density function ¢(z¢|p4, 34). The
probability densities ¢(z¢|pa, 34) are then
transformed back to the density S4(0:) =
p(0¢|b(H(t)) = 4) by a change of variables.
The yellow box indicates that a group of hid-
den states shares an invertible neural net fs.

Given the transition rate matrix Q(*), the matrix
P () (At},) enjoys a closed form:

9y () —al® 9 () —a®
1 [4q@ea8 8t gl _)= A

P (Aty) = , N , N ;
¢ [—giPem e A gl pgfYem s At

3)

where q(;) = q((f) +q18). The element in the a-th row and b-

th column represents Pr(H(t;) = b|Hs(tx—1) = a). The
full transition matrix considering all the states becomes:

P(Aty) = PO(AL) @ - @ P (AL), @)

with elements p; ;(Aty) Pr(b(H(ty)) =
JIb(H(tx—1)) = 4). Thus, the calculation of the
full transition matrix P (Aty) is split into smaller tasks
of exponentiation of matrices of 2 x 2 size. Note that in
practice, we neither calculate nor store P (Aty) explicitly.
Instead we compute its product with the vector a(k — 1)
directly without expanding to P(At}) using Algorithm
This reduces the time and space complexity even
further. The fast computation of products of Kronecker
products of matrices with a vector is known as the shuffle
algorithm (Fernandes et al., 1998 |De Boor, |1979; |Pereyra

& Scherer, [1973)). More details on the shuffle algorithm
can be found in the Appendix However, it does not seem to be widely recognised that no
shuffling is actually needed (Fackler} [2019). We implement Algorithm 2] with only matrix-matrix
multiplication and matrix reshape operations. This fast subroutine helps evaluate products of
Kronecker products of matrices with a vector, i.e., (&', P()) T« by saving both time and memory.
In contrast to the matrix exponential that is applied to a large transition rate matrix, Q € Q" 2",
followed by a product with a length-2™ vector, the procedures in Algorithm [I] are significantly
accelerated and stabilised.

Another challenge in the forward algorithm is calculating the emission probabilities 3;(o;,) =
p(oe, [b(H(tg)) = j),Vj € {1,...,2™}, corresponding to lines 1-5 in Algorithm[I} There needs to
be 2™ bijections conditioned on H(¢y), and these bijective functions are often implemented through
invertible neural networks, which may introduce prohibitive space and time complexity. Thus, we
group the hidden states that emission probabilities are conditioned on into m equal-size groups,
leading to f; L F((i=1) modm)+1, where mod is the modulo operator. As a result, we only need
m invertible neural networks, as illustrated in Figure [2| Note that one may be able to find better
bindings of hidden states, but practically, the simple mapping ((j — 1) mod m) + 1 is sufficient. The
limited count of the normalising flows is thus reflected in the fact that bijections only change between
groups of hidden states rather than for each hidden state, which can be viewed as a parameter-sharing
scheme, where the hidden states within each group share the same bijections.

Figure |2 shows that an observation o; is processed by the bijective functions (e.g., in parallel),
and the transformed variables z; are evaluated with corresponding Gaussian probability density
functions. The probabilities from the Gaussian probability density functions are then transformed
back to the probabilities of o; conditioned on different H(¢) by a change of variables, obtaining
Bj(o:) = p(o|b(H(t)) = j). Sharing invertible neural networks by the conditional normalising
flows, combined with Algorithms [T and 2] make the forward algorithm highly efficient, accelerating
learning of model parameters.

Prediction. For prediction, we need to obtain the probability of o;, given the elapsed time
Aty = ty — tp—1 and all previous observations o;,,...,0 _,, that is p(os, |0t,,...,0¢_,) =

fnT
pigo” 0t) 5= p?(k) Aloy,) ;- Notice that the probability is modelled by a mixture of 2™ compo-
£y 500ty Oty 0.0ty

Under review as a conference paper at ICLR 2026

nents, with the j-th component corresponding to the density function 3; (o4,) = p(04, |[b(H(tx)) = j)
and weighted by normalising &(k) to have the unit sum. Thus, the prediction step can be easily
performed with a slight modification of Algorithm|I] rapidly calculating & (k) and 8;(oy,).

Complexity Analysis. The complexity of conditional normalising flows depends on the choice
of bijective neural networks. We adopt a simple architecture with m < 8 invertible networks,
computed in parallel for efficiency. With m independent Markov processes and n observations,
Algorithm|[I|has time O(nM log(M)) with M = 2™ hidden states. This is substantially lower than
the ordinary CTHMM, where matrix exponentiation of the M x M transition matrix has (’)(nM 3)
complexity. Our specification also reduces the matrix-vector product from O(M?) to O(M log(M))
in Algorithm[2] The gap widens when repeatedly running the forward algorithm, as required for
learning and evaluation. Similar reductions hold for decoding and space complexity.

3 RELATED WORKS

Continuous-time models are more flexible than discrete-time models in principle because they can han-
dle data irregularity in time. They have shown promising performance in various applications (Chen
et al.,|2023} [Fonseca et al.| [2023]; |[Zhang et al., 2023} |Qin et al.| |2024; [Tang et al., 2022} Moreno-Pino
et al.l 2024). Among them, CTHMM excels in probabilistic modelling, outputting distributions
rather than point estimation. The physical meaning of hidden states helps understand the underlying
system mechanism. Prior works have shown that the matrix exponentiation in the CTHMM is notori-
ously slow, unstable and not scalable (Moler & Van Loanl 2003)). Thus, application of CTHMMs
are hindered despite being a natural choice for modelling continuous-time data. To address such
a shortcoming, Liu et al|(2015)) proposed a few efficient learning algorithms for CTHMM:s, but
the efficiency came with a prerequisite that a dataset should have a small number of distinct time
intervals. Other learning algorithms (Jackson, 2011} |Dempsey et al., 2017; |Letva-Murillo et al.|
2011} Nodelman et al., 2005} |Spaeh & Tsourakakis|, [2024) were proposed but they do not address the
problem of scalability. We improve the scalability of the CTHMM by using a specific model structure
inspired by Factorial HMMs (Ghahramani & Jordan, [1997)). Extension of the Factorial HMM to the
CTHMM is elegant, helping us develop a fast learning algorithm analogous to that of |[Schweiger et al.
(2019). The fast computation with Kronecker products was inspired by [Fackler| (2019). We expand
the number of hidden states from few hundreds at most (Liu et al., |2015)) to few thousands, while
being still able to further promote the expressive power with the efficient normalising flows.

Existing CTHMMs typically assume emission models with a relatively simple parametric distributions,
e.g., Gaussian distribution (Liu et al.} [2015)), some discrete distributions (Wei et al., [2002; [Bureau
et al,2003), or using generalised linear models (Dempsey et al.,[2017)). This limits their ability to
model data following complex and unknown probability distributions that can be learned from large
datasets. Unfortunately, even for discrete-time HMMs, there is an absence of use cases with more
advanced emission models. [Lorek et al|(2022) has proposed to use normalising flows (Papamakarios
et al., [2021) for discrete-time HMM. This method is however limited to very small state spaces
(2 ~ 4 hidden states) due to the high complexity in discretising observations for parameter learning
and normalising flows. Normalising flows have shown great potential in various applications (Wong
et al., [2020; Kanwar et al.| 2020; Lugmayr et al., 2020) but their complexity grows with the number
of hidden states, making it unsuitable in applications with large state spaces. The complexity in
continuous-time settings makes this even more challenging.

4 EXPERIMENTS

We conduct several experiments to evaluate and substantiate these claims: i. our method efficiently
and effectively scales up to large state space/datasets (Table [2] Fig. d); ii. models with large state
space perform better on complicated large datasets (Table [2| Fig. d); iii. models with large state
space perform better in downstream tasks (Table [3] Fig.[5)); iv. continuous-time models perform
better on irregularly observed data (Fig. [6); v. normalising flows contribute to the performance
improvement (Fig. [6). The experiments are designed to show the scalability of our method. They
also show the benefits and necessity of using the large state space and normalising flows in addition
to the advantages of continuous-time modelling.

Under review as a conference paper at ICLR 2026

4.1 DATASETS

Table 1: Statistics of the datasets in our experiments. (lens:lengths; We use three datasets with com-

seqs:sequences; p:mean; o:standard deviation) plex stochastic dynamics that
contain two-dimensional geo-
Dataset lens of seqs #seqs At/s (u+ o) #observations ~ graphic locations data over ex-

Taxi 3~ 11,871 3,127 41557 +2,173.74 3,845.410 tﬁgséffclfggtﬁ. jsfsasei(é; ml‘éllg
RAATD 3 ~ 17,067 4,009 11,406.10 4+ 41,409.11 2,570,183 P jects, y

LRFF 11~ 1,853 51 24,429.81 + 67,085.02 20300 1ng its own sequences or trajec-
tories. We visualise areas in the

two large-scale datasets containing most of observations in Fig. [3| More details and a complete
view of the two large-scale datasets can be found in Appendix We summarise statistics of all
datasets in Table[T]

4.2 BASELINES, IMPLEMENTATION DETAILS, AND EVALUATION METRICS

We compare the Scalable CTHMM to three base-
e S lines: (i) CTHMM, the latest CTHMM from
’ ; - the msm package (Jackson, [2011} [2024); (ii)
HMM, a discrete-time model with discretised
time steps to approximate continuous time (Liu
et al., 2015); and (iii) FaHMM, the factorial
HMM (Ghahramani & Jordan, [1995) imple-
: mented with the fast algorithm of [Schweiger
(a) The Taxi dataset. (b) The RAATD dataset. et al.[(2019). It is a discrete-time model so we
also adapted it to handle continuous time data
by discretisation. For discrete-time models, we
discretise irregular intervals by computing mean time differences across the data, normalising, and
rounding to integers. Transition probabilities are then obtained from powers of the transition proba-
bility matrix. Emissions are restricted to Gaussian densities for scalability and stability. All baselines
are trained with the forward algorithm (enabling mini-batch training), except the ordinary CTHMM,
which uses the solver from the msm package. In our model, we set the number of invertible neu-
ral networks m = min(8,#hidden states), using 3 coupling layers (Dinh et al., 2017; 2015) with
ActNorm (Kingma & Dhariwal, [2018)). Training employs AdamW (Loshchilov & Hutter, [2018)).
Models are trained on the first 80% of each sequence to minimise average negative log-likelihood
(per observation) and evaluated on each complete sequences. We found that these datasets were too
complex to overfit, so we did not use validation sets. Models with 21 ~ 212 hidden states are trained
for 100 epochs, except the ordinary CTHMM. Experiments were run with NVIDIA Tesla P100 GPUs
(16GB) or AMD EPYC 7543 CPUs (when more than 16GB memory was required), with a 160-hour
time limit. We evaluate models using average negative log-likelihood (-LogLik), continuous ranked
probability score (CRPS) (Matheson & Winkler, [1976)), and training time. CRPS (Matheson & Win-
kler, [1976) is analogous to the mean square error between the predicted cumulative density function
(CDF) and the true CDF. It degenerates to the mean absolute error if the predicted distribution is a
degenerate distribution (e.g., a point estimation). More details are in Appendix[A4]

Figure 3: Visualisation of observations in two datasets.

4.3 EXPERIMENTAL RESULTS

20f T
i 0
! ui®] !

i B

*
i
S
i
X

iy psmismseitn I B 4
] T

»»»»

(a) (b) 5 (d)

Figure 4: Time vs.-LogLik and #hidden states on the Taxi ((a), (b)) and RAATD ((c), (d)) datasets on
negative log-likelihood minimisation. Longer running indicates a larger state space.

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on Taxi, RAATD, and LRFF datasets within 160 hours ({: smaller is better; M: the
number of hidden states; -LogLik: negative log-likelihood; CRPS: continuous ranked probability score).

Taxi Dataset RAATD Dataset LRFF Dataset

M Metrics)] CTHMM HMM FaHMM Ours CTHMM HMM FaHMM Ours CTHMM HMM FaHMM Ours

2 -LogLik 2234 2220 2218 2,051 3485 3474 3551 -1.460 1922 2.008 1926 0.628

CRPS 0498 0495 0497 0.492 0487 0508 0482 0464 0366 0463 0438 0.349

Time (s) 4436 4841 6986 22240 12654 4429 6409 21451 50 15 25 89

4 -LogLik 1768 1.659 1.697 1.400 2492 2227 2357 2535 1347 1.383 1958 0.079

CRPS 0392 0416 0380 0.390 0391 0351 0360 0338 0314 0379 0399 0279

Time (s) 133575 4850 11868 35661 264116 4528 10662 32636 1713 17 39 139

8 -LogLik - 1056 1.094 0.872 - 1242 0927 -1.703 1274 1706 0738 -1.004

CRPS - 0279 0283 0287 - 0266 0250 0425 0279 0412 0341 0271

Time (s) - 5117 16979 49752 - 4925 15204 45005 14096 17 58 189

16 -LogLik - 0543 0565 0414 - 0571 0431 -3.073 - 0437 0341 -1.570

CRPS - 0219 0218 0223 - 0163 0.174 0240 - 0402 0339 0.169

Time (s) - 6305 21232 63003 - 6150 19729 57357 - 25 77 241

32 -LogLik - -0.114 0052 -0.052 - 0949 -1389 -4.068 - 0434 0532 -2210

CRPS - 0159 0169 0.169 - 0159 0133 0.162 - 0426 0353 0.137

Time (s) - 11054 27359 74903 - 11802 24538 68469 5 58 101 286

64 -LogLik - -0547 0313 -0.544 - 2114 -1830 -4.477 - 0168 -0915 -2.680

CRPS - 0127 0141 0132 - 0114 0133 0.139 - 0421 0365 0.130

Time (s) - 36916 35172 91503 - 41585 31516 80657 - 145 131 336

128 -LogLik - 0911 -0656 -0915 - 2634 2020 -5.686 - 0322 -1.143 -2.899

CRPS - 0106 0129 0.113 - 0.093 0282 0078 - 0417 0376 0.125

Time (s) - 166889 48410 101615 - 147624 43092 91004 - 618 192 395

256 -LogLik - - -0805 -1315 - - 2523 6357 - 0327 -1385 -3.185

CRPS - - 0124 0.100 - - 0097 0.066 - 0418 0417 0126

Time (s) - - 71456 114676 - - 62516 109112 - 2417 283 440

512 -LogLik S - -0.883 -1.686 = - 2409 -6.608 - 0450 -1.661 -3.082

CRPS - - 0127 0094 - - 0115 0053 - 0417 0389 0.167

Time (s) - - 121856 130317 - - 99152 119394 - 14065 477 482

1024 -LogLik - - -0955 -2.010 - - 2087 -6.601 - - -1.691 -3.115

CRPS - - 0125 0.090 - - 0124 0051 - - 0422 0117

Time (s) - - 220562 142333 - - 177942 129805 - - 872 544

2048 -LogLik - - 20959 2153 = - -1777 S - - -1438 -3283

CRPS 5 - 0127 0.09 = - 0445 0.049 . - 0449 0164

Time (s) - - 420024 153645 - - 319682 140634 . . 1657 590

4096 -LogLik - - - 2374 - - - 7103 - - 1716 -3.139

CRPS - - - 0093 - - - 0077 - - 0447 0114

Time (s) - - - 173070 - - - 217800 - - 3300 647
Table 3: Results on 4 downstream tasks on 1.00 4
the RAATD dataset (AUC: area under the ROC 095]
curve; ACC: accuracy). 001
0.85
Task Metrics CTHMM HMM FaHMM Ours 0.0

0.75 1

AUC

AUC 0578 0946 0.963 0.982
ACC 0.232 0.638 0.759 0.822 070

AUC 0.623 0.785 0.858 0.941] , \

" ACC 0832 0832 0843 0875 0| [/ N/ el

L AUC 0530 0762 0707 0793 le ¥ - e
ACC 0.664 0.736 0.692 0.750 2 4 8 16 32 #Hizf;en éf:tESZSG 512 1024 2048 4096

iv AUC ~ 0.641 0966 0.877 0.940 Figure 5: AUC vs. the number of hidden states

ACC 0382 0.810 0.691 0.768 ,; downstream tasks of the RAATD dataset.

Results on Negative Log-Likelihood Minimisation. Results in Table 2] with “-” indicate models
requiring over 160 hours or 128GB memory. On the Taxi dataset, the ordinary CTHMM scales
only to 4 hidden states, showing no performance advantages in this complicated dataset due to the
small latent space, convergence issues, and numerical instability. HMMs are generally better than
FaHMMs and our model with 32 ~ 128 hidden states thanks to their unrestricted state space, but fail
to scale further since storing full transition matrices is infeasible. Our method surpasses FAHMM
thanks to continuous-time modelling and normalising flows, and unlike FaHMM, scales to 4096
states. Time discretisation limits FAHMM due to costly matrix powers on long intervals. Results
on the RAATD dataset (Table [2) follow a similar pattern. Results on the LRFF dataset (Table [2)
shows that our model performs best across all number of hidden states. Compared to HMM, our
method takes much less time as M increases. Also, HMM takes more than 128G memory with 1024

Under review as a conference paper at ICLR 2026

-LogLik

-1.10

-1.65

-2.20

- FaHMM e

Ours w/o NF
ours with NF

4 8 16 32 64 128 256 512 1024 2048 4096

#Hidden States

(a) The Taxi dataset.

-&- FaHMM
< Ours wfo NF

ours with NF

2

4 8 16 32 64 128 256 512 1024 2048 4096

#Hidden States

(b) The RAATD dataset.

hidden states, as it has to store full transition probability
matrices for every time step. On the Taxi and RAATD
datasets, we compare (i) hidden states vs. running time
and (ii) running time vs. negative log-likelihood in Fig. 4]
Longer running times indicates larger state spaces. Each
marker denotes a model with predefined hidden states,
trained for 100 epochs. Only our method scales to 4096
hidden states with approximately linearithmic time com-
plexity, showing both efficiency and effectiveness within
a reasonable budget. These results highlight the benefits
of scalable methods for large state spaces and datasets.
Predicted heatmaps sampled from our model are shown in

Appendix [A.5.T]

Results on Decoding for Downstream Tasks. We eval-
uate on the RAATD dataset with four downstream tasks
based on decoding results. For each method, we use the
trained model with the largest number of hidden states and
apply Viterbi decoding to each sequence. The decoded
hidden-state sequences serve as inputs for: i) species clas-
sification, ii) maturity classification, iii) sex classification,
iv) breeding stage classification. More details are in Ap-
pendix . Since not all observations are labelled, we

only train and test on labelled data. As in the negative log-
likelihood experiments, we train on 80% of hidden states
per sequence and evaluate on the full sequence. For the
first three time-invariant tasks, we average decoded states
as input to a multi-layer perceptron (MLP). For breeding
stage classification, each observation’s hidden state is used
directly with a similar MLP. Results in Table 3] show our method performs best on 3 of 4 tasks, and
second-best on task iv. This highlights the benefits of large state spaces and the utility of hidden states
for downstream tasks. For task iv, performance is likely limited by few sequences have “changing
breeding stage” and the simplicity of pointwise (vs. sequence) models.

Figure 6: Comparing models of discrete-
time (FaHMM), without normalising
flows (FaHMM, Ours w/o NF) and Scal-
able CTHMM model (Ours with NF).

4.4 ABLATION STUDY

Benefits of Large State Space in Downstream Tasks. We conduct experiments on downstream
tasks with our models of different number of hidden states. The results are illustrated in Fig.[5} There
is a trend of increasing AUC as the number of hidden states increases.

Benefits of Continuous-time Modelling and Normalising Flows. To show the benefits of
continuous-time modelling and normalising flows, in Fig. [6| we run experiments with our inter-
mediate model by removing normalising flows from Scalable CTHMM (Fig.[Ib). We denote such
an intermediate model as “Ours w/o NF”. The difference between FAHMM and “Ours w/o NF” is
accredited to the continuous-time modelling. The improvement of “Ours with NF” (Fig. over
“Ours w/o NF” verifies the effectiveness of using normalising flows in emission distributions.

5 CONCLUSION AND LIMITATIONS

We provide a highly efficient and expressive model, called Scalable CTHMM, for complex phenomena
that evolve continuously in time. It incorporates normalising flows with a scalable forward algorithm.
The proposed model makes the CTHMM practical and applicable on large scale datasets, removing
many of the computational limitations of ordinary CTHMMs. However, the use of factorisation in
Scalable CTHMM may struggle to capture the true data-generating process, so a large state space is
needed to compensate. The model may also be hard to interpret when using a very large state space
and normalising flows. This is in contrast to their traditional use in epidemics/disease progression
where specific structures are imposed on transition rate matrix (Pagendam et al., [2020; |[Ross et al.,
2009)). Nonetheless, post analysis on the hidden states still provides insights.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

Datasets used in the paper could be download at the link provided in Appendix (except LRFF
which is a private dataset). We have provided the code we use for data preprocessing and running the
experiments in Supplementary Material.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale

machine learning. In /2th USENIX symposium on operating systems design and implementation,
pp. 265-283, 2016.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. J. Mach. Learn. Res., 20:28:1-28:6, 2019. URL http:
//Jmlr.org/papers/v20/18-403.html.

Alexandre Bureau, Stephen Shiboski, and James P Hughes. Applications of continuous time hidden
markov models to the study of misclassified disease outcomes. Statistics in medicine, 22(3):
441-462, 2003.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36:47143-47175, 2023.

Carl De Boor. Efficient computer manipulation of tensor products. ACM Transactions on Mathemati-
cal Software (TOMS), 5(2):173-182, 1979.

Walter H Dempsey, Alexander Moreno, Christy K Scott, Michael L Dennis, David H Gustafson,
Susan A Murphy, and James M Rehg. isurvive: An interpretable, event-time prediction model for
mhealth. In International Conference on Machine Learning, pp. 970-979. PMLR, 2017.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. In International Conference on Learning Representations (Workshop), 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

Paul L Fackler. Algorithm 993: Efficient computation with kronecker products. ACM Transactions
on Mathematical Software (TOMS), 45(2):1-9, 2019.

Paulo Fernandes, Brigitte Plateau, and William J Stewart. Efficient descriptor-vector multiplications
in stochastic automata networks. Journal of the ACM (JACM), 45(3):381-414, 1998.

Antonio Henrique De Oliveira Fonseca, Emanuele Zappala, Josue Ortega Caro, and David Van Dijk.

Continuous spatiotemporal transformer. In International Conference on Machine Learning, pp.
7343-7365. PMLR, 2023.

Lin Ge, Xinming An, Donglin Zeng, Samuel McLean, Ronald Kessler, and Rui Song. Continuous-
time hidden markov factor model for mobile health data: Application to adverse posttraumatic
neuropsychiatric sequelae. IEEE Journal of Biomedical and Health Informatics, 2024.

Zoubin Ghahramani and Michael Jordan. Factorial hidden markov models. Advances in Neural
Information Processing Systems, 8, 1995.

Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. Machine Learning, 29:
245-275, 1997.

Christopher Jackson. Multi-state models for panel data: the msm package for r. Journal of statistical
software, 38:1-28, 2011.

Christopher Jackson. Multi-state modelling with r: the msm package. 2024.

10

http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html

Under review as a conference paper at ICLR 2026

Gurtej Kanwar, Michael S Albergo, Denis Boyda, Kyle Cranmer, Daniel C Hackett, Sébastien
Racaniere, Danilo Jimenez Rezende, and Phiala E Shanahan. Equivariant flow-based sampling for
lattice gauge theory. Physical Review Letters, 125(12):121601, 2020.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Piotr Koniusz and Hongguang Zhang. Power normalizations in fine-grained image, few-shot image
and graph classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2):
591-609, 2022. doi: 10.1109/TPAMI.2021.3107164.

Jose Leiva-Murillo, AA Rodrguez, and E Baca-Garca. Visualization and prediction of disease
interactions with continuous-time hidden markov models. In NIPS 2011 Workshop on Personalized
Medicine. Citeseer, 2011.

Yu-Ying Liu, Hiroshi Ishikawa, Mei Chen, Gadi Wollstein, Joel S Schuman, and James M Rehg.
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden
markov model. In International conference on medical image computing and computer-assisted
intervention, pp. 444—451. Springer, 2013.

Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, and James M Rehg. Efficient learning of continuous-time
hidden markov models for disease progression. Advances in neural information processing systems,
28, 2015.

Pawel Lorek, Rafal Nowak, Tomasz Trzcinski, and Maciej Zieba. Flowhmm: Flow-based continuous
hidden markov models. In Advances in Neural Information Processing Systems, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow: Learning the
super-resolution space with normalizing flow. In Computer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16, pp. 715-732. Springer,
2020.

James E Matheson and Robert L. Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087-1096, 1976.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM review, 45(1):3-49, 2003.

Fernando Moreno-Pino, Alvaro Arroyo, Harrison Waldon, Xiaowen Dong, and Alvaro Cartea. Rough
transformers: Lightweight and continuous time series modelling through signature patching.
Advances in Neural Information Processing Systems, 37:106264—-106294, 2024.

Uri Nodelman, Christian R Shelton, and Daphne Koller. Expectation maximization and complex
duration distributions for continuous time bayesian networks. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, pp. 421-430, 2005.

Peter Nystrup, Henrik Madsen, and Erik Lindstrom. Stylised facts of financial time series and hidden
markov models in continuous time. Quantitative Finance, 15(9):1531-1541, 2015.

Hiroyuki Okamura, Junjun Zheng, and Tadashi Dohi. A statistical framework on software aging
modeling with continuous-time hidden markov model. In 2017 IEEE 36th Symposium on Reliable
Distributed Systems (SRDS), pp. 114-123. IEEE, 2017.

D.E. Pagendam, B.J. Trewin, N. Snoad, S.A. Ritchie, A.A. Hoffman, K.M. Staunton, C. Paton,
and N. Beebe. Modelling the wolbachia incompatible insect technique: strategies for effective
mosquito population elimination. BMC Biology, 18(1):1-13, 2020.

George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn.
Res., 22(57):1-64, 2021.

11

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
8026-8037, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Victor Pereyra and Godela Scherer. Efficient computer manipulation of tensor products with ap-
plications to multidimensional approximation. Mathematics of Computation, 27(123):595-605,
1973.

Yifang Qin, Wei Ju, Hongjun Wu, Xiao Luo, and Ming Zhang. Learning graph ode for continuous-
time sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 36(7):
3224-3236, 2024.

Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models. ieee assp
magazine, 3(1):4-16, 1986.

Yan Ropert-Coudert, Anton P Van de Putte, Ryan R Reisinger, Horst Bornemann, Jean-Benoit
Charrassin, Daniel P Costa, Bruno Danis, Luis A Hiickstédt, Ian D Jonsen, Mary-Anne Lea, et al.
The retrospective analysis of antarctic tracking data project. Scientific Data, 7(1):94, 2020.

J.V. Ross, D.E. Pagendam, and P.K. Pollett. On parameter estimation in population models ii: multi-
dimensional processes and transient dynamics. Theoretical Population Biology, 75(2-3):123-132,
2009.

Regev Schweiger, Yaniv Erlich, and Shai Carmi. Factorialhmm: fast and exact inference in factorial
hidden markov models. Bioinformatics, 35(12):2162-2164, 2019.

Fabian Christian Spaeh and Charalampos Tsourakakis. Learning mixtures of continuous-time markov
chains. In The Web Conference 2024, 2024. URL |https://openreview.net/forum?id=
InOEAPmMReU.

Weijing Tang, Jiaqi Ma, Qiaozhu Mei, and Ji Zhu. Soden: A scalable continuous-time survival model
through ordinary differential equation networks. Journal of Machine Learning Research, 23(34):
1-29, 2022.

Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden markov models for network
performance evaluation. Performance Evaluation, 49(1-4):129-146, 2002.

Kaze WK Wong, Gabriella Contardo, and Shirley Ho. Gravitational-wave population inference with
deep flow-based generative network. Physical Review D, 101(12):123005, 2020.

Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang.
T-drive: driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic information systems, pp. 99-108, 2010.

Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from the physical
world. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 316-324, 2011.

Zhiyue Zhang, Hongyuan Mei, and Yanxun Xu. Continuous-time decision transformer for healthcare
applications. In International conference on artificial intelligence and statistics, pp. 6245-6262.
PMLR, 2023.

12

https://openreview.net/forum?id=In0EAPmReU
https://openreview.net/forum?id=In0EAPmReU

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FAST COMPUTATION WITH KRONECKER PRODUCTS

Algorithmuses the mixed-product property. For two matrices: A;, A; € R**2, we have:
Ai®Aj = (IQ@Aj)(Ai@IQ), 5)

where I, denotes the k x k identity matrix. This can be easily generalised to the case with 3 matrices,
so that:

A®A; ® Ay
=L ® Ap) (A ® Aj) ® 1)
=L ®Ap)(A; ® (A; ®1y))
=LeoA)ILA; @I)(A; ®L)
=LeAL) (LA L) (LI ®A; L),

if we generalise I; to represent a scalar 1. The above rules can be applied recursively to obtain:

Al®R---®A,

(Igm—i RAp—it1 ® i1)

—

i=1

Then its product with a vector becomes:

(A1®-- @A)

= (H(Izmi ® Am_i+1 ® IQil)) .

i=1

We need to calculate a;11 = (Igm—i ® Aj_j11 ® Ipi—1)a; until we get a,, 1. Note that this
product can be calculated by properly arranging the elements of «;, leading to the reshape operation
in Algorithm[2]

A.2 DECODING WITH THE VITERBI ALGORITHM

Algorithm 3 Fast Decoding Algorithm for CTHMM.

Input: Observation o=[o/,...,0]]T;
parameters m, {QWIT, {5}, {ny, B350
Output: Most probable hidden state sequence h = [h;:,...,h;';]—r;

probability p(h|o).
1: for k =1tondo

2 for j = 1to 2™ do

3 Bj(or,) = ¢(Fj(0s,) ks, Xj);

4 end for

5: end for

6: v(1) = 7 © Bloy,):

7: for k = 2ton do

8: calculate PM (Aty),....P™ (At) with (B));

9: caleulate 9(k), w(k) = g(PW(Aty), ..., PU™ (Aty,), v(k — 1)) with Algorithm [4}

10: w(k) = 8(k) © Blo,):

11: end for

12: p(h|o) = max; v;(n).

13: @, = argmax; v;(n),gn—1 = Wq, (N), ..., q1 = We,(2)
14: h=[h/,... . h/ |7 where h;, =b"(gs).

13

Under review as a conference paper at ICLR 2026

The decoding of CTHMM produces the most likely hidden state sequence,
argmaxy, ., p(hey, ..., hy |0), given the observation sequence o and model parame-

ters {7"7 {Q(S)}Zn:p {fj}?_l:p {1, 2]‘}?:1 }

The decoding can be achieved through Viterbi algorithm, similar to Algorithm[T]— we use our Scalable
CTHMM design to make it faster. Algorithm[3Juses Algorithm[]in line 9 which is a similar subroutine
to Algorithm [2 calculating ©(k), w(k) = g(PM (Aty), ..., P (At,), v(k — 1)). The operation
X in Algorithm [4]resembles vector-matrix multiplication, replacing sum with max, obtaining v, and
replacing sum with arg max obtaining b. It has similar complexity as Algorithm 2] thus being equally
efficient.

Algorithm 4 Calculate 0, w = g(P™), ..., P(™) v).

Input: Matrices P ... P™ cR?*2, vector vweR?";
Output: v, w.
B =]
: for s =1tomdo
v = reshape(v, 2,2™m1);
v,b=v xP®);
B = reshape(B, s — 1,2,2m71);
concatenate b to the first dimension of B;
end for
B = reshape(B, m, 2™);
© = flatten(v);
Transform each row of B (binary vector) to integer obtaining w.

PYRIAIUNRE BN

—_—

A.3 MORE DETAILS AND COMPLETE VIEW OF THE DATASETS

A.3.1 TAXI DATASET

The Taxi dataset (Yuan et al.,[2010; 2011) contains the GPS trajectories of 10,357 taxis during the
period of Feb. 2 to Feb. 8, 2008 within Beijinéﬂ The total number of points in this dataset is about
15 million and the total distance of the trajectories reaches to 9 million kilometres. We removed
outliers and restricted the GPS trajectories to those with latitude in the interval [39.50015, 40.29868|
and longitude in the interval [116.10023,116.79973]. After preprocessing, there were 3,127 taxis
and 3,845,410 observed locations.

A.3.2 RAATD DATASET

The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for
Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and
Antarctic Biodiversity Informatics (Ropert-Coudert et al., 2020). It includes tracking data from over
70 contributors across 12 national Antarctic programs, and includes data from 17 predator species,
4060 individual animals, and over 2.9 million observed locations. We use the standardised version
of the datasef’] and clean the data to keep 2.5 million observations. The data cover a large area
where the Longitude is not continuous from -180 to 180, so we transform all Latitude/Longitude
to a 3D-Cartesian coordinates with an approximate altitude of zero and origin at the geographical
centre of Earth. In doing so, we model 3D movement data. Observations in this dataset can come
with labels associated with time (breeding stage) or other information (taxonomy of the species, sex,
age class). This results in four classification tasks that can be used to verify the interpretability of the
state space with the Viterbi (decoding) algorithm.

A.3.3 LRFF DATASET

The Little red flying foxes (LRFF) contains GPS coordinates of little red flying foxes, megachiropteran
bats native to northern and eastern Australia. There were 51 individual flying foxes equipped with

"nttps://www.kaggle.com/datasets/arashnic/tdriver
thtps ://data.aad.gov.au/metadata/SCAR_EGBAMM_RAATD_2018_Standardised.

14

https://www.kaggle.com/datasets/arashnic/tdriver
https://data.aad.gov.au/metadata/SCAR_EGBAMM_RAATD_2018_Standardised

Under review as a conference paper at ICLR 2026

GPS collars which sent noisy signals on their locations intermittently depending on a variety of
internal/external conditions. The data was collected over a period of more than 3 years and spread
over a wide geographic range of northern and eastern Australia. The study of their movement helps
understand their behaviour and avoid eroding their natural habitat.

We present all the observations after a simple data cleaning/preprocessing steps in Fig.[7| The datasets
are still noisy and challenging to model.

150°E 180° 150°W

120°E 120w

40.0

Latitude
w
8
©

w
©
®

w
©
<

w
©
o

w
©
o

1161 1162 1163 1164 1165 1166 1167 11638
Longitude

(a) The Taxi dataset. (b) The RAATD dataset.

Figure 7: A complete view of the datasets.

A.4 EVALUATION METRICS

The Negative Log-Likelihood (-LogLik) of n sequences o1, ..., 0, with length [y,...,1, w.rt. a

distribution with probability densities p(+) is defined as —w.
k=1

The CRPS (Continuous Ranked Probability Score) is a proper scoring function used to evaluate
probabilistic forecasts by comparing the predicted cumulative distribution function (CDF) against the
observations. It is defined as:

[ee]

CRPS(Fa) = [(Fly) -1y) v

—00

where z is an observation and F' is the CDF associated with the empirical probabilistic forecast. 1 is
an indicator function which gives 0 with negative inputs or otherwise 1.

In some cases we do not have the closed-from expression of CRPS or F, as is in our case. In this case
we follow the implementation in pyro (Bingham et al.,|2019) to empirically calculate CRPS through
sampling following an equivalent formulation:

CRPS(F,z) = E[|X —z|] — %EHX - X'|],

where X and X’ are independently and identically distributed according to F'. The sample size was
set to 50 per observation. The CRPS we reported are averaged across observations and dimensions.

A.5 MORE DETAILS ON DOWNSTREAM TASKS
The details of the tasks on the RAATD dataset are:

i. species classification with 17 different species;
ii. maturity classification with 4 age classes from different species;
iii. sex classification with 2 distinct labels;

iv. breeding stage classification with 17 labels.

15

Under review as a conference paper at ICLR 2026

Figure 8: Four consecutively predicted heatmaps by our model on the Taxi dataset (red dots indicate observations).

Note that some of the labels implicitly indicate the taxonomy of species, e.g., some breeding stage
labels are only for a specific kind of animals. For the first 3 tasks, the classifier takes as input the
4009 samples generated from averaging the hidden states within each sequence. Task iv includes
380638 labelled observations. For multi-class classification, we adopt “macro” and “ovr” scheme in

sklearn (Pedregosa et al.|[2011]) for the AUC calculation.

A.5.1 MORE RESULTS

Figure 8] presents a few predicted heatmaps on taxi dataset generated by sampling from our model.

16

	Introduction
	Methodology
	Model Specification
	Fast Learning/Evaluation by the Forward Algorithm

	Related Works
	Experiments
	Datasets
	Baselines, Implementation Details, and Evaluation Metrics
	Experimental Results
	Ablation Study

	Conclusion and Limitations
	Reproducibility statement
	Appendix
	Fast Computation with Kronecker Products
	Decoding with the Viterbi Algorithm
	More Details and Complete View of the Datasets
	Taxi Dataset
	RAATD Dataset
	LRFF Dataset

	Evaluation Metrics
	More Details on Downstream Tasks
	More results

